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Abstract. We establish global-in-time well-posedness of the one-dimensional hydrodynamic
Gross-Pitaevskii equations in the absence of vacuum in (1 + H

s) × H
s−1 with s ≥ 1. We

achieve this by a reduction via the Madelung transform to the previous global-in-time well-
posedness result for the Gross-Pitaevskii equation in [17, 18]. Our core result is a local bilipschitz
equivalence between the relevant function spaces.
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1. Introduction

We consider in one dimension the Gross-Pitaevskii equation

(GP) i∂tq + ∂xxq − 2(|q|2 − 1)q = 0 ,

where q(t, x) : R×R −→ C represents an unknown wave function, subject to the boundary
condition at infinity lim|x|→∞ |q(t, x)| = 1. The Gross-Pitaevskii equation has a hydrodynamic
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2 R. WEGNER

formulation

(hGP)

{
∂tρ+ 2∂x(ρv) = 0 ,

∂tv + ∂x(v
2) + 2∂xρ = ∂x

(
∂x
(
1
2
∂xρ
ρ

)
+
(
1
2
∂xρ
ρ

)2)
,

which we call the hydrodynamic Gross-Pitaevskii equations. Here ρ(t, x), v(t, x) : R×R −→ R

may be understood as the unknown density and velocity of a quantum fluid.
The relation between (GP) and (hGP) is given by the Madelung transform

(1.1) M(q) =
(
|q|2, Im

[∂xq
q

])
,

which formally transforms a solution q of (GP) into a solution (ρ, v) = M(q) of (hGP). Note
that ρ and v are real-valued. One immediately sees that the Madelung transformM only makes
sense when q 6= 0, which represents an absence of vacuum. We may recover q from its Madelung
transform by the formula

q =
√
ρeiϕ ,

where ϕ is some spatial primitive of v, i.e.

∂xϕ = v .

One furthermore sees that the inverse Madelung transform (ρ, v) 7−→ q is only defined up to
multiplication with S

1, i.e. a constant rotation in phase (see (1.13) for more details). We refer
the reader to [8] for a survey of the Madelung transform and the hydrodynamic Gross-Pitaevskii
equations.

1.1. Overview of well-posedness results for the Gross-Pitaevskii equation. E.P. Gross
[14] and L.P. Pitaevskii [20] introduced the Gross-Pitaevskii equation as a model for a Bose-
Einstein Condensate, a type of Boson gas at very low density and temperature. For rigorous
justification of the model, we refer to the mean-field approximation established by L. Erdős, B.
Schlein, and H. Yau [10], as well as references therein. As the Gross-Pitaevskii equation is a
kind of defocusing cubic nonlinear Schrödinger equation, its well-posedness has been extensively
studied. Due to the non-zero boundary condition, finite-energy solutions to (GP) can clearly not
be in traditional function spaces that require global integrability, such as Lp(R). For integers
k ≥ 1 and in any dimension n ≥ 1, P.E. Zhidkov [22] established local well-posedness in the
so-called Zhidkov space Zk(Rn), which is the closure of {u ∈ Ckb (Rn) : ∂xu ∈ Hk−1(Rn)} under
the norm

(1.2) ‖u‖Zk(Rn) = ‖u‖L∞(Rn) +
∑

1≤|α|≤k

‖∂αx u‖L2(Rn).

This lead to a first global-in-time well-posedness result in Z1(R), as the Ginzburg-Landau energy

(1.3) E(q) =
1

2

ˆ

R
n

|∂xq|2 + (|q|2 − 1)2 dx

is conserved. The Gross-Pitaevskii equation (GP) can be interpreted as the Hamiltonian evolu-
tionary equation associated to this energy.

The well-posedness result in Zhidkov spaces was expanded to the cases n = 2, 3 by C. Gallo
[11]. Global-in-time well-posedness in the energy space {q ∈ H1

loc(R
n) : E(q) <∞} was obtained
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by P. Gérard [12, 13] for n = 1, 2, 3, and for n = 4 under smallness assumptions. Later R. Killip,
T. Oh, O. Pocovnicu, and M. Vis,an [15] established global-in-time well-posedness in the energy
space for n = 4.

We are concerned with the case n = 1. For s ∈ R, we associate with solutions of (GP) the
energy functionals

(1.4) Es(q) =
1

2

∥∥∂xq
∥∥2
Hs−1(R)

+
1

2

∥∥|q|2 − 1
∥∥2
Hs−1(R)

.

Note that indeed E1 = E. Our results are consequences of a pair of papers [17, 18] by H.
Koch and X. Liao, where for s ≥ 0 they proved the global-in-time well-posedness of (GP) in the
complete metric space

(1.5) Xs = {q ∈ Hs
loc(R) : E

s(q) <∞} /S1 ,

equipped with the distance function

(1.6) ds(q, p) =

(
ˆ

R

inf
λ∈S1
‖ sech(y − ·)(λq − p)‖2Hs dy

)1
2

.

We summarize several of their results, taken from [17, Theorem 1.2, 1.3, Lemma 6.1] and [18,
Theorem 1.5], in the following theorem.

Theorem 1.1 (Global-in-time well-posedness of (GP) [17, 18]). Let s ≥ 0. The pair (Xs, ds) is
a complete metric space, and the energy functional Es : Xs −→ R is continuous. There exists a
constant C0 > 0 such that ds(1, q) ≤ C0

√
Es(q) for all q ∈ Xs.

The Gross-Pitaevskii equation (GP) is globally-in-time well-posed in the metric space (Xs, ds)
in the following sense: For any initial data q0 ∈ Xs there exists a unique global-in-time solution
q ∈ C(R;Xs) of (GP) (see Definition 3.2 below). For any t ≥ 0 the Gross-Pitaevskii flow map
Xs ∋ q0 7→ q ∈ C([−t, t];Xs) is continuous. There exists a constant C1(s,E

s(q0)) such that

(1.7) sup
t∈R

Es(q(t)) ≤ C1(s,E
s(q0))E

s(q0) ,

and in the case s ≥ 1 the energy E(q(t)), defined in (1.3), is conserved.

1.2. Functional analytic framework. Our goal is to show a novel global-in-time well-posedness
result for (hGP) with (ρ, v) ∈ (1 +Hs) ×Hs−1. We achieve this under the assumptions s ≥ 1
and E < 4

3 by passing the well-posedness result for (GP) in Theorem 1.1 through the Madelung
transform (1.1). The first assumption s ≥ 1 ensures sufficient regularity for the energy E to
be defined, and for (hGP) to be interpretable in the sense of distributions. As an example,
consider that s ≥ 1 implies v ∈ L2(R), and so the problematic square of a distribution v2 ap-
pearing in (hGP)2 does indeed exist. The second assumption E < 4

3 can also be understood as

a “regularity” assumption: Solutions below the critical energy of 4
3 can not have vacuum, that

is points or intervals where |q| = √ρ = 0. As a result, singularities are avoided in the hydro-
dynamic formulation. Due to conservation of energy, the absence of vacuum is guaranteed for
all times. Note that this energy assumption is sharp in the sense that the black soliton solution
q(t, x) = tanh(x) to (GP) has a zero tanh(0) = 0, while also having energy E(tanh) = 4

3 .
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The problem of dealing with the possibility of vacuum was previously overcome by P. Antonelli
and P. Marcati [1], who constructed global-in-time weak solutions in n = 3 to (hGP) for initial
data in L2. Their approach does not yield uniqueness though.

The well-posedness of the Euler-Korteweg system, a special case of the Euler equations which
includes (hGP), was studied in higher dimensions by C. Audiard and B. Haspot [3, 4]. Similar
to the approach we take is a paper by C. Audiard [2], in which global-in-time well-posedness
of (hGP) under smallness assumptions is shown in certain spaces for n ≥ 2 by applying the
Madelung transform to solutions to (GP). While they used scattering results to bound the
solution away from 0, we use a rather elementary argument that leads us to the aforementioned
energy bound E < 4

3 .

Lemma 1.2. Consider the function b̃ : [0, 1] −→ [0, 43 ] defined by

b̃(δ) =
4

3
− 2δ +

2

3
δ3.

This is a strictly decreasing bijection whose inverse we denote by
δ̃(b) : [0, 43 ] −→ [0, 1]. We have

b̃(δ) = min
{
E(q) : q ∈ H1

loc(R), inf
x∈R
|q(x)| ≤ δ

}
,

δ̃(b) = min
{
inf
x∈R
|q(x)| : q ∈ H1

loc(R), E(q) ≤ b
}
.

δ

b

4
3

10
Figure 1. Graph of b̃

This Lemma is a stronger version of [6, Lemma 1]. The proof of a slightly more general Lemma
A.1 is given in the appendix. As a consequence of Lemma 1.2, the “energy gap” 4

3 −E(q) yields
an explicit lower bound for the distance of |q| to zero. Due to conservation of the energy E(q),
we obtain the following corollary.

Corollary 1.3. For any solution q ∈ C(R;X1) of (GP) (see Definition 3.2), we have

(1.8) E(q0) < b <
4

3
=⇒ inf

(t,x)∈R2
|q(t, x)| > δ̃(b) > 0 .

We thus consider solutions q of (GP) in Xs, s ≥ 1 with energy

(1.9) E(q) <
4

3
,

recalling the definitions (1.6) and (1.3) of Xs and E. We look for solutions (ρ, v) of (hGP) in
the function space

(1.10) Ys = (1 +Hs(R;R))×Hs−1(R;R) ,

equipped with the metric

(1.11) θs((ρ, v), (η,w)) = ‖ρ− η‖Hs + ‖v − w‖Hs−1 .

We define the analogous energy

(1.12) E(ρ, v) = E(M−1(ρ, v)) =
1

2

ˆ

R

(∂xρ)
2

4ρ
+ ρv2 + (ρ− 1)2 dx.

Here the inverse Madelung transform is defined as

(1.13) M−1(ρ, v)(x) =
(√

ρ(x)eiϕ(x)
)
S
1 =

{
λ
√
ρ(x)eiϕ(x) : λ ∈ S

1
}
,
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where ϕ is any spatial primitive of v, i.e. ∂xϕ = v. Note that the energy E is indeed well-defined
on equivalence classes under multiplication by S

1, and furthermore that the space Xs consists of
such equivalence classes, and is hence a suitable domain for the Madelung transformM, given
in (1.1).

In order to transform solutions of (GP) into solutions of (hGP) via the Madelung transform, we
establish an equivalence between the relevant function spaces (Xs, ds) and (Ys, θs). Specifically,
we prove a local bilipschitz equivalence between the distance functions ds and θs for all s > 1

2 .
While our main result only holds for s ≥ 1, our approach has the potential to be extended to
the case 1

2 < s < 1 if one finds a way to make sense of (hGP)2 in such a low regularity setting.
Here the absence of vacuum can still be ensured by a smallness assumption of the form

Eµ(q) < ε0(µ) << 1 ,

where µ > 1
2 (see (1.16)). This smallness condition can also replace E < 4

3 in the case s ≥ 1,
µ ≤ s. Specifically, we have the following Lemma 1.4 as a replacement for Lemma 1.2.

Lemma 1.4. For δ ∈ [0, 1] and µ > 1
2 define

Eµδ = inf
{
Eµ(q) : q ∈ Hµ

loc, inf
x∈R
|q(x)| ≤ δ

}
.

Then Eµ1 = 0, the function δ 7→ Eµδ is decreasing, and there exists a constant C̃(µ) > 0 so that

(1.14) Eµδ ≥
(1− δ)2
C̃(µ)

.

This Lemma is also a special case of Lemma A.1. By (1.7) there exists for any µ > 1
2 a

constant c(µ) > 0 such that

(1.15) Eµ(q0) < ε =⇒ sup
t∈R

Eµ(q(t)) < c(µ) ε

for all ε ∈ (0, 1) and any solution q ∈ C(R;Xµ) of (GP). Not attempting to obtain a sharp
bound, we state the analogous of Corollary (1.3)

Corollary 1.5. Let µ > 1
2 and define

(1.16) ε0(µ) = max

{
1

2
,

1

4c(µ)C̃(µ)

}
.

For any solution q ∈ C(R;Xµ) of (GP) (see Definition 3.2), we have

(1.17) Eµ(q0) < ε < ε0(µ) =⇒ inf
(t,x)∈R2

|q(t, x)| > 1−
√
ε

√
c(µ)C̃(µ) >

1

2
.

Proof. We prove the contrapositive. Suppose inf(t,x)∈R2 |q(t, x)| ≤ δ := 1 − √ε
√
c(µ)C̃(µ) and

note that δ ∈ (0, 1). Using the definition of Eµ
δ̃
and (1.14), this implies that for any δ̃ > δ there

exists t ∈ R with

Eµ(q(t)) ≥ Eµ
δ̃
≥ (1− δ̃)2

C̃(µ)
.
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In particular

sup
t∈R

Eµ(q(t)) ≥ (1− δ)2
C̃(µ)

= c(µ)ε ,

so (1.15) implies Eµ(q0) ≥ ε. �

As the energies Eµ still provide a lower bound for the distance of |q| to zero, we can use the
smallness assumption Eµ < ε0(µ) as a substitute for E < 4

3 . We define for µ > 1
2 the energies

(1.18) Eµ(ρ, v) = Eµ(M−1(ρ, v)) .

1.3. Main results. For both the Gross-Pitaevskii equation (GP) and its hydrodynamic formu-
lation (hGP), there are three key objects in our function framework: The energy, the space and
the metric. We summarize the definitions given in §1.2 in the following diagram:

(1.19)

Es(q) = 1
2‖∂xq‖2Hs−1 +

1
2‖|q|2 − 1‖2

Hs−1

Xs = {q ∈ Hs
loc(R;C) : E

s(q) <∞} /S1

ds(q, p) =
(´

R
infλ∈S1 ‖ sech(y − ·)(λq − p)‖2Hs dy

) 1
2

M
y

q =
√
ρeiϕ, ρ = |q|2, v = ∂xϕ

p =
√
ηeiψ, η = |p|2, w = ∂xψ

xM
−1

Es(ρ, v) = Es(M−1(ρ, v))

Ys = {(ρ, v) ∈ (1 +Hs(R;R))×Hs−1(R;R)}
θs((ρ, v), (η,w)) = ‖ρ− η‖Hs + ‖v − w‖Hs−1

Here the Madelung transform and its inverse

M(q) =
(
|q|2, Im

[∂xq
q

])
M−1(ρ, v) =

(√
ρeiϕ

)
S
1, ∂xϕ = v

are given in (1.1) and (1.13) respectively. Recall also the explicit forms of the energies E and E
in the most important case s = 1:

E(q) =
1

2

ˆ

R
n

|∂xq|2 + (|q|2 − 1)2 dx E(ρ, v) = 1

2

ˆ

R

(∂xρ)
2

4ρ
+ ρv2 + (ρ− 1)2 dx .

Our first main result is the following theorem, which is central to our strategy as it establishes
a local bilipschitz equivalence between the metrics ds and θs. We require s > 1

2 to use L∞

embeddings and certain product estimates.

Theorem 1.6 (Local bilipschitz equivalence of ds and θs). Let s > 1
2 and r, δ > 0. Consider

measurable functions ρ, η, ϕ, ψ : R −→ R so that q, p ∈ S ′(R) ∩Hs
loc(R) and |q|, |p| > δ, where

q =
√
ρeiϕ and p =

√
ηeiψ. There exists a constant C = C(s, δ, r) > 0 so that the following hold:

(i) If ds(1, q), ds(1, p) < r, then

θs((ρ, ∂xϕ), (η, ∂xψ)) ≤ C ds(q, p) .
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(ii) If θs((1, 0), (ρ, ∂xϕ)), θ
s((1, 0), (η, ∂xψ)) < r, then

ds(q, p) ≤ C θs((ρ, ∂xϕ), (η, ∂xψ)) .
Corollary 1.7. Let s ≥ 1, 1

2 < µ < 1. For all b < 4
3 and ε < ε0(µ) the maps

({
q ∈ Xs : E(q) < b

}
, ds
) M−−−−−→

({
(ρ, v) ∈ Ys : E(ρ, v) < b

}
, θs
)

and ({
q ∈ Xs : Eµ(q) < ε

}
, ds
) M−−−−−→

({
(ρ, v) ∈ Ys : Eµ(ρ, v) < ε

}
, θs
)

are bilipschitz equivalences. Here ε0(µ) is a constant defined in (1.16).

Our second main result is the global-in-time well-posedness of the hydrodynamic Gross-
Pitaevskii equations.

Definition 1.8 (Solution to (hGP)). Let 0 ∈ I ⊂ R be an open time interval or the real
line, and let (ρ0, v0) ∈ Y1 with ρ0 > 0. A solution to (hGP) with initial data (ρ0, v0) is a
pair (ρ, v) ∈ C(I;Y1) with ρ > 0 which solves (hGP) in the sense of distributions and fulfills
(ρ, v)(0) = (ρ0, v0).

Theorem 1.9 (Global-in-time well-posedness of (hGP) for s ≥ 1). Let s ≥ 1. The hydrodynamic
Gross-Pitaevskii equations (hGP) are globally-in-time well-posed in the metric space (Ys, θs) for
initial data (ρ0, v0) ∈ Ys with E(ρ0, v0) < 4

3 in the following sense:
There exists a solution (ρ, v) ∈ Cb(R;Ys) to (hGP) (see Definition 1.8). It is the unique

solution that fulfills

(1.20) E(ρ(t), v(t)) = E(ρ0, v0) <
4

3
for all t ∈ R. The solution map

{
(ρ0, v0) ∈ Ys : E(ρ0, v0) <

4

3

}
−→ Cb(R;Ys)

(ρ0, v0) 7−→ (ρ, v)

is continuous.
For all 1

2 < µ < 1 there exist constants c(µ), ε0(µ) > 0, defined in (1.15) and (1.16), so that

if we replace the assumption E(ρ0, v0) < 4
3 by Eµ(ρ0, v0) < ε < ε0(µ), then the above statement

holds with (1.20) replaced by Eµ(ρ(t), v(t)) < c(µ) ε.

Remark 1.10. Previously, P.E. Zhidkov [21, Theorem III.3.1] studied the stability of solutions
in the Zhidkov space Z1(R) (see (1.2)) near space-homogeneous solutions Φ, such as the constant
solution Φ = 1, with respect to the distance θ1. For the case s = 1 he derived similar estimates
as above under smallness assumptions, although he did not formulate a well-posedness result.
Curiously, in [21, Cor. III.3.5] he proved furthermore that for any ball B ⊂ R, if the initial
θ1-distance between the perturbed and the space-homogeneous solution is small, then for all times
also the distance

inf
λ∈S1
‖λq − Φ‖W 1,2(B)

is small. This can be interpreted as a weaker form of the estimate d1 . θ1 we derive (see Lemma
2.6 and Remark 2.11 below).
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Remark 1.11. As both Theorem 1.1 and Theorem 1.6 work for all s > 1
2 , it may be possible

to extend Theorem 1.9 to the case 1
2 < s < 1. The problem is that for v ∈ Hs−1 6⊆ L2 the

product of distributions v2 = v · v is not necessarily defined. Nevertheless, it may be possible to
find global distributional solutions. For example, in the paper [16] by R. Killip and M. Vis

,
an

global-in-time well-posedness of the KdV equation in H−1 is first shown in the sense that the
solution map R×S −→ S extends to a continuous mapping R×H−1 −→ H−1, and some other
conditions are fulfilled. In our case, it is similarly true that the solution map

{
(ρ0, v0) ∈ Y1 : Es(ρ0, v0) < ε0(s)

}
−→ Cb(R;Y1)

has a unique continuous extension to a map
{
(ρ0, v0) ∈ Ys : Es(ρ0, v0) < ε0(s)

}
−→ Cb(R;Ys) .

This extension is given by the conjugation of the corresponding solution map for (GP) at reg-
ularity s with the Madelung transform. R. Killip and M. Vis

,
an then furthermore show a local

smoothing result, which implies that the solution map produces functions in L2
loc,t,x. As a result,

(KdV) is indeed solved in the sense of distributions. We do not know if such a local smoothing
result holds in our case.

Organization of the paper. In §2 we prove Theorem 1.6, the local bilipschitz equivalence
of (Xs, ds) and (Ys, θs). In §3 we prove Theorem 1.9, the global-in-time well-posedness of the
hydrodynamic Gross-Pitaevskii equations.

Acknowledgements. I would like to thank Sarah Hofbauer for her help with reviewing the
literature. I am especially thankful to my supervisor Xian Liao for proposing this problem and
strategy, and for her patience during many hours of discussion.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 258734477 – SFB 1173.

2. Local bilipschitz equivalence of (Xs, ds) and (Ys, θs)
The goal of this section is to prove Theorem 1.6. In the §2.1, we introduce the necessary

notations, definitions, and basic results required for the rest of the paper. We split the proof of
the two statements (i) and (ii) of Theorem 1.6 into §2.2 and §2.3.

2.1. Notations and preliminaries. We use the notation R≥ = {r ∈ R : r ≥ 0}. We write C
or C(...) for various constants with possible dependence on other quantities. These may change
from one line to the next. We denote by D′ = D′(R) = D′(R;C) the space of distributions and
by S ′ = S ′(R) = S ′(R;C) the space of tempered distributions. In general, if for a family of
function spaces, such as the Lp-spaces, we write just “Lp”, then we mean Lp(R;C).

Let s ∈ R. We write f̂ for the Fourier transform of a tempered distribution f ∈ S ′. We define
the Sobolev space

Hs = Hs(R) = Hs(R;C) = {f ∈ S ′(R;C) : ‖f‖ <∞}
with norm

‖f‖Hs = ‖f‖Hs(R) =
∥∥〈ξ〉sf̂

∥∥
L2(R)

.
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Here 〈ξ〉 =
√

1 + |ξ|2. We also define the quasinorm of the homogeneous Sobolev space

‖f‖Ḣs = ‖f‖Ḣs(R) =
∥∥|ξ|sf̂

∥∥
L2(R)

.

Let p ∈ [1,∞). For s ≥ 0, let α ∈ [0, 1) and m ∈ Z so that s = m + α. Let B ⊂ R be a
non-empty open interval. We define the Sobolev-Slobodeckij space

W s,p(B) = {f ∈ D′(B) : ‖f‖W s,p(B) <∞}

with norm

‖f‖W s,p(B) =

(
m∑

k=0

‖∂kf‖p
Lp(B) +

ˆ

B

ˆ

B

|∂mf(x)− ∂mf(y)|p
|x− y|1+αp dxdy

)1
p

.

We define W s,p
0 (B) = D(B)

W s,p(B)
. For s < 0 we define W s,p′(B) = (W−s,p

0 (B))∗, where
1
p
+ 1

p′
= 1. We refer the reader to the book [19] by W. McLean and W.C.H. McLean for

a comprehensive exposition. For the convenience of the reader, let us recall some well-known
results on Sobolev spaces that may be used without mention.

2.1.1. Fractional Sobolev Spaces on B and R. The only bounded domains we use are balls B,
and on those we use the Sobolev-Slobodeckij spaces W s,2(B). On the whole real line R we use
Hs = Hs(R).

Lemma 2.1 (W s,2(B) and Hs(R)). Let s ∈ R and R > 0. Let B̃ ⊂ B ⊆ R be concentric balls

of radius R
2 and R. Set Bk = B + kR and B̃k = B̃ + kR for k ∈ Z.

(i) There exists a natural isomorphism H−s ∼= (Hs)∗ (see [19, p. 76]).
(ii) Hs =W s,2(R) and

‖f‖W s,2(B) ≤ C1min{‖F‖Hs : F
∣∣
B
= f} ≤ C2‖f‖W s,2(B) .

(see [19, p. 77, (3.23) + Theorem 3.18, 3.19]).
(iii) For s ≥ 0, there exists a bounded linear extension operator E : W s,2(B) −→ Hs with

Ef
∣∣
B
= f (see [19, Theorem A.4]).

(iv) For s ≥ 0, there exists a constant C(s,R) so that
∑

k∈Z

‖f‖2
W s,2(B̃k)

≤ ‖f‖2Hs ≤ C(s,R)
∑

k∈Z

‖f‖2W s,2(Bk)
≤ 4C(s,R)‖f‖2Hs

and

‖f‖2H−s ≤ C(s,R)
∑

k∈Z

‖f‖2W−s,2(Bk)
.

(v) If s > 1
2 , then ‖fg‖Hs ≤ C(s)‖f‖Hs‖g‖Hs (see [5, Cor. 2.87]). By use of the extension

operator, we also have ‖fg‖W s,2(B) ≤ C(s)‖f‖W s,2(B)‖g‖W s,2(B).

Proof. We only have to prove (iv). We start with the first inequality in the sequence. The case
s = 0 is trivial, so we assume s > 0. Here the statement is trivial for the terms with integer
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regularity, and for the fractional terms we estimate

∑

k∈Z

ˆ

B̃k

ˆ

B̃k

|∂mf(x)− ∂mf(y)|2
|x− y|1+2α

dxdy ≤
∑

j,k∈Z

ˆ

B̃j

ˆ

B̃k

|∂mf(x)− ∂mf(y)|2
|x− y|1+2α

dxdy

=

ˆ

R

ˆ

R

|∂mf(x)− ∂mf(y)|2
|x− y|1+2α

dxdy .

The third inequality in the sequence follows trivially. We show the second inequality for any
s ∈ R. We can decompose f =

∑
k∈Z ηkf , where ηk is a smooth partition of unity with

supp ηk ⊂ Bk,
∑

k∈Z ηk = 1 and ηk(x) = ηk(x+ kR). Then

〈f, f〉Hs =
∑

j,k∈Z

〈ηjf, ηkf〉Hs
(ii)
=
∑

k∈Z

〈(ηk−1 + ηk + ηk+1)f, ηkf〉W s,2(Bk)

≤ C(s,R, η0)
∑

k∈Z

‖f‖2W s,2(Bk)
.

�

2.1.2. Estimates in Hs. The following Lemma is a crucial estimate. Such kinds of product
estimates are well-known in the literature, see for example [9, Proposition 2.7].

Lemma 2.2. Let s > 1
2 and f, g ∈ S ′. There exists a constant C(s) so that

(2.1) ‖fg‖Hs ≤ C(s)‖g‖Hs

(
‖f‖L∞ + ‖f ′‖Hs−1

)

and

(2.2) ‖fg‖Hs−1 ≤ C(s)‖g‖Hs−1

(
‖f‖L∞ + ‖f ′‖Hs−1

)
.

Proof. See Appendix B. �

In this section we often write f ′ for the spacial derivative ∂xf . Recall the definitions (1.19).
For notational convenience, we sometimes prefer to use the variables

A =
√
ρ and B =

√
η .

These variables are equivalent for the sake of our estimates, by which we mean specifically
Lemma 2.4. In order to prove this, we state two estimates regarding the action of a smooth
function on Sobolev spaces. They are a direct consequence of some results in [5].

Lemma 2.3 ([5, Theorem 2.87, Corollary 2.91]). Let s > 1
2 and F ∈ C∞(R;R) with F ′(0) =

F (0) = 0. Let u, v ∈ Hs(R;R) ∩ L∞(R;R). We have the estimates

(2.3) ‖F ◦ u‖Hs ≤ C(s, F ′, ‖u‖L∞)‖u‖Hs

and

(2.4) ‖F ◦ u− F ◦ v‖Hs ≤ C(s, F ′′, ‖u‖Hs , ‖v‖Hs)‖u− v‖Hs .
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Lemma 2.4. Let s > 1
2 and ρ, η ∈ S ′(R;R) ∩ Hs

loc(R;R) with ρ, η > 0. Define A =
√
ρ and

B =
√
η. We have the estimates

‖ρ− η‖Hs ≤ C1

(
s, ‖A− 1‖Hs , ‖B − 1‖Hs

)
‖A−B‖Hs

and

‖A−B‖Hs ≤ C2

(
s, ‖ρ− 1‖Hs , ‖η − 1‖Hs

)
‖ρ− η‖Hs .

Proof. We apply Lemma 2.3 with F (u) = u2 and obtain

‖A2 −B2‖Hs ≤ ‖(A− 1)2 − (B − 1)2‖Hs + 2‖A−B‖Hs

≤ C
(
s, ‖A− 1‖Hs , ‖B − 1‖Hs

)
‖A−B‖Hs .

Similarly with any function F ∈ C∞(R;R) that fulfills F (u) =
√
u+ 1 − 1

2u − 1 for x ≥ 0, we
obtain

‖√ρ−√η‖Hs ≤
∥∥∥∥
(√

(ρ− 1) + 1− 1

2
(ρ− 1)

)
−
(√

(η − 1) + 1− 1

2
(η − 1)

)∥∥∥∥
Hs

+
1

2
‖ρ− η‖Hs

≤ C
(
s, ‖ρ− 1‖Hs , ‖η − 1‖Hs

)
‖ρ− η‖Hs .

�

The following Lemma is also a consequence of Lemma 2.3 and will be used frequently in the
subsequent section.

Lemma 2.5. Let s, δ,R > 0. There exists C(s, δ,R) > 0 such that for any ball B0 ⊂ R of radius
R and all u ∈W s,2(B0) with |u| > δ > 0 we have

‖u−1‖W s,2(B0) ≤ C(s, δ)‖u‖W s,2(B0) .

Proof. This follows by applying Lemma 2.3 with any function F ∈ C∞(R;R) so that F (0) =
F ′(0) = 0 and F (x) = x−1 for |x| > δ

2 , and using the existence of an extension operator from
Lemma 2.1 (iii). Note that Lemma 2.3 requires real-valued functions, so we apply it to the real
and imaginary parts of u−1 separately. �

2.2. Proof of Theorem 1.6 (i). Recall the definitions (1.19), in particular q =
√
ρeiϕ and

p =
√
ηeiψ, as well as A =

√
ρ and B =

√
η. We assume s > 1

2 , d
s(1, q), ds(1, p) < r and

|q|, |p| > δ > 0. We have to prove that

θs((ρ, ∂xϕ), (η, ∂xψ)) ≤ C(s, δ, r) ds(q, p) .

We do this by showing an estimate of the form

(2.5) θs .
∑

k∈Z

ds∗
∣∣
Bk

. ds .



12 R. WEGNER

Let us elaborate on the quantity in the middle before we start the proof. Given a ball B ⊂ R,
we define for convenience the following notations:

ds∗
∣∣
B
(q, p) = inf

λ∈S1
‖λq − p‖W s,2(B) ,(2.6)

ds
∣∣
B
(q, p) =

(
ˆ

R

inf
λ∈S1
‖ sech(y − ·)(λq − p)‖2W s,2(B) dy

)1
2

.(2.7)

Lemma 2.6. Let s > 1
2 and let B0 = {x ∈ R : |x| < R} be an open ball of radius R > 0 with

center 0. There exists C(s,R) > 0 so that

(2.8) ds∗
∣∣
B0

(q, p) ≤ C(s,R) ds
∣∣
B0

(q, p)

for all q, p ∈ S ′∩Hs
loc. As a consequence, for families of balls Bk = B0+kR with k ∈ Z we have

(2.9)
∑

k∈Z

ds∗
∣∣
Bk

(q, p)2 ≤ C(s,R) ds(q, p)2 .

Proof. As {y − x : x, y ∈ B} ⊆ {x ∈ R : |x| < 2R}, there exists a finite constant C(s,R) > 0
such that supy∈B ‖ sech(y − ·)−1‖2

W s,2(B0)
≤ C(s,R). The first estimate follows:

inf
λ∈S1
‖λq − p‖2W s,2(B0)

≤ C(s,R) inf
y∈B0

inf
λ∈S1
‖ sech(y − ·)(λq − p)‖2W s,2(B0)

≤ C(s,R)

ˆ

R

inf
λ∈S1
‖ sech(y − ·)(λq − p)‖2W s,2(B0)

dy .

Using this and Lemma 2.1 (iv), we obtain the second estimate:

∑

k∈Z

ds∗
∣∣
Bk

(q, p)2 ≤ C(s,R)
∑

k∈Z

ds
∣∣
Bk

(q, p)2

≤ C(s,R)

ˆ

R

inf
λ∈S1

∑

k∈Z

‖ sech(y − ·)(λq − p)‖2W s,2(Bk)
dy

≤ C(s,R) ds(q, p)2 .

�

Proof of Theorem 1.6 (i). Let B0 = {x ∈ R : |x| < 1} and observe that

‖|q|2 − |p|2‖W s,2(B0)

= inf
λ,ν∈S1

‖|λq|2 − |νp|2‖W s,2(B0)

= inf
λ,µ,ν∈S1

‖|λq − µ|2 − |νp− µ|2 + 2(Re(λµq)− Re(µνp))‖W s,2(B0) .
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We can estimate

‖|q|2 − |p|2‖W s,2(B0)(2.10)

≤ inf
λ,µ,ν∈S1

∥∥∥Re
((

(λq − µ)− (νp− µ)
)(
(λq − µ) + (νp− µ)

))∥∥∥
W s,2(B0)

+ 2‖Re(λµq − µνp)‖W s,2(B0)

≤ C(s) inf
λ,ν∈S1

‖λq − νp‖W s,2(B0) inf
µ∈S1

(
‖λq − µ‖W s,2(B0) + ‖νp− µ‖W s,2(B0) + 2

)

= C(s) inf
λ∈S1
‖λq − p‖W s,2(B0) inf

µ∈S1
inf
ν∈S1

(
‖λq − µ‖W s,2(B0) + ‖νp− µ‖W s,2(B0) + 2

)

≤ C(s) ds∗
∣∣
B0

(q, p)
(
2 + ds∗

∣∣
B0

(1, q) + ds∗
∣∣
B0

(1, p)
)

≤ C(s, r) ds∗
∣∣
B0

(q, p),

where in the last line we used (2.8). Now we set Bk = B0 + k and see with Lemma 2.1 (iv) and
(2.9) that

‖ρ− η‖2Hs ≤ C(s)
∑

k∈Z

‖|q|2 − |p|2‖2W s,2(Bk)

≤ C(s, r)
∑

k∈Z

ds∗
∣∣
Bk

(q, p)2

≤ C(s, r) ds(q, p)2.

It remains to estimate ‖ϕ′ − ψ′‖Hs−1 . Applying Lemma 2.2 yields

‖(ϕ − ψ)′‖2Hs−1 = ‖(ei(ϕ−ψ))′e−i(ϕ−ψ)‖2Hs−1

≤ C(s)‖(ei(ϕ−ψ))′‖2Hs−1

(
‖e−i(ϕ−ψ)‖2L∞ + ‖(e−i(ϕ−ψ))′‖2Hs−1

)

≤ C(s)‖(ei(ϕ−ψ))′‖2Hs−1

(
1 + ‖(ei(ϕ−ψ))′‖2Hs−1

)
.

It therefore suffices to derive the estimate for the quantity ‖(ei(ϕ−ψ))′‖2
Hs−1 . Observe with

Lemma 2.1 (iv) that

‖(ei(ϕ−ψ))′‖2Hs−1 ≤ C(s)
∑

k∈Z

inf
λ∈S1
‖(ei(ϕ−ψ) − λ)′‖2W s−1,2(Bk)

= C(s)
∑

k∈Z

inf
θ∈R
‖ei(ϕ−ψ−θ) − 1‖2W s,2(Bk)

= C(s)
∑

k∈Z

inf
θ∈R
‖e−iψ(ei(ϕ+θ) − eiψ)‖2W s,2(Bk)

.
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We now carefully introduce the amplitudes:

inf
θ∈R
‖e−iψ(ei(ϕ+θ) − eiψ)‖2W s,2(Bk)

= inf
θ∈R

∥∥∥∥∥Be
−iψ(x)B−1

(
Aei(ϕ(x)+θ) −Beiψ(x)

A
+Beiψ(x)

(
1

A
− 1

B

))∥∥∥∥∥

2

W 2,s(Bk)

≤ C(s)‖Be−iψ‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

×


 inf
θ∈R

∥∥∥∥∥
Aei(ϕ(x)+θ) −Beiψ(x)

A

∥∥∥∥∥

2

W s,2(Bk)

+

∥∥∥∥Be
iψ(x)

(
1

A
− 1

B

)∥∥∥∥
2

W s,2(Bk)


 .

As A,B > δ > 0, we can apply Lemma 2.5. Together with (2.10) we obtain

‖A−1‖2W s,2(Bk)
≤ C(s, δ)‖A‖2W s,2(Bk)

≤ C(s, δ, r)
(
inf
λ∈S1
‖A− λ‖2W s,2(Bk)

+ |Bk|
)
≤ C(s, δ, r) ,

and similarly ‖B±1‖W s,2(Bk), ‖q±1‖W s,2(Bk), ‖p±1‖W s,2(Bk) ≤ C(s, δ, r). We conclude again by
reducing the situation to an application of Lemma 2.6 and the previously shown estimate (2.10):

‖(ei(ϕ−ψ))′‖2Hs−1 ≤ C(s)
∑

k∈Z

‖p‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

×
(

inf
λ∈S1
‖λq − p‖2W s,2(Bk)

‖A−1‖2W s,2(Bk)

+ ‖A−B‖2W s,2(Bk)
‖p‖2W s,2(Bk)

‖A−1‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

)

≤ C(s, δ, r)
∑

k∈Z

ds∗
∣∣
Bk

(q, p)2

≤ C(s, δ, r) ds(q, p)2 .

�

2.3. Proof of Theorem 1.6 (ii). We assume

θs((1, 0), (ρ, ∂xϕ)), θ
s((1, 0), (η, ∂xψ)) < r ,

and
√
ρ,
√
η > δ > 0. We have to prove that

ds(q, p) ≤ C(s, δ, r) θs((ρ, ∂xϕ), (η, ∂xψ)) .

As mentioned above, due to Lemma 2.4 it suffices to prove this with ρ, η replaced by A =
√
ρ

and B =
√
η. Recall the definitions (1.19). We define

d̃s(q, p) =

(
ˆ

R

inf
λ∈S1
‖
√

sech(y − ·)(λq − p)‖2Hs dy

) 1
2

,

where we have replaced the sech in the definition of ds with
√
sech. Some of the hard work for

this direction has already been done in the proof of the following Lemma 2.7. This was proven
for ds in [17, Lemma 6.1], but the proof is identical for d̃s as

√
sech is positive and still has

sufficiently fast decay.
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Lemma 2.7 ([17, Lemma 6.1]). For all s ≥ 0 the energy Es : Xs −→ R≥ is continuous with
respect to ds, and there exists C(s) > 0 so that

ds(1, q) ≤ C(s)
√
Es(q) and d̃s(1, q) ≤ C(s)

√
Es(q)

for all q ∈ Xs.

Remark 2.8. The appearance of the square root is explained by a clash of notation: The energies
Es as defined in [17] correspond to

√
2Es in our notation.

We first prove two Lemmas.

Lemma 2.9. Let s > 1
2 . There exists a constant C(s) > 0 so that for all ϕ ∈ S ′ ∩Hs

loc we have

‖(eiϕ)′‖Hs−1 ≤ C(s)(1 + ‖ϕ′‖Hs−1)γ‖ϕ′‖Hs−1 ,

where γ = 2s− 2 if s ≥ 1 and γ = 1−s
s− 1

2

if s < 1.

Proof. We assume ‖ϕ′‖Hs−1 6= 0. By Lemma 2.2 there exists a constant C(s) so that

(2.11) ‖ϕ′eiϕ‖Hs−1 ≤ C(s)‖ϕ′‖Hs−1

(
‖eiϕ‖L∞ + ‖(eiϕ)′‖Hs−1

)
.

For ε ∈ (0, 1) and f ∈ Hs
loc define fε(x) = f(εx). This has the scaling estimates

(2.12) min{εs− 1
2 , ε

1
2 }‖f ′‖Hs−1 ≤ ‖(fε)′‖Hs−1 ≤ max{εs− 1

2 , ε
1
2 }‖f ′‖Hs−1 .

Define smin ≤ smax so that {smin, smax} = {s − 1
2 ,

1
2}. Then we can rewrite the above as

(2.13) εsmax‖f ′‖Hs−1 ≤ ‖(fε)′‖Hs−1 ≤ εsmin‖f ′‖Hs−1 .

We choose ε = (1 + 2C(s)‖ϕ′‖Hs−1)
− 1

smin so that

‖(ϕε)′‖Hs−1 ≤ εsmin‖ϕ′‖Hs−1 =
‖ϕ′‖Hs−1

1 + 2C(s)‖ϕ′‖Hs−1

≤ 1

2C(s)
.

Combining this with (2.11) yields

‖(eiϕε)′‖Hs−1 ≤ C(s)‖(ϕε)′‖Hs−1 +
1

2
‖(eiϕε)′‖Hs−1 ,

so we obtain
‖(eiϕε)′‖Hs−1 ≤ 2C(s)‖(ϕε)′‖Hs−1 .

We conclude with the scaling estimates (2.12) that

‖(eiϕ)′‖Hs−1 ≤ ε−smax‖(eiϕε)′‖Hs−1 ≤ 2C(s)ε−smax‖(ϕε)′‖Hs−1 ≤ 2C(s)εsmin−smax‖ϕ′‖Hs−1 .

Lastly, note that

εsmin−smax =
(
1 + 2C(s)‖ϕ′‖Hs−1

) |s−1|
smin =

(
1 + 2C(s)‖ϕ′‖Hs−1

)γ
.

�

Lemma 2.10. Let s > 1
2 and r > 0. There exists C(s, r) > 0 so that for all q = Aeiϕ ∈ S ′∩Hs

loc
with θs((1, 0), (A,ϕ′)) < r we have

Es(q) ≤ C(s, r) θs((1, 0), (A,ϕ′))2 .
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Proof. For the amplitudinal part of the energy, we know from Lemma 2.4 that

‖|q|2 − 1‖Hs−1 ≤ ‖A2 − 1‖Hs ≤ C(s, r)‖A− 1‖Hs .

For the remainder, we use Lemma 2.2:

‖q′‖Hs−1 ≤ ‖A′eiϕ‖Hs−1 + ‖A(eiϕ)′‖Hs−1

≤ C(s)‖A′‖Hs−1

(
‖eiϕ‖L∞ + ‖(eiϕ)′‖Hs−1

)

+ ‖(eiϕ)′‖Hs−1

(
‖A− 1‖L∞ + 1 + ‖A′‖Hs−1

)
.

We now conclude by estimating both appearances of ‖(eiϕ)′‖Hs−1 with Lemma 2.9. �

Proof of Theorem 1.6 (ii). We split the distance ds(q, p) into two parts:

ds(q, p)2 ≤ 2

ˆ

R

inf
θ∈R
‖ sech(y − ·)A(ei(ϕ+θ) − eiψ)‖2Hs dy

+ 2

ˆ

R

‖ sech(y − ·)(B −A)eiψ‖2Hs dy

= (I) + (II) .

We use the algebra property of Hs and Lemma 2.7 to estimate

(I) ≤ C(s) sup
y∈R

∥∥∥
√

sech(y − ·)Aeiψ
∥∥∥
2

Hs
d̃s(1, ei(ϕ−ψ))2

≤ C(s, r)
(
‖A− 1‖2Hs + 1

)
sup
y∈R

∥∥∥
√

sech(y − ·)eiψ
∥∥∥
Hs
Es(ei(ϕ−ψ)) .

With Lemma 2.10 we can estimate Es(ei(ϕ−ψ)) by ‖ϕ′ − ψ′‖2
Hs−1 , and Lemma 2.2 yields

sup
y∈R

∥∥∥
√

sech(y − ·)eiψ
∥∥∥
Hs
≤ C(s) sup

y∈R

∥∥∥
√

sech(y − ·)
∥∥∥
Hs

(‖eiψ‖L∞ + ‖(eiψ)′‖Hs−1) ≤ C(s, r) .

It follows that

(I) ≤ C(s, r) θs((A,ϕ′), (B,ψ′))2 .

Note that

(II) ≤ C(s)

ˆ

R

∥∥∥
√

sech(y − ·)(A−B)
∥∥∥
2

Hs

(
1 + inf

λ∈S1

∥∥∥
√
sech(y − ·)(eiψ − λ)

∥∥∥
2

Hs

)
dy

≤ C(s)

(
ˆ

R

∥∥∥
√

sech(y − ·)(A−B)
∥∥∥
2

Hs
dy +

∥∥√sech
∥∥2
Hs‖A−B‖2Hs d̃s(1, eiψ)2

)
.
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We can deal with the second term as before. For the first one, we use Lemma 2.1 (iv) and
Young’s convolution inequality:
ˆ

R

∥∥∥
√

sech(y − ·)(A−B)
∥∥∥
2

Hs
dy ≤

∑

k∈Z

sup
y∈[k,k+1]

∑

j∈Z

∥∥∥
√

sech(y − ·)(A−B)
∥∥∥
2

W s,2([j,j+3])

≤
∑

j,k∈Z

∥∥√sech
∥∥2
C⌈s⌉+1([k−j−3,k−j+1]))

‖A−B‖2W s,2([j,j+3])

≤
∑

k∈Z

∥∥√sech
∥∥2
C⌈s⌉+1([k−3,k+1]))

∑

j∈Z

‖A−B‖2W s,2([j,j+3])

≤ C(s)‖A−B‖2Hs .

Therefore
(II) ≤ C(s, r) θs((A,ϕ), (B,ψ))2 .

To conclude, we have shown that

ds(q, p)2 ≤ (I) + (II) ≤ C(s, r) θs((A,ϕ), (B,ψ))2 .

�

Remark 2.11. Recall the definition of ds∗
∣∣
B
(see (2.6)). We have shown in particular that there

exist constants such that
(
∑

k∈Z

ds∗
∣∣
Bk

(q, p)2

) 1
2

≤ C(s, r) ds(q, p) ≤ C(s, δ, r)

(
∑

k∈Z

ds∗
∣∣
Bk

(q, p)2

) 1
2

for all q, p ∈ Xs with |q|, |p| > δ > 0 and ds(1, q), ds(1, p) < r. Here the first estimate is Lemma
2.6, while the second estimate actually follows from (ii) together with the fact that we showed
(i) by proving (2.5).

Let us say a few words on how Corollary 1.7 follows from Theorem 1.6.

Proof of Corollary 1.7. The Madelung transform is well-defined on equivalence classes under
multiplication by S

1, as v = ϕ′ ignores changes by a constant in the phase ϕ. Note also that
s ≥ 1, and so for any (ρ, v) ∈ Ys we have v ∈ L2 ⊂ L1

loc. Therefore we can define

ϕ(x) =

ˆ x

0
v(y) dy .

Recall that b < 4
3 and ε < ε0(µ) (see (1.16)). Due to (1.17) and (1.8), there exists δ > 0

such that |q| > δ for all q ∈ Xs with E(q) < b or Eµ(q) < ε. With Lemma 2.7 we find
some r = r(s, ε, b) > 0 such that ds(1, q) < r. Then Theorem 1.6 establishes the bilipschitz
estimates. �

3. Proof of Theorem 1.9

Given that Theorem 1.6 establishes an equivalence between the relevant function spaces
(Xs, ds) and (Ys, θs), the proof of Theorem 1.9 is now primarily a matter of carefully carry-
ing over the results of Theorem 1.1. This is straightforward for the existence and continuity
results. Uniqueness requires a further Lemma.
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Lemma 3.1. Let I ∋ 0 be an open time interval and q0 ∈ L∞ ∩ Ḣ1. Suppose

q1, q2 ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1)

are two distributional solutions to (GP) with q1(0) = q2(0) = q0. Then q1 = q2.

Proof. See Appendix C. �

This result is necessary because Theorem 1.1, in the way it is stated in [17], only yields
uniqueness for the following class of solutions, which a priori is smaller.

Definition 3.2 (Solutions to (GP) [17]). Let s ≥ 0. We say that q ∈ C(I;Xs) is a solution of
the Gross-Pitaevskii equation (GP) with initial data q0 ∈ Xs on the open time interval I ∋ 0 if
there exists q̃ : I −→ Hs

loc such that the following hold:

(i) q̃ solves (GP) in the sense of distributions on I × R.
(ii) q̃ projects to q, which means that q̃S1 = q.
(iii) We have [

t 7→ q̃(t)− q̃(0)
]
∈ C(I;L2(R)) .

(iv) For all compact intervals [a, b] ⊂ I and for some (and hence for all) regularized initial data
q̃∗0 of q̃(0) we have [

t 7→ q̃(t)− q̃∗0
]
∈ L4([a, b] ×R) .

The uniqueness result in Theorem 1.1 for s ≥ 1 is therefore weaker than the one in Lemma 3.1.
The proofs, however, are almost identical: In [17] uniqueness is shown by a classical argument
with an energy estimate and Grönwall’s inequality. We extend this argument for s ≥ 1 to gain
Lemma 3.1.

Remark 3.3. If p̃ ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1) is a distributional solution to (GP), as in

Lemma 3.1, with initial data p̃(0)S1 ∈ X1, then p̃S1 is also a solution in the sense of Definition
3.2. The reason is that by Theorem 1.1 there exists a solution q ∈ C(I;X1) in the sense
of Definition 3.2 with initial data q(0) = p̃(0)S1. One can see that this has a representative

q̃ ∈ C(I;L2
loc)∩L∞(I;L∞∩ Ḣ1) which solves (GP) in distribution, so Lemma 3.1 implies q̃ = p̃.

Theorem 1.9 states that (hGP) is globally-in-time well-posed, meaning that there exist solu-
tions, they are unique, and the flow map is continuous. The structure of the proof is to transfer
the existence and continuity result for (GP) from Theorem 1.1 via the Madelung transform over
to (hGP). This requires the absence of vacuum, which we obtain by the energy assumptions
E < 4

3 or Eµ < ε0(µ) (see (1.17) and (1.8)). Uniqueness for (hGP) is similarly inferred from the
uniqueness result for (GP) in Lemma 3.1.

Recall that by Lemma 2.7 the energy functionals Es : Xs −→ R≥ are continuous. Recall
furthermore the definitions (1.19).

Proof of Theorem 1.9. Existence. We are given an initial data (ρ0, v0) ∈ Ys which fulfills one
of the bounds E(ρ0, v0) < 4

3 or Eµ(ρ0, v0) < ε0(µ). We define q0 =M−1(ρ0, v0) and obtain via
Theorem 1.1 a solution q ∈ Cb(R;X

s) of (GP) in the sense of Definition 3.2. Our solution q
has a special representative q̃ ∈ S ′(R×R). In both cases E(q0) <

4
3 and Eµ(q0) < ε0(µ), we

obtain either (1.8) or (1.17), so there exists some δ > 0 depending on the initial data such that
|q̃| > δ > 0. Now Corollary 1.7 implies (ρ, v) =M(q̃) ∈ Cb(R;Ys).
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(ρ0, v0) (ρ, v)(t)

q0 q(t)

(hGP)

M−1

(GP)

M

We show that (ρ, v) is a distributional solution of (hGP) in the sense of Definition 1.8. We
fix a ball B0 ⊂ R and a time interval J = (a, b) ⊂ R with 0 ∈ J . It suffices to verify that (hGP)
holds in distribution, i.e. when tested against any test function f ∈ D(J ×B0).

On regularity. Due to Lemmas 2.6 and 2.5 for s ≥ 1, we know that q̃, q̃−1 ∈ L∞(J ;W 1,2(B0)).
From these considerations ∂xxq̃ ∈ L∞(J ;W−1,2(B0)) and (|q̃|2−1)q̃ ∈ L∞(J ;W 1,2(B0)) directly
follow. Then ∂tq̃ ∈ L∞(J ;W−1,2(B0)) holds because q̃ solves (GP ) in the sense of distributions.

As a consequence of duality and the algebra property of H1, one obtains the product estimate
‖fg‖H−1 ≤ C‖f‖H1‖g‖H−1 . From this we obtain some regularity for some of the more difficult
terms appearing in the subsequent calculations, for example ∂tq̃q̃, ∂xxq̃q̃ ∈ L∞(J ;W−1,2(B0)).
We now present approximation arguments that derive (hGP)1 and (hGP)2 from (GP).

Obtaining (hGP)1 from (GP). Set q̃ε = ηε ∗ q̃ for a standard mollifier (ηε)ε>0, i.e. some
ηε(x) = η(ε−1(ε−1x)) where η ∈ C∞

c (R;R≥) with
´

η dx = 1. Note that |q̃| > δ implies

|q̃ε| > δ
2 for sufficiently small ε > 0 as we have sufficient regularity. We define ρε = |q̃ε|2 and

vε = Im
[
∂xq̃ε
q̃ε

]
. Note furthermore the identity ∂xq̃ε

q̃ε
= 1

2
∂xρε
ρε

+ ivε, which we use below. Equation

(hGP)1 can be obtained by multiplying (GP) for q̃ε with q̃ε, taking the imaginary part, and
then the limit:

0 = Im
(
q̃ (GP)

) ε→0←−−− Im
[
i∂tq̃εq̃ε + ∂xxq̃εq̃ε − 2q̃ε(|q̃ε|2 − 1)q̃ε

]

= Re
[
∂tq̃εq̃ε

]
+ ∂x Im

[
∂xq̃ε
q̃ε

q̃εq̃ε

]
− Im

[
∂xq̃ε∂xq̃ε

]
− Im

[
2|q̃ε|2(|q̃ε|2 − 1)

]

=
1

2
∂t(|q̃ε|2) + ∂x

(
|q̃ε|2 Im

[
∂xq̃ε
q̃ε

])

=
1

2
∂tρε + ∂x(ρεvε)

ε→0−−−→ 1

2
∂tρ+ ∂x(ρv) .

We have to justify the limits in distribution on both sides. Observe that

∣∣∣∣
ˆ

J

ˆ

B0

(∂tq̃εq̃ε − ∂tq̃q̃)f
∣∣∣∣ . ‖∂tq̃ε − ∂tq̃‖L∞(J ;W−1,2(B0))‖q̃ε‖L∞(J ;W 1,2(B0))‖f‖L∞(J ;W 1,2(B0))

+ ‖∂tq̃‖L∞(J ;W−1,2(B0))‖q̃ε − q̃‖L∞(J ;W 1,2(B0))‖f‖L∞(J ;W 1,2(B0))

ε→0−−−→ 0 .



20 R. WEGNER

With the same estimates, we can take the limit of the distribution ∂xxq̃εq̃ε. The convergence of
the nonlinear term follows similarly. We have shown that

i∂tq̃εq̃ε + ∂xxq̃εq̃ε − 2q̃ε(|q̃ε|2 − 1)q̃ε
ε→0−−−→ q̃

(
i∂tq̃ + ∂xxq̃ − 2q̃(|q̃|2 − 1)

)
= 0

in distribution on J ×B0. As∣∣∣∣
ˆ

J

ˆ

B0

(ρεvε − ρv)∂xf dxdt
∣∣∣∣

.
(
‖q̃‖L∞(J×B0) + ‖q̃ε‖L∞(J×B0)

)
‖q̃ε − q̃‖L∞(J×B0)‖v‖L∞(J ;L2(B0))‖∂xf‖L2(J×B0)

+
(
‖q̃‖L∞(J×B0) + ‖q̃ε‖L∞(J×B0)

)
‖q̃ε‖L∞(J×B0)‖vε − v‖L∞(J ;L2(B0))‖∂xf‖L2(J×B0)

ε→0−−−→ 0 ,

and we can similarly show ∂tρε
ε→0−−−→ ∂tρ, we have

1

2
∂tρε + ∂x(ρεvε)

ε→0−−−→ 1

2
∂tρ+ ∂x(ρv)

in distribution on J ×B0.
Obtaining (hGP)2 from (GP). We now repeat these arguments for the second equation

(hGP)2. Here we divide (GP) for q̃ε by q̃ε, take a further derivative, the real part, and then the
limit:

0 = Re ∂x

(
(GP)

q̃

)
ε→0←−−− Re

[
∂x

(
i∂tq̃ε
q̃ε

+
∂xxq̃ε
q̃ε
− 2(|q̃ε|2 − 1)

)]

= − Im [∂x∂t(ln q̃ε)] + Re

[
∂x

(
∂x

(
∂xq̃ε
q̃ε

)
+

(
∂xq̃ε
q̃ε

)2
)]
− 2∂x(|q̃ε|2)

= − ∂tvε − ∂x(v2ε)− 2∂xρε + ∂x

(
∂x

(
1

2

∂xρε
ρε

)
+

(
1

2

∂xρε
ρε

)2
)

ε→0−−−→ −∂tv − ∂x(v2)− 2∂xρ+ ∂x

(
∂x

(
1

2

∂xρ

ρ

)
+

(
1

2

∂xρ

ρ

)2
)
.

Of course, the limits have to be justified again. For the left-hand side, we can proceed just
as before since q̃−1 ∈ L∞(J ;W 1,2(B0)). On the right hand side the difficult terms are v2 and(
1
2
∂xρ
ρ

)2
, as here the square of a distribution in Hs−1 is taken. The situation would be much

more difficult if we did not assume s ≥ 1. In our case we indeed have v, ∂xρ
ρ
∈ C(J ;L2(B0)),

which implies that the squares are trivially defined. Furthermore
∣∣∣∣
ˆ

J

ˆ

B0

(v2ε − v2)∂xf dx
∣∣∣∣

≤ ‖vε − v‖L∞(J ;L2(B0))

(
‖vε‖L∞(J ;L2(B0)) + ‖v‖L∞(J ;L2(B0))

)
‖∂xf‖L∞(J×B0)

ε→0−−−→ 0 ,

and the same estimate works for
(
1
2
∂xρ
ρ

)2
. The remaining terms are strictly easier to deal with.

Uniqueness. Let 0 ∈ I ⊂ R be a bounded open interval and let (ρ1, v1), (ρ2, v2) ∈ C(I;Ys)
be two solutions to (hGP) in the sense of the theorem, both with initial data (ρ0, v0) ∈ Ys. In
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particular, they satisfy one of the energy bounds E < b < 4
3 or Eµ < c(µ)ε < c(µ)ε0(µ) (see (1.15)

and (1.16)). As before, this implies that there exists a δ > 0 so that
√
ρk > δ, where k ∈ {0, 1, 2}.

Since vk ∈ L2 ⊂ L1
loc, we can define ϕk(x) =

´ x

0 vk(y) dy and q̃k =
√
ρke

iϕk . Note that q̃k having

uniformly bounded energy E1 implies q̃k ∈ L∞(I;L∞ ∩ Ḣ1). We now fix j ∈ {1, 2}. Writing
qj = q̃jS

1 for the equivalence class, we know from Corollary 1.7 that qj ∈ C(I;Xs).
Just as in the existence part of the proof, one can show that (ρj , vj) solving (hGP) implies

that for the quantity

(3.1) Qj = i∂tq̃j + ∂xxq̃j − 2q̃j(|q̃j|2 − 1)

we have

(3.2) Im
[
Qj q̃j

]
= 0 and ∂xRe

[
Qj
q̃j

]
= 0

in the sense of distributions. We sketch the argument that follows with a diagram.

(ρ1, v1)(t)

q̃1(t)

(ρ0, v0) (ρ2, v2)(t)

q̃0 q̃2(t)

p0 p2(t)p1(t)

(hGP)(hGP)

M−1M−1 M−1

(3.1) - (3.2)(3.1) - (3.2)

·eiG1(t) ·eiG2(t)

(GP) (GP)

Lemma 3.1

Due to (3.2) we have in particular

Im

[
Qj
q̃j

]
= Im

[
Qj q̃j
|q̃j |2

]
=

Im[Qj q̃j]

|q̃j|2
= 0 ,

and hence for every t ∈ I there exists a gj(t) ∈ R so that

gj(t) =
Qj
q̃j
.

We see that, in fact, q̃j does not necessarily solve (GP). The reason is that for each time t ∈ I
we had to make an arbitrary choice of a constant-in-space phase rotation, as this information
is lost in the Madelung transform. This choice was the arbitrary lower limit 0 in the integral

ϕ(t) =
´ t

0 v(s) ds. In order to find solutions to (GP), we would now like to define

pj(t) = eiGj(t)q̃j(t) where Gj(t) =

ˆ t

0
gj(s) ds .
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Then

i∂tpj + ∂xxpj − 2pj(|pj |2 − 1) = Qj −G′(t)q̃j = 0 .

This argument requires gj : I −→ R to be locally integrable. We show that gj ∈ C(I;R) by
verifying that Qj ∈ C(I;W−1,2(B0)) for any ball B0 ⊂ R. With the same reasoning as in
the existence part of the proof, ρj ∈ C(I;W 1,2(B0)) and vj ∈ C(I;L2(B0)) solving (hGP) in
distribution implies ρj ∈ C1(I;W−1,2(B0)) and vj ∈ C1(I;W−1,1(B0)). In particular we have
∂tϕj ∈ C(I;L1(B0)). Observe that

Qj = i
∂tρj
ρj

q̃j + i(∂tϕj)q̃j + ∂xxq̃j − 2q̃j(|q̃j |2 − 1) .

Verifying the products of distributions, each term can now be seen to be in C(I;W−1,2(B0)). We
have shown that for any bounded interval I ∋ 0, both p1 and p2 are distributional solutions to
(GP) with initial data p1(0) = p2(0) = q̃0. At the same time pj ∈ C(I;L2

loc)∩L∞(I;L∞
t,x ∩ Ḣ1).

Therefore Lemma 3.1 implies p1 = p2, from which q1 = q2 in C(I;Xs) and (ρ1, v1) = (ρ2, v2)
follow.

Continuity. This is a direct consequence of the continuity result for (GP) from Theorem 1.1,
the continuity of the energy functionals from Lemma 2.7, and the local bilipschitz equivalence
from Theorem 1.6. �

Appendix A. Absence of vacuum for small energies

Lemma A.1. For δ ∈ [0, 1] and s ∈
(
1
2 , 1
]
define

Esδ = inf
{
Es(q) : q ∈ Hs

loc, inf
x∈R
|q(x)| ≤ δ

}
.

Then Es1 = 0, the function δ 7→ Esδ is decreasing, and there exists a constant C̃(s) > 0 so that

(A.1) Esδ ≥
(1− δ)2
C̃(s)

.

Assume s = 1 and write Eδ = E1
δ . Set q0 = tanh, q1 = 1, and for δ ∈ (0, 1) define

(A.2) qδ(x) = tanh
(
|x|+ tanh−1(δ)

)
.

We have

Eδ = E(qδ) =
4

3
− 2δ +

2

3
δ3 .

There exists a strictly decreasing inverse function δ̃ : [0, 43 ] −→ [0, 1] with δ̃(0) = 1, δ̃(43 ) = 0 and

δ̃(b) = inf
{
inf
x∈R
|q(x)| : q ∈ H1

loc, E(q) ≤ b
}
.

Proof. We see that Es1 = 0 by choosing q = 1. Clearly the set over which the infimum is taken
increases with δ, and hence the infimum is decreasing. Recall that Lemma 2.6 implies

inf
λ∈S1
‖q − λ‖W s,2(Bk) ≤ C(s) ds(1, q) ,
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where Bk = B0 + k, k ∈ Z are balls of radius 1. Estimating with Lemma 2.7 on the right and
the Sobolev embedding W 1,2(Bk) −֒→ L∞ on the left, we obtain

1− δ ≤ sup
k∈Z

inf
λ∈S1
‖q − λ‖L∞(Bk) ≤ C(s)

√
Es(q)

for every q ∈ Hs
loc with infx∈R |q(x)| ≤ δ. This proves (A.1).

Now we assume s = 1. We first rewrite the problem as Eδ = infν∈[0,δ] Ẽν with

Ẽν = inf{E(q) : q ∈ H1
loc, inf

x∈R
|q(x)| = ν} , ν ∈ [0, δ] .

Of course we expect that Ẽν is decreasing in ν and hence Eδ = Ẽδ. This will be verified once we
have calculated Ẽν . Using invariance under translations, phase rotations, and mirror symmetry,
we can equivalently consider the minimization problem

Ẽν = 2 inf

{
1

2

ˆ ∞

0
|∂xq|2 + (|q|2 − 1)2 dx : q ∈ H1

loc(R≥), q(0) = ν

}
.

We now follow the same arguments as in [6, Lemma 1] to find a minimizer. Consider a minimizing
sequence (qn)n∈N. As Es(qn) is uniformly bounded, so is ‖∂xqn‖L2(R≥). The Banach-Alaoglu

theorem then implies, up to a subsequence, that ∂xqn −→ p′ν for some p′ν ∈ L2(R≥). Furthermore
as qn(0) = ν is fixed, we have a Poincare inequality ‖qn‖W 1,2(B0) ≤ C(s,B) ‖∂xqn‖L2(B0) on any

finite interval B0 ⊂ R≥. Then we can use compactness of the Sobolev embedding H1 −֒→ L∞

to find, up to a subsequence, that qn −→ pν in L∞
loc(R≥) for some pν ∈ H1

loc(R≥), with p′ν
indeed being its distributional derivative. Now we can conclude with Fatou’s lemma that pν is
a minimizer for Ẽν :

ˆ ∞

0
(|p0|2 − 1)2 + |p′0|2 dx =

ˆ ∞

0
lim inf

n
(|qn|2 − 1)2 + lim inf

n
|q′n|2 dx

≤ lim inf
n

ˆ ∞

0
(|qn|2 − 1)2 + lim inf

n
|q′n|2 dx

= Eν .

For the case ν = 0, we obtain the Euler-Lagrange equation

p′′0 − 2p0(1− |p0|2) = 0 .

Then as p0(0) = 0 and E(p0) < ∞, [6, Theorem 1] implies that p0 = tanh is the unique
solution. Consequently, it must be the case that for a > 0 the function pν(x) = tanh(x+ a) is a
minimizer for the problem with ν = tanh(a), as otherwise one could modify p0 on [r,∞) to find

an admissible function with strictly smaller energy for the minimization problem of Ẽ0. This
implies that the qδ defined in (A.2) are minimizers for Ẽν .

With a = tanh−1(ν), and noting the identities

cosh(a) =
1√

1− ν2
, cosh(2a) = −1 + ν2

1− ν2 , sech2(a) = 1− ν2 ,
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we compute

E(qν) = 2 · 1
2

ˆ ∞

a

(tanh(x)′)2 + (tanh(x)2 − 1)2 dx

=

ˆ ∞

a

sech4(x) + sech4(x) dx .

Evaluating the integral yields

E(qν) =

[
2

3
(cosh(2x) + 2) tanh(x) sech2(x)

]∞

r

=
2

3

(
2− ν(1− ν2)

(
2 +

1 + ν2

1− ν2
))

=
4

3
− 2ν +

2

3
ν3 .

�

Appendix B. Littlewood-Paley theory and proof of Lemma 2.2

The proof uses the Bony decomposition

fg = Tfg +R(f, g) + Tgf ,

which J.M. Bony introduced in his 1981 paper [7]. It relies on the Littlewood-Paley theory,
for which we refer the reader to [5, Chp. 2]. We give a brief introduction below, always only
considering the one-dimensional case.

Let ϕ ∈ C∞
c ({ξ : 3

4 < |ξ| < 8
3} and χ ∈ C∞

c ({ξ : |ξ| < 4
3}) be non-negative functions on R so

that

χ(ξ) +

∞∑

j=0

ϕ(2−j) = 1 .

This is called a dyadic partition of unity. We define for j ∈ Z the operators

∆j : S ′ −→ S ′

f 7−→ ∆jf =





ϕ(2−j ·)f̂ , j ≥ 0

χf̂ , j = −1
0 , j ≤ −2

and Sj =
∑

j′<j∆j′ . These operators have nice properties such as ‖Sjf‖Lp ≤ C(p)‖f‖Lp ,

p ∈ [1,∞]. At least formally, we have the decomposition

Id = lim
j→∞

Sj =
∑

j

∆j .

The Bony decomposition is given by

fg =
∑

j,k

∆jf∆kg = Tfg +R(f, g) + Tgf ,
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where we define

Tfg =
∑

j

Sj−1f∆jg R(f, g) =
∑

j

∑

|ν|≤1

∆j+νf∆jg .

In the Littlewood-Paley setting it is easy to define the Besov spaces Bs
p,q for 1 ≤ p, r ≤ ∞,

s ∈ R by

Bs
p,q =

{
f ∈ S ′(R;C) : ‖f‖Bs

p,q
<∞

}
,

where

‖f‖Bs
p,q

=
∥∥(2js‖∆jf‖Lp

)
j∈Z

∥∥
ℓr
.

It is evident that

Bs
2,2 = {f ∈ S ′(R;C) : ‖〈ξ〉sf̂‖L2(R) <∞} = Hs(R;C) .

Proof of Lemma 2.2. We only prove (2.2) as the proof of (2.1) is analogous and strictly simpler.
Consider the decomposition fg = gS0f+g(1−S0)f . Since S0f is spectrally supported in a fixed
ball there exists a constant N ∈ N so that ∆k(S0f∆jg) = 0 unless |k − j| ≤ N . Consequently,

‖gS0f‖2Hs−1 =
∑

j∈Z

22j(s−1)

∥∥∥∥∥∥

∑

|ν|≤N

∆j(S0f∆j+νg)

∥∥∥∥∥∥

2

L2

≤ C(N)‖S0f‖2L∞

∑

j∈Z

22j(s−1)‖∆kg‖2L2

= C(N)‖S0f‖2L∞‖g‖2Hs−1 .

It remains to estimate ‖g(1− S0)f‖Hs−1 . To simplify notation, we now write f for (1− S0)f
and derive an estimate by ‖f‖Hs . Note that Sj−1f∆jg is only non-zero if j ≥ 1, and in that
case it is a convolution of a ball with an annulus of much larger radius. As a result, there exists
an annulus C so that F [Sj−1f∆jg] is supported in 2jC, and so [5, Lemma 2.69] implies

‖Tfg‖Hs−1 .
∥∥2j(s−1)‖Sj−1f∆jg‖L2

∥∥
ℓ2(Z)

.

Since

‖Sj−1f∆jg‖L2 ≤ ‖Sj−1f‖L∞‖∆jg‖L2 ≤ ‖f‖L∞‖∆jg‖L2 ,

this implies

‖Tfg‖Hs−1 . ‖g‖Hs−1‖f‖L∞ .

For the same reason as before, we have

‖Tgf‖Hs−1 .
∥∥2j(s−1)‖Sj−1g∆jf‖L2

∥∥
ℓ2
.

Here we consider two cases. If s ≤ 1 then we use the Bernstein inequality [5, Lemma 2.1]. It
states that

supp û ⊂ λB =⇒ ‖u‖L∞ ≤ C(B)λ
1
2 ‖u‖L2
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for any fixed ball B. This yields

2j(s−1)‖Sj−1g∆jf‖L2 ≤ 2j(s−1)‖Sj−1g‖L2‖∆jf‖L∞

. ‖Sj−1g‖Hs−12
j

2‖∆jf‖L2

. ‖g‖Hs−12
j

2 ‖∆jf‖L2 .

Here we have used

22j(s−1)‖Sj−1g‖2L2 =
∑

j′<j−1

22(j−j
′)(s−1)

︸ ︷︷ ︸
≤1

22j
′(s−1)‖∆j′g‖2L2 ≤ ‖Sj−1g‖2Hs−1 ≤ ‖g‖2Hs−1 .

We see that

‖Tgf‖Hs−1 . ‖g‖Hs−1‖f‖
H

1
2
.

For the case s > 1 we estimate

2j(s−1)‖Sj−1g∆jf‖L2 ≤ 2j(s−1)‖Sj−1g‖L∞‖∆jf‖L2

. ‖2−jSj−1g‖H12js‖∆jf‖L2

. ‖g‖L22js‖∆jf‖L2

and obtain

‖Tgf‖Hs−1 . ‖g‖Hs−1‖f‖Hs .

It remains to estimate the remainder terms R(f, g). Here let it be noted that there exists an
integer N > 0, independent of j, so that

∑
|ν|≤1∆j−νf∆jg is spectrally supported in a ball of

radius 2j+N−1. In this case we know by [5, Lemma 2.84] that

(B.1) ‖R(f, g)‖Bs̃
p,r
≤ C(p, r, s̃)

∥∥∥2js̃
∥∥ ∑

|ν|=1

∆j−νg∆jf
∥∥
Lp

∥∥∥
ℓr(Z)

for s̃ > 0. This does not work in general if s̃ < 0. Therefore, we use the embedding

‖R(f, g)‖Hs−1 ≤ C(s)‖R(f, g)‖
B

s− 1
2

1,1

in order to apply (B.1) with s̃ = s− 1
2 > 0 and p, r = 1. Now we can conclude via Hölder’s and

Young’s inequalities for sequences:
∥∥∥2j(s−

1
2
)
∥∥∥
∑

|ν|=1

∆j−νf∆jg
∥∥∥
L1

∥∥∥
ℓ1(Z)

.
∑

|ν|≤1

2
ν
2

∥∥2
j−ν

2 ‖∆j−νf‖L2

∥∥
ℓ2(Z)

∥∥2j(s−1)‖∆jg‖L2

∥∥
ℓ2(Z)

. ‖g‖Hs−1‖f‖
H

1
2
.

�
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Appendix C. Uniqueness for the Gross-Pitaevskii equation

Proof of Lemma 3.1. Recall that q1, q2 ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1) are two distributional

solutions of (GP) on an open interval I ∋ 0 with the same initial data q0. It follows that
q1, q2 ∈ L∞(I;W 1,2(B)) for any arbitrary ball B ⊂ R. We define b = q1 − q2 and compute that
it solves in distribution the following equation:

i∂tb+ ∂xxb = 2q1(|q1|2 − 1)− 2q2(|q2|2 − 1)

= 2b(|q1|2 − 1) + 2b(|q2|2 − 1) + 2q2(|q1|2 − 1)− 2q1(|q2|2 − 1)

= 2b(|q1|2 + |q2|2 − 2 + 1) + 2(q2|q1|2 − q1|q2|2)
= 2b((b+ q2)(b+ q2) + |q2|2 − 1) + 2(q2|b+ q2|2 − (b+ q2)|q2|2)
= 2b(|b|2 + bq2 + bq2 + 2|q2|2 − 1)

+ 2(q2|b|2 + b|q2|2 + bq22 + q2|q2|2 − b|q2|2 − q2|q2|2)
= 2b(|b|2 + bq2 + bq2 + 2|q2|2 − 1) + 2(q2|b|2 + bq22)

= 2|b|2b+ 4|b|2q2 + 2b2q2 + 2b(2|q2|2 − 1) + 2bq22 .

We know that ∂xxb ∈ L∞(I;W−1,2(B)). Then b solving the equation implies ∂tb ∈ L∞(I;W−1,2(B)).
Using duality and the algebra property ofW 1,2(B), we find that also b ∂tb, ∂t(|b|2) ∈ L∞(I;W−1,2(B)).

Let ϕn(x) = ϕ(x
n
) where ϕ ∈ C∞

c ([−2, 2]; [0, 1]) and ϕ
∣∣
[−1,1]

= 1. One may choose ϕ in such a

way that there exists K > 0 with |∂xϕ| ≤ K
√
ϕ and in particular |∂xϕn| ≤ Kn−1√ϕn. We test

the above with bϕn and take the imaginary part. On the left-hand side, we have
ˆ

R

Im[i(∂tb)bϕn] + Im[(∂xxb)bϕn] dx =

ˆ

R

1

2
ϕn∂t(|b|2)− Im[(∂xb)b∂xϕn] dx .

Therefore for a fixed time t ∈ I,
1

2

d

dt

ˆ

R

ϕn|b|2 dx =

ˆ

R

Im[(∂xb)b∂xϕn] dx

+

ˆ

R

(
2|b|4 + 4|b|2bq2 + 2|b|2bq2 + 2|b|2(2|q2|2 − 1) + 2b

2
q22
)
ϕn dx

= (I) + (II) .

We estimate

(I) ≤ ‖∂xb‖L2
x
‖b∂xϕn‖L2

x
≤
(
‖q1‖L∞

t Ḣ1
x
+ ‖q2‖L∞

t Ḣ1
x

)
Kn−1

∥∥b√ϕn
∥∥
L2
x

and

(II) ≤ C
∥∥b√ϕn‖2L2

x

∥∥∥∥|b|2 + |b||q2|+ |q2|2 + 1
∥∥
L∞
t,x

≤ C
∥∥b√ϕn

∥∥2
L2
x

(
1 + ‖q1‖2L∞

t,x
+ ‖q2‖2L∞

t,x

)
.

We have shown that there exists some C > 0, depending on q1, q2 but independent of time, such
that

1

2

d

dt

(
‖b√ϕn‖2L2

x

)
≤ C

(
1√
n
‖b√ϕn‖L2

x
+ ‖b√ϕn‖2L2

x

)
.
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In particular
d

dt
‖b√ϕn‖L2

x
≤ C

(
1√
n
+ ‖b√ϕn‖L2

x

)
.

Now Grönwall’s inequality implies for any fixed t > 0 that

‖b(t)‖L2
x

n→∞←−−− ‖b(t)√ϕn‖L2
x
≤
(
‖b(0)√ϕn‖L2

x︸ ︷︷ ︸
=0

+ C
t√
n

)
eCt

n→∞−−−→ 0 ,

hence q1 = q2 for positive times. The argument for negative times is analogous. �
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