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LOW REGULARITY WELL-POSEDNESS OF KP-I EQUATIONS: THE

THREE-DIMENSIONAL CASE

SEBASTIAN HERR, AKANSHA SANWAL, AND ROBERT SCHIPPA*

Abstract. In this paper, low regularity local well-posedness results for the Kadomtsev–Petviashvili–I equa-
tion posed in spatial dimension d 3 are proved. Periodic, non-periodic and mixed settings as well as
generalized dispersion relations are considered. In the weak dispersion regime, these initial value problems
show a quasilinear behavior so that bilinear and energy estimates on frequency dependent time scales are
used in the analysis.

1. Introduction

We consider the Cauchy problem for the dispersion generalized Kadomtsev–Petviashvili–I equation

tu xD
↵

x
u 1

x
�yu x u2 ,

u 0 � Es D ,
(KP-I)

for real-valued functions u : D R R and dispersion parameter ↵ 2, 4 . We treat the case of three-
dimensional spatial domains D : K1 K2 K3, where Ki R;T , for T : R 2⇡Z . We write u u x, y, t ,
for t R, x K1, and y y1, y2 K2 K3 so that �y

2
y1

2
y2
. D↵

x
is defined via the Fourier transform

D↵

x
f ⇠, ⌘ ⇠ ↵f̂ ⇠, ⌘ ,

If D T K2 K3, then we additionally assume that

T
u x, y dx 0

to make the linear evolution well-defined, and the nonlinear evolution preserves mean zero. Formally, real-
valued solutions also conserve the L2 D -norm and the energy (Hamiltonian)

e u
D

1

2
D

↵
2
x u 2 1

3
u3 1

2
1

x
ryu

2dxdy. (1)

In two dimensions, the KP-I equation has been introduced as a model for the propagation of dispersive
waves with small amplitude under weakly transverse e↵ects [11] and later has been found to be completely
integrable [3]. In this paper, we address the local well-posedness of the Cauchy problem in the three-
dimensional case. In [2], it was rigorously derived in the long wave transonic limit regime (where the amplitude
is close to one) from the Gross-Pitaevskii equation after suitable rescaling, see also [12] for further information
and references.

We consider initial data in Sobolev spaces Es D of real valued functions, which are defined for s 0 via

f Es D : ⇠ sp ⇠, ⌘ f̂ ⇠, ⌘ L
2
⇠,⌘

,

with respect to the three-dimensional product of Lebesgue or counting measures, see Section 2 for more
details. The symbol p ⇠, ⌘ 1 ⌘

⇠
is motivated by the last term in energy (1) and crucially used in

commutator arguments, see Section 5.

The main result of this paper is

Theorem 1.1. (i) Let ↵ 2. The Cauchy problem (KP-I) is locally well-posed for initial data � Es D
provided that s 2.
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(ii) Let ↵ 2, 4 and D K1 R2. The Cauchy problem (KP-I) is locally well-posed for initial data
� Es D provided that s 3 ↵

2 .

By local well-posedness, we refer to existence, uniqueness, and continuous dependence of solutions in
function spaces F s T C T, T ;Es D . In two dimensions, (KP-I) is known to be quasilinear for
↵ 2 in the sense that it cannot be solved by the contraction mapping principle. In order to improve
the standard energy method, Ionescu–Kenig–Tataru [10] introduced an approach based on localizations to
frequency dependent time scales. Roughly speaking, this is the strategy we will use for the proof of the
main result. The use of frequency-dependent time localization is justified in Appendix B, where we prove on
D R3 that for certain ↵ 2 (KP-I) cannot be solved by Picard iteration in anisotropic Sobolev spaces.
The proof of well-posedness crucially makes use of short-time bilinear estimates, which become e↵ective for
resonant interactions (which are transverse).

In the proof of Theorem 1.1, we use frequency-dependent time localization to overcome the derivative loss
in the resonant interaction. For ↵ 2, 4 we choose

T N N 2 ↵
2 .

This is again motivated by the bilinear Strichartz estimate we can prove in the resonant case on domains
K R2. This su�ces to ameliorate one derivative in case a high frequency interacts with a low one in the
resonant case.

We remark that in the case ↵ 2, 4 one also obtains the well-posedness result with regularity threshold
s 2 on general domains. This follows by choosing the time scale T N N 1 instead, we omit the
details. However, it is not clear how to improve the regularity threshold s 2 on general domains in the
case ↵ 2, 4 .

Since �y is O 2 -invariant, the result extends to more general y domains with d1 non-periodic and d2
periodic transverse directions, where d1 d2 2.

The second main result is for the fifth-order KP-I equation, where we can use perturbative arguments.
We show a well-posedness result in anisotropic Sobolev spaces Hs1,s2 D , which are defined for s1, s2 0 via

� Hs1,s2 D ⇠ s1 ⌘ s2 �̂ ⇠, ⌘ L
2
⇠,⌘

.

Theorem 1.2. Let ↵ 4, s1, s2
1
2 , and D R3;T R2 . The Cauchy problem (KP-I) is locally well-posed

for initial data � Hs1,s2 D , with a real-analytic flow map.

If u solves (KP-I), then so does

u� x, y, t : �
2↵

↵ 2u �
2

↵ 2x,� 1y,�
2 ↵ 1
↵ 2 t , (2)

with scaled initial data �� x, y : �
2↵

↵ 2� �
2

↵ 2x,� 1y . For the corresponding homogeneous norms, we
observe that

�� Hs1,s2 R3 �
3 ↵
↵ 2

2s1
↵ 2 s2 �

Hs1,s2 R3 . (3)

Notice that for high frequencies, Es corresponds to Hs,0 Hs 1,1 which indicates that the regularity as-
sumptions both in Theorem 1.1 and in Theorem 1.2 are sub-critical.

Let

s ↵ 3
↵

2
.

We shall prove the following set of estimates for s s s ↵ :

u
F s T

u
Bs T x u2

N s T
,

x u2
N s T

u F s T u
F s T

,
u 2

Bs T
u0

2
Es u 2

F s T
u

F s T .

This yields a priori estimates in Es for s s and small initial data. The large data case will be handled by
rescaling.

The second set of estimates yields Lipschitz continuous dependence at the regularity E0 depending on the
norms of the initial data in Es: Let v u1 u2 be a di↵erence of two solutions. Then, we find the following
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estimates to hold:

v F 0 T v B0 T x v u1 u2 N 0 T

x v u1 u2 N 0 T v F 0 T u1 F s T u2 F s T

v 2
B0 T

v 0 2
E0 v 2

F 0 T
u1 F s T u2 F s T .

Finally, we prove continuous dependence in Es using frequency envelopes (cf. [9]).

We remark that in the companion paper [18] the second and third author address the dispersion-generalized
KP-I equation in the case D R2. Depending on the dispersion, that problem exhibits semi- and quasilinear
behaviour.

Concerning the proof of Theorem 1.2, we notice that it is a semilinear problem which can be treated by
a direct iterative method. However, in order to avoid a derivative loss, we need to work with critical norms
involving U2 and V 2 spaces.

Outline. In Section 2, we introduce notation and function spaces and prove linear estimates. In Section 3,
we study the resonance relation and prove bilinear estimates. In Section 4 we prove the short-time nonlinear
estimates. In Section 5, the energy estimates are proved. The proof of Theorem 1.1 is then concluded in
Section 6. In Section 7 the fifth-order problem is treated. In Appendix A, we show a fractional anisotropic
Leibniz rule on mixed domains, and in Appendix B we treat semilinear ill-posedness issues.

2. Notations and function spaces

2.1. Fourier transform. To prove local well-posedness for large data, we shall rescale the domain. This
requires us to consider the rescaled tori T� R 2⇡�Z for � 1. We have to keep track of the dependence
of the estimates with respect to �. All quantities are defined so that Plancherel’s theorem is valid with
�-independent constant. Let

D⌫ K⌫ Rd1 Td2
�

, where K� R;T� , d1, d2 N0 : N 0 , ⌫ �
2

↵ 2 , d1 d2 2.

By symmetry of the equation in y1, y2 we can assume this specific order to cover all cases considered in the
main results. For the dual space, we let Z�

k

�
: k Z . The dual domain is defined by

D
�
: ⇠, ⌘ K

⌫
Rd1 Zd2

�
, where T

�
Z� and R R.

We define the Fourier transform f̂ : D
�

C of a function f L1 D� by

f̂ ⇠, ⌘
D�

e ix⇠e iy ⌘f x, y dxdy.

Its inverse is given by

f̌ x, y
1

2⇡ 3 D�

eix⇠eiy ⌘ f̂ ⇠, ⌘ d⇠d⌘,

where we use the normalized counting measure in Z�, i.e.,

Z�

f k dk :
1

�
k Z�

f k ,

and Lebesgue measure in R coordinates. In this setting, Plancherel’s theorem gives

f L2
x,y D�

2⇡
3
2 f̂

L
2
⇠,⌘ D�

,

Using this notation, the space-time Fourier transform and its inverse are given by

Ff ⇠, ⌘, ⌧
R
f , , t ⇠, ⌘ e it⌧dt

F 1f x, y, t
1

2⇡ R
f , , ⌧ x, y eit⌧d⌧.

The dispersion relation of the dispersion-generalized KP-I equation is denoted by

!↵ ⇠, ⌘ ⇠ ↵⇠
⌘ 2

⇠
, ⇠ K

⌫
0 , ⌘ Rd1 Zd2

�
. (4)
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Define the group of unitary operators on L2 D� (restricted to mean zero if x T�) by

S↵ t u0 ⇠, ⌘ eit!↵ ⇠,⌘ u0 ⇠, ⌘ .

This is the propagator for the linear homogeneous equation

tu xD
↵

x
u 1

x
�yu 0.

2.2. Function spaces. Following [10, 6], we introduce the short-time Xs,b spaces now. We also refer to [19,
Section 2.5] for an overview of their properties.

Let �1 C
c

2, 2 be symmetric and decreasing on 0, with �1 ⇠ 1 for ⇠ 1, 1 . We set for
N 2N, �N ⇠ � ⇠ N � 2⇠ N . This yields

N 2N0

�N 1.

We define inhomogeneous Littlewood-Paley projections: For f S D� , and N,K 2N0 , let

PNf ⇠, ⌘ �N ⇠ f̂ ⇠, ⌘ , and PN,Kf ⇠, ⌘ �K ⌘ PNf ⇠, ⌘ .

Here we abuse notation by writing �K ⌘ instead of �K ⌘ .
We define an inhomogeneous decomposition of Fourier space by AN N 2N0 :

AN ⇠, ⌘ D
�
: ⇠

N

8
, 8N , N 2N,

A1 ⇠, ⌘ D
�
: ⇠ 2 .

The corresponding homogeneous decomposition is denoted by

ÃN ⇠, ⌘ D
�
:
N

8
⇠ 8N .

We also consider the double (inhomogeneous) decomposition AN,K N 2N0 ,K 2N0 :

AN,K AN ⇠, ⌘ D
�
:
K

8
⌘ 8K , K 2N0 ,

AN,1 AN ⇠, ⌘ D
�
: ⌘ 2 .

The corresponding decomposition which is homogeneous in ⇠ (and inhomogeneous in ⌘) is denoted by
ÃN,K N 2Z,K 2N0 with AN replaced by ÃN in the previous display. In the following we write ⇢J ⌧ �J ⌧

for J 2N0 and let ⇢ J ⌧
L J

⇢L ⌧ , and for J 1, ⇢
J

⇢J 2 ⇢J ⇢2J , whereas ⇢1 ⇢1 ⇢2
(therefore ⇢

J
⇢J ⇢

J
). For N,K, J 2N0 , we define

DN,K,J ⇠, ⌘, ⌧ D
�

R : ⇠, ⌘ AN,K , ⌧ !↵ ⇠, ⌘ supp ⇢
J

, DN,K, J

L J

DN,K,L .

As homogeneous counterpart for N 2Z, K 2N0 we let

D̃N,K,J ⇠, ⌘, ⌧ D
�

R : ⇠, ⌘ ÃN,K , ⌧ !↵ ⇠, ⌘ supp ⇢
J

.

We let
XN f L2 D

�
R : f is supported in AN R, f XN ,

and
f XN

L 2N0

L
1
2 ⇢L ⌧ !↵ ⇠, ⌘ f L2

⌧L
2
⇠,⌘

.

Note that

R
f ⇠, ⌘, ⌧ d⌧

L
2
⇠,⌘

f XN ,

and we record the estimate

L M

L
1
2 ⇢L ⌧ !↵ ⇠, ⌘ f ⇠, ⌘, ⌧ L 1 1 L 1 ⌧ ⌧ 4d⌧ L

2
⇠,⌘,⌧

M
1
2 ⇢ M ⌧ !↵ ⇠, ⌘ f ⇠, ⌘, ⌧ M 1 1 M 1 ⌧ ⌧ 4d⌧ L

2
⇠,⌘,⌧

f XN .

(5)
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For a given Schwartz function � S R , the estimate

Fx,y,t � M2 ↵
2 t t0 F 1

x,y,t
f XN � f XN .

holds for all M,N 2N0 , t0 R, f XN . We put the space-time Fourier transform of the original function
into the XN -spaces. Let

EN � : D� R : �̂ is supported in AN , � EN � L2 .

Next, define

FN u C R;EN : u FN sup
t R

Fx,y,t u ⇢1 N 2 ↵
2 t t XN .

We place the solution into these short-time function spaces after dyadic frequency localization. For the
nonlinearity, we consider correspondingly

NN u C R;EN : u NN T sup
t R

⌧ !↵ ⇠, ⌘ iN 2 ↵
2 1Fx,y,t u ⇢1 N 2 ↵

2 t t XN .

We localize the spaces in time by the usual means: For T 0, 1 , let

FN T u C T, T ;EN : u FN T inf
ũ u in

D� T,T

ũ FN ,

NN T u C T, T ;EN : u NN T inf
ũ u in

D� T,T

ũ NN .

On the rescaled domains, we consider the weight

p� ⇠, ⌘ �
1
2

⌘

⇠
,

and let
Es D� f : D� C : ⇠ sp� ⇠, ⌘ f̂ ⇠, ⌘ L

2
⇠,⌘

.

It is easy to see that for u0 Es, s 0, we have that �
2↵

↵ 2u0 �
2

↵ 2x,� 1y (cf. (2)) converges to zero

in Es D� polynomially as � . Indeed, we find that �
1
2�

2↵
↵ 2 u0 �

2
↵ 2x,� 1y L2 � � u0 L2 for

some � 0. The power �
1
2 is chosen to match powers M

1
2 with M denoting the dyadic localization of the

y-frequencies in the nonlinear estimates.

Let E D� s 0 E
s D� . We assemble the spaces F s T , N s T , and Bs T via Littlewood-Paley

decomposition:

F s T u C T, T ;E : u 2
F s T

N 2N0

N2s PNp� i x, iry u 2
FN T

,

N s T u C T, T ;E : u 2
N s T

N 2N0

N2s PNp� i x, iry u 2
NN T

,

Bs T u C T, T ;E : u 2
Bs T

N 2N0

N2s sup
t T,T

PNp� i x, iry u t 2
EN

.

Recall the multiplier properties of admissible time-multiplication: For any N 2N0 , we define the set SN

of N -acceptable time multiplication factors

SN mN : R R : mN SN

0 j 30

N 2 ↵
2 j jmN L .

We have for any s R 0 and T 0, 1 :

N 2N0

mN t PNu F s T sup
N 2N0

mN SN u F s T ,

N 2N0

mN t PNu N s T sup
N 2N0

mN SN u N s T ,

N 2N0

mN t PNu Bs T sup
N 2N0

mN SN u Es T .

(6)

We recall the embedding F s T C T, T ;Es for short-time Xs,b-spaces.
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Lemma 2.1. Let s R 0. For all T 0, 1 and u F s T we have

sup
t T,T

u t Hs u F s T . (7)

For the KP-I equation on the plane, this was proved by Ionescu–Kenig–Tataru in [10]. In the periodic
case, we refer to Guo–Oh [6] for a proof in the Sobolev scale, which extends in a straight-forward way to the
spaces defined here.

Similarly, we have the linear inhomogeneous estimate (cf. [19, Proposition 2.5.2]):

Lemma 2.2. Let s R 0. For all T 0, 1 and (mild) solutions u C T, T ,E D� of

tu xD
↵

x
u 1

x
�yu x u2 in D� T, T ,

we have
u F s T u Bs T x u2

N s T . (8)

2.3. Linear Strichartz estimates. Next, we prove an L4
x,y,t

-Strichartz estimate which we will use for
estimates of non-resonant interactions. For this purpose, it su�ces to take advantage of the evolution in the
⌘-variables to be approximately of Schrödinger type. Let d1, d2 N0 with d1 d2 2 and ✏ 0 if d2 2
and ✏ 0 if d2 2. We recall an L4-Strichartz estimate for the Schrödinger equation.

Lemma 2.3. For all � 1, the following estimate holds:

eit�f
L

4
y,t Rd1 Td2

� 0,1
�✏ f

H✏ Rd1 Td2
�

.

On Euclidean space, i.e., d2 0 this is standard (cf. [22, Chapter 2]). If � 1, this is due to Bourgain
[1] on the torus, and in the semi-periodic case, this was proved by Takaoka–Tzvetkov [20]. The general case
follows by rescaling.

Next, we prove an L4
x,y,t

-Strichartz estimate for the linear propagator S↵. We will assume certain lower
bounds on the frequencies: If the x-variable is ⌫-periodic, due to the mean zero assumption, the case that
x-frequencies are much smaller than ⌫ 1 is vacuous. Regarding the y-frequencies: We never decompose to a
scale below � 1.

Lemma 2.4. Consider � 2N0 , D� K⌫ Rd1 Td2
�
, and K,N 2Z, and additionally if D� T⌫ Rd1 T�,

we suppose that K,N ⌫ 1. Let I R be an interval with I K and ⇠ N for ⇠ I. Further, let
M 2Z � 1, and QM R2 be any cube of side-length M . For all f L2

x,y
D� with supp Fx,y f

I QM we have

S↵ t u0 L
4
x,y,t D� 0,1 K

1
4C N,M u0 L2

x,y
(9)

with ✏ as in Lemma 2.3 and

C N,M
M

1
2 , M 1,

�✏ N
1
4 1 M ✏, M 1.

Proof. We can use Bernstein’s inequality in the ⇠-frequencies, Plancherel’s theorem, and Minkowski’s in-
equality to write

ei x.⇠ y.⌘ t⇠ ⇠
↵

t⌘
2

⇠ f̂ ⇠, ⌘ d⇠d⌘
L

4
x,y,t D� 0,1

K
1
4 d⇠ d⌘ei y.⌘ t⌘

2
⇠ f̂ ⇠, ⌘

2 1
2

L
4
y,t Rd1 Td2

� 0,1

K
1
4 d⇠ d⌘ei y.⌘ t⌘

2
⇠ f̂ ⇠, ⌘

2

L
4
y,t Rd1 Td2

� 0,1

1 2
.

For M 1, we use Galilean invariance and Bernstein’s inequality to conclude the bound. If M 1, we find
for ⇠ 0 (the case ⇠ 0 is treated by time-inversion)

d⌘ei y.⌘ t ⌘
2

⇠ f̂ ⇠, ⌘
L

4
y,t Rd1 Td2

� 0,1
N

1
4 d⌘ei y.⌘ t⌘

2

f̂ ⇠, ⌘
L

4
y,t Rd1 Td2

� 0,⇠ 1 .

We estimate by Galilean invariance and Strichartz estimates (Lemma 2.3) on N 1 1 unit time intervals

d⌘ei y.⌘ t ⌘
2

⇠ f̂ ⇠, ⌘
L

4
y,t Rd1 Td2

� 0,1
N

1
4 1 M ✏�✏ f̂ ⇠, L2

⌘
,

and finally we take the L2-norm in ⇠. ⇤
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The estimate could be further improved taking into account frequency dependent time localization, how-
ever, this is not required for the present analysis.

We point out that only the L4
y,t

-Strichartz estimates on the two-dimensional torus is not scale-invariant
and loses a factor �✏.

We note the following consequence for small x-frequencies.

Corollary 2.5. Under the assumptions of Lemma 2.4, if I 104, 104 is fixed, we have

S↵ t u0 L
4
x,y,t D� 0,1 �✏M ✏ u0 L2

x,y
. (10)

Proof. After a Littlewood-Paley decomposition in the x-frequencies, this is a consequence of Lemma 2.4. ⇤

We record a consequence for the interaction of two functions with specified frequency and modulation
support. We will use this estimate for non-resonant interactions (see Section 3).

Lemma 2.6. Let N1, N2 2Z, N2 N1, Li 2N0 , Mi 2Z � 1, for i 1, 2, 3, and Ni ⌫ 1 if
D� T⌫ Rd1 Td2

�
. Let f i : D

�
R R be supported in D̃Ni,Mi,Li for i 1, 2. Then the following

estimate holds:

1
D̃N3,M3,L3

f 1 f 2
L

2
⇠,⌘,⌧

�✏C N1, N2 N
1
2
minM

✏

min

2

i 1

L
1
2
i

f i
L2

with

C N1, N2

N1N2
1
4 , N2 1,

N
1
4
1 , N2 1 N1,

1, N1 1.

Proof. By almost orthogonality, we can suppose that supp f i Ii Qi R with Ii R an interval of
length Nmin and Qi a cube of length Mmin. Then, we can use two L4

x,y,t
-Strichartz estimates (9) to find in

case of N2 1:

1
D̃N3,M3,J3

f 1 f 2
L

2
⇠,⌘,⌧

F 1f 1
L

4
x,y,t

F 1f 2
L

4
x,y,t

�✏N
1
2
min N1N2

1
4M ✏

min

2

i 1

L
1
2
i

f i
L2 .

If N2 1 N1, we find by (9)

1
D̃N3,M3,L3

f 1 f 2
L

2
⇠,⌘,⌧

F 1f 1
L

4
x,y,t

F 1f 2
L

4
x,y,t

�✏N
1
2
minN

1
4
1 M ✏

min

2

i 1

L
1
2
i

f i
L2 .

Lastly, if N1 1, (9) yields

1
D̃N3,M3,L3

f 1 f 2
L

2
⇠,⌘,⌧

F 1f 1
L

4
x,y,t

F 1f 2
L

4
x,y,t

�✏N
1
2
minM

✏

min

2

i 1

L
1
2
i

f i
L2 .

This finishes the proof. ⇤

For comparison, we note the following trivial estimate which we employ in certain non-resonant cases:

Lemma 2.7. Let Ni 2Z, Mi 2Z � 1, , Li 2N0 and f i : D� R R be L2 functions supported
in D̃Ni,Mi,Li , for i 1, 2, 3, respectively. If D� T⌫ Rd1 Td2

�
, we suppose that Ni ⌫ 1 in addition.

Then

D� R
f 1 f 2 f 3 NminM

2
minLmin

1
2

3

i 1

f i
L2 . (11)

Proof. The estimate follows from applying the Cauchy-Schwarz inequality. ⇤
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3. Resonance and bilinear estimates

We analyze the resonance function to obtain good bilinear estimates in the resonant case. For ⇠ ⇠1 ⇠2
K (non-vanishing) and ⌘ ⌘1 ⌘2 R2, we have

⌦↵ ⇠1, ⌘1, ⇠2, ⌘2 : !↵ ⇠1, ⌘1 !↵ ⇠2, ⌘2 !↵ ⇠1 ⇠2, ⌘1 ⌘2

⌦ ↵

KdV

⇠1⇠2
⇠1 ⇠2

⌘1
⇠1

⌘2
⇠2

2
.

(12)

Above ⌦ ↵

KdV
⇠1, ⇠2 denotes the resonance for the dispersion generalized KdV equation:

⌦ ↵

KdV
⇠1, ⇠2 ⇠1 ⇠2

↵ ⇠1 ⇠2 ⇠1
↵⇠1 ⇠2

↵⇠2.

We define the resonant case for the higher-dimensional KP-I equations by

⌦↵ ⇠1, ⌘1, ⇠2, ⌘2 ⌦ ↵

KdV
⇠1, ⇠2 . (13)

Suppose that ⇠1 ⇠2 max ⇠1 , ⇠2 , and let Nmax, Nmin 2Z such that

Nmax max ⇠1 , ⇠2 , ⇠1 ⇠2 , Nmin min ⇠1 , ⇠2 , ⇠1 ⇠2 .

The resonance condition requires

N↵

max
⌘1
⇠1

⌘2
⇠2

2
.

The gradient of the dispersion relation is given by

r!↵ ⇠, ⌘ ↵ 1 ⇠ ↵
⌘ 2

⇠2
,
2⌘

⇠
. (14)

Consequently, in case of (13), we find

r!↵ ⇠1, ⌘1 r!↵ ⇠2, ⌘2
⌘1
⇠1

⌘2
⇠2

N
↵
2
max.

This means that in case of a resonant interaction with ⇠1 ⇠2 max ⇠1 , ⇠2 the waves are transverse.

Lemma 3.1. Let I, J be intervals and f : J R be a smooth function. Then

x : f x I
I

infy f y
. (15)

Proof. This is a consequence of the mean value theorem. Let x1, x2 J be such that f x1 , f x2 I. Then

x1 x2
f x1 f x2

f ⇠

I

infy f y
.

⇤

Proposition 3.2. (Transverse L2 bilinear estimate) Let d1 d2 2, N 2N0 , and u1, u2 L2 Rd1 Td2
�

R
have their Fourier supports in D̃Ni,Mi,Li for i 1, 2, respectively, with Ni 2Z ,and additionally Ni ⌫ 1

for d1 0, and Mi 2Z � 1, , and let N max N1, N2 . Suppose that for frequencies in the Fourier
support, the resonance condition (13) holds. Then, we have

PN u1u2 L
2
x,y,t

M
1
2
minN

1
2
minL

1
2
min d2

Lmax

N
↵
2

1
2
u1 L

2
x,y,t

u2 L
2
x,y,t

. (16)

Proof. From Plancherel and Cauchy-Schwarz, we have

u1u2 L2

D� R
û1 ⇠1, ⌘1, ⌧1 û2 ⇠ ⇠1, ⌘ ⌘1, ⌧ ⌧1, d⇠1d⌘1d⌧1

L
1
2
min sup

⇠,⌘,⌧ : ⇠ N,

E ⌧, ⇠, ⌘
1
2 u1 L2 u2 L2 ,

(17)

where denotes the measure on D
�
and the set E ⌧, ⇠, ⌘ D

�
is given by

E ⌧, ⇠, ⌘ : ⇠1, ⌘1 AN1,M1 : (13) holds, ⌧ !↵ ⇠1, ⌘1 !↵ ⇠ ⇠1, ⌘ ⌘1 Lmax, ⇠ ⇠1, ⌘ ⌘1 AN2,M2 .
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It remains to estimate E ⌧, ⇠, ⌘ . Define

� ⇠, ⇠1, ⌘, ⌘1, ⌧ : ⌧ !↵ ⇠1, ⌘1 !↵ ⇠ ⇠1, ⌘ ⌘1 ⌧ ⇠1
↵⇠1

⌘1 2

⇠1
⇠ ⇠1

↵ ⇠ ⇠1
⌘ ⌘1 2

⇠ ⇠1
.

From (13), we have
�

⌘11
N

↵
2 or

�

⌘12
N

↵
2 , (18)

where ⌘1i denotes the ith component of ⌘1.
Similarly, in the periodic or mixed setting, we have

E ⌧, ⇠, ⌘ Nmin sup
⇠1 N1, ⇠ N

E1 ⇠, ⇠1 ,

where E1 ⇠, ⇠1 Rd1 Zd2
�

is given as

E1 ⇠, ⇠1 I1 ⇠, ⇠1 I2 ⇠, ⇠1 ,

where

Ii ⇠, ⇠1 : ⌘1 M1 :
�

⌘1i
N

↵
2 .

Using Lemma 3.1, we have the following bound

E1 ⇠, ⇠1 Nmin 1
Lmax

N
↵
2

Mmin,

where the summand 1 could be avoided in case d2 0. Substituting this in (17), we get the desired
estimate. ⇤

4. Short-time bilinear estimates

The purpose of this section is to prove short-time bilinear estimates, which we need to propagate the
nonlinearity. For the remainder of the section, let d 3, ↵ 2, 4 . Recall that the frequency dependent
time localization is given by

T N N 2 ↵
2 .

We consider the domains (recall ⌫ �
2

↵ 2 )

D�

K 1
⌫ K 2

�
K 3

�
, ↵ 2,

K⌫ R2, ↵ 2, 4 ,

where K i

�
, K� R;T� . In the following we write for the sake of brevity

A � B : A �0 B

with implicit constants independent of � 1. In the following, we put the factor �0 regardless of the domain
since this does not matter for the following analysis and it simplifies the exposition.

Proposition 4.1. Let s r max 5
2

↵

2 , 1 . For all T 0, 1 , we find the following estimates to hold:

x uv N 0 T � u F 0 T v F s T , (19)

x uv N s T � u F s T v F r T u F r T v F s T . (20)

4.1. Dyadic estimates. We prove the dyadic estimates which can then be summed up to obtain Proposition
4.1. We decompose in the ⌘ variable as follows

PN x uN1vN2 PN,M x uN1,M1vN2,M2 ,

where denotes a non-trivial relation between the size of the y frequencies M,M1,M2 2Z � 1, and
N,N1, N2 2Z and additionally Ni, N ⌫ 1 if d1 0, i.e., if the x-variable is periodic. Note that for the
norm in the LHS of the above equation to be non-zero, we require that the size of at least two y frequencies
be comparable. Also, by another almost orthogonal decomposition, we can suppose that the ⌘-support of
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uN1,M1 , vN2,M2 is localized to cubes of length Mmin. This becomes useful in case M 2 10M1. The key
dyadic estimate, which yields (19) and (20), reads

PN,M x uN1,M1vN2,M2 NN � C N,N1, N2 M
1
2 ,

1
2

min uN1,M1 FN1
vN2,M2 FN2

. (21)

Above we denote

C N,N1, N2
N

1
2
min, i 1, 2 : Ni N,

N
1
2
1 , else,

Ms1,s2
Ms1 , M 1,

Ms2 , M 1.

(19) then follows from trading powers of ⌘ to ⇠ using the weight. For Mmin � 1, this is clear. For
⌘ � 1, we note

⌘
1
2

1 ⇠
1
2 , if ⌘ ⇠ ,

⌘

⇠
1 ⇠

1
2 , if ⌘ ⇠ .

Furthermore, we can decompose the weight

p� ⇠, ⌘ �
1
2

⌘

⇠
.

The constant term can be perceived as part of the weight of a function on the RHS, for ⌘

⇠
we can use dyadic

localization in ⇠ and ⌘ to conclude. For the remainder of the section, we suppose that Mi � 1.

We consider the High Low High case first.

Lemma 4.2. Let N 1, N1, N2 2N0 such that N2 N N1. Suppose that uN1,M1 FN1 , vN2,M2 FN2 .
Then,

PN,M x uN1,M1vN2,M2 NN � N
1
2
2 M

1
2 ,

1
2

min uN1,M1 FN1
vN2,M2 FN2

. (22)

Proof. Using the definition of the NN norm, we can bound the left-hand side of (22) by

sup
tN R

⌧ ! ⇠, ⌘ iN 2 ↵
2 1 ⇠1AN,M ⇠, ⌘ F uN1,M1 ⇢1 N 2 ↵

2 t tN

F vN2,M2 ⇢1 N 2 ↵
2 t tN XN .

Let

f 1 : F uN1,M1 ⇢1 N 2 ↵
2 t tN , and f 2 : F vN2,M2 ⇢1 N 2 ↵

2 t tN .

Using properties (5) and (6) of the function spaces, it su�ces to prove that if L1, L2 N 2 ↵
2 and f i :

D
�

R R is supported in DNi,Mi,Li for i 1, 2, then

N

L N
2 ↵

2

L
1
2 1DN,M,L f 1 f 2

L2 � N
1
2
2 M

1
2 ,

1
2

min

2

i 1

L
1
2
i

f i
L2 . (23)

This will be proved by a case-by-case analysis. For Lmax max L,L1, L2 , we consider two cases:
(i) Lmax N↵

1 N2: In this case, we can use the bilinear Strichartz estimate from Proposition 3.2 to find:

1DN,M,L f 1 f 2
L2 N

1
2
2 N

↵
4

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 . (24)

By summing up (24) we obtain

L N
2 ↵

2

L
1
2 1DN,M,L f 1 f 2

L
2
x,y,t

N 1
1 N

1
2
2 M

1
2
min

2

i 1

L
1
2
i

f i
L2 .

(ii) Lmax N↵

1 N2: This seemingly easier case requires to distinguish into more subcases. We shall
analyze the size of the resonance in case N2 1 more carefully. To this end, we make an additional dyadic
decomposition with N2 2Z, which means a dyadic decomposition of frequencies 1. Depending on the size
of N1 and N2, we consider the following subcases:
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(a) N2 1: In this case the resonance is very favorable, and we shall take advantage of Lmax N↵

1 N2.
L N↵

1 N2. If Mmin 1, then by Lemma 2.7 we find

N
L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

N N↵

1 N2
1
2N

1
2
2 Mmin

2

i 1

L
1
2
i

f i
L2 .

Hence, we can suppose that Mmin 1. In this case, we use two L4
x,y,t

-Strichartz estimates by Lemma 2.6:

N
L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

� N1 ↵
2 N

1
2

2 F 1 f 1
L

4
x,y,t

F 1 f 2
L

4
x,y,t

� N1 ↵
2 N1N2

1
4M0

min

2

i 1

L
1
2
i

f i
L2 .

This is acceptable for N1 Mmin. If N1 Mmin, then an application of Lemma 2.7 yields

N
L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

N
1 ↵

2
1 Mmin

2

i 1

L
1
4
i

f i
L2

N
↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2

M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

N
2 ↵

2
1 L N↵

1 N2: We can use the Cauchy-Schwarz inequality through Lemma 2.7 to still find

N

N
2 ↵

2
1 L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

NN 1
1 N

↵
4
1 MminN

1
2
2 N↵

1 N2
1
2

2

i 1

L
1
2
i

f i
L2

N
↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2 .

This is acceptable for Mmin N1. For Mmin N1, we can in the same range of L consider two L4
x,y,t

-
Strichartz estimates by Lemma 2.6 after duality and take out the function with highest modulation in L2

⇠,⌘,⌧
.

In the worst case, this function is at small frequencies N2, i.e., Lmax L2. In this case, we find

N

N
2 ↵

2
1 L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

� N1 log N↵

1 N2 N↵

1 N2
1
2M0

min N1N2
1
2

2

i 1

L
1
2
i

f i
L2

� N
1 ↵

2

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

(b) N2 N ↵

1 . which yields N2N↵

1 1. Note that this case is possibly vacuous if the x-variable is
periodic. By two L4

x,y,t
-Strichartz estimates as in Lemma 2.6, we infer

N

L N
2 ↵

2
1

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

� N
↵
4
1 N

1
4
2 N

1
4
1 M0

min

2

i 1

L
1
2
i

f i
L2

� M0
minN

1
4
1

2

i 1

L
1
2
i

f i
L2 .

(25)

This is acceptable for N1 M2
min. If M2

min N1, then we can use the Cauchy-Schwarz inequality via
Lemma 2.7 to find

N

L N
2 ↵

2
1

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

N
2 ↵

2
1 N1N

1
2
2 Mmin

2

i 1

L
1
2
i

fi L2 .
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This su�ces by summation over N2 N ↵

1 .
(c) N ↵

1 N2 1. By the estimate (25), which is still valid, we can suppose that N1 M2
min.

L N↵

1 N2: By Lemma 2.7 we find

N
L N

↵
1 N2

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

N1 ↵
2 N

1 ↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2

MminN
↵
4

1

2

i 1

L
1
2
i

f i
L2 .

N
2 ↵

2
1 L N↵

1 N2: Another application of the Cauchy-Schwarz inequality via Lemma 2.7 yields

N

L N
2 ↵

2
1

L
1
2 1DN,M,L f 1 f 2

L
2
⇠,⌘,⌧

N log N↵

1 N2 MminN
↵
2

1 N
2 ↵ 2

2
1

2

i 1

L
1
2
i

f i
L2

log N↵

1 N2 N
↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2

M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

The proof is complete. ⇤

Next, we consider the High High Low interaction.

Lemma 4.3. Let N1, N2, N 2N0 , N1 1 such that N N1 N2, and uN1,M1 FN1 , vN2,M2 FN2 . Then,
the following estimate holds:

PN,M x uN1,M1vN2,M2 NN � N
1
2
1 M

1
2 ,

1
2

min uN1,M1 FN1
vN2,M2 FN2

. (26)

Proof. We have to add time localization to estimate the functions uN1,M1 , vN2,M2 in the short-time norms.
This amounts to a factor of N1 N 2 ↵

2 for N 1. For N 1, we have to show

N
N1

N
2 ↵

2

L N
2 ↵

2

L
1
2 1DN,M,L f 1 f 2

L2 � N
1
2
1 C Mmin

2

i 1

L
1
2
i

f i
L2 (27)

for f i supported in DNi,Mi,Li , i 1, 2. If N 1, we make an additional dyadic decomposition in the x
frequencies such that N 2Z now (which changes the Fourier support to D̃N,M,L), and additionally suppose
that N ⌫ 1, if the x-variable is periodic. In this case, it su�ces to prove

NN
2 ↵

2
1

L 1

L
1
2 1

D̃N,M,L
f 1 f 2

L2 � N
1
2
1 C Mmin

2

i 1

L
1
2
i

f i
L2 . (28)

We turn to the proof of (28) first. We do a case-by-case analysis depending on the size of N and N1:

(i) N N ↵

1 : In this case resonance considerations are irrelevant, and for L N
2 ↵

2
1 , we conclude by

two L4
x,y,t

-Strichartz estimates due to Lemma 2.6 on f i :

NN
2 ↵

2
1

L N
2 ↵

2
1

L
1
2 1

D̃N,M,L
f 1 f 2

L2 � N
3
2N

1
2
1 N

1 ↵
4

1 M0
min

2

i 1

L
1
2
i

f i
L2

� N
3
2

3↵
2

↵
4

1 M0
min

2

i 1

L
1
2
i

f i
L2 .

(29)

This is very favorable for Mmin N1. For 1 L N
2 ↵

2
1 , we apply duality and two L4

x,y,t
-Strichartz

estimates to find the above estimate to hold (actually, a slightly better estimate holds due to an improved
L4-Strichartz estimates for a function with small frequencies).
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On the other hand, an application of the Cauchy-Schwarz inequality through Lemma 2.7 yields

NN
2 ↵

2
1

L N
2 ↵

2
1

L
1
2 1

D̃N,M,L
f 1 f 2

L2 N
3
2N

1 ↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2 . (30)

For Mmin N1, we find

N
3
2N

3
2
1 N

↵
4

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

For 1 L N
2 ↵

2
1 , the same estimate holds up to an additional logarithm in N1.

(ii) N ↵

1 N 1: In this regime we distinguish between resonant and non-resonant case.

(a) Lmax N↵

1 N . We conclude by duality and Proposition 3.2 applied to the dual function and an f i :

N
2 ↵

2
1 N

L N
↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L2

N
2 ↵

2
1 N

L N
↵
1 N

L
1
2L

1
2L

1
2
1

N
1
2

N
↵
4
1

M
1
2
min f 1

L2N
2 ↵ 2

2
1 L

1
2
2 f 2

L2

log N↵

1 N N
3
2M

1
2
minN

1 ↵
2

1

2

i 1

L
1
2
i

f i
L2 .

(31)

This is acceptable.
(b) Lmax N↵

1 N .
L N↵

1 N . We can use two L4
x,y,t

-Strichartz estimates by Lemma 2.6

N
2 ↵

2
1 N

L N
↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L
2
⇠,⌘,⌧

� N 2 ↵

1 N
1
2 NN1

1
2M0

min

2

i 1

L
1
2
i

f i
L2 .

For N1 Mmin, this gives

� N2 ↵

1 NM
1
2
min

2

i 1

L
1
2
i

f i
L2 . (32)

For N1 Mmin, we can use Lemma 2.7 to find

N
2 ↵

2
1 N

L N
↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L
2
⇠,⌘,⌧

N
2 ↵

2
1 N

3
2Mmin N↵

1 N
1
2N

1 ↵
4

1

2

i 1

L
1
2
i

f i
L2

N
3
2

3↵
4

1 NM
1
2
min

2

i 1

L
1
2
i

f i
L2 .

(33)

1 L N↵

1 N . In this case we can argue like above after applying duality (since i : Li N↵

1 N). This
yields the same estimates up to a logarithm in N1 from summing over 1 L N↵

1 N .
(iii) N 1. In this case we shall prove (27) by considering resonant and non-resonant interactions:

(a) Lmax N↵

1 N . We obtain by the bilinear Strichartz estimate from Proposition 3.2 and duality

N
N1

N
2 ↵

2

N
2 ↵

2 Lmax N
↵
1 N

L
1
2 1DN,M,L f 1 f 2

L2

N
N1

N
2 ↵

2 log N↵

1 N N
1 ↵

4
1 M

1
2
min

N
1
2

N
↵
4
1

2

i 1

L
1
2
i

f i
L2

N
↵
2

1
2N

1 ↵
2

1 M
1
2
min log N↵

1 N
2

i 1

L
1
2
i

f i
L2 .

(34)
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This is acceptable.
(b) Lmax N↵

1 N . If L N↵

1 N , we can use two L4
x,y,t

-Strichartz estimates to find by Lemma 2.6

N1

N
2 ↵

2 N
L N

↵
1 N

L
1
2 1DN,M,L f 1 f 2

L2 �

N1

N
2 ↵

2
N

1
2

N
↵
2
1

NN1
1
2M0

min

2

i 1

L
1
2
i

f i
L2 .

This is acceptable if N1 Mmin:

�

N1

N
2 ↵

2
N

N
↵
2
1

M
1
2
min

2

i 1

L
1
2
i

f i
L2 N

↵
2 1N2 ↵

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 . (35)

If Mmin N1, we can apply Lemma 2.7 to find

N
N1

N
2 ↵

2

L N
↵
1 N

L
1
2 1DN,M,L f 1 f 2

L2
N1

N
2 ↵

2
N

1
2

N↵ 2
1

MminN
1 ↵

4
1

2

i 1

L
1
2
i

f i
L2

N
1 3↵

4
1 N

3
2

↵
2 M

1
2
min

2

i 1

L
1
2
i

f i
L2 .

(36)

Summation over N N1 yields

N
3
2

↵
2

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

If L N↵

1 N , then there is Li N↵

1 N for some i 1, 2 . The argument follows the above lines, estimating
the factor with high modulation in L2 and the remaining factors via L4-Strichartz or Cauchy-Schwarz. This

gives an additional log N↵

1 N from summing over L, which can easily be absorbed into N
1
2
1 . ⇤

We consider the case when the frequencies are of comparable size and much higher than 1.

Lemma 4.4. Let N1, N2, N 2N0 , N1 25, and N1 N2 N3. Then the following estimate holds:

PN,M x PN1,M1uPN2,M2v FN � M
1
2
minN

1
2 PN1,M1u FN1

PN2,M2v FN2
. (37)

Proof. By the above reductions, we have to prove

N

L N
2 ↵

2

L
1
2 1DN,M,L f 1 f 2

L2 � M
1
2
minN

1
2

2

i 1

L
1
2
i

f i
L2 (38)

for f i supported in DNi,Mi,Li . We consider the resonant and non-resonant interactions:
(i) Lmax N↵ 1

1 : We apply a bilinear estimate due to Proposition 3.2 to f 1 and f 2 to obtain

N

L N
2 ↵

2

L
1
2 1DN,M,L f 1 f 2

L2
N

1
2

N
↵
4
NN 1N

↵
4 M

1
2
min

2

i 1

L
1
2
i

f i
L2

N
1
2M

1
2
min

2

i 1

L
1
2
i

f i
L2 .

(ii) Lmax N↵ 1
1 : For L N↵ 1

1 , we use two L4
x,y,t

-Strichartz estimates on f i , i 1, 2 by Lemma 2.6 to
find

N

L N
↵ 1
1

L
1
2 1DN,M,L f 1 f 2

L2 � NM0
minN

↵ 1
2 N

2

i 1

L
1
2
i

f i
L2

� N
3
2

↵
2 M0

min

2

i 1

L
1
2
i

f i
2.
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This su�ces for Mmin 1. If Mmin 1, an application of Lemma 2.7 gives

N

L N
↵ 1
1

L
1
2 1DN,M,L f 1 f 2

L2
N

3
2

N
↵ 1
2

1

MminN
↵
4 1

2

i 1

L
1
2
i

f i
L2

N
↵
4

2

i 1

L
1
2
i

f i
L2 .

This is acceptable. If L N↵ 1
1 , the arguments from above apply after using duality. The dyadic sum over

N2 ↵
2 L N↵ 1

1 gives an additional factor of log N1 which is acceptable. ⇤

We consider now very small frequencies.

Lemma 4.5. Let N,N1, N2 2N0 , 210 . Then the following estimate holds:

PN,M x uN1,M1vN2,M2 NN � M
1
2
min uN1,M1 FN1

uN2,M2 FN2
. (39)

Proof. We use the same notation as in Lemma 4.2. It is then su�cient to prove that if L1, L2 2N0 and
f i : D

�
R R are functions supported in DNi,Mi,Li , i 1, 2 and M1 M2, then

L 1

L
1
2 1DN,M,L f 1 f 2

L2 � M
1
2
min

2

i 1

L
1
2
i

f i
L2 . (40)

This follows from the estimate from Cauchy-Schwarz inequality (Lemma 2.7) for Mmin 1 and two L4
x,y,t

-
Strichartz estimates for Mmin 1. ⇤

4.2. Proof of Proposition 4.1. We estimate the interactions as laid out above separately, i.e.

High x Low High,
High x High High,
High x High Low,
Low x Low Low,

The key ingredients are the dyadic estimate and the decomposition of the weight p� ⇠, ⌘ .
We begin with High x Low High-interaction. Recall that

1 ⇠ sp� ⇠, ⌘ �
1
2 1 ⇠ s 1 ⇠ s

⌘

⇠
.

Let N N1 N2. For s r 1, we find

�
1
2Ns PN,M x uN1,M1vN2,M2 NN �

1
2NsN

1
2
minM

1
2 ,

1
2

min uN1,M1 FN1
vN2,M2 FN2

.

The estimates (19) and (20) follow by summation: Suppose M M1 M2. Summation over N2 and M2

and using M
1
2 ,

1
2

2 �
1
2

M2
N2

1 N2
1
2 as follows:

�
1
2Ns PN,M x uN1,M1vN2,M2 NN �

1
2Ns uN1,M1 FN1

v F r ,

the claim follows from square summation.
Suppose M M2 M1. In this case summation over M1 gives

�
1
2Ns PN,M x uN1vN2,M2 NN �

1
2Ns

1 uN1 FN1
N

1
2
2 M

1
2 ,

1
2

2 vN2,M2 FN2
.

Similar arguments show that summability is provided for s r 1 for High x High High and Low x Low
Low interaction.

For High x High Low-interactions we need a di↵erent argument. The reason is that the weight ⌘

⇠

eliminates the derivative. To estimate ⌘ 2max ⌘1 , ⌘2 in terms of the weight p� ⇠i, ⌘i one has to take
into account a high frequency ⇠i Ni. This gives an additional derivative loss in the high frequency.
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We revisit the dyadic estimates from Lemma 4.3: The estimate (29) becomes with the additional factor
N1
N

and N1 Mmin, N1 Mmin :

N1

N
NN

2 ↵
2

1

L N
2 ↵

2
1

L
1
2 1

D̃N,M,L
f 1 f 2

L2 � N
1
2N

5
2

↵
4

1 M0
min

2

i 1

L
1
2
i

f i
L2

� N
2 ↵

2
↵
4

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

(30) becomes with N1
N

and recall that N N ↵

1 , Mmin N1 :

N1

N
NN

2 ↵
2

1

L N
2 ↵

2
1

L
1
2 1

D̃N,M,L
f 1 f 2

L2 N
1
2N

2 ↵
4

1 Mmin

2

i 1

L
1
2
i

f i
L2

N
5
2

3↵
4

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

(31) becomes with N1
N

and recall N ↵

1 N 1, Lmax N↵

1 N :

N1

N
N

2 ↵
2

1 N
L N

↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L2 log N↵

1 N N
1
2M

1
2
minN

2 ↵
2

1

2

i 1

L
1
2
i

f i
L2 .

(32) becomes with N1
N

and N1 Mmin, Lmax N↵

1 N :

N1

N
N

2 ↵
2

1 N
L N

↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L2 N3 ↵

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

For N1 Mmin, we find for (33) with N1 Mmin, Lmax N↵

1 N :

N1

N
N

2 ↵
2

1 N
L N

↵
1 N

L
1
2 1

D̃N,M,L
f 1 f 2

L2 N
5
2

3↵
4

1 M
1
2
min

2

i 1

L
1
2
i

f i
L2 .

(34) becomes with N1
N

and recall N 1, Lmax N↵

1 N :

N1

N
N

N1

N
2 ↵

2

N
2 ↵

2 Lmax N
↵
1 N

L
1
2 1DN,M,L f 1 f 2

L2

N
2 ↵

2
1 N

3
2

↵
2 M

1
2
min log N↵

1 N
2

i 1

L
1
2
i

f i
L2 .

This is the estimate, which requires us to suppose that

s
5
2

↵

2 , 2 ↵ 3,

1, 3 ↵ 4.

(35) becomes for N1 Mmin with N1
N

and N 1, Lmax N↵

1 N :

N3 ↵

1 N
↵
2 2M

1
2
min

2

i 1

L
1
2
i

f i
L2 .

(36) becomes for N 1, Mmin N1, Lmax N↵

1 N with the factor N1
N
:

N
2 3↵

4
1 N

5
2

↵
2 M

1
2
min

2

i 1

L
1
2
i

f i
L2 .

This completes the proof of Proposition 4.1.
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5. Energy estimates

The purpose of this section is to propagate the energy norms in terms of short-time norms. We shall do
this for solutions in F s and for di↵erences of solutions in F 0. The key ingredient is the dyadic estimate in
Proposition 5.2, to which the estimates are reduced after suitable integration by parts and substitutions.

5.1. Energy estimates for the solution. We begin with energy estimates for solutions.

Proposition 5.1. Let ↵ 2, 4 . For all T 0, 1 and solutions u C T, T ;L2 L
T
Es to the following

tu xD↵

x
u 1

x
�yu x u2 , x, y D�, t T, T ,

u 0 �,
(41)

we have
u 2

Bs T
� 2

Es �0 u 2
F s T

u F r T (42)

provided that s r 3 ↵

2 .

5.2. Reductions. We consider the equation (41) for the Littlewood-Paley pieces PNu. Multiplying this
equation by PNu and integrating, we get

sup
tN T

PNu tN
2
L2 PN� 2

L2 sup
tN T D� 0,tN

PNu PN x u2 dxdydt . (43)

We write the integrand as

PNuPN xu
2 2PNuPN u xu 2PNuPN P Nu xu 2PNuPN P Nu xu : 2 I II .

We can further decompose I as

I PNuPN P Nu P N xu PNuPN P Nu P N xu : a b,

while II can be written as

II PNuP NuPN xu PNu PN P Nu xu P NuPN xu : c d.

We have

2a 2c PNu x P Nu 2
x PNu 2 P Nu.

For b, we observe that the derivative already hits the low frequency, while for a c, using an integration by
parts, we have

D� 0,T
2 a c dxdydt

N N1
D� 0,T

xPNu PN1u P̃N1u dxdydt
N1 N D� 0,T

xPN1u PNu PNu dxdydt,

where P̃N1 N N1
PN1 (and the multiplier is denoted by �̃N1).

Next, we treat d by the same argument as in [10, eq. 6.10] to transfer the derivative to the low frequency
factor. We have

d PNu
N1 N

PN PN1u xu PN1u PN xu .

We fix an extension of u which we still denote by u. We have

F PN PN1u xu PN1uPN xu ⇠, ⌘, ⌧

⇠ ⇠1
⇠1

�̃N ⇠ �̃N ⇠ ⇠1 PNu ⇠ ⇠1, ⌘ ⌘1, ⌧ ⌧1 PN1 xu ⇠1, ⌘1, ⌧1 d⇠1d⌘1d⌧1 : M PNu, PN1 xu ,

where the (bilinear) multiplier is

m ⇠, ⇠1
⇠ ⇠1
⇠1

�̃N ⇠ �̃N ⇠ ⇠1 �̃N1 ⇠1 .

Using the mean value theorem,

�̃N ⇠ �̃N ⇠ ⇠1
1

0
�̃
N

⇠ h⇠1 ⇠1 dh,
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we obtain the uniform boundedness of the multiplier

m ⇠, ⇠1
1

0

⇠ ⇠1
N

�̃
⇠ h⇠1

N
dh 1.

To conclude, we have shown that by taking the advantage of the form of the nonlinearity, we can transfer
the derivative to the low frequency in all the cases. More precisely, we can assume that our integrand is of
the form

PNu PN2u PN1 xu or PNu M PNu, PN1 xu with N1 N N2 (44)

with a bilinear Fourier-multiplier M with bounded symbol m.

Considering an integrand of the form PNu PN2u PN1 xu , we divide the time interval into sub-intervals
I of size N 2 ↵

2 to estimate the functions in short-time norms. Let � C
c

1, 1 ;R such that

n Z
�3 t n 1.

We write

D� 0,T
PNu PN2u PN1 xu dxdydt

n D� 0,T
� N 2 ↵

2 t n PNu � N 2 ↵
2 t n PN2u � N 2 ↵

2 t n PN1 xu dxdydt .

(45)

We consider the sets

A n Z : supp � N 2 ↵
2 n 0, T ,

B n Z : 0 supp � N 2 ↵
2 n T supp � N 2 ↵

2 n .

Note that A TN 2 ↵
2 and B 4. First, we consider the bulk of the cases given by the set A. We

change for n A in (45) to Fourier space after an additional dyadic decomposition for the y-frequencies: Let

f 1
N1,M1

Fx,y,t � N 2 ↵
2 t n PN1,M1u , f 2

N2,M2
Fx,y,t � N 2 ↵

2 t n PN2,M2u ,

f 3
N3,M3

Fx,y,t � N 2 ↵
2 t n PN,M3u .

We make an additional dyadic decomposition in modulation for L N
2 ↵

2
3 according to the time localiza-

tion:
f i

Ni,Mi

Li N
2 ↵

2
3

f i

Ni,Mi,Li
, f i

Ni,Mi,Li
1DNi,Mi,Li

f i

Ni,Mi
.

The same can be imitated for an integrand of the type PNu M PNu, PN1 xu because we require a bound
in terms of the L2 norm on the right hand side. Taking into account the additional derivatives and time
localization, the proof of Proposition 5.1 reduces to the following estimate:

Li N
2 ↵

2
3

f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3 � N

0 ,
1
2

1 N 1
3 M

1
2
min

3

i 1
Li N

2 ↵
2

3

L
1
2
i

f i

Ni,Mi,Li L2 (46)

for N1 N2 N3, N1 2Z, N2, N3 2N0 . Like in Section 4, we suppose that Ni ⌫ 1 if D� T⌫ Rd1 Td2
�
.

We always suppose that Mi � 1, which is the lowest scale for y-frequencies.
Once the above display is proved, we can conclude the proof of (42) by (5): Recall that

p� ⇠, ⌘ �
1
2

⌘

⇠
.

The constant term is then estimated by the above argument, and we trade ⌘-factors into the weight and
powers of ⇠ like in Section 4:

⌘
1
2

1 ⇠
1
2 , ⌘ ⇠ ,

1 ⌘

⇠
⇠

1
2 , ⌘ ⇠ .
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This way the factor M
1
2
min is traded to N

1
2
1 . Together with the factor N

2 ↵
2

3 from the time localization, we
see how (46) can be summed to (42) by (5). To deal with the second term from the weight, we consider the
equation for the Littlewood-Paley piece PN

1
x

ryu:

PN
1

x
ryu tN

2
L2 PN

1
x

ryu 0 2
L2

D� 0,tN

PN
1

x
ryuPN ryu

2 dxdydt .

We write

D� 0,tN

PN
1

x
ryu PN x

1
x

ryu u , and let v 1
x

ryu.

Then,

D� 0,tN

PNvPN xv u dxdydt
D� 0,tN

PNv PN xvP Nu dxdydt
D� 0,tN

PNvPN P N xv u dxdydt

D� 0,tN

PNvPN P N xvP Nu dxdydt.

The first term can be reduced to the second after integration by parts and the third does not require
integration by parts. Then, it su�ces to show the estimates for N N :

N 1,
N N

N2s

D� 0,tN

PNvPNv PN xu dxdydt � v 2
F̄ s T

u F r T , (47)

and for N1 N2 N :

N 1,
N1 N2 N

N2s

D� 0,tN

PNvPN PN1
v PN2 xu dxdydt � v 2

F̄ s T
u F r T . (48)

In the above display we denote with F̄ s the short-time space in the Sobolev scale, i.e., F s without the
weight p�. The estimates (47) and (48) can both be reduced to (46), which we summarize in the following
proposition:

Proposition 5.2. Let N1 2Z, N2, N3 2N0 , N1 N2 N3, Li 2N0 , Mi 2N0 , i 1, 2, 3, and

f i

Ni,Mi,Li
L2 D

�
R;R with supp f 1 D̃N1,M1,L1 , and supp f k DNk,Mk,Lk for k 2, 3. If

D� T⌫ Rd1 Td2
�
, we additionally require N1 ⌫ 1. Then the following estimate holds:

Li N
2 ↵

2
3

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧

� N
0 ,

1
2

1 N 1
3 M

1
2
min

3

i 1
Li N

2 ↵
2

3

L
1
2
i

f i

Ni,Mi,Li L2 .

Proof. We consider the following cases depending on the size of N1 and N2:
(i) N1 N ↵

2 : In this case, we do not distinguish resonant and non-resonant interactions. Using Lemma
2.6, we have

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ � N
1
2
1 M0

minN
1
4
2 N

↵
2

2

2
3

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2

� N0
1 N

1
4
2 N

1 ↵
4

3 M0
min

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 ,
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which is su�cient if N3 M2
min. If M

2
min N3, we use Lemma 2.7 to obtain

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ MminN
1
2
1 N

↵
2 2

2

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2

M
1
2
minN

0
1 N

2 1
4

2

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 .

(ii) N ↵

2 N1 1: We consider the resonant and non-resonant cases as follows:

Lmax N1N↵

2 : From the bilinear Strichartz estimate (16) applied to f 1
N1,M1,L1

f 2
N2,M2,L2

(or f 1
N1,M1,L1

f 3
N3,M3,L3

), we have

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧

M
1
2
min

N
1
2
1

N
↵
4
3

L1L2
1
2 f 1

N1,M1,L1 L2 f 2
N2,M2,L2 L2 f 3

N3,M3,L3 L2

N
1
2
1 N 1

2 M
1
2
min

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 .

Lmax N1N↵

2 : We shall use Lemma 2.6 by estimating the function with the highest modulation in L2.
Here, the worst case occurs when Lmax L1. We have

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ � N
1
2
1 M0

minN
1
2
2 N1N

↵

2
1
2

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2

� N
1
2

↵
2

2 M0
min

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 ,

which is su�cient if N2 Mmin. If Mmin N2, we use Lemma 2.7:

D� R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ N
1
2
1 N1N

↵

2
1
2N

↵
2

2

2
2 Mmin

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2

N
1
2

↵
4

2 M
1
2
min

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 .

(iii) N1 1: We consider two subcases:
Lmax N1N↵

2 : After using Cauchy-Schwarz inequality, we apply the bilinear Strichartz estimate (16) to

f 1
N1,M1,L1

f j

Nj ,Mj ,Lj
, j 2 or 3 and obtain

D R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ M
1
2
minN

1
2
1 N

↵
4

3 N
↵
4 1

3

3

i 1

L
1
2
i

f i
L2 ,

which is su�cient.
Lmax N1N↵

2 : We assume Lmax L1, since the estimate is better or same in the other cases. For
Mmin N3, we use Lemma 2.7 to obtain

D R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ N
1
2
1 MminL

1
2
min

3

i 1

f i

Ni,Mi,Li L2

MminN
↵
2

3 N
↵
4 1

3

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2

M
1
2
minN

1
3

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 .
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For Mmin N3, we use Lemma 2.6 on f 2
N2,M2,L2

f 3
N3,M3,L3

as follows:

D R
f 1
N1,M1,L1

f 2
N2,M2,L2

f 3
N3,M3,L3

d⇠d⌘d⌧ � f 1
N1,M1,L1 L2 N

1
2
1 N

1
2
2 M0

min

3

i 2

L
1
2
i

f i

Ni,Mi,Li L2

� N1N
↵

2
1
2N

1
2
1 M

1
2
min

3

i 1

L
1
2
i

f i

Ni,Mi,Li L2 .

⇤

Proof of Proposition 5.1. As described, we can consider the integrand to be of the form in (44). Consider
the first case, i.e., PNu PN2u PN1 xu with N1 N N2. For N3 N , we shall apply Proposition 5.2 to
the following:

f 1
N1,M1

Fx,y,t � N 2 ↵
2 t n xPN1,M1u L1 N

2 ↵
2

f 1
N1,M1,L1

,

f 2
N2,M2

Fx,y,t � N 2 ↵
2 t n PN2,M2u L2 N

2 ↵
2

f 2
N2,M2,L2

,

f 3
N3,M3

Fx,y,t � N 2 ↵
2 t n PN3,M3u L3 N

2 ↵
2

f 3
N3,M3,L3

.

Secondly, the estimate (47) follows from an application of Proposition 5.2 to

f 1
N1,M1

Fx,y,t � N 2 ↵
2 t n xPN1,M1u L1 N

2 ↵
2

f 1
N1,M1,L1

,

f 2
N2,M2

Fx,y,t � N 2 ↵
2 t n PN2,M2v L2 N

2 ↵
2

f 2
N2,M2,L2

,

f 3
N3,M3

Fx,y,t � N 2 ↵
2 t n PN3,M3u L3 N

2 ↵
2

f 3
N3,M3,L3

with N2 N3 N , N1 N .
Lastly, the estimate (48) follows from applying Proposition 5.2 to

f 1
N1,M1

Fx,y,t � N 2 ↵
2 t n PN1,M1v L1 N

2 ↵
2

f 1
N1,M1,L1

,

f 2
N2,M2

Fx,y,t � N 2 ↵
2 t n PN2,M2v L2 N

2 ↵
2

f 2
N2,M2,L2

,

f 3
N3,M3

Fx,y,t � N 2 ↵
2 t n xPN3,M3u L3 N

2 ↵
2

f 3
N3,M3,L3

with N1 N , N2 N3 N . ⇤

5.3. Energy estimate for the di↵erence of solutions. Let u1, u2 solve the equation (41) with initial
data �1 and �2, respectively. The di↵erence of the solutions viz. v : u1 u2 satisfies the following equation

tv 3
x
v 1

x
�yv x v u1 u2 , x, y D�, t T, T ,

v 0 �1 �2 : �.
(49)

We have the following result for v.

Proposition 5.3. Let ↵ 2, 4 , s 3 ↵

2 . For all T 0, 1 , and with notations from (49), the following
estimate holds:

v 2
B0 T

v 0 2
E0 �0 v 2

F 0 T
u1 F s T u2 F s T . (50)

Proof. As in the proof of Proposition 5.1, we consider the equation (49) for Littlewood-Paley pieces PNv.
We write

PNv tN
2
L2 PNv 0 2

L2

D� 0,tN

PNvPN x v u1 u2 dxdydt.

By an integration by parts argument, similar to the above, it su�ces to estimate

D� 0,tN

PNvPNv PN1 xui dxdydt for N1 N (51)

and

D� 0,tN

PNv xPN P
Ñ1

vP
Ñ2

ui dxdydt for N Ñ1 Ñ2. (52)
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Adding time localization and frequency localization in ⌘, we let for (51) with N2 N3 N :

f 1
N1,M1

Fx,y,t � N 2 ↵
2 t n xPN1,M1ui

L1 N
2 ↵

2
f 1
N1,M1,L1

,

f 2
N2,M2

Fx,y,t � N 2 ↵
2 t n PN2,M2v L2 N

2 ↵
2

f 2
N2,M2,L2

,

f 3
N3,M3

Fx,y,t � N 2 ↵
2 t n PN3,M3v L3 N

2 ↵
2

f 3
N3,M3,L3

.

Then, the claim follows from Proposition 5.2.
For (52), we let with N1 N and N2 Ñ1, N3 Ñ3:

f 1
N1,M1

Fx,y,t � Ñ
2 ↵

2
1 t n xPN1,M1v

L1 Ñ
2 ↵

2
1

f 1
N1,M1,L1

,

f 2
N2,M2

Fx,y,t � Ñ
2 ↵

2
1 t n PN2,M2v

L2 Ñ
2 ↵

2
1

f 2
N2,M2,L2

,

f 3
N3,M3

Fx,y,t � Ñ
2 ↵

2
1 t n PN3,M3ui

L3 Ñ
2 ↵

2
1

f 3
N3,M3,L3

.

Then, the claim is a consequence of Proposition 5.2.
We shall also estimate the contribution of the weight by estimating the Littlewood-Paley pieces

PN
1

x
ryv tN

2
L2 PN

1
x

ryv 0 2
L2 2

D� 0,tN

PN
1

x
ryv PN ry v u1 u2 dxdt.

We let

D� 0,tN

PN
1

x
ryv PN ryv ui

D� 0,tN

PN
1

x
ryv PN ryv ui dxdt

D� 0,tN

PN
1

x
ryv PN v ryui dxdt

I II.

Let w 1
x

ryv and rewrite

I
D� 0,tN

PNwPN xw ui .

We decompose

PN xw ui PN P̃N xw P Nui PN P N xw PNui PN P N xw P Nui .

The first term allows for integration by parts and reduces to the second term. These contributions can be
summed like above. Only the third term is a little di↵erent because the derivative cannot be transferred to
the lowest frequency. However, in this case this is acceptable because of High High Low-interaction.
We have to estimate

N 1,
N1 N2 N

D� 0,tN

PNw PN1 xw PN2
ui dxdt .

We smoothly localize time to intervals of size N
↵
2 2

1 and let like above

f 1 Fx,y,t � N
2 ↵

2
1 t n PN1,M1w

L1 N
2 ↵

2
1

f 1
N1,M1,L1

,

f 2 Fx,y,t � N
2 ↵

2
1 t n PN2,M2w

L2 N
2 ↵

2
1

f 2
N2,M2,L2

,

f 3 Fx,y,t � N
2 ↵

2
1 t n PN3,M3ui

L3 N
2 ↵

2
1

f 3
N3,M3,L3

with N1 N , N2 N1, N3 N2. The claim again follows from applying Proposition 5.2.
We turn to the estimate of

II
D� 0,tN

PN
1

x
ryv PN vryu2 .

As above, we write

PN vryu2 PN P̃NvP Nryu2 PN P NvP̃Nryu2 PN P NvP Nryu2 .
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After additional decomposition in time and in the y-frequencies, the claim follows from applying Proposition
5.2. For the first term, we have to estimate

D� 0,1
PN1,M1

1
x

ryv � N 2 ↵
2 t n PN2,M2 v� N 2 ↵

2 t n PN3,M3 x
1

x
ryui� N 2 ↵

2 t n .

for n TN2 ↵
2 and Mi 2N0 with N1 N , N2 N , N3 N N . Letting

f 1 Fx,y,t � N 2 ↵
2 t n PN1,M1

1
x

ryv
L1 N

2 ↵
2

f 1
N1,M1,L1

,

f 2 Fx,y,t � N 2 ↵
2 t n PN2,M2v L2 N

2 ↵
2

f 2
N2,M2,L2

,

f 3 Fx,y,t � N 2 ↵
2 t n PN3,M3

1
x

ryui
L3 N

2 ↵
2

f 3
N3,M3,L3

,

the claim becomes a consequence of Proposition 5.2 and carrying out the summations. The other terms are
estimated likewise. ⇤

6. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which asserts low regularity well-posedness of the
fractional KP-I equation:

tu xD
↵

x
u 1

x
�yu x u2 , t, x, y R D,
u 0 � Es D

(53)

with ↵ 2, 4 , and s and D to be specified. The starting point is the local existence on arbitrary domains
D K1 K2 K3 with Ki R;T :

Proposition 6.1. There is a data-to-solution mapping S
T

: E CTE with T T � E4 of (53).

In the following we prove that we have data-to-solution mappings Ss

T
: Es L

T
Es with T T � E4 for

s 4 with u C1
T
H 1 CTH1 CTE0, which is the unique distributional solution to (53). By interpolation,

u CTEs for 0 s s. Hence, we find S
T

: E CTE . We have reduced to the following:

Proposition 6.2 (Local existence at high regularity). Let s 4. For every � Es there exists T T � E4

and a unique solution u to (53) in the distributional sense on the time interval T, T satisfying

u CTH
� 1 � 1 , tu L

T
H 1, u CTE

s L
T
Es 0 s s .

In the first step we construct solutions via Galerkin approximation. Let ' C
c

R3 be a radially
decreasing function with

' ⇠, ⌘ 1 for ⇠, ⌘ 1 and ' ⇠, ⌘ 0 for ⇠, ⌘ 2.

We define � ⇠, ⌘ ' ⇠, ⌘ 2 ' ⇠, ⌘ , which is supported in B 0, 4 B 0, 1 . In the first step we consider
the Galerkin approximations with low and high frequency cuto↵ for M 2N:

P̃Mf ⇠, ⌘
M

K M 1

� ⇠, ⌘ K f̂ ⇠, ⌘ .

We consider

tu xD↵

x
u 1

x
�yu P̃M x P̃Mu 2 ,

u 0 � Es D .
(54)

By rewriting (54) as an integral equation,

uM t S↵ t �
t

0
S↵ t ⌧ P̃M x P̃Mu 2 ⌧ d⌧,

we infer local existence in Es D for s 0 by the Cauchy-Picard-Lipschitz theorem. This is based on S↵ t
being bounded on Es D and the nonlinearity trivially being bounded on Es D by Sobolev embedding.
This however yields a bad constant and the Cauchy-Picard-Lipschitz theorem yields an existence time, which
depends on M . Denote the emanating solutions by uM CTE4. To show a bound independent of M , we
apply the analysis of the previous sections to (54) for s 4.
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First we suppose that � E4 "0 1. From Lemma 2.2, Proposition 4.1, and Proposition 5.1, we have
the following set of estimates for T min Tmax, 1 with Tmax denoting the time of existence according to the
Cauchy-Picard-Lipschitz theorem in CTEs:

uM
F s T uM

Bs T x P̃MuM 2
N s T ,

x P̃MuM 2
N s T uM

F s T uM
F 4 T ,

uM 2
Bs T

� 2
Es uM 2

F s T
uM

F 4 T .
(55)

Above we use monotonicity P̃MuM
Xs T uM

Xs T with X F,N . For s 4, this gives

uM 2
F 4 T

� 2
E4 uM 4

F 4 T
uM 3

F 4 T
. (56)

Hence, by choosing "0 small enough, we find by (56) from the continuity of uM
B4 T in T ,

lim
T 0

uM

B4 T � E4 , and lim
T 0

x P̃MuM 2
N 4 T 0,

that
uM

F 4 T � E4 "0 1. (57)

Hence, by continuity of T uM
F 4 T , sup

t T,T
uM t Es uM

F 4 T and iterating the Cauchy-Picard-

Lipschitz theorem, we find that the time of existence for solutions in CTE4 satisfies the bound Tmax 1
provided that � E4 "0 1.

Another application of Lemma 2.2, Proposition 4.1, and Proposition 5.1 for s 4 yields

uM
F s T uM

Bs T x P̃MuM 2
N s T ,

x P̃MuM 2
N s T uM

F s T uM
F 4 T ,

uM 2
Bs T

� 2
Es uM

F s T uM 2
F 4 T

.
(58)

This set of estimates gives

uM 2
F s T

u0
2
Es uM 2

F 4 T
uM 2

F s T
uM

F 4 T uM 2
F s T

, (59)

and therefore, for uM
F 4 T � E4 "0 1 and T Tmax � E4 1, we find

uM

F s T � Es . (60)

We summarize that we have a priori estimates

sup
t 1,1

uM t Es � Es

for s 4 provided that � E4 "0 1. We have now ensured existence of uM
M 2N on a common time

interval. We observe that for any ball B B 0, N D1 we have bounds uniform in M :

uM L
T
H1 B , tu

M L
T
H 1 B .

By the compact embedding H1 B L2 B together with the continuous embedding L2 B H 1 B ,
we can apply the Aubin–Lions compactness lemma (cf. [14]) to find that there is a subsequence uM u
CTL2

loc
. We have u L

T
Es D , which yields u L

T
H1 D and 1

x
ryu L

T
L2 D . By dual pairing in L2

for ' C
c

T, T ,D and passing to the limit M , we find that u is a distributional solution to (53).
Since u C1 T, T ,H 1 L

T
H1 D , we conclude u C T, T ,H� D for � 1, 1 . Next, we show

1
x

ryu CTL2. We use Duhamel’s formula for t1 t2:

1
x

ryu t1
1

x
ryu t2 S↵ t1 S↵ t2

1
x

ry� 2
t2

t1

S↵ t s uryu s ds.

The linear part converges to zero for t1 t2 since S↵ t t R is a C0-semigroup in L2. With I t1, t2 , we
have

t2

t1

S↵ t s uryu s ds L2 D u L
1
ILxy D u LT E1 D .

We use Strichartz estimates to improve on Sobolev embedding, which barely fails to control the L
y
-

contribution. This was previously used in the 2d case to obtain estimates in H2,0 in [17]. We use the
following Strichartz estimates, which is straight-forward from Section 2 by Littlewood-Paley decomposition:

1Restricting to compact domains is only necessary if D T3.
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Proposition 6.3 (Linear L4-Strichartz estimates). Let T 0, 1 , ↵ 0, � : D C, u t S↵ t �, and
" 0. The following estimate holds:

u L
4
TL4

xy D x

1
2

y
"� L2

xy
. (61)

Secondly, we need the following anisotropic Leibniz rule, possibly on mixed domains, whose proof is
postponed to the Appendix:

Proposition 6.4. Let D K1 K2 K3 with Ki R;T , ↵,� 0, � 0, and 1
2

1
p

1
q
. Then the

following estimate holds:

x
↵

y
� u2

L2
xy D x

↵
y

�u L2
xy D u Lxy D x

↵ �u L2
xL

p
y D y

�u Lx L
q
y D . (62)

Based on Propositions 6.3, 6.4, and Sobolev embedding, we can estimate:

uM

L
1
TLxy

T
3
4

x

3
4 "

y

1
2 "� L2

xy

T
3
4

x

7
4 "

y

1
2 "uM

LT L2
xy

uM

L
1
TLxy

T
7
4

x

7
4 "uM

LT L2
xL

6
y y

1
2 "uM

LT Lx L3
y

T
3
4 � E4 T

3
4 uM

LT E4 uM

L
1
TLxy

T
7
4 uM 2

LT E4 .

(63)

By a priori estimates in E4 uniform in M , we find uM
L

1
ILxy

0 as I 0 uniformly in M . By limiting

arguments, this shows continuity of 1
x

ryu CTL2, hence u CTE0. By interpolation with u L
T
Es D ,

we infer that u CTEs D for 0 s s. This concludes the proof of existence for small initial data.

To extend the argument to large initial data, we use rescaling. Recalling (2), we find that

u� x, y, t �
2↵

↵ 2u �
2

↵ 2x,� 1y,�
2 ↵ 1
↵ 2 t

is solution on D� with scaled initial data �� x, y : �
2↵

↵ 2� �
2

↵ 2x,� 1y whenever u is a solution on D
with �.

We find ��
E4 � E4

� , that is, the norm is polynomially decreasing in �. On the rescaled domain,
we consider

tuM

� xD↵

x
uM

�

1
x

�yuM

�
P̃M x P̃MuM

�

2 ,
uM

�
0 �� Es D� .

(64)

Like above, for s 4 we have the following set of estimates for T min Tmax, 1 with Tmax denoting the
time of existence according to the Cauchy-Picard-Lipschitz theorem in CTEs:

uM

� F s T uM

� Bs T x P̃MuM

�

2
N s T ,

x P̃MuM

�

2
N s T �0 uM

�

2
F s T

,

uM

�

2
Bs T

�� 2
Es �0 uM

�

3
F s T

.
(65)

Applying the set of estimates with s 4, we find

uM

�

2
F 4 T

�� 2
E4 �0 uM

�

4
F 4 T

�0 uM

�

3
F 4 T

.

Since ��
E4 is polynomially decreasing in �, we can choose � � � E4 large enough such that we obtain

like in the case of small initial data the a priori estimate:

sup
t 1,1

uM

�
t E4 D�

��
E4 .

Like above we can infer the existence at higher regularities s 4, likewise on 1, 1 . By the same compactness
arguments, we obtain a distributional solution u� to

tu� xD
↵

x
u�

1
x

�yu� x u2
�
, t, x, y R D�,

u� 0 �� Es D�

Moreover, repeating the arguments from the small-data analysis yields u� CTH� D� for � 1, 1
and u� CTEs D� L

T
Es D� for 0 s s. We can scale back to infer that for T T � T � E4

we have u CTH� D for � 1, 1 and u CTEs D L
T
Es D for 0 s s.
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This completes the proof of existence of distributional solutions with the claimed regularity properties.
We still have to prove uniqueness. To this end, we consider di↵erences of solutions v u1 u2 with initial
data �i Es, s 4, i 1, 2. Suppose that

xu L
1
TLxy D (66)

for the constructed solutions. We compute by integration by parts, Hölder’s inequality, and Grønwall’s
lemma:

t v t 2
L2 x u1 u2 Lxy

v t 2
L2 v t 2

L2 e
c

t
0 x u1 u2 Lxy v 0 2

L2 . (67)

Hence, (66) would clearly imply uniqueness. We apply Strichartz estimates from Proposition 6.3 together
with Sobolev embedding and the fractional Leibniz rule to find

xu L
1
TLxy

T
3
4

x

7
4 "

y

1
2 "� L2

xy
T

3
4

x

11
4 "

y

1
2 " uM 2

L
1
TL2

xy

T
3
4 � E4 T

3
4

x

11
4 "

y

1
2 "u LT L2

xy
u L

1
TLxy

T
7
4

x

11
4 "u LT L2

xL
6
y y

1
2 "u LT Lx L3

y

T
3
4 � E4 T

3
4 u LT E4 u L

1
TLxy

T
7
4 u 2

LT E4 .

By the bound of u L
1
TLxy

proved in (63) after taking limits, and u L
T
E4, we find that xu L1

T
L
xy
.

With local-in-time solutions u CTE at hand for smooth initial data � E , we state a more precise
version of Theorem 1.1, which will be proved subsequently. Let s ↵ 3 ↵

2 .

Theorem 6.5. Let ↵ 2, 4 , and s s ↵ . For ↵ 2, suppose D K1 K2 K3, Ki R;T and for
↵ 2, 4 , suppose that D K R2 with K R;T .

Then there is a continuous T T � Es D and a continuous data-to-solution mapping Ss

T
: Es D

CTEs D for (53), which extends S
T

: E CTE .

The proof of local well-posedness proceeds in three steps:

We show a priori estimates in Es for s 3 ↵

2 up to times T T � Es .
We show Lipschitz continuous dependence in E0 for initial data in Es with s 3 ↵

2 and T
T u1 0 Es , u2 0 Es .
By using frequency envelopes (cf. [21, 9]) adjusted to the Es-norms, we conclude the proof of
continuous dependence.

In the following, we work with smooth initial data � E . It su�ces to prove the claims for data in E
because once the continuous dependence on the initial data is established, we obtain extensions Ss

T
by density.

A priori estimates: Let ↵ 2, 4 and s̄ s ↵ . The following is a reprise of the analysis to show existence
of distributional solutions; we shall be brief. First we suppose that � Es̄ "0 1. Let u S

T
� . Let

Tmax � E4 be the time of existence according to Proposition 6.1. From Lemma 2.2, Proposition 4.1, and
Proposition 5.1, we have the following set of estimates for T min Tmax, 1 :

u F s̄ T u Bs̄ T x u2
N s̄ T ,

x u2
N s̄ T u 2

F s̄ T
,

u 2
Bs̄ T

u0
2
Es̄ u 3

F s̄ T
.

(68)

This gives
u 2

F s̄ T
u0

2
Es̄ u 4

F s̄ T
u 3

F s̄ T
. (69)

Hence, by choosing "0 small enough, we find by (69) that

u F s̄ T u0 Es̄ . (70)

Another application of Lemma 2.2, Proposition 4.1, and Proposition 5.1 yields

u F 4 T u B4 T x u2
N 4 T ,

x u2
N 4 T u F 4 T u F s̄ T ,

u 2
B4 T

u0
2
E4 u F s̄ T u 2

F 4 T
.

(71)

This set of estimates gives

u 2
F 4 T

u0
2
E4 u 2

F 4 T
u 2

F s̄ T
u 2

F 4 T
u F s̄ T , (72)
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and therefore, for u F s̄ T u0 Es̄ "0 1 and T Tmax u0 E4 , we find

u F 4 T u0 E4 . (73)

Combining (70) and (73), we infer existence and a priori estimates in E s̄ for T 1 after choosing u0 Es̄

"0 1. Rescaling allows us to extend the argument to large initial data, like in the proof of local existence.
The details are omitted to avoid repetition.

Lipschitz continuous dependence in F 0: Let u1 and u2 be solutions to (KP-I) with initial data u1 0 and
u2 0 , respectively. We let v : u1 u2, which solves the equation

tv xD
↵

x
v 1

x
�yv x v u1 u2 .

From Lemma 2.2, Proposition 4.1(b), Proposition 5.3, we have for s̄ s ↵ :

v F 0 T v B0 T x v u1 u2 N 0 T ,

x v u1 u2 N 0 T v F 0 T u1 F s̄ T u2 F s̄ T ,
v 2

B0 T
v 0 2

E0 v 2
F 0 T

u1 F s̄ T u2 F s̄ T .

Taking the estimates together, we find

v 2
F 0 T

v 0 2
E0 v 2

F 0 T
u1

2
F s̄ T

u2
2
F s̄ T

v 2
F 0 T

u1 F s̄ T u2 F s̄ T .

For T T u1 0 Es̄ , u2 0 Es̄ , we obtain by the previously established a priori estimates

v F 0 T v 0 E0 .

Continuity of the data-to-solution map: In this paragraph we extend the data-to-solution mapping from
smooth data to Es and make use of frequency envelopes. We follow the exposition of Ifrim–Tataru [9], which
we adjust to the present setting of the Es-scale of regularity. Let u0 E s̄ with size M . We define frequency
envelopes in the Es-scale:

Definition 6.6. We say that cN N 2N `2 is a frequency envelope for a function u in Es if we have the
following properties:

a) Energy bound:
PNu Es cN ,

b) Slowly varying:
cN
cJ

N

J
�

.

Above and in the following let x

y
max x

y
, y

x
for x, y 0.

An envelope which satisfies

u 2
Es

N

c2
N

is called sharp. Frequency envelopes for the datum u0 Es are constructed by mollifying the initial guess
c̃J PJu0 Es to

cN sup
J

N

J
�

c̃J .

We turn to regularization in the setting of frequency envelopes: Let u0 Es with u0 Es C and let
cN N 2N0 denote a sharp frequency envelope for u0 in Es. For u0 we consider a family of regularizations
uM

0 E defined by truncating the x-frequencies at M , i.e. uM

0 P Mu0. These regularizations satisfy the
following:

i) Uniform bounds: PKuM

0 Es cK ,
ii) High frequency bounds: uM

0 Es j M jcM ,
iii) Di↵erence bounds: u2M

0 uM

0 E0 M scM ,
iv) Limit as M : u0 limM uM

0 in Es.

Associated with uM

0 we obtain a solution uM in E which exists up to time T T C , uniformly in M . We
have the following uniform bounds:

i) High frequency bounds:

uM

C 0,T ,Es j M jcM , j 0, (74)
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ii) Di↵erence bounds:
u2M uM

C 0,T ,E0 M scM . (75)

Interpolation gives
u2M uM

CTEm M s m cM , m 0.

Therefore, we obtain the uniform frequency envelope bounds

PKuM
CTEs N cK max

K

M
; 1 N

for any N N0.
We analyze the convergence of uM as M . By writing the di↵erence as a telescopic sum

u uM

L M

u2L uL,

the di↵erence bound (75) implies convergence of uM in E0 to a limit u CTE0 with

u uM
CTE0 M s.

Now, we prove convergence in CTEs: For L L we have from (75):

PL u2L uL
CTEs L s u2L uL

CTE0
L

L
s

cL.

For L L, we can use (74) (and the slowly varying property) to argue

PL u2L uL
CTEs L s PL u2L

CTE2s PL uL
CTEs

L

L
s

cL.

Consequently, an application of Young’s inequality combined with the slowly varying property gives

u uM
CTEs

L M

c2
L

1
2 0 M .

Now we turn to the proof of continuous dependence. We shall see that the previously constructed data-
to-solution mapping is also continuous. Let u0n u0 in Es for s 3 ↵

2 and the corresponding solutions
un, u, which exist with a uniform lifespan T T u0 Es . We have to show that un u in C 0, T , Es .
We have seen that un u in CTL2. Moreover, uniform boundedness in C 0, T , Es , which was proved in
the previous paragraph, implies convergence in CTE� for every 0 � s. For � s, we shall again use
frequency envelopes. To carry out the argument, we consider the approximate solutions uM

n
and uM . We use

that the initial data converge in all E�-norms:

uM

0n uM

0 in E� for � 0.

By the above, we have convergence of the regular solutions in all E�-norms:

uM

n
uM in CTE

�, � 0.

We use the triangle inequality to compare u and un:

un u CTEs uM

n
uM

CTEs uM u CTEs uM

n
un CTEs .

The first term goes to zero as n for fixed M ; the second term goes to zero as M . It remains to

obtain uniform smallness of the third term for large n. For this purpose we consider frequency envelopes c n

J

for the initial data un0. By construction, we can argue that

c n

J J 2N0 cJ J 2N0 in `2

with cJ denoting a sharp frequency envelope for u0. Hence, in terms of frequency envelopes, we find

un u CTEs uM

n
uM

CTEs

L M

c2
L

1
2

L M

c n

L

2
1
2 ,

implying

lim sup
n

un u CTEs

L M

c2
L

1
2 0 M

and the proof of continuous dependence is complete.
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7. Local well-posedness for fifth order KP-I equation

In the following we prove semilinear local well-posedness

tu
5
x
u 1

x
�yu x u2 , x, y , t D R,
u 0 u0 Hs1,s2 D

(76)

for D K R2, K R;T in anisotropic Sobolev spaces

Hs1,s2 D � L2 D : � 2
Hs1,s2 �̂ ⇠, ⌘ 2 ⇠ 2s1 ⌘ 2s2d⇠d⌘

with s1, s2
1
2 as stated in Theorem 1.2. We show local well-posedness via the contraction mapping principle

in adapted Up-/V p-function spaces. Let u Xs1,s2

T
(to be defined below) be a solution to

tu
5
x
u 1

x
�yu f,

u 0 u0 Hs1,s2 D .

We show the estimates

u
X

s1,s2
T

u0 Hs1,s2 1 0,T t
t

0
e t s

5
x

1
x �y f s ds

X
s1,s2
T

,

1 0,T t
t

0
e t s

5
x

1
x �y

x u1u2 s ds
X

s1,s2
T

T↵ u1 X
s1,s2
T

u2 X
s1,s2
T

,

for some ↵ 0, from which the result follows by standard arguments. The linear estimate is immediate from
the definition of the function spaces, and its proof will be omitted. We shall focus on the bilinear estimate.

7.1. Function spaces. We shall be brief and refer to [7, 8] for details.
Let Z be the set of finite partitions t0 t1 . . . tK , and let Z0 be the set of finite partitions

t0 t1 . . . tK .

Definition 7.1. Let 1 p . For tk K

k 0 Z and �k
K 1
k 0 L2 D with

K 1

k 0

�k

p

L2 1 and �0 0.

We call the function a : R L2 given by

a
K

k 1

1 tk 1,tk
�k

a Up-atom. We define the atomic space

Up u
j 1

�jaj : aj is a Up-atom, and �j C such that
j 1

�j

with norm

u Up inf
j 1

�j : u
j 1

�jaj , �j C, aj : Up-atom .

The slightly larger spaces of bounded p-variation are defined as follows:

Definition 7.2. Let 1 p . We define V p as function spaces v : R L2 D such that v :
limt v t 0 and v exists, for which the following norm is finite:

v V p sup
tk

K
k 0 Z

K

k 1

v tk v tk 1
p

L2

1
p .

Let S t u0 ⇠, ⌘ eit ⇠
5

⌘
2

⇠ û0 ⇠, ⌘ denote the linear propagator in L2.

Definition 7.3. We define

Up

S
S Up with norm u U

p
S

S u Up ,
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V p

S
S V p with norm u V

p
S

S u V p .

The function space in which we apply the contraction mapping principle is defined as

Xs1,s2

T
f C 0, T , L2 : f 2

X
s1,s2
T

N,M

N2s1M2s2 PN,Mf 2
U

2
S

.

We define the smooth (modulation) projection for M 2N:

QS

M
u ⇠, ⌘, ⌧ �M ⌧ ⇠5 ⌘2 ⇠ û ⇠, ⌘, ⌧

with � C
c

like in Section 2.2.
Recall the following bounds for QS

M
on U2

S
and V 2

S
:

Lemma 7.4. We have

QS

M
u L2 M

1
2 u U

2
S
,

QS

M
u L2 M

1
2 u V

2
S

and uniform boundedness of QS

M
and QS

M
in M on Up

S
and V p

S
.

7.2. Proof of bilinear estimate. This section is devoted to the proof of

1 0,T t
t

0
S t s x u1 s u2 s ds

X
s1,s2
T

T↵ u1 X
s1,s2
T

u2 X
r1,r2
T

with si ri
1
2 .

We carry out an inhomogeneous Littlewood-Paley decomposition as well in ⇠- as ⌘-frequencies

ui

N,M

PN,Mui.

By duality U2 V 2 (cf. [7, Proposition 2.8]), it su�ces to prove the following for some ↵ 0:

sup
v V 2

S
1

PN,Mv x PN1,M1u1PN2,M2u2 dxdydt T↵C N,M PN1,M1u1 U
2
S
PN2,M2u2 U

2
S
. (77)

The claim then follows from square summation for acceptable bounds of C N,M .

Lemma 7.5 (HighxLow-interaction). Let N1 1, and N1 N2. Then, estimate (77) holds true with

C N,M N
1
2
2 M

1
2
min.

Proof. If N2 1, we make an additional homogeneous frequency decomposition of the low frequencies, so
that N2 2Z. We estimate the frequencies with N2 N 4

1 by the L4-Strichartz estimates:

vN,M x PN1,M1u1PN2,M2u2 NT
1
2 PN1,M1u1 L4 PN2,M2u2 L4

T
1
2NN

1
4
1 N

1
2
2 PN1,M1u1 U

2
S
PN2,M2u2 U

2
S
.

We suppose in the following that N2 N 4
1 . First, we estimate the resonant contribution when all modula-

tions are smaller than N4
1N2, i.e.,

Q N
4
1N2

PN,Mv x PN1,M1Q N
4
1N2

u1PN2,M2Q N
4
1N2

u2 . (78)

This is amenable to the bilinear Strichartz estimate in Proposition 3.2, which gives

(78) Q N
4
1N2 x PN1,M1Q N

4
1N2

u1PN2,M2Q N
4
1N2

u2 L
1
tL

2
x

T
1
2N

1
2
2 M

1
2
min PN1,M1u1 U

2
S
PN2,M2u2 U

2
S
.
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In case there is one function in the trilinear expression carrying high modulation we shall rely on the L4-
Strichartz estimate. Suppose that v is at high modulation. We use by Lemma 2.6

Q N
4
1N2

PN,Mv x PN1,M1u1PN2,M2u2

N4
1N2

1
2N1 PN1,M1u1 L

4
x,y,t

PN2,M2u2 L
4
x,y,t

N4
1N2

1
2N1N

1
2
2 N

1
2
1 u1 U

2
S
u2 U

2
S
.

(79)

Note that depending on N2 1, the estimate further improves, but we do not need this. To find an
additional factor T↵, we can use two L4-Strichartz estimates, but estimate Q N

4
1N2

PN,Mv in L
t
L2
x
by

Hölder’s inequality to find:

Q N
4
1N2

PN,Mv x PN1,M1u1PN2,M2u2

T
1
2N1 PN1,M1u1 L

4
x,y,t

PN2,M2u2 L
4
x,y,t

T
1
2N1N

1
2
2 N

1
2
1 u1 U

2
S
u2 U

2
S
.

(80)

Interpolation of (79) and (80) yields a favorable power of N 1
1 and a factor of T↵.

If u2 is at high modulation, then two L4
x,y,t

-Strichartz estimates applied to v and u1 yield together with

PN,Mv x PN1,M1u1Q N
4
1N2

PN2,M2u2

N1 PN,Mv L
4
x,y,t

PN1,M1u1 L
4
x,y,t

Q N
4
1N2

PN2,M2u2 L2

N1N
1
2
2 N

1
2
1 N4

1N2
1
2 PN1,M1u1 U

2
S
PN2,M2u2 U

2
S
.

The case with u1 being estimated at high modulation and v and u2 via L4
x,y,t

-Strichartz estimates is better
behaved because the L4-estimates lose fewer derivatives. The same interpolation argument like in the proof
of (80) allows us to gain a factor of T↵ at dispensing a fraction of N4

1N2 , which is a↵ordable. The proof is
complete. ⇤
Lemma 7.6 (HighxHigh-High-interaction). Let N N1 N2 1. Then, we find (77) to hold with

C N,M N
1
2
minM

1
2
min.

Proof. In the resonant case, when all modulations are much smaller than N4
1N2, we can use a bilinear

Strichartz estimate to obtain

sup
v V 2

S
1

Q N
4
1N2

PN,Mv x Q N
4
1N2

PN1,M1u1Q N
4
1N2

PN2,M2u2

T
1
2N Q N

4
1N2

Q N
4
1N2

PN1,M1u1Q N
4
1N2

PN2,M2u2 L2

T
1
2N

N2

N2
1

1
2M

1
2
min PN1,M1u1 U

2
S
PN2,M2u2 U

2
S
.

In the non-resonant case, when there is a function with high modulation, we can use two L4-Strichartz
estimates to find

sup
v V 2

S
1

Q N
4
1N2

PN,Mv x PN1,M1u1PN2,M2u2 N sup
v V 2

S
1
Q N

4
1N2

PN,Mv L2
x
PN1,M1u1 L4 PN2,M2u2 L4

N N4
1N2

1
2N1 PN1,M1u1 V

2
S

PN2,M2u2 V
2
S
.

Interpolation with

sup
v V 2

S
1

Q N
4
1N2

PN,Mv x PN1,M1u1PN2,M2u2 N sup
v V 2

S
1
Q N

4
1N2

PN,Mv L2
x
PN1,M1u1 L4 PN2,M2u2 L4

T
1
2NN1 PN1,M1u1 V

2
S

PN2,M2u2 V
2
S

yields the required factor of T↵. Since this estimates the functions in V 2
S
, the argument also applies when ui

is at high modulation. ⇤



32 SEBASTIAN HERR, AKANSHA SANWAL, AND ROBERT SCHIPPA

Lemma 7.7 (HighxHigh-Low-interaction). Let N1 N2 1, and N N1. Then, we find (77) to hold with

C N,M N
1
2
1 M

1
2
min.

Proof. If N 1, we carry out an additional homogeneous dyadic decomposition in N 2Z. Let N N 4
1 .

In this case we simply use two L4-Strichartz estimates to find

PN,Mv x PN1,M1u1PN2,M2u2 NT
1
2 PN1,M1u1 L4 PN2,M2u2 L4

NT
1
2 N1N

1
2 PN1,M1u1 U

2
S
PN2,M2u2 U

2
S
.

In the following let N N 4
1 . We begin with the resonant case when all functions have modulation N4

1N .
This allows us to use a bilinear Strichartz estimate

Q N
4
1N

PN,Mv x Q N
4
1N

PN1,M1u1Q N
4
1N

PN2,M2u2

N Q N
4
1N

Q N
4
1N

PN1,M1u1Q N
4
1N

PN,Mv L
1
tL

2
x

NT
1
2

N

N2
1

1
2M

1
2
min PN1,M1u1 U

2
S
PN2,M2v U

2
S
PN2,M2u2 U

2
S
.

But we have to estimate v in V 2
S
. For this purpose we interpolate (cf. [7, Proposition 2.20]) with the Strichartz

estimate

PN1,M1u1PN,Mv L2 N
3
4N

1
4
1 PN1,M1u1 U

4
S
PN2,M2v U

4
S
.

Hence, we obtain

T
1
2

N

N2
1

1
2N log N

1
4N

5
4
1 PN1,M1u1 V

2
S

PN2,M2u2 V
2
S

PN,Mv V
2
S
.

In the non-resonant case we have one modulation comparable to N4
1N . We obtain

Q N
4
1N

PN,Mv x PN1,M1u1PN2,M2u2 Q N
4
1N

xPN,Mv L2 PN1,M1u1 L4 PN2,M2u2 L4

N N4
1N

1
2 N1N2

1
2 PN1,M1u1 V

2
S

PN2,M2u2 V
2
S
.

An interpolation argument like above yields an additional factor of T↵. The estimates with ui at high
modulation are better behaved because of improved L4-Strichartz estimates at low frequencies (applied to
PN,Mv). ⇤

Lemma 7.8 (LowxLow-interaction). Let N,N1, N2 1. Then, we find (77) to hold with C N,M 1.

Proof. By two L4-Strichartz estimates we find

sup
v V 2

S
1

PN,Mv x PN1,M1u1PN2,M2u2 T
1
2 PN1,M1u1 L4 PN2,M2u2 L4 T

1
2

2

i 1

ui U
2
S
,

which is good enough. ⇤

Appendix A. Anisotropic Leibniz rule on mixed domains

This section is devoted to the proof of Proposition 6.4. We use the following fractional Leibniz rule,
which is based on the well-known Kato-Ponce estimate (cf. [4, 5]) for ↵ 0, 1

2
1
p1

1
q1

1
p2

1
q2

for
1 p1, p2, q1, q2 :

↵ fg L2 Rd
↵f Lp1 Rd g Lq1 Rd f Lp2 Rd

↵g Lq2 Rd . (81)

We also need the above on Rd1 Td2 . It turns out we can transfer the above estimate for 1 p1, q2
in a straightforward manner by an extension operator. Let ' C

c
Rd;R 0 denote a radially decreasing

function with ' x 1 for x 10 and ' x 0 for x 15. We denote the extension f̃ f' L2 Rd of
f L2 Td . We have for k N clearly

kf L2 Td
kf̃ L2 Rd

kf L2 Td .
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By interpolation, the equivalence also holds for s, and by obvious modification of the extension operator
also holds on Rd1 Td2 . So, let f, g : Td C, and let f̃ , g̃ : Rd C denote their extensions. Then we obtain

↵ fg L2 Td
↵ f̃ g̃ L2 Rd

↵f̃ Lp1 Rd g̃ Lp2 Rd f̃ Lq1 Rd
↵g̃ Lq2 Rd .

Clearly,

g̃ Lp2 Rd g Lp2 Td , f̃ Lq1 Rd f Lq1 Td .

To argue that
↵f̃ Lp Rd

↵f Lp Td (82)

for 1 p , we again use interpolation such that it su�ces to show (82) for ↵ k N. We use the
characterization of Lp-based Sobolev spaces

kf̃ Lp Rd f̃ Lp Rd

↵ k

↵f̃ Lp Rd

from which (82) is immediate by the product rule. We have proved the following:

Proposition A.1 (Fractional Leibniz rule on cylinders). Let d1, d2 N0 with d1 d2 1, ↵ 0, 1
2

1
p1

1
q1

1
p2

1
q2

for 1 p1, p2, q1, q2 and 1 p1, q2 :

↵ fg L2 Rd1 Td2
↵f Lp1 Rd1 Td2 g Lq1 Rd1 Td2 f Lp2 Rd1 Td2

↵g Lq2 Rd1 Td2 . (83)

From the above we derive the following anisotropic version. Let D K1 K2 K3 and write x, y
K1 K2 K3 D. Dual variables will be denoted by ⇠ and ⌘. We define Fourier multipliers x

↵ and

y
� on D by

x
↵f ⇠, ⌘ ⇠ ↵f̂ ⇠ , y

�f ⇠, ⌘ ⌘ � f̂ ⇠, ⌘ .

We are ready for the proof of Proposition A.2, whose statement is repeated for convenience:

Proposition A.2. Let D K1 K2 K3 with Ki R;T , ↵,� 0, � 0, and 1
2

1
p

1
q
. Then the

following estimate holds:

x
↵

y
� u2

L2
xy D x

↵
y

�u L2
xy D u Lxy D x

↵ �u L2
xL

p
y D y

�u Lx L
q
y D . (84)

Proof. We use a paraproduct decomposition for the x frequencies. Let PN denote dyadic Littlewood-Paley
projections in the x-frequencies. First note that by the usual fractional Leibniz rule (81) we find for the low
frequencies:

x
↵

y
�P 1 u2

L2
xy y

� u2
L2

xy y
�u L2

xL
2
y
u Lxy

.

By Littlewood-Paley theory, we write

P 1u
2
L2

xy

N 2N0

PNu 2
L2

xy
.

For N 2N0 we estimate the High-Low interaction as follows:

x
↵

y
�PN PNuP Nu L2

xy
N↵

y
� P NuP Nu L2

y L2
x

N↵
y

�P Nu L2
y
P Nu Ly

P Nu L
p
y y

�P Nu L
q
y L2

x

x
↵

y
�PNu L2

xy
P Nu Lxy

N �
x

↵ �PNu L2
xL

p
y
P N y

�u Lx L
q
y
.

The claim follows from square summation. The High-High-Low interaction can be estimated likewise. ⇤

Remark A.3. The �-derivative loss can likely be removed by modifying the arguments from [4] to the
anisotropic setting, but we do not need this in the following.
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Appendix B. Semilinear ill-posedness issues

In this section, we prove that the Cauchy problem for (KP-I) is semilinearly ill-posed for initial data
in Hs1,s2 R3 for any s1, s2 R2 and ↵ 15

7 , namely we prove that the flow-map for (KP-I) cannot
be C2-di↵erentiable at the origin. For similar results for the two-dimensional equation on R2, we refer to
[15, 13, 18].

Theorem B.1. Let ↵ 15
7 , s̄ R2 and D R3. Then there exists no T 0 such that (KP-I) admits a

unique local solution defined on the interval T, T such that the flow-map for (KP-I)

� : u0 u,

is C2-di↵erentiable at zero from H s̄ R3 to C T, T ,H s̄ R3 .

Proof. We consider the following Cauchy problem for � R:

tu D↵

x xu 1
x

�yu x u2 , x, y, t R R2 R,
u 0 �� Hs1,s2 R3 .

(85)

Suppose that u �, x, y, t solves (85). Fix T 0 such that the map � is C2 and let t 0, T . Then,

u �, x, y, t �S↵ t � x, y
t

0
S↵ t t u �, x, y, t ux �, x, y, t dt . (86)

Then
u

�
0, x, y, t S↵ t � x, y : u1 x, y, t

2u

�2
0, x, y, t 2

t

0
S↵ t t u1 x, y, t xu1 x, y, t : u2 x, y, t .

(87)

The C2 assumption enables us to write

u �, x, y, t �u1 x, y, t
�2

2!
u2 x, y, t o �2 ,

and
u2 , , t H s̄ R3 � 2

H s̄ R3 . (88)

We show that there exists initial data � such that (88) fails. For ⇠ R, ⌘ R2, define � by its Fourier
transform as follows:

�̂ ⇠, ⌘ D1
1
21D1 ⇠, ⌘ D2

1
2N s1 1 ↵

2 s21D2 ⇠, ⌘ , (89)

where D1 and D2 are defined as follows and Di denotes the measure of the sets Di, i 1, 2:

D1 : � 2,� ↵ 1�2, ↵ 1�2 �
1
2 2�,�

1
2 2� ,

D2 : N,N � ↵ 1N2, ↵ 1N2 �2 N
1
2 �, N

1
2 � .

(90)

Here N,�, � 0 are real numbers such that N 1,�, � 1 and will be chosen later. A simple computation
gives that � H s̄ R3 1. Using [16, Lemma 4], we can write u2 as follows:

u2 x, y, t c
R4

ei x⇠ y.⌘ t ⇠ ⇠
↵

⌘
2

⇠
⇠eit ⌧ ⇠ ⇠

↵ ⌘ 2

⇠

⌧ ⇠ ⇠ ↵ ⌘ 2

⇠

u1 u1 ⇠, ⌘, ⌧ d⇠d⌘d⌧. (91)

Using the definition of u1, the expression for u1 u1 is given by

u1 u1 ⇠, ⌘, ⌧
R3

� ⌧ ⇠1 ⇠1
↵

⌘1 2

⇠1
⇠2 ⇠2

↵
⌘2 2

⇠2
�̂ ⇠1, ⌘1 �̂ ⇠2, ⌘2 d⇠1d⌘1. (92)

Set

� x, y, t, ⇠1, ⌘1, ⇠2, ⌘2 : ⇠ei x⇠ y ⌘ t ⇠ ⇠
↵

⌘
2

⇠
e it⌦↵ ⇠1,⌘1,⇠2,⌘2 1

⌦↵ ⇠1, ⌘1, ⇠2, ⌘2
.

We split u2 into three parts:

u2 x, y, t c f1 x, y, t f2 x, y, t f3 x, y, t ,
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where

f1 x, y, t
c

D1 ⇠1,⌘1 D1

⇠2,⌘2 D1

� x, y, t, ⇠1, ⌘1, ⇠2, ⌘2 d⇠1d⌘1d⇠2d⌘2,

f2 x, y, t
c

D2 N2 s1 1 ↵
2 s2 ⇠1,⌘1 D2

⇠2,⌘2 D2

� x, y, t, ⇠1, ⌘1, ⇠2, ⌘2 d⇠1d⌘1d⇠2d⌘2,

f3 x, y, t
c

D1
1
2 D2

1
2Ns1 1 ↵

2 s2 ⇠1,⌘1 D1

⇠2,⌘2 D2

⇠1,⌘1 D2

⇠2,⌘2 D1

� x, y, t, ⇠1, ⌘1, ⇠2, ⌘2 d⇠1d⌘1d⇠2d⌘2.

We focus on the high-low interaction viz. f3. The spatial Fourier transform of the same is given by

f3 ⇠, ⌘, t
c⇠eit ⇠ ⇠

↵
⌘

2
⇠

D1
1
2 D2

1
2Ns1 1 ↵

2 s2 ⇠1,⌘1 D1

⇠2,⌘2 D2

⇠1,⌘1 D2

⇠2,⌘2 D1

e it⌦↵ ⇠1,⌘1,⇠2,⌘2 1

⌦↵ ⇠1, ⌘1, ⇠2, ⌘2
d⇠1d⌘1.

Employing [16, Lemma 5], we have the following bound on the size of the resonance function.

Lemma B.2 (Size of the resonance function). Let ⇠1, ⌘1 D1, ⇠2, ⌘2 D2 or ⇠1, ⌘1 D1, ⇠2, ⌘2 D2,
then

⌦↵ ⇠1, ⌘1, ⇠2 ⌘2 N↵ 1�2.

Proof. We first note that we can relate the resonance functions in the two and three-dimensional cases as
follows:

⌦3d
↵

⇠1, ⌘1, µ1, ⇠2, ⌘2, µ2 ⌦2d
↵

⇠1, ⌘1, ⇠2, ⌘2
⇠1µ2 ⇠2µ1

2

⇠1⇠2 ⇠1 ⇠2
, (93)

where the notation is self explanatory. Consequently,

⌦3d
↵

⇠1, ⌘1, µ1, ⇠2, ⌘2, µ2 max ⌦2d
↵

⇠1, ⌘1, ⇠2, ⌘2 ,
⇠1⌘2 ⇠2⌘1 2

⇠1⇠2 ⇠1 ⇠2
.

From [18, Theorem 1.2], we have the following bound:

⌦2d
↵

⇠1, ⌘1, ⇠2, ⌘2 N↵ 1�2.

We bound the second term on the right-hand side of (93) as follows:

⇠1⌘2 ⇠2⌘1 2

⇠1⇠2 ⇠1 ⇠2
max

⇠1⌘2 2

⇠1⇠2 ⇠1 ⇠2
,

⇠2⌘1 2

⇠1⇠2 ⇠1 ⇠2
max �N 1 2�,�4� .

We choose � 1 so that
⌦3d

↵
N↵ 1�2. (94)

⇤

We continue with the proof of Theorem B.1 and denote ⌦3d
↵

by ⌦↵ as there is no confusion.

Proof (ctd.) We choose N,�, � such that N↵ 1�2 N ✓, i.e., � N
1
2

↵
2

✓
2 and � ✓

2 for 0 ✓ 1.
Then,

eit⌦↵ ⇠1,⌘1,⇠1,⌘2 1

⌦↵ ⇠1, ⌘1, ⇠2, ⌘2
t O N ✏ .

We calculate the H s̄ R3 norm of f3 t :

f3 , , t H s̄ R3 N
D1

1
2

D2
1
2

�
3
2N

1
4

�
2 N D1

1
2 . (95)

From (88), we have

1 � 2
H s̄ R3 N�

7
4 � N

15
8

7↵
8 ,

which is true only if ↵ 15
7 . ⇤
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