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LOW REGULARITY WELL-POSEDNESS OF KP-I EQUATIONS: THE
THREE-DIMENSIONAL CASE

SEBASTIAN HERR, AKANSHA SANWAL, AND ROBERT SCHIPPA*

ABSTRACT. In this paper, low regularity local well-posedness results for the Kadomtsev—Petviashvili-I equa-
tion posed in spatial dimension d = 3 are proved. Periodic, non-periodic and mixed settings as well as
generalized dispersion relations are considered. In the weak dispersion regime, these initial value problems
show a quasilinear behavior so that bilinear and energy estimates on frequency dependent time scales are
used in the analysis.

1. INTRODUCTION

We consider the Cauchy problem for the dispersion generalized Kadomtsev—Petviashvili-I equation

Oru — 0 D — aglAyu = 0, (u?),
‘ (KP-I)
u(0) = ¢ € E°(D),
for real-valued functions v : D x R — R and dispersion parameter « € [2,4]. We treat the case of three-
dimensional spatial domains D := K; xKs x K3, where K; € {R; T}, for T := R/(27Z). We write u = u(x, y, t),
fort e R, z € Ky, and y = (y1,y2) € Ky x K3 so that A, = 651 + (3’52. D¢ is defined via the Fourier transform

(DY) = L€ F (& m),
IfD =T x Ky x K3, then we additionally assume that

Lu(x, y)dr =0

to make the linear evolution well-defined, and the nonlinear evolution preserves mean zero. Formally, real-
valued solutions also conserve the L?(ID)-norm and the energy (Hamiltonian)

3

In two dimensions, the KP-I equation has been introduced as a model for the propagation of dispersive
waves with small amplitude under weakly transverse effects [11] and later has been found to be completely
integrable [3]. In this paper, we address the local well-posedness of the Cauchy problem in the three-
dimensional case. In [2], it was rigorously derived in the long wave transonic limit regime (where the amplitude
is close to one) from the Gross-Pitaevskii equation after suitable rescaling, see also [12] for further information
and references.

We consider initial data in Sobolev spaces E*(D) of real valued functions, which are defined for s > 0 via

£y = K P& &)z

with respect to the three-dimensional product of Lebesgue or counting measures, see Section 2 for more
details. The symbol p(¢,n) = 1 + % is motivated by the last term in energy (1) and crucially used in
commutator arguments, see Section 5.

1 o 1 1
e(u) = fD §|DI2 ul® + ~ud + §|6;1Vyu|2dxdy. (1)

The main result of this paper is

Theorem 1.1. (i) Let a = 2. The Cauchy problem (KP-I) is locally well-posed for initial data ¢ € E°(D)
provided that s > 2.
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2 SEBASTIAN HERR, AKANSHA SANWAL, AND ROBERT SCHIPPA

(i) Let o € (2,4) and D = Ky x R%. The Cauchy problem (KP-1) is locally well-posed for initial data
¢ € E°(D) provided that s > 3 — 5.

By local well-posedness, we refer to existence, uniqueness, and continuous dependence of solutions in
function spaces F*(T) — C([-T,T]; E*(D)). In two dimensions, (KP-I) is known to be quasilinear for
a = 2 in the sense that it cannot be solved by the contraction mapping principle. In order to improve
the standard energy method, Ionescu—Kenig—Tataru [10] introduced an approach based on localizations to
frequency dependent time scales. Roughly speaking, this is the strategy we will use for the proof of the
main result. The use of frequency-dependent time localization is justified in Appendix B, where we prove on
D = R3 that for certain a > 2 (KP-I) cannot be solved by Picard iteration in anisotropic Sobolev spaces.
The proof of well-posedness crucially makes use of short-time bilinear estimates, which become effective for
resonant interactions (which are transverse).

In the proof of Theorem 1.1, we use frequency-dependent time localization to overcome the derivative loss
in the resonant interaction. For a € [2,4) we choose

T(N) = N-(=3),
This is again motivated by the bilinear Strichartz estimate we can prove in the resonant case on domains
K x R2. This suffices to ameliorate one derivative in case a high frequency interacts with a low one in the
resonant case.

We remark that in the case « € (2,4) one also obtains the well-posedness result with regularity threshold
s > 2 on general domains. This follows by choosing the time scale T(N) = N~! instead, we omit the
details. However, it is not clear how to improve the regularity threshold s > 2 on general domains in the
case a € (2,4).

Since A, is O(2)-invariant, the result extends to more general y—domains with d; non-periodic and do
periodic transverse directions, where d; + dy = 2.

The second main result is for the fifth-order KP-I equation, where we can use perturbative arguments.
We show a well-posedness result in anisotropic Sobolev spaces H*1-*2(D), which are defined for sq, s = 0 via

[ @l re1-02 ) = IKE* <my*2 (€, ) 2

&’

Theorem 1.2. Let a =4, 51,52 > 3, and D € {R3 TxR?}. The Cauchy problem (KP-I) is locally well-posed

for initial data ¢ € H**2(D), with a real-analytic flow map.

If u solves (KP-I), then so does

2(a+1)

un(a,y,t) = AT aFTu( AT g, Ay, AT e ), (2)

with scaled initial data ¢y (z,y) := )\_63732@1)()\_%23:, A~1y). For the corresponding homogeneous norms, we
observe that

3—a 251 o
||¢)\HHS1~32(R3) = \eF2ad 2H¢HH81~32(R3)' (3)

Notice that for high frequencies, E® corresponds to H*? n H*~ 1! which indicates that the regularity as-
sumptions both in Theorem 1.1 and in Theorem 1.2 are sub-critical.

Let

«

=3-—.

s() =31

We shall prove the following set of estimates for s’ > s > s(a):
lallporery S Nl gor gy + 10 (W) ye 1y
02 (u?) NT) S 1wl s (7 ||u|F5’(T)7

lulBe iy S Nuoll o + lulfes oy Nl s -

This yields a priori estimates in E* for ¢ > s and small initial data. The large data case will be handled by
rescaling.

The second set of estimates yields Lipschitz continuous dependence at the regularity E° depending on the
norms of the initial data in E*: Let v = u; — us be a difference of two solutions. Then, we find the following
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estimates to hold:

1ol 7o () S [vllsory + 102 (v(ur + ug))|ao(r)
102 (v(wr +u2))lwvory S ooy (lwlre ) + [u2lper)
[olBo ) S [0O)go + 0lzocy (lurllps(ry + luzlpe))-

Finally, we prove continuous dependence in E® using frequency envelopes (cf. [9]).

We remark that in the companion paper [18] the second and third author address the dispersion-generalized
KP-I equation in the case D = R2. Depending on the dispersion, that problem exhibits semi- and quasilinear
behaviour.

Concerning the proof of Theorem 1.2, we notice that it is a semilinear problem which can be treated by
a direct iterative method. However, in order to avoid a derivative loss, we need to work with critical norms
involving U? and V? spaces.

Outline. In Section 2, we introduce notation and function spaces and prove linear estimates. In Section 3,
we study the resonance relation and prove bilinear estimates. In Section 4 we prove the short-time nonlinear
estimates. In Section 5, the energy estimates are proved. The proof of Theorem 1.1 is then concluded in
Section 6. In Section 7 the fifth-order problem is treated. In Appendix A, we show a fractional anisotropic
Leibniz rule on mixed domains, and in Appendix B we treat semilinear ill-posedness issues.

2. NOTATIONS AND FUNCTION SPACES

2.1. Fourier transform. To prove local well-posedness for large data, we shall rescale the domain. This
requires us to consider the rescaled tori Ty = R/(27AZ) for A = 1. We have to keep track of the dependence
of the estimates with respect to A. All quantities are defined so that Plancherel’s theorem is valid with
A-independent constant. Let

D, =K, x (R% x T%), where Ky € {R; Tz}, di,dy€No:=NU{0}, v=Aa%2, dy+dy=2.

By symmetry of the equation in y1,y2 we can assume this specific order to cover all cases considered in the
main results. For the dual space, we let Z) = {§ : k € Z}. The dual domain is defined by

D% := {(&,n) e K¥ x (R" x Z{2)}, where T% = Zy and R* = R.
We define the Fourier transform f : D* — C of a function f € L*(Dy) by

f&mn) = JD e~ e (2, y)dady.

Its inverse is given by

Fla) = g |, €5 (e mpdsan,

where we use the normalized counting measure in Z,, i.e.,

1
fzk PRk = 5 3 f(R)

keZy

and Lebesgue measure in R coordinates. In this setting, Plancherel’s theorem gives
3,2
171200 = @0 21 flL2 on,

Using this notation, the space-time Fourier transform and its inverse are given by

Ff€mT) = j FDE et dt

1 .
]_‘—1‘](‘(3:7 y7t) = 52 j f(7 ‘77.)(x7y)€1t7'd7..
2T R
The dispersion relation of the dispersion-generalized KP-I equation is denoted by

|n]?

wal&ym) = 7€+ =, £ KOO, neR" x 2. (4)
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Define the group of unitary operators on L?(IDy) (restricted to mean zero if z € Ty) by

Sa()ug(€,m) = e EMg5(&,p).

This is the propagator for the linear homogeneous equation
Oru — 0 D5 u — 8;1Ayu =0.

2.2. Function spaces. Following [10, 6], we introduce the short-time X" spaces now. We also refer to [19,
Section 2.5] for an overview of their properties.
Let ¢1 € CF(—2,2) be symmetric and decreasing on [0,00) with ¢1(§) = 1 for £ € [—1,1]. We set for
N e 2", on(€) = d(§/N) — ¢(2¢/N). This yields
D) v =
Ne2No

We define inhomogeneous Littlewood-Paley projections: For f € &'(Dy), and N, K € 2% let

Pa (&) = on(©)F(&,m), and Py f(€,n) = o (1) Pr F(E,7).

Here we abuse notation by writing ¢x (n) instead of ¢ (|n]).
We define an inhomogeneous decomposition of Fourier space by (An) yeavo:

I
=

N
Av={(€meDi:fgle[3.8N],  Ne2
A= {(&m) e Dy : lgl <2}

The corresponding homogeneous decomposition is denoted by
bt N
An = {(&n) eDX: = <[] < 8N}

We also consider the double (inhomogeneous) decomposition (A, x)yearo, Keoro:
K

AN,K=ANH{(§7TI)€D§5§<|77|<8K}a K e2%b,

Ang=Ann{({n) eDX o <2}
Tlle corresponding decomposition whic}E is homogeneous in ¢ (and inhomogeneous in 7)) is denoted by
(AN, K ) Neaz Keavo With An replaced by Ay in the previous display. In the following we write p;(7) = ¢5(7)
for J € 2% and let p<s(7) = X, ., pr(7), and for J > 1, pﬁJ = pyj2 + ps + p2s, whereas pq = p1 + p2
(therefore p?,p!] = pﬁ,) For N, K, J € 2% we define
Dy k. = {(&n,7) € DY x R: (&) € Anic, |7 = wa(& )| € supp(p)}, Diveeo = | Dwvarr )
L<J

As homogeneous counterpart for N € 2%, K € 2N we let

EN,K,J ={(&n1)eDy xR:({n) e AN,K» |7 —wal&n)| € Supp(ﬂg)}-

We let
Xy = {f e L*(D% xR) : f is supported in Ay xR, ||f|xy < 0},
and )
flxw = 3 LElpo(r —wal&om)flrzrz

Le2No

Note that
|| 1renmar] , <7l
R L&ﬂz

and we record the estimate

3 LHpa(r = waléom) [ € n OILH@ + LMy =)y
L=M

+ M |pens (7 — wal€ 7)) f FEm )M+ M e =7 ) g

S [flxn-
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For a given Schwartz function v € S(R), the estimate
|t [y (M2 2 (t = 20)) Fry 1 ()] o If |-

holds for all M, N € 2% t; e R, f € Xy. We put the space-time Fourier transform of the original function
into the X y-spaces. Let

Ex ={¢:Dy > R : ¢ is supported in Ay, |¢|zy = 6]z < o0}
Next, define
Fy ={ue C(R;EN) : |ulpy = sup 1P yelu- pr(NE72) (8 — )] x,y < o0}
t'e

We place the solution into these short-time function spaces after dyadic frequency localization. For the

nonlinearity, we consider correspondingly

Ny ={ue C(R; En) : |[ulny ) = oub [(7 = wa(€m) +iNCTENTF yofu - po (NP2 (= t))]lxy < 0},
‘e

We localize the spaces in time by the usual means: For T € (0,1], let

Fr(T) = fu€ C(-T,TLBx) < fullpyry = _inf il < oo},
Dy x[-T,T]

N(T) = {ue C([=T T En) : ullyyy = inf - [lafyy < oo}
Dyx[-T,T]

On the rescaled domains, we consider the weight

and let R
B (D) = {f : Dr - C: [ pa& MFE )Lz, <o),

It is easy to see that for up € E°, s > 0, we have that )f%uo()fa%?x,)\*ly) (cf. (2)) converges to zero
in £5(Dy) polynomially as A — c0. Indeed, we find that A=A~ %52 |ug(A~ =22, A" 1y)| 2 = AP |ug]|z2 for

some 3 > 0. The power A~2 is chosen to match powers M 3 with M denoting the dyadic localization of the

y-frequencies in the nonlinear estimates.
Let E*(Dy) = (,50 E*(Dx). We assemble the spaces F*(T), N*(T), and B*(T) via Littlewood-Paley

decomposition:

FAT) = {ue C([-T,T}; E”) : |ul

bery = O, N[ Papa(=ids, —iVy)ulFy 1) < 0},

Ne2No

N*(T) = {ue C([-T, T E”) : |ulFrs(r) = Z N**||Pypa(=idz, =iV )u| 3y oy < 0},
Ne2No

B*(T) = {ue C([-T,T); E) : |ulBo(r) = D1 N sup | Pypa(—ifs, =iV, )u(t)|E, < o}
Ne2No tE[*T,T]

Recall the multiplier properties of admissible time-multiplication: For any N € 20, we define the set Sy
of N-acceptable time multiplication factors

> NTCTRI g my | e < o0}

0<5<30

Sy={my:R>R: |mpy|sy =

We have for any s € Ry and T € (0, 1]:
| ) (ma(t)Pyu)

Ne2No

Fs(T)» )

pery S ( sup musy)lul
Ne2No

| Y] (ma(O)Pxw)|wery < ( sup [mulsy) lulaecr), | (6)
Ne2No

Ne2No

I Z (my(t) Pyu)l

Ne2No

Bo(r) S ( sup [mu|sy)llu|
Ne2Vo

We recall the embedding F*(T) — C([-T,T]; E*) for short-time X *’-spaces.
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Lemma 2.1. Let s € Rxg. For all T € (0,1] and v € F*(T) we have

sup |u(t)| w= < |lufFs(r)- (7)

te[—T,T]

For the KP-I equation on the plane, this was proved by Ionescu—Kenig-Tataru in [10]. In the periodic
case, we refer to Guo—Oh [6] for a proof in the Sobolev scale, which extends in a straight-forward way to the
spaces defined here.

Similarly, we have the linear inhomogeneous estimate (cf. [19, Proposition 2.5.2]):

Lemma 2.2. Let s € Ryq. For all T € (0,1] and (mild) solutions we C([-T,T], E* (D)) of
Opu — 0, DSu — 0, ' Ayu = 0, (u?) in Dy x (=T, T),

we have

Be(1) + [0 (W) | ns (1) (8)

2.3. Linear Strichartz estimates. Next, we prove an Livy,t—Strichartz estimate which we will use for

estimates of non-resonant interactions. For this purpose, it suffices to take advantage of the evolution in the
n-variables to be approximately of Schrodinger type. Let dy,ds € Ny with di +dy =2 and € > 0 if dy = 2
and € = 0 if dy < 2. We recall an L*-Strichartz estimate for the Schrédinger equation.

lulFer) < ful

Lemma 2.3. For all A = 1, the following estimate holds:
itA €
He fHL;L/’t(Rdl XTiZX[O,l]) S )\ ||f||H"(Rd’1><T(i2)'

On Euclidean space, i.e., do = 0 this is standard (cf. [22, Chapter 2]). If A = 1, this is due to Bourgain
[1] on the torus, and in the semi-periodic case, this was proved by Takaoka—Tzvetkov [20]. The general case
follows by rescaling.

Next, we prove an Li’y’t—Strichartz estimate for the linear propagator S,. We will assume certain lower
bounds on the frequencies: If the z-variable is v-periodic, due to the mean zero assumption, the case that
z-frequencies are much smaller than »~! is vacuous. Regarding the y-frequencies: We never decompose to a
scale below A71.

Lemma 2.4. Consider A € 2Y Dy = K, x R% x’]I‘iQ, and K, N € 2%, and additionally if Dy = T, x R4 x T},
we suppose that K, N > v=1. Let I € R be an interval with |I| ~ K and |§| ~ N for & € 1. Further, let
M e 22 n A1, 0) and Qpr S R? be any cube of side-length M. For all f € Liyy(DA) with supp(F 4 (f)) S
I x Qpr we have

|Sa(t)uoll s

x,y,t

axio)) S K3CN, M)|luo|rz (9)

with € as in Lemma 2.3 and
M2, M <1,

C(N,M) = 1
( ) {)\E(N4 v 1)Me, M > 1.

Proof. We can use Bernstein’s inequality in the £-frequencies, Plancherel’s theorem, and Minkowski’s in-
equality to write

, o . . . 1
[ fel(w-€+y~n+t€\€| +t772/€)f(§7 n)dgdn”Lith(D)\X[O,l]) < Ki || ( fd§| Jdnel(y~77+tn2/€)f(£, 77)|2) 2 ”Lj,t(Rdl A

§ K% ( J‘ d£|| J‘dnei(y-ﬁ‘f‘“ﬁ/&) f(£7 77) ||i§,t(Rdl XT‘;Q X [071])) 1/2.

For M < 1, we use Galilean invariance and Bernstein’s inequality to conclude the bound. If M > 1, we find
for £ > 0 (the case £ < 0 is treated by time-inversion)

”Jdnei(y'nﬂmz/{)f(&77)||L§yt(]Rd1xTiQ><[0,1]) < N%”Jdnei(y'n+tn2)f(f777)||L§yt(Rd1x?l“i2><[0,£*1])'

We estimate by Galilean invariance and Strichartz estimates (Lemma 2.3) on N~ ! v 1 unit time intervals
. 2 ~ 1 e ~
|| Jdnel(y-n‘f‘thﬂ /f)f(£777)||L§7t(Rd1 XT‘/?X[OJ]) s (N4 v 1)M )\ ”f(E’ )HL%?

and finally we take the L?-norm in &. O
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The estimate could be further improved taking into account frequency dependent time localization, how-
ever, this is not required for the present analysis.

We point out that only the L;t—Strichartz estimates on the two-dimensional torus is not scale-invariant
and loses a factor A°.

We note the following consequence for small z-frequencies.

Corollary 2.5. Under the assumptions of Lemma 2./, if I € [—10* 10%] is fized, we have
ISa(t)uollzs ,myx[0.17) £ A M [uo]rz - (10)

T,y,t

Proof. After a Littlewood-Paley decomposition in the z-frequencies, this is a consequence of Lemma 2.4. [

We record a consequence for the interaction of two functions with specified frequency and modulation
support. We will use this estimate for non-resonant interactions (see Section 3).

Lemma 2.6. Let Ni, Ny € 22, Ny < Ny, L; € 2% M; € 22 n [\71,0) fori = 1,2,3, and N; > v~ if
Dy =T, x R4 x ']I‘ﬁlf. Let f . D% x R — Ry be supported in Dy, ar,,1, for i = 1,2. Then the following
estimate holds:

< AC(Ny, No) N2

HlDNg,Ms,L3 (f(l) * f )”L2 min IIlln HL2 ‘f(z ‘LQ

&m,T

with

Ny >1
C(N1,Ng) = § Ny, Ny <1< N,
Ny <1

Proof. By almost orthogonality, we can suppose that supp(f (i)) c I; x Q; x R with I; € R an interval of
length Ny, and @; a cube of length M,;,. Then, we can use two L% ,-Strichartz estimates (9) to find in
case of Ny > 1:

x,y,t

S F D La

z,y,t

[Fag iU

z,y,t

HlDN&Mg,Js (f(l) * f(2 )HL2

&n,7
<A Nr?un(NlNQ mlnl_[L Hf HL2

If No <1< Ny, we find by (9)
H]'DN3 Ms,Lg (f(l) * f )HL2

&n,7

< FHFD s

z,y,t

[Fa U7

z,y,t

1 .
S ANNZLNT M, H L2 £ 2.
=1

Lastly, if N7 <1, (9) yields

Mg o D f )z S| F O JF O

< )‘eNIfnn min H L2 ”f )”L2

This finishes the proof. O

For comparison, we note the following trivial estimate which we employ in certain non-resonant cases:

Lemma 2.7. Let N; € 2%, M; € 22 n [A"1,0), L; € 2V and f@) : Dy x R —» R, be L? functions supported
in Dy, w,.L,, fori = 1,2,3, respectively. If Dy = T, x R4 x Tiz, we suppose that N; = v—!
Then

i addition.

[ 0 ®) - £ < (N ML) Huf oo (1)

Proof. The estimate follows from applying the Cauchy-Schwarz inequality. d
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3. RESONANCE AND BILINEAR ESTIMATES

We analyze the resonance function to obtain good bilinear estimates in the resonant case. For £ = 1 +& €
K* (non-vanishing) and 7 = 1 + 12 € R?, we have
Qa(€1,m,&2,m2) = wa(§1,Mm) + wa(€2,m2) —walf + &2, +12)

o §1&2 |m M2 |? (12)
= _Qg(c)zv + ‘

S +&1G &
Above Qg?&v (&1,&2) denotes the resonance for the dispersion generalized KdV equation:

Q) (6,6) = |6 + &[* (6 + &) — |6 — &) 6.

We define the resonant case for the higher-dimensional KP-I equations by
[0 (&1, €0,m0)| < 12500 (61,6)]- (13)
Suppose that |¢1 + &| ~ max(|¢1], [£2]), and let Nyax, Nimin € 2% such that
Nimax ~ max(|&1], [E2],[§1 +&2[)s Nmin ~ min([&1], [&2], & + &)

The resonance condition requires

Ne o |m 2

g &

The gradient of the dispersion relation is given by

‘ 2

_ o_ Inl* 20
Vwa(§,n) = ((a+1)|g| k- ) 14)
Consequently, in case of (13), we find
IVwa(1,m1) — Vewa(E,m)| 2 |2 — @‘ NS
&1 &

This means that in case of a resonant interaction with [&; + &3] ~ max(|€1], |(2]) the waves are transverse.

Lemma 3.1. Let I,J be intervals and f: J — R be a smooth function. Then
o

infy, [f/(y)|

Proof. This is a consequence of the mean value theorem. Let x1,z9 € J be such that f(z1), f(z2) € I. Then

@)~ fla)] _ 1]
THGIREAEOl

{a: f(z) e I}] < (15)

|21 — 22| =
O

Proposition 3.2. (Transverse L? bilinear estimate) Let dy +dy = 2, N € 2% and uy,up € L?(R% x T’iZ xR)
have their Fourier supports in DNi7J\/]i7L7’, for i = 1,2, respectively, with N; € 2% and additionally N; > v~—!
for dy =0, and M; € 22 n [A"1,00), and let N ~ max(Ny, N2). Suppose that for frequencies in the Fourier
support, the resonance condition (13) holds. Then, we have

1

1 11 Lax\ 2

[Py ()2, S Mg N L (d + S22 ) 2, Juzllzz (16)
Proof. From Plancherel and Cauchy-Schwarz, we have

luruz|z> = ‘J. . W&msm)a(€ = &n —m, T — 71, )d€dmdn

o 1 (17)
S Loy sup |E(7,6n)]? fua|ze uz| L2,
&m,r: €|~ N,

where | - | denotes the measure on DY and the set E(7,§,n) < D is given by

E(T,ﬁﬂl) = {(517771) € AN17M1 : (13) hOldSv |T_wa(£17771)_wa(£_£1777_771)| < Lmax, (g_’glan_nl) € AN27M2}'
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It remains to estimate |E(7,&,n)|. Define
2
6 &1, 7) = 7 = al6r,m) = wal€ — 1, —m) = 7~ leal"6: — L — e — (e — ) - ML

From (13), we have

2| 2 N or |22
N 012
where 77; denotes the ith component of 7.
Similarly, in the periodic or mixed setting, we have

|E(Ta§7n)| S Nmin sup |E1(£a§1)|a
[€1|~N1,[g[~N

> N?, (18)

where F;(¢,£) € R4 x Zf\l2 is given as
Er(§,61) = L1(§,61) v I2(€,61),

where

0
6.6 = {fml ~ i+ | 72| 2

Using Lemma 3.1, we have the following bound

=
R
N

LII] X
|E1(§ §1)| <Nm1n(1+ B )Mmin7
N%
where the summand 1 could be avoided in case dy = 0. Substituting this in (17), we get the desired
estimate. g

4. SHORT-TIME BILINEAR ESTIMATES

The purpose of this section is to prove short-time bilinear estimates, which we need to propagate the
nonlinearity. For the remainder of the section, let d = 3, a € [2,4). Recall that the frequency dependent
time localization is given by

T(N) = N~(2=3),
We consider the domains (recall v = )\%H)
Dy — KM xKP xK®, a=2
K, x RZ, ae(2,4),
where Kf\i), Ky € {R; T»}. In the following we write for the sake of brevity
A<\B: e A<\'B

with implicit constants independent of A > 1. In the following, we put the factor A\°* regardless of the domain
since this does not matter for the following analysis and it simplifies the exposition.

Proposition 4.1. Let s > r > max{3 — 2,1}. For all T € (0,1], we find the following estimates to hold:
102 (wo) o) SA lul ool (), (19)
102 (uv) Far) [l ey + Jullpeg (20)

4.1. Dyadic estimates. We prove the dyadic estimates which can then be summed up to obtain Proposition
4.1. We decompose in the n variable as follows

P (0:(un,vn,)) ZPNM UN17M1UN27M2))

where * denotes a non-trivial relation between the size of the y frequencies {M, My, My} € 22 A [A71, 00) and
{N, N1, No} € 2% and additionally N;, N > v~! if d; = 0, i.e., if the z-variable is periodic. Note that for the
norm in the LHS of the above equation to be non-zero, we require that the size of at least two y frequencies
be comparable. Also, by another almost orthogonal decomposition, we can suppose that the n-support of
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UN,, M, > UNy,M, 18 localized to cubes of length My,;,. This becomes useful in case M < 271001, The key
dyadic estimate, which yields (19) and (20), reads

[P, a1 (O (unvy a1y U, 01,)) [ Sa C(N, Nl,Nz)Mxﬁiﬁ luny, a7, 0N 0 | Py - (21)

Above we denote

NE. Jie{l,2): N, < N, Mo, M<1,
C(N,N1,Ny) = ““fr“ e {12} Msvs2 = .
N2, else, M=, M >1.

(19) then follows from trading powers of |n| to || using the weight. For My, = A~!, this is clear. For
In] = A~1, we note

1 .
it < (1+]D)2, if |n| < €],
~ 1 .
s, if ol > ¢l
Furthermore, we can decompose the weight
pA(6m) =A% + ||2||

The constant term can be perceived as part of the weight of a function on the RHS, for “le we can use dyadic

localization in & and 7 to conclude. For the remainder of the section, we suppose that M; > A1,
We consider the High x Low — High case first.

Lemma 4.2. Let N » 1, N1, Ny € 280 such that Ny « N ~ Ni. Suppose that un,, M, € Fny, VN, M, € FiN,-
Then,

|20, a1 (O (wnvy a1y UNg 01)) e S NzMrilﬁ TNy 3, | Py, 08 082y - (22)

Proof. Using the definition of the Ny norm, we can bound the left-hand side of (22) by

sup (7 —w(&n) +iNC )Tl (Em) - Fluny o, - oo (NP2 (8 — )]

tnyER
s Flon, s, - 1 (NP2 (= tn))]]x -
Let
FY = Fluny vy - pr (NC 2 (¢ — )], and @ = Flon, a, - pr(NC8) (¢ — )]

Using properties (5) and (6) of the function spaces, it suffices to prove that if Ly, Ly = N®2~%) and ()
D% x R — R is supported in Dy, a1, for ¢ = 1,2, then

NS L HLp ., (O« f) Sy NFMEET HL? 1FD 2. (23)
L=N(Z—%)

This will be proved by a case-by-case analysis. For Ly.x = max(L, Ly, L), we consider two cases:
(1) Lmax < N®No: In this case, we can use the bilinear Strichartz estimate from Proposition 3.2 to find:

2
1 1 .
110 (PN % P2 < NEN, # M, HLf £ 2 (24)
By summing up (24) we obtain

2
_1 1 i
> LEpg e (FY # f)]ge <N1N2MrimHLfo()HL2-
L=>NC—2)

(ii) Lmax > N{*Ny: This seemingly easier case requires to distinguish into more subcases. We shall
analyze the size of the resonance in case Ny = 1 more carefully. To this end, we make an additional dyadic
decomposition with Ny € 2%, which means a dyadic decomposition of frequencies < 1. Depending on the size
of N7 and Ny, we consider the following subcases:
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(a) N2 > 1: In this case the resonance is very favorable, and we shall take advantage of Lyax > N¥Ns.
o L > N{*Njy. If Mpin <1, then by Lemma 2.7 we find

2
N Z L7§||1DN‘]VI‘L(f(1) * f(2))||LZn.r < N(NlaNQ)ifN;Mmin 1_[ L? Hf(’L)HL2
L=NZNy : i=1

Hence, we can suppose that My, = 1. In this case, we use two Li w, ~Strichartz estimates by Lemma 2.6:

N Y L GO e, 177 (s,

s S NTENHE )
Lz=N{ Na

z,y,t

<x N'TE (N1 No) T MO, Hp IF O g2
This is acceptable for N1 < M. If N1 = My, then an application of Lemma 2.7 yields

2
1—< 1 .
&, < Nl QMmin]i[L? ”f(Z)”L2
L=NEN, i=1

N Y L7 p,,,, (fY s f)] e

2
_a 1 .
< h1 * Mmin | | Li2 Hf(l)HL2

i=1

2
1 .
< M2, H LEf9) 2.

23

e Ni ? <L < Ni*Ny: We can use the Cauchy-Schwarz inequality through Lemma 2.7 to still find

2

1 _ o 1 « 1 1 i

N Z L= H]'DN,IVI,L(f(l) * f(2))HL§J < NN1 1N14 MminN22 (N1 N2) 2 HLiZ Hf( )HL2
(2-%)

‘1
N, 2’<LENPN, l

2
Nyt M [ ] L
i=1

This is acceptable for My, < N;. For My, = Ni, we can in the same range of L consider two L%
Strichartz estimates by Lemma 2.6 after duality and take out the function with highest modulation in L?
In the worst case, this function is at small frequencies Ny, i.e., Linax = Lo. In this case, we find

1,7

l\?\»—t

1F D .

:vyt

&n,Te

N Z L_%HlDN,M,L(f(l) * f(2))HLngT Sx Nilog(NT No)(Ny'Na) ™2 MO+ (N1N3)z HL 1F D) e

_a
NP2 <renon,

min

< N HL 1.

(b) N2 < Ny “. which yields NaN{* < 1. Note that this case is possibly vacuous if the z-variable is
periodic. By two L2 y¢-Strichartz estimates as in Lemma 2.6, we infer

1 a 1 2 1 .
N Y LHip, (Vs F®) i NENG NI MO, HLf 17Oz
LeN®%)
> (25)
1 .
SEUAR HL? I gz
This is acceptable for Ny < M2, . If M2, < Nj, then we can use the Cauchy-Schwarz inequality via

Lemma 2.7 to find

2
_1 —(2—<« 1 1
NN L py (P f ) < Ny OTINGNG Moo [T L7 £l

2— 9 =1
L=N, 2 ‘
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This suffices by summation over Ny < Ny .
(c) Ny “ < Ny < 1. By the estimate (25), which is still valid, we can suppose that Ny > M2, .
e [ > N{*Ny: By Lemma 2.7 we find

2
_1 o142 1 i
N Z L™= ||1DN‘JW,L(f(1) * f(Z))”LgmvT < Nl 2 Nl * Mmin H Liz ”f( )”L2
L=N{ N i=1

2
< MaiaNy [T EZ 179 e

i=1

. N1(2_%) < L < N{*Njy: Another application of the Cauchy-Schwarz inequality via Lemma 2.7 yields

,l
NS L (PO« FO)s S Nlog(VENo) MusaNy Ny ]_[LZHf Iz

=N
a 2 1 ;
< log(Nl N2 Nl 4 Mrmn HLZZ Hf(l)HL2

=1
2 1 .
<My, [12007 i
The proof is complete. O

Next, we consider the High x High — Low interaction.

Lemma 4.3. Let N1, No, N € 2% N; » 1 such that N « N; ~ Ny, and un,.M; € Fn,, N, M, € Fin,. Then,
the following estimate holds:

3+ 5+
[P, a1 (O (wnvy a1y UNo 015)) [ Sa NT Mrfm? lwny, vy ey 10Nz 015 | s, - (26)

Proof. We have to add time localization to estimate the functions un, a,, VN, M, in the short-time norms.
This amounts to a factor of (N;/N)~%) for N > 1. For N > 1, we have to show

N1, (2—92) 1 1 2 ;
NED® Y L o 0D e SO S N COMan) [T EEI @2 2)

L=NG"%)

for f() supported in Dy, om0, © = 1,2, If N =1, we make an additional dyadic decomposition in the z
frequencies such that N € 2% now (which changes the Fourier support to D ~N.Mm.L), and additionally suppose
that N > v~1, if the z-variable is periodic. In this case, it suffices to prove
2
1 lJr 1 .
DI A 1155 e (F # fE) 2 Sx NETC(Miin) [ TLE NP 22 (28)
L>1 i=1
We turn to the proof of (28) first. We do a case-by-case analysis depending on the size of N and Ny:
(i) N < N In this case resonance considerations are irrelevant, and for L > N12 ~ 2 we conclude by

two L2 ,-Strichartz estimates due to Lemma 2.6 on f{9):

x,y,t

2
NN 2 LTy, Va fO)ge <a NENEN] 4M0*HL§||f<i>nL2

min

LZNI 2 (29)

2
Sy NETETEMOL HL% 1] .

This is very favorable for My, = N;. For 1 < L < N12_2, we apply duality and two L% y¢-otrichartz
estimates to find the above estimate to hold (actually, a slightly better estimate holds due to an improved
L*-Strichartz estimates for a function with small frequencies).
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On the other hand, an application of the Cauchy-Schwarz inequality through Lemma 2.7 yields

2
=% -3 - 3 £
NNZTE Z L1, (Y s f)e < NEN, Mman,. 1FD . (30)

Lle -2

For Myin < Ny, we find
2
NENTME, ] L

1=1

m\»—A

<N

N
ol

1F D 2.

Q

For1 <L < N12 2 the same estimate holds up to an additional logarithm in Nj.

(ii) Ny ¢ < N < 1: In this regime we distinguish between resonant and non-resonant case.
< NY'N

(a) Lmax . We conclude by duality and Proposition 3.2 applied to the dual function and an f®:
(2—2) 1
NN L, (P s e
L<N{¢N
1 Nl
2—4 115 2=af
SNEEN S L MO, L) (31)

LENGN N1

2
< 1og(NP NN M N T L2 £ e
This is acceptable.
(b) Lyax = NYN.

e L > N{N. We can use two L y¢-otrichartz estimates by Lemma 2.6

2— _1 2— 1
NETINS L (PO D) < NETONB (V) 2MI%;HL2 1£9]2.
L=N{N

For Ny < Mpin, this gives
1 .
<) NFTONM H L9 . (32)
For Ny > M ,in, we can use Lemma 2.7 to find

2
92— 1 2— 1 1+ 4
NN L, (Ve D) S NYENE M (NEN) RN, +f*HL 1£) 22
L=N&N
(33)
%,

S NPT TNME, HL 1D .

e 1 <L < N{N. In this case we can argue like above after applying duality (since 3i : L; = Nf*N). This
yields the same estimates up to a logarithm in NV; from summing over 1 < L < Nf*N.

(iii) N > 1. In this case we shall prove (27) by considering resonant and non-resonant interactions:
(a) Lmax < N{*N. We obtain by the bilinear Strichartz estimate from Proposition 3.2 and duality

Niy2-2) 1
N(7) e > L7310 (FO # 212
NC=2) <L SNPN
Ni(2-2 N 0 N2
< N Frogvenny gk, J[L?Hf Iz2 (34)
a_ 1 1—« 1 2
= N%72N, M2 log(N®N HL2||f Iz
1=1
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This is acceptable.

(b) Limax = NN, If L > N®N, we can use two L2  ,-Strichartz estimates to find by Lemma 2.6

z,y,t”
M 2-3 -1 Ny 2—-2 N
(DN Y L D D s O i (5 TP v gy, Hw |7z
LE=N&N N1
This is acceptable if Ny < Mpyjn:
N 2— a e} 1 7
SYCN Mni; Hw 1FOle = NEINEOMEL HL: TP (35)
If My < N1, we can apply Lemma 2.7 to find
Ny e-) Ni\(-3) N*
N(N Z L~ 2H]-DN M, L( *f(2))HL2 < (W) ) Na/2 Minin N HL2||f HL2
L=N&N 1

i (36)

3a a 1
SN, TNTETEME HLsz Iz

mm
Summation over N < N; yields

min

2
S NFTET M, HL?WHB.

If L < N{N, then there is L; = N{N for some i € {1,2}. The argument follows the above lines, estimating
the factor with high modulation in L? and the remaining factors via L*-Strichartz or Cauchy-Schwarz. This

1
gives an additional log(N{*N) from summing over L, which can easily be absorbed into N i O

We consider the case when the frequencies are of comparable size and much higher than 1.

Lemma 4.4. Let Ni,No, N € 2% N; > 25 and Ni ~ Ny ~ N3. Then the following estimate holds:

1PN, 3 O (P vy WPNo v, V) [ oy S J\/frlfllr11\7%+||PN1,M1U||FN1 1PNy 21,0y - (37)
Proof. By the above reductions, we have to prove
2
1
NN LUy (PP s F) e S0 M NFF T LE O e (38)
LZN@_%) i=1

for £ supported in Dy, as,.1,. We consider the resonant and non-resonant interactions:
(i) Limax < N®T': We apply a bilinear estimate due to Proposition 3.2 to f() and f(?) to obtain

1 2
-3 Nz
N Z 2H1DN,1\/I,L(f(1) *f(2)HL2 S (N 1N4 Mr?unHLGf ”L2

L=NG"3

2
S NEMEL T LZ1F9 e

(ii) Lmax = N{"H: For L > N“Jr1 we use two L2
find

,ye-otrichartz estimates on f® i =1,2 by Lemma 2.6 to

@2

N Y L p (PO fO) e S

L=N+! i=1

min

2
<\ NETEMOE HL%Hf“‘wz.
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This suffices for My, = 1. If My, < 1, an application of Lemma 2.7 gives

_1 N2 o
N > L1y, (Y % fP)12 < a+1MmmN 11_[132|\f |z

LzNt! N, 2 i=1
Y
SNTETLZ 1A e
i=1

This is acceptable. If L < Nf‘“, the arguments from above apply after using duality. The dyadic sum over
N?7% < L < NPT gives an additional factor of log(N;) which is acceptable. O

We consider now very small frequencies.

Lemma 4.5. Let {N, N1, No} € 280 ~ (—00,219]. Then the following estimate holds:

HPNyM(aI(uN1,M1UN2JV12))”N’N <a mmHuN1 M,y ”FN1 ||uN2 Mo HFN2 (39)

Proof. We use the same notation as in Lemma 4.2. It is then sufficient to prove that if L, Ly € 2% and
f(z) :D¥ x R — R, are functions supported in Dy, ar,,1,, ¢ = 1,2 and M; > M», then

D L Ly (Y 5 FP)le 51 mmHL SRS .

L=1

This follows from the estimate from Cauchy-Schwarz inequality (Lemma 2.7) for My, < 1 and two L:y,t—
Strichartz estimates for M, = 1.

4.2. Proof of Proposition 4.1. We estimate the interactions as laid out above separately, i.e.

e High x Low — High,
e High x High — High,
e High x High — Low,
e Low x Low — Low,

The key ingredients are the dyadic estimate and the decomposition of the weight py (€, ).
We begin with High x Low — High-interaction. Recall that

(L4 €D pa(E,m) = A 2 (1 + |€])° + (1 + |€])° ||z||

Let N ~ Ny » N,. For s > r > 1, we find

1 1 :
AT 2N P 0n (uny vy UNg M, ) [y S A 2NSN£IHM£1§+HUN1,M1 I 7xe, [Nz, 015 | P, -
The estimates (19) and (20) follow by summation: Suppose M ~ M; 2 M. Summation over Nz and M,
and using M2’2Jr SO+ %)(1 + N3)2 as follows:
ATEN| PG (a0, o) € ATEN Ju L, 0]

the claim follows from square summation.
Suppose M ~ My » M. In this case summation over M; gives

_1 1 L1y
ATEN| Py v 0z (uny Uny M) v S AT2ZNT [uny [y, N3 M3 "2 |[ung a, || 7y, -

Similar arguments show that summability is provided for s > r > 1 for High x High — High and Low x Low
— Low interaction.

For High x High — Low-interactions we need a different argument. The reason is that the weight \gll
eliminates the derivative. To estimate |n| < 2max(|n], |n2|) in terms of the weight py(&;,n;) one has to take
into account a high frequency |;| ~ N;. This gives an additional derivative loss in the high frequency.
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We revisit the dyadic estimates from Lemma 4.3: The estimate (29) becomes with the additional factor
JX/} and (Nl < Mmin7 Nl < Mmin):

N- 2_a 1 1.5 2. .
NN Y LT, P S e $3 NENET 4M&;HL5||f<’>HL2

L=N"%
_2 +
S 4MrzmHL 1FD e

(30) becomes with % and recall that (N < N7 %, Mpin < Np):

Nl 9_a 1 1..2—= 2 3 i
NN X L (0 S S NEN M [T L1

L;N1 Z
3

3a 1 2 1 .
TMELTTEZ 1A e

i=1

5_
2

< N

(31) becomes with X+ and recall (N; * < N < 1, Lyax < NP'N):

N 2—-%5 _1 a 1 1 2o 2 1 i
SNTEN S LR, (PO )]s S log(NEN)NEM N E T L 15O e,
L<NE&N ol

(32) becomes with % and (N1 < Muyin, Lmax = NfN):

Nl 2—< _1 o + 1 i
FNEN Y L, 0 s P < N Mélnnbf\\f()\lm-
L=Ny}N

For N1 = M, we find for (33) with (N7 = Muin, Limax = N{*N):
Ny 2« 1 5 8a 1 20 1
~M N oL py s (P fP 2 < NETE M TTEZ 1P
L=N}N ;

(34) becomes with &t and recall (N > 1, Liax < N{N):

Ny Ny (2—%) 1
N F) T 2 L7 [1py prp (F ) fP)] 12
N<2**)<L,MX<N&N
S NJTENTEE M2, log(NEN) H L2 IO e

i=1

This is the estimate, which requires us to suppose that

5
5> 2 7% 2
1, 3

(35) becomes for Ny < My, with % and (N = 1, Lyax = N¥N):

a <3,
a < 4.

NN

< NP ONE 202, HL?Hf@HLz.

min

(36) becomes for (N = 1, Mupin < N1, Lmax = N{N) with the factor —1:

3a
2—°F

gNl N~ % % mlHHL ”f ||L2

This completes the proof of Proposition 4.1.
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5. ENERGY ESTIMATES

The purpose of this section is to propagate the energy norms in terms of short-time norms. We shall do
this for solutions in F** and for differences of solutions in F°. The key ingredient is the dyadic estimate in
Proposition 5.2, to which the estimates are reduced after suitable integration by parts and substitutions.

5.1. Energy estimates for the solution. We begin with energy estimates for solutions.

Proposition 5.1. Let a € [2,4). For all T € (0,1] and solutions u € C([~T,T]; L?) n LFE* to the following

{ Owu — 0, D%u — 07 ' Ayu = 0, (u?), (z,y) €Dy, te[-T,T], (41)
u(0) =9,
we have
< ol + (42)

provided that s =21 >3 — 5 .

5.2. Reductions. We consider the equation (41) for the Littlewood-Paley pieces Pyu. Multiplying this
equation by Pyu and integrating, we get

sup ||PNu(tN)||2L2 < ||PN¢||L2+ sup ‘J Pyu- PNOg(u )dxdydt (43)
[tn|<T [tn|<T ' IDy x[0,t 5]

We write the integrand as
PyuPn(0,u?) = 2PyuPy(ud,u) = 2PnuPn(P>nu - Opu) + 2PnuPn (Penu - Opu) := 2(1 + I1).
We can further decompose I as
I = PyuPn(Pynu - PynOgu) + PnuPn(Ponu - P<nOyu) =:a+D,
while IT can be written as
Il = PyuP«nuPnOyu + Pyu[Pn(Penudyu) — PenuPnOyu] i= ¢+ d.
We have
20 + 2¢ = Pyu - 0p(Psnu)? + 0, (Pynu)? - Penu.

For b, we observe that the derivative already hits the low frequency, while for a + ¢, using an integration by
parts, we have

f 2(a+c) dxdydt = &’zPNu-PNlu-PNlu dxdydt+ 0z Py u-Pyu-Pyu dedydt,
Dy x[0,7]

N«N; JDAX[OvT] N1« N J]D)>\><[0aT]

where Py, = Yy ~, Pn, (and the multiplier is denoted by oN,).
Next, we treat d by the same argument as in [10, eq. 6.10] to transfer the derivative to the low frequency
factor. We have
d= PNu Z [PN(PNlu . &cu) — PNlu . PNaxU]
N1« N
We fix an extension of u which we still denote by u. We have

./—"[PN(PNluaxU) - PNIUPNaxU](&??a T)
= f (Eglgl)(g?w(f) — O (€ = €0))Prul€ — &1, — 1, 7 — 1) Py, dpu(€r, 1, 1) dérdmdry =2 M(Pyu, Py, d,u),

where the (bilinear) multiplier is

m(§7 El) =

Using the mean value theorem,

(£ —¢&)

3 (AN (€) — N (E — &), (1)

(n(6) — dn(E — &) jasNg hey)e dh,
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we obtain the uniform boundedness of the multiplier

|m (££1|<J‘5 S (5 h&)‘thL

N

To conclude, we have shown that by taking the advantage of the form of the nonlinearity, we can transfer
the derivative to the low frequency in all the cases. More precisely, we can assume that our integrand is of
the form

Pyu - Pnyu - (P, Ozu) or Pyu - M(Pyu, Py, 0yu)  with Ny SN ~ Ny (44)

with a bilinear Fourier-multiplier M with bounded symbol m.

Considering an integrand of the form Pyu - Py,u - (Py, 0yu), we divide the time interval into sub-intervals
I of size N~(3~%) to estimate the functions in short-time norms. Let v € C%([—1,1]; Ry ) such that

Z’y (t—n)=1.

nez

We write

‘ f Pyu- Pyyu- (Py,du) d:cdydt‘
D x[0,T]

‘ f (V(N~C=2)t —n)Pyu) - (y(N~ P2t —n) Py, u) - (v(N~P7 %)t — n) Py, 0pu) dadydt|.
D x[0,T7]
(45)
We consider the sets
= {neZ:supp(y(N"7%) . —n)) = (0,7)},
= {neZ:0esupp(y(N~C=2) . —n)) v T e supp(y(N~?~3) . —n))}.

Note that |A| ~ TN®=%) and |B| < 4. First, we consider the bulk of the cases given by the set A. We
change for n € A in (45) to Fourier space after an additional dyadic decomposition for the y-frequencies: Let

fl(\fll),Ml = Foyu[y(N~C7 3t —n) Py, y, 0], fz(vi),MQ = FoyulY(N"C=%)t — n) Py, asyul,
fl(\f?;),Mg. = Foyt[Y(N"C7%)t — n) Py p,u].

We make an additional dyadic decomposition in modulation for L > Nézfﬁ) according to the time localiza-
tion:
(@  _ (4)
Inom, = Z INiM L fN ML, = 1D w1, fN“M
LisNG D)

The same can be imitated for an integrand of the type Pyu- M (Pyu, Py, 0,u) because we require a bound
in terms of the L? norm on the right hand side. Taking into account the additional derivatives and time
localization, the proof of Proposition 5.1 reduces to the following estimate:

(46)

1 2 0+, +) e
| Jf](\h),Ml,Ll ](V2),IVIQ,L2 fN3,M'g L3)| s)\ N1 : N3 1MH211I1 H Z L1,2 ||f1(\f3,M1,L1

Li>N (2—7) L%2N§2_7)

for Ny < Ny ~ N3, Ny € 22, No, N3 € 2V Like in Section 4, we suppose that N; > v~ ! if Dy = T, x R4 x T{2.
We always suppose that M; > A~!, which is the lowest scale for y-frequencies.
Once the above display is proved, we can conclude the proof of (42) by (5): Recall that

1 Il
, =)\ 2 .

The constant term is then estimated by the above argument, and we trade n-factors into the weight and
powers of £ like in Section 4:

1+1¢))2, Il <[],
1
L+ jes Il z gl
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1 _a
This way the factor anun is traded to Ny°. Together with the factor NéQ *) from the time localization, we
see how (46) can be summed to (42) by (5). To deal with the second term from the weight, we consider the

equation for the Littlewood-Paley piece Pnd, 'V u:

1PN O Vyu(tn) e < [Pyoy ' Vyu(0)]|7 + | Pn0; 'V yuPn (Vyu®)dadydt|.
]D)AX[O,tN]
We write
j P (0, 'V, u) Py ((0:0, ' Vyu) - u), and let v = 0, 'V, u.
D x[0,tn]
Then,
,[ PnvPn(0zv - u)dzdydt = f Pnv(Pn0Oyv Py nu)dzdydt + f PnvPn(Pyn0ypv - u)dadydt
D)\X[O tN] D)\X[O tN] D,\X[O,tN]

+ f PNUPN(PzNaxUPzNU)dxdydt.
D x[0,tn]

The first term can be reduced to the second after integration by parts and the third does not require
integration by parts. Then, it suffices to show the estimates for N/ < N:

5 N23|J PyoPyo(Pydyu)dadydt] € o] o lul per). (47)
Nz1, Dy x[0,tN]
N'SN
and for N| ~ NJ > N:
> N f PnvPy(Pyyv + Py Opu)dadydt| < ol ey (48)
Nz1, D)\X[O tN]
N|~NjzN

In the above display we denote with F'® the short-time space in the Sobolev scale, i.e., F* without the
weight py. The estimates (47) and (48) can both be reduced to (46), which we summarize in the following
proposition:

PI_'oposition 5.2. Let Ny € 22, Ny, N3 € 28 N, < Ny ~ N3, L; € 2% M; € 2o § = 1,23, and
f](\;lMi’Li € LQ(Di X R;RJr) with supp(f(l)) c DN1,M1,L17 and Supp(f(k)) c DNk’Mk,Lk fO’f’ k = 273 If

—1

D), =T, x R% x ']1";\2, we additionally require Ny = v—". Then the following estimate holds:

Z JD* le Mi,Ly (fl(\i),Mz,Lg ff(\i),M'a,L%)dgdndT

2-g
L;=N, (

0+, 3G
<x Nl( Iy, 1Mrflmn Z L? H.f](\;)ML

N

L>

1=

Proof. We consider the following cases depending on the size of N7 and Nj:
(i) N1 < Ny % In this case, we do not distinguish resonant and non-resonant interactions. Using Lemma
2.6, we have

x

1 2 3 [
| D¥ Rfl(\/1)7M17L1 (fJ(Vz) Mas,Lo ff(\fs),Ms7L3)d£dndT| S NzMI?ﬂTHN4N K HL2 H J(\Q),MmLi ”L2
Fx

min
1=1

1 1 .
< NDENF NG T HLf 1S g 22,
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which is sufficient if N3 < M2, . If M2, < N3, we use Lemma 2.7 to obtain

min*

iy,4Viid,

1 2
| - Rfl(vl),Ml,Ll (fj(\r2),M2,L2 st,Mg Lg)dfdﬂd7| < MmmN N2
N X

< M2 NOHN,2E HLZHfM [ 173

min

(i) Ny ¢ < N; < 1: We consider the resonant and non-resonant cases as follows:
o Liax < N1 N§: From the bilinear Strichartz estimate (16) applied to le My.L fj(\?g Ma.L, (OF fj(\,ll)’Ml’L1 ¢

3
f ](\,3)7 Ms, L3)7 we have

1 2
| ¥ ff(\’l),Ml,Ll (fI(VQ),Mz,Lg ng M3, L3)d€d77d7—|
XX

N? 1.1 2 3
< My, pe L AR U7 VAV P AN 1 Y
3

min iydVlq, Log

3

1

< NZN; M []r:
i=1

® Lmax = N1N§: We shall use Lemma 2.6 by estimating the function with the highest modulation in L2,
Here, the worst case occurs when L., = L. We have

3
1 2 3 71 2 el
| ” sz(\fl),Ml,L1 (fj(\fz),Mg,Lg f](\/';,Ma,L3)d£dndT| SA N2M£1J1rnN2 (N1Ng') 2 HLZZ If J(\/'Z),M,,L 2
)\X

< N% B ﬂ[OJr L% (1)
~SA V2 min | | i ”fNi,Mi,Li
i=1

which is sufficient if No < M. If My, < No, we use Lemma 2.7:

@
52

N2 2 Mmlnl_[L2“le7Ml,L ||L2

[N

3 3 ay—
| D¥ fN17]V[17L1 (fN27M27L2 ff(\73)7M37L3)d£d77dT| S N12 (NlNQ)

_1l_
$N22 4M2

min

iy Vg, q

i=1
(iii) Ny » 1: We consider two subcases:

. Lmax < Ny N§: After using Cauchy-Schwarz inequality, we apply the bilinear Strichartz estimate (16) to

le’MhL1 * J(\f)M L, j =2 or 3 and obtain

3
1 2 « (gfl) 1 i
| I fl(\fl),Ml,Ll ’ (fz(\72),M2,L2 st Ms, L dfdr]d7'| < M, mlnNzN Ng* H L; Hf( )||L2a
X .

which is sufficient.
® Limax = N1Ng': We assume Lp,,x = L1, since the estimate is better or same in the other cases. For
Mpin < N3, we use Lemma 2.7 to obtain

3
1 2 3 3 3 i
| J]D)* R fj(vl)’MhLl (ff(\’z),MmLQ * fJ(V?,),Ms,Ls)dgdndT| S N12 MminLéﬁn 1_[ ”fl(\fl),M“Ll
X i=1

3
< Moy ENIE L5|| v i,
~ min+ V3 3 7 NuMivLi L2

1 .
< M2, Ny H L? ||f1$3,Mi,LiHL2.
=1
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For Myin = N3, we use Lemma 2.6 on fl(\i) MLy * fj(vi) M, Ly 85 follows:
1 2 3 1
| I, U anna * I 2 ) 6ndr] S 1 ar o, e NENS M, H LA v oo
X

3
1 it 200
A (NUNS)YTENE M2 TTL2 18 0, e

i=1

O

Proof of Proposition 5.1. As described, we can consider the integrand to be of the form in (44). Consider
the first case, i.e., Pyu- Py,u- (Py, 0yu) with Ny < N ~ Ny. For N3 = N, we shall apply Proposition 5.2 to
the following:

1 o 1
s = Foyah (NG9t —n)d, Py, aru] = 2L sNe-D I8 i
2 o 2
fJ(Vz) My = fm,y,t[fY(N@ Pt — n)PNz MU ] = ZLzZN(27%) fJ(\’Q,M'z,LQ’
o 3
st,Ms = ‘Fw’y:t[v(N(Q 2 )t - n)PNs’MS ] = ZLgZN(Q_%) fJ(V:J.),Me,,LS'

Secondly, the estimate (47) follows from an application of Proposition 5.2 to

1 o 1
f](\ll),Ml = ‘ny1t[’y(N(2 2 )t - n)a PNl Ml ] = ZLIZN(2_%) fj(Vl),Ml,L17

2 o 2
f](V2)7M2 = ]:w,yxt[’Y(N(Q 2 )t - n)PN2 M2V ] = ZL22N(2_%) fJ(V27M2,L2’

3 o 3
f](\f:s),Ms = ‘Ffvyat[rY(N@ 2 )t - n)PNs MU ] = ZLgZN(zf%) ‘f](VS)J\/I37L3

with N2 = N3 2]\77 N1 = N/.
Lastly, the estimate (48) follows from applying Proposition 5.2 to

I = Foudh WDt — )Py o]l = X, e FNlan L
o = Foud (V' Dt —n)Py, ool = X, e £ e
P = Fouah Wt =)o, Py, agul = 3, e IS g
with Ny = N, Ny = N3 = N'. O

5.3. Energy estimate for the difference of solutions. Let uj,uy solve the equation (41) with initial
data ¢1 and ¢o, respectively. The difference of the solutions viz. v := u; — us satisfies the following equation

{ v+ Bv— 07 Ayw = 0. (v(ur +ug)), (z,y) €Dy, te x[-T,T], (49)
v(0) =¢1— P2 =: 9.
We have the following result for v.
Proposition 5.3. Let a € [2,4), s >3 —%. For oll T € (0,1], and with notations from (49), the following
estimate holds:
[0l B0y < 10O F0 + X [0l F0 iy (Jusllpe(ry + luz]rery)- (50)

Proof. As in the proof of Proposition 5.1, we consider the equation (49) for Littlewood-Paley pieces Pyuv.
We write

|Pno(tn)|7e = [|Prvo(0)]72 + J’ PnvPnOy(v - (U + ug))dzdydt.
D)\X[(),t]\]]

By an integration by parts argument, similar to the above, it suffices to estimate
| PnvPnv(Py, 0pu;)dadydt| for Ny < N (51)
Dy x [O,tN]
and

|J Pnv0y Pn(Pgy v, vPx ul)da:dydt| for N < Ny ~ No. (52)
DAX[O tN]
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Adding time localization and frequency localization in 7, we let for (51) with Ny = N3 = N:

1 _a 1
fz(\rl),M1 = fm,y,t[’Y(N(z 2t — n)0z Py aryui] = ZleN(Q—%) f](\fl),Ml,Ll,

2 _a 2
I = Fauay (N9t —n) Py, ar,0] = 2pone-9 Fio0 Mg L

3 _a 3
fI(Vs)7M3 = -Fm,y,t [r}/(‘]\[(2 Pt — n)PN37M3U] = ZngN(zf%) fJ(\fs),M37L3'

Then, the claim follows from Proposition 5.2. .
For (52), we let with N1 = N and N2 = Nl, N3 = N3I

(1

o(2-%)
le M, = Fuyt[y(N1™ 2t =n)0u Py, myv] = ZL1>z\'z(2**> Ni,Mq,Ly0
=71
< (2—2) 2
fN2 My = ffvyvt[rY(Nl = n)PN27M2U] = ZL2>]\~7(27?) J(V2) M, Ly
=7
o(2-%)
st,Mg. = Fuyilv(N7™ 27t = n)Pny mui] = ZL3> (g de M, Ly

Then, the claim is a consequence of Proposition 5.2.
We shall also estimate the contribution of the weight by estimating the Littlewood-Paley pieces

|PnO; YV yu(tn) |32 = |[Pnoy V,0(0)[3: + 2fD o ]PN(<9;1qu;)11>N(vy(v(u1 + up)))dxdt.
AX|0,tn
We let
j Pn(0; V) Py (Vv - u;) = J’ Pn(0;1V ,0) Py (Vv - w;)dzdt
D)\X[O tN] D)\X[O,tN]

+ J Pn(87'V,0) P (v - Vyu;)dzdt
Dy x [0 tN]
=1+11.
Let w = d;'V,v and rewrite

I:J PNwPN(aww-ui).
DAX[O tN]

We decompose
PN(amw . Uz) = PN(PNﬁzw . P<<Nui) + PN(P«N&’zw . PNUi) + PN(PzNaxw . PZNUi)~

The first term allows for integration by parts and reduces to the second term. These contributions can be
summed like above. Only the third term is a little different because the derivative cannot be transferred to
the lowest frequency. However, in this case this is acceptable because of High x High — Low-interaction.
We have to estimate
J Pynw(Py1 0xw)(Ppyu;) dxdt|.
N>1 D x[0,tn]
N{~NjzN

"5 —=2)

We smoothly localize time to intervals of size N and let like above

1(2—%)
f(l) :‘F$7y7t[7(Nl : t_n)PNl,l\/hw] = ZleN -%) fN1,M1 Ly
(2-9)
f(2) = x,y,t[’y(Nl 2= n)PN’A’»M?w] = ZL2>NI(27%) fN27M2,L2’
=Ny
12— %) 3
f(3) = l‘vyi[rY(Nl 2t — n)PNS»Msui] = ZL3>N1(27%) fl(V3)7M37L3

with Ny = N, No = N{, N3 = NJ. The claim again follows from applying Proposition 5.2.
We turn to the estimate of

II = f Pn(0;1V,0) Py (vV yuz).
]D)AX[O tN]

As above, we write

PN(vaUQ) = PN(pN'UP«NVyUQ) + PN(P«N’UPNVy'LLQ) + PN(PRN’UPENV?J'U,Q).
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After additional decomposition in time and in the y-frequencies, the claim follows from applying Proposition
5.2. For the first term, we have to estimate

j g Pt (020 ANt ) P i (07 (N2 = ) P (000" Dy (V2= )
]D)Ax01

for [n| < TN?~% and M; € 2V with Ny = N, Ny ~ N, N3 = N’ < N. Letting

o 1
f = ]:z,y,t[’Y(N(z 2t — n) Py, v, 0 ' Vvl = ZleN(zf%) fl(vl),Ml,Ll’
o 2
@ = Foyi[y(N?=2)t —n) Py, a,0] = 2L,sNC-D I srras
o 3
FO = Foyaln(NC=Dt —n) Py w07 V] = X ye-9 £ty
the claim becomes a consequence of Proposition 5.2 and carrying out the summations. The other terms are
estimated likewise. O

6. PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1, which asserts low regularity well-posedness of the
fractional KP-I equation:

u(0) = 6 € B*(D) (53)

with « € [2,4], and s and D to be specified. The starting point is the local existence on arbitrary domains
D= Kl X KQ X K3 with Kz € {R,T}

O — 0, DSu — 0 Ayu = 0, (u?), (t,7,y) € R x ]D),}

Proposition 6.1. There is a data-to-solution mapping ST : E* — CpE* with T = T(||¢| gs) of (53).
In the following we prove that we have data-to-solution mappings S5 : E° — LT E° with T' = T'(||¢| ga) for

s =2 4withue CLH'nCrH' nCrE°, which is the unique distributional solution to (53). By interpolation,
uwe CrEs for 0 < s < s. Hence, we find S§ : E* — CpE™. We have reduced to the following:

Proposition 6.2 (Local existence at high regularity). Let s > 4. For every ¢ € E® there exists T = T(||¢|g1)
and a unique solution u to (53) in the distributional sense on the time interval [=T,T] satisfying

we CrH? (-1<o<1), duelfH', uweCrE’ nLEES (0<s <s).

In the first step we construct solutions via Galerkin approximation. Let ¢ € CF(R3) be a radially
decreasing function with

p(&,m) =1 for [(§,n)] < 1 and ¢(&,n) = 0 for [(£,n)| =2
We define x(&,1) = ¢((&,1)/2) — ¢(&,n), which is supported in B(0,4)\B(0,1). In the first step we consider
the Galerkin approximations with low and high frequency cutoff for M e 2
M

(Paf)(&,m) = X((&n)/K) fEmn).

K=M-1

We consider )
atu — @Dg‘u — 6;1Ayu P (6 (P]\/[U,) ) }
u(0) ¢ € £°(D).

By rewriting (54) as an integral equation,

WM (1) = Sa(t)d + j St — 7) Par (P Py (r))dr,

we infer local existence in E*(D) for s = 0 by the Cauchy-Picard-Lipschitz theorem. This is based on S, ()
being bounded on E*(D) and the nonlinearity trivially being bounded on E*(ID) by Sobolev embedding.
This however yields a bad constant and the Cauchy-Picard-Lipschitz theorem yields an existence time, which
depends on M. Denote the emanating solutions by (u™) € CrE*. To show a bound independent of M, we
apply the analysis of the previous sections to (54) for s > 4.
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First we suppose that ||¢p|gs < g9 « 1. From Lemma 2.2, Proposition 4.1, and Proposition 5.1, we have
the following set of estimates for 7' = min(Tiax, 1) with Ti,.x denoting the time of existence according to the
Cauchy-Picard-Lipschitz theorem in C'rE*:

[u™ ] 7 () < [uM () + 02 ((Paru™)?) a1
||6z((PMA2/Z)2)HNs(T) < ||UAZ| Fs(T) |\]\146AZ\\F4(T) " (55)
[ %0 () < lolE: + w5 o) lu™ | pacr).-

Above we use monotonicity ||PMUMHX5(T) < uM] xs¢ry with X € {F,N'}. For s = 4, this gives

[ sy S 1015 + N [Facry + [u™ [Facr)- (56)
Hence, by choosing € small enough, we find by (56) from the continuity of ||uM||B4(T) in T,

Jim u | ps(ry < |6]ps, and lim 02((Paru™)?)|acs(r) =0,
that
luM [ psry S 16]ms S €0 < 1. (57)

Hence, by continuity of T+ [[u ] pa (), SUPe[—1,7] [u™(t)]| zs < |u™ | pa(r) and iterating the Cauchy-Picard-
Lipschitz theorem, we find that the time of existence for solutions in CpE* satisfies the bound Tiax = 1

provided that ||¢]| g1 < &¢ « 1.
Another application of Lemma 2.2, Proposition 4.1, and Proposition 5.1 for s > 4 yields

[u™ | #o ) < uM | gsqry + [02(Prru)?) | ws (1,
||aw((PM]V7IiA;[)2)HNS(T) < ||UA§|F5(T) HAZMHF%T) - (58)
w5 () < lolzs + lu™ sy lu™ -

This set of estimates gives

[ ey < luol oo + ™ [ Foa gy ™ [Foe oy + ™ sy ™ W oy (59)
and therefore, for [[u™ | ps(r) < [¢]ps S €0 « 1 and T = Tax([|¢] g4) 2 1, we find
[l ey S Il (60)

We summarize that we have a priori estimates

sup [u™ (2)]
te[—1,1]

Be S |4l

Es

for s > 4 provided that |¢|gs < g9 « 1. We have now ensured existence of (u™ ) con on a common time
interval. We observe that for any ball B = B(0, N) € D' we have bounds uniform in M:

uM e LFHY(B), 0w e LFHY(B).

By the compact embedding H'(B) — L?(B) together with the continuous embedding L?*(B) — H~!(B),
we can apply the Aubin-Lions compactness lemma (cf. [14]) to find that there is a subsequence u — u €
CrL? .. We have u € LF E*(D), which yields u € L¥ H'(D) and d;'V,u € L¥L*(D). By dual pairing in L?
for p € CF([-T,T],D) and passing to the limit M — oo, we find that u is a distributional solution to (53).
Since u € CY([-T,T), H ') n L H (D), we conclude u € C([-T,T], H° (D)) for o € [-1,1). Next, we show
8;1Vyu € CrL?. We use Duhamel’s formula for t; < to:

01V ulty) — 0V u(ts) = (Sa(tr) — Sa(t2))0. ' Vyo + 2 L ® St — 5)(uVu)(s)ds.

The linear part converges to zero for t; — to since (S, (t))ser is a Co-semigroup in L?. With I = [t1, 1], we

have
to

I Salt—s)(uVyu)(s)ds|L2m) S [ulppe m)lulrz e @
ty

We use Strichartz estimates to improve on Sobolev embedding, which barely fails to control the L,-
contribution. This was previously used in the 2d case to obtain estimates in H?° in [17]. We use the
following Strichartz estimates, which is straight-forward from Section 2 by Littlewood-Paley decomposition:

1Restricting to compact domains is only necessary if D # T3.
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Proposition 6.3 (Linear L*-Strichartz estimates). Let T € (0,1], a > 0, ¢ : D — C, u(t) = Sa(t)¢, and
€ > 0. The following estimate holds:

lull s s, ) S I<02)2 <0, B2, - (61)

T zy
Secondly, we need the following anisotropic Leibniz rule, possibly on mixed domains, whose proof is
postponed to the Appendix:
Proposition 6.4. Let D = K; x Ky x K3 with K; € {R;T}, o, 8 = 0, § > 0, and % =
following estimate holds:

1€0:)7¢00)" (u?) |22, ) < 1K0=)*C0p) ull 2, ) Il £, ) + 1€02)** ull 2 L5 ) <0y ul Lo 1 ) - (62)

zy

1,1
> + 7 Then the

Based on Propositions 6.3, 6.4, and Sobolev embedding, we can estimate:

3 3 1
[ s 1z, < T3 I02) T 0y 0|12

zy

3 7 1 7 7 1
+ T4 K0y 750> uM gz, [ oy rg, + T3 0™ g r20g KO 0™ g pp g

3 3 7
STH||¢|ps +T7 HUMHL%E“HUMHL;L;;J +T HuMH%;?E‘l'
(63)
By a priori estimates in E* uniform in M, we find HUJMHL}L;@ — 0 as |I| — 0 uniformly in M. By limiting
arguments, this shows continuity of d, 'V, u € CpL?, hence u € CrE°. By interpolation with u € LF E*(D),
we infer that u € CpE* (D) for 0 < s’ < s. This concludes the proof of existence for small initial data.

To extend the argument to large initial data, we use rescaling. Recalling (2), we find that

2(a+1)

ua(@,y,1) = A Fu(AF e, Ay, A8 )

is solution on Dy with scaled initial data ¢*(x,y) := )\_%qﬁ()\_a%?x, A~1y) whenever u is a solution on D)
with ¢.

We find ||¢| g4 Slglza A", that is, the norm is polynomially decreasing in A. On the rescaled domain,
we consider ~ ~
o — 0, Doud — o 1A ud = Pp(0,(Pyudh)?), } (64)
uy’ (0) = ¢* € £°(Dy).
Like above, for s > 4 we have the following set of estimates for T = min(Tjax, 1) with Tiax denoting the
time of existence according to the Cauchy-Picard-Lipschitz theorem in CpE®:

! | ey < a5 () + 102 ((Prrd)) ooy,
100 (Prrid!)) nocry < A a2, 7, (65)
[d e < 103 + A [ -

Applying the set of estimates with s = 4, we find
M A M M
X sy < 16™M5s + A Il [y + X [l I (1) -

Since ||¢*||z+ is polynomially decreasing in A, we can choose A\ = A(||¢] 1) large enough such that we obtain
like in the case of small initial data the a priori estimate:

sup [u} () p1oy) < 1674
te[—1,1]

Like above we can infer the existence at higher regularities s > 4, likewise on [—1, 1]. By the same compactness
arguments, we obtain a distributional solution u) to
Opuyn — 0xD%uy — 0, ' Ayuy = 0, (u3), (L, 2,y) € R x Dy,
ur(0) = ¢* € E°(Dy) }
Moreover, repeating the arguments from the small-data analysis yields uy € CrH? (D)) for o € [—1,1)

and uy € OrE* (D)) n LEE*(Dy) for 0 < s’ < s. We can scale back to infer that for T = T(\) = T(||¢| g)
we have u € CrH? (D) for o € [-1,1) and u € CpE* (D) n LEE*(D) for 0 < s’ < s.
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This completes the proof of existence of distributional solutions with the claimed regularity properties.
We still have to prove uniqueness. To this end, we consider differences of solutions v = u; — us with initial
data ¢; € E°, s > 4, i = 1,2. Suppose that

||0mUHL1TLg~y(D) < (66)
for the constructed solutions. We compute by integration by parts, Holder’s inequality, and Grgnwall’s
lemma: i )

(B = I(t)Fa < e o) 7. (67)
Hence, (66) would clearly imply uniqueness. We apply Strichartz estimates from Proposition 6.3 together
with Sobolev embedding and the fractional Leibniz rule to find

3 7 1 3 1 1
l0sully 1z, € TH€0 T2 ]2z, + T5[<00) 3 *0y»2 (M) 1y 12,
3 3 1 1
S T4 @llps + T3[0a) ™ 0y Fullrgre, [uliy e,

T 11 1
+ 15|02 "ulrzrars K02 “ulrzrrLs

3 3 z
< T4l + THul g mslul oy oz, +T¥ [ulhp e

Oz < 100 (ur + u2)] 2

zy

By the bound of ”u”LlTL;f;J proved in (63) after taking limits, and u € L¥ E*, we find that d,u € L L,
]
With local-in-time solutions u € C7E™ at hand for smooth initial data ¢ € E*, we state a more precise
version of Theorem 1.1, which will be proved subsequently. Let s(a) =3 — §.

Theorem 6.5. Let « € [2,4), and s > s(a). For a = 2, suppose D = K; x Ko x K3, K; € {R; T} and for
a € (2,4), suppose that D = K x R? with K € {R; T}.

Then there is a continuous T' = T(|¢| g+m)) and a continuous data-to-solution mapping S7. : E*(D) —
CrE*(D) for (53), which extends SF : E* — CprE™.

The proof of local well-posedness proceeds in three steps:

e We show a priori estimates in £ for s >3 — § up to times 7' = T'(|¢| g- ).

e We show Lipschitz continuous dependence in E°? for initial data in F® with s > 3 — S and T =
T(Jus(0)] . Juz(0) | 5-).

e By using frequency envelopes (cf. [21, 9]) adjusted to the E*®-norms, we conclude the proof of
continuous dependence.

In the following, we work with smooth initial data ¢ € E*. It suffices to prove the claims for data in E*
because once the continuous dependence on the initial data is established, we obtain extensions S7. by density.

A priori estimates: Let o € [2,4) and § > s(«). The following is a reprise of the analysis to show existence
of distributional solutions; we shall be brief. First we suppose that |¢||gs < €9 « 1. Let u = SF (). Let
Tmax(|@|£1) be the time of existence according to Proposition 6.1. From Lemma 2.2, Proposition 4.1, and
Proposition 5.1, we have the following set of estimates for 7' = min(7Tax, 1):

lulpsery < [ulpser) + 10 (w?)as(r),
102 (W) arsry S lulFs (), (68)
s < JuollBs + lulGos (-
This gives
lulFs 7y S luolls + Nl sy + lulfs (- (69)
Hence, by choosing € small enough, we find by (69) that
lullps(ry < lluolles- (70)
Another application of Lemma 2.2, Proposition 4.1, and Proposition 5.1 yields
lulpsery < [ulpacr) + 110 (W?) | ara(ry,
102 (W) nvary < lulpser) lulpeery, (71)
||UH2B4(T) < HU0||2E4 + ||UHF§(T) ||U||§:4(T)~

This set of estimates gives

lullsry < lwolEs + el ey ulfs () + lulFa g lules ey, (72)
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gs Seo < 1and T = Tyax(|uo| ), we find
|ul pacry < luollze- (73)

Combining (70) and (73), we infer existence and a priori estimates in E® for T' = 1 after choosing |Jug||gs <
€p < 1. Rescaling allows us to extend the argument to large initial data, like in the proof of local existence.
The details are omitted to avoid repetition.

and therefore, for |[u|Fsry < [uol

Lipschitz continuous dependence in F°: Let u; and us be solutions to (KP-I) with initial data wu;(0) and
u2(0), respectively. We let v := uy; — ug, which solves the equation

0pv — 0, D20 — 0, Ayv = 0 (v(ug + ug)).

From Lemma 2.2, Proposition 4.1(b), Proposition 5.3, we have for § > s(a):

o]l 7o) < [vllsogry + 10z (v(ur + u2)) [ wor),
102 (v(ur + u2))Invoery < [ollrory(uill psr) )
[0l B0y < [v(0)I70 + Hvllfvom(HulllFs + |zl Fs(r))-
Taking the estimates together, we find
[0 Foczy < 100 + 1ol Fo(ry (lurlFs iy + lu2lFeiry) + [0l (lusllpsery + luzllrecr)).

For T = T(||u1(0)| g=,

|ua(0)||gs), we obtain by the previously established a priori estimates
[vlFo(ry < [0(0)] o

Continuity of the data-to-solution map: In this paragraph we extend the data-to-solution mapping from
smooth data to E® and make use of frequency envelopes. We follow the exposition of Ifrim—Tataru [9], which
we adjust to the present setting of the E*-scale of regularity. Let ug € E° with size M. We define frequency
envelopes in the E*-scale:

Definition 6.6. We say that (cy)yeon € £2 is a frequency envelope for a function u in E® if we have the
following properties:

a) Energy bound:

<cen 9
b) Slowly varying:

CN )
CJS[J].

Above and in the following let [5] = max(y, 4) for z,y > 0.

lulfe ~ Y ek
N

is called sharp. Frequency envelopes for the datum wg € E® are constructed by mollifying the initial guess
cj = HPJU0|ES to

An envelope which satisfies

N -5
e =sup ([7] "¢s).

We turn to regularization in the setting of frequency envelopes: Let ug € E® with |ug|gs = C and let
(cn)neavo denote a sharp frequency envelope for ug in E®. For uy we consider a family of regularizations
u}! € E* defined by truncating the z-frequencies at M, i.e. u)! = P<prug. These regularizations satisfy the
following:

i) Uniform bounds: |Pxud!|gs < cx,

ii) High frequency bounds: |ud! |Es+] < MjcM,
iii) Difference bounds: |[u2™ — u}f||go < M~
iv) Limit as M — 00: ug = limp;—- uéw in Es.

Associated with 4! we obtain a solution ©™ in E* which exists up to time T = T(C), uniformly in M. We
have the following uniform bounds:

i) High frequency bounds:

W™ oo, By < Mien, § 20, (74)
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ii) Difference bounds:
Ju*™ — UMHC([O,T],EO) SM fcy. (75)
Interpolation gives
[u?™ — uM|cppm S M™ET™ey om0

Therefore, we obtain the uniform frequency envelope bounds

K _ _
”PKUMHCTES SN CK max{M; ].} N

for any N € Nj.
We analyze the convergence of u™ as M — co. By writing the difference as a telescopic sum

w—uM = Z w?l — ol

L=M
the difference bound (75) implies convergence of u in E° to a limit u € C7E® with
|u —u™M| om0 < M7
Now, we prove convergence in CrE®: For L' « L we have from (75):

LI
[P (u?® —u®)lerpe < (L) [0 = u"oppe < (f)SCL

For L’ » L, we can use (74) (and the slowly varying property) to argue
_ L.
|Pr(u** —u)|orpe < (L) (|PLu*t|oppee + | Prut|ers:) S (ﬁ)SCL-
Consequently, an application of Young’s inequality combined with the slowly varying property gives

1
HU—UIVIHCTES < ( Z C2L)2 -0 (M—)OO)
L=M

Now we turn to the proof of continuous dependence. We shall see that the previously constructed data-
to-solution mapping is also continuous. Let ug, — ug in E* for s > 3 — 5 and the corresponding solutions
Un, U, which exist with a uniform lifespan T = T'(|ug||gs). We have to show that w, — u in C([0,T], E®).
We have seen that u,, — u in C7 L% Moreover, uniform boundedness in C([0,T], E*), which was proved in
the previous paragraph, implies convergence in CrE? for every 0 < ¢ < s. For 0 = s, we shall again use
frequency envelopes. To carry out the argument, we consider the approximate solutions v and u™. We use
that the initial data converge in all E7-norms:

ud? — ud! in E7 for o > 0.
By the above, we have convergence of the regular solutions in all E?-norms:

M M .
u, —u in CrE?, o2=0.

We use the triangle inequality to compare v and w,,:
M M M M
lun = ulor s S Jup —u™llerps +[u™ —ulorps + lluy” = unllores.
The first term goes to zero as n — oo for fixed M; the second term goes to zero as M — oo. It remains to

obtain uniform smallness of the third term for large n. For this purpose we consider frequency envelopes c(Jn)

for the initial data u,q. By construction, we can argue that
(cffn))JEQNo — (c) jezvo in £2
with (c¢s) denoting a sharp frequency envelope for ug. Hence, in terms of frequency envelopes, we find
1 1
lun = wlorpe < Jun' —uleps: + (3 d)* +( 3] (€))%,
L=M L=M

implying

=

limsup [un — ulerse < (Y )

n—>L L=M

-0 (M- )

and the proof of continuous dependence is complete. O
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7. LOCAL WELL-POSEDNESS FOR FIFTH ORDER KP-I EQUATION

In the following we prove semilinear local well-posedness
dpu— O5u — 07 Ayu = 0, (u?),  ((x,y),t) e D xR,
u(0) = ug € H**2(DD)

for D = K x R?, K € {R; T} in anisotropic Sobolev spaces
H*»*2(D) = {¢ € L*(D) : |¢]Fe1.0o = J|<5(€7n)l2<€>231<n>252d§dn < oo}

with s1, 89 > % as stated in Theorem 1.2. We show local well-posedness via the contraction mapping principle
in adapted UP-/VP-function spaces. Let u € X7""** (to be defined below) be a solution to
Oru — 02u — 0, P Ayu = f,
u(0) = ug € H°»*2(D).
We show the estimates
t
Juul oo S fwolrenes + 10,77 (t)f =) F()dg] .,

0
t

5 | A—1
10,79 <t>f0 et 809, (wyug) (s)dsl mnoer S T xnoe ooz,

for some « > 0, from which the result follows by standard arguments. The linear estimate is immediate from
the definition of the function spaces, and its proof will be omitted. We shall focus on the bilinear estimate.

7.1. Function spaces. We shall be brief and refer to [7, 8] for details.
Let Z be the set of finite partitions —o0 =ty < t; < ... < txg = 00, and let Zy be the set of finite partitions
—0<tg<t1 <...<tg <o00.

Definition 7.1. Let 1 < p < co. For {t;}F_ ;€ Z and {¢}}1—,} € L*(D) with

K—-1
> lléxlf. =1 and ¢ = 0.
k=0

We call the function a : R — L? given by
K

a = Z 1[tk,1,tk)¢k

k=1
a UP-atom. We define the atomic space
UP ={u= Z Aja; : aj; is a UP-atom, and Aj € C such that Z |\;| < oo}
j=1 j=1
with norm
lullore = inf{z IAj] 2 u= Z Ajaj, Aj € C, a; : UP-atom}.
j=1 j=1
The slightly larger spaces of bounded p-variation are defined as follows:

Definition 7.2. Let 1 < p < . We define V? as function spaces v : R — L?(D) such that v(w) :=
lim¢ o, v(t) = 0 and v(—00) exists, for which the following norm is finite:

K 1
[ove = sup (3] llo(t) = o(te-1)[72) "
{tk}szoez k=1
Let (S(t)uo)’(\f7 n) = et E+1° /)40 (€, 1) denote the linear propagator in L2.

Definition 7.3. We define
o U =S()UP with norm [[ufyz = [S(—)ulv»,
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o Vg =S()V? with norm [ufyz = [S(—)ulvs.
The function space in which we apply the contraction mapping principle is defined as

X = S € CUOTL L)+ | Fyguos = 3 N3 M2 | Pyl < oo
N,M

We define the smooth (modulation) projection for M € 2

QS u(E,n, ™) = b (r — € —12/€)a&,m, 7)

with ¢ € C like in Section 2.2.
Recall the following bounds for Q3; on UZ and VZ:

Lemma 7.4. We have
|@3rule < M2 [ulz,
|Q2nrule < M™% ulyz
and uniform boundedness of Q3 ,; and Q% ,, in M on U} and V.

7.2. Proof of bilinear estimate. This section is devoted to the proof of

t
I [0,77 (t)Jo S(t— S)aw(m(8)U2(8))d3||x;1152 < Tur] xzre2 [luz] x 722

with s; > r; > %
We carry out an inhomogeneous Littlewood-Paley decomposition as well in &- as n-frequencies

U; = Z PN7M’LL¢.
N.M
By duality (U?)* = V2 (cf. [7, Proposition 2.8]), it suffices to prove the following for some a > 0:

sup |J’f P w0 (P vy i Py asuz)dadydt|  TC(N, M) Py, vy ua oz | Py, a, sz (77)

lolyvz=1
The claim then follows from square summation for acceptable bounds of C(N, M).
Lemma 7.5 (HighxLow-interaction). Let Ny » 1, and Ny » Ns. Then, estimate (77) holds true with
C(N, M) = Nj M,

Proof. If Ny = 1, we make an additional homogeneous frequency decomposition of the low frequencies, so
that Ny € 2Z. We estimate the frequencies with Ny < N 4 by the L*-Strichartz estimates:

1
| ff ON,M O (Pny 01, U1 Py u2)| € NTZ | Prvy gy ua || s | Povy ar, ual| 1o
1 1 1
< T2 NNy N3 | Py iy ua|oz | P as uzllvz -

We suppose in the following that Ny > Ny 4. First, we estimate the resonant contribution when all modula-
tions are smaller than NiNo, i.e.,

| ff QNN PN 1000 (PN, ay Qv vy 1 Py 1, Qv v, U2) |- (78)
This is amenable to the bilinear Strichartz estimate in Proposition 3.2, which gives

(78) S N1Qanan, Oz (Pry vy Qe Nt N, W1 PNy 1, Qe Nin, U2) | L3 L2

1 1 1
S T2 NG Mg | Py vy un o2 Prv asz vz -



LOW REGULARITY WELL-POSEDNESS OF KP-I EQUATIONS: THE THREE-DIMENSIONAL CASE 31

In case there is one function in the trilinear expression carrying high modulation we shall rely on the L*-
Strichartz estimate. Suppose that v is at high modulation. We use by Lemma 2.6

| ff Qz NN, PN vv0u (Pry vy uy Py, us)|

< (N{N2) ™2 Ny | Py, agy ] o

z,y,t

| Praasualzs (79)
1 i 1
< (N{N2) "2 Ny NG NP [lua |z [z vz
Note that depending on N, < 1, the estimate further improves, but we do not need this. To find an
additional factor T®, we can use two L*-Strichartz estimates, but estimate Q> N N, Pn,pmv in LY L2 by
Holder’s inequality to find:

| fQZN{‘NQPN,]V['Uax(PNl,Mlu1PN2,M2U2)|
1
ST>N, ”PNl,MlUlHL;y,t||PN2,M2U2HL:y,t
1 1
S TENING NE [lua sz -

Interpolation of (79) and (80) yields a favorable power of N; ' and a factor of T°.

If ug is at high modulation, then two Li’y’t—StriChartz estimates applied to v and u; yield together with

| Jj P vv0s (P v w1 Qz N, P, a,u2))|

< Ni|| Py arvl| 4

Tt HPNhMlul ”Li,y,t ||Q2N{1N2PN2,M2UQHL2

1 1
< NiNG N (N Na) =2 | Py g a2 [ P v iz

The case with u; being estimated at high modulation and v and ug via L‘;y’t

behaved because the L*-estimates lose fewer derivatives. The same interpolation argument like in the proof
of (80) allows us to gain a factor of 7% at dispensing a fraction of (N{Ny), which is affordable. The proof is
complete. O

Lemma 7.6 (HighxHigh-High-interaction). Let N ~ N; ~ Ns » 1. Then, we find (77) to hold with
C(N, M) = N2, M2

min*""min"

-Strichartz estimates is better

Proof. In the resonant case, when all modulations are much smaller than NiN,, we can use a bilinear
Strichartz estimate to obtain

sup |JfQ<<NfN2PN,M'Uax(Q«N{‘NQPNl,M1U1Q<<NfN2PN2,M2u2)|

Jolly 2 =1
1
ST?N|Qunin, (Qentng Pny vy w1 Qe nan, PNy, v u2)|| 2
1 Navyd, 3
S TEN(52) " Myl Prv v oz | P vz vz [z
i

In the non-resonant case, when there is a function with high modulation, we can use two L*-Strichartz
estimates to find

sup | ff QszszN,MUax(PNl,MlU1PN2,M2u2)| SN sup [Qznin, PN,z | Py any ]| pa | Py, v, uz e
vlyz=1 lve=t
< N(N{No) ™2 N1 || P, a2 [P, as a2 -

Interpolation with

sup |fQzN;lNzPN,Mvaz(PNl,MlU1PN2,M2U2)|SN sup  |Qznan, Pnarvf ez [Py oy || s | Py ars uz s
vz =1 lolve=t

1
< T2 NNu||Pyy iy |l vz | Pag,ars vz vz

yields the required factor of 7. Since this estimates the functions in V&, the argument also applies when u;
is at high modulation. O
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Lemma 7.7 (HighxHigh-Low-interaction). Let Ny ~ No » 1, and N « Ny. Then, we find (77) to hold with
1,01
C(N,M) =Nz M2

min -

Proof. If N = 1, we carry out an additional homogeneous dyadic decomposition in N € 2Z. Let N < N; 4,
In this case we simply use two L*-Strichartz estimates to find

[ Praroon (P sn s P anuo)] € NTH P s | P
S NT? (N1 N)Z | Py, |z | Pty 2z

In the following let N > Ny 4. We begin with the resonant case when all functions have modulation « N N
This allows us to use a bilinear Strichartz estimate

| ff Qv N PN 200 (Q s v Py a1 Qv v Py ity 2|

S NHQ«N{‘N(Q«N{‘NPNLJVHulQ«N{‘NPN,MU)HL%L%

1, N 1_ 1
S NT2(557) " Mol P vy a2 1PN Vo2 [P, s w2z -
1

But we have to estimate v in VZ. For this purpose we interpolate (cf. [7, Proposition 2.20]) with the Strichartz
estimate

3 1
1PNy aay ur Py, vz € N3N Py vy un o | Py a v s -

Hence, we obtain

<Y

1 1 5
Nfﬁ *Nlog(N3Ny")| Py, ayur vz | P s uzllvz | Proarvlve-

In the non-resonant case we have one modulation comparable to N N. We obtain

| Jf QNN PN 00z (P vy ua Py ap2)| S | Qz nvi v 0n P vl 22| Py a2 | Prvy v, w2 s

_1 1
S N(N{N)™2(N1N2) 2 | Py an vz | Py a2

An interpolation argument like above yields an additional factor of T'*. The estimates with u; at high
modulation are better behaved because of improved L*-Strichartz estimates at low frequencies (applied to
PN)]\/[U). O

Lemma 7.8 (LowxLow-interaction). Let N, Ny, No < 1. Then, we find (77) to hold with C(N,M) = 1.

Proof. By two L*-Strichartz estimates we find

2
1 1
sup | [ [ Prvarots (P an i P ua)| € T4 P syl P aualzs < 74 ] o,

folyz=1 i=1

which is good enough. (]

APPENDIX A. ANISOTROPIC LEIBNIZ RULE ON MIXED DOMAINS

This section is devoted to the proof of Proposition 6.4. We use the following fractional Leibniz rule,

which is based on the well-known Kato-Ponce estimate (cf. [4, 5]) for o > 0, § = p% + q% = p% + q% for
L <p1.p2,q1,q2 < ©:
[K)* (F )2 ay S KD Fllior wa)lglar ey + 1f|Lr2 ®a)[KO)* gl Loz (ma)- (81)

We also need the above on R% x T92. It turns out we can transfer the above estimate for 1 < py,ga < 00
in a straightforward manner by an extension operator. Let ¢ € CZ(R% Rs() denote a radially decreasing
function with ¢(x) = 1 for |z| < 10 and ¢(z) = 0 for |z| > 15. We denote the extension f = fo € L?*(R%) of
f € L?(T4). We have for k € N clearly

IK0Y* £l 2 ray < K" FlLa(gay < K" fllL2(ray.
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By interpolation, the equivalence also holds for {0)*, and by obvious modification of the extension operator
also holds on R% x T2, So, let f,g: T? — C, and let f, §: R — C denote their extensions. Then we obtain

KDY (f9) 22 (way < KD (F) 2y S KD Fllprs @ay|gl o may + 1F | ar gy KD Gl Loz may -
Clearly,
190202 ey < Nglzosrays 1 Flpas ey < 1flpos (ray.
To argue that
1KY Fll oo (ay S 1K) fll ooy (82)

for 1 < p < o0, we again use interpolation such that it suffices to show (82) for & = k € N. We use the
characterization of LP-based Sobolev spaces

10" Fllor ey = [ fl oo @y + D5 10%FllLoma)

|| =k
from which (82) is immediate by the product rule. We have proved the following:

Proposition A.1 (Fractional Leibniz rule on cylinders). Let dy1,d2 € Ng with dy +de2 > 1, a = 0,

L1 _ 1,1 _
ot =5 T for1<pi,p2,qi,q2 <00 and 1 <py,qa < 0:

1
2

K™ (f9) | L2mer xmaz)y S UKD fll Lo mer xraz) 9]l Lar metr xrazy + [ o2 (mer 12 [KO)¥ Gl Loz (Rer x1t2y- (83)
From the above we derive the following anisotropic version. Let D = K; x Ko x K3 and write (z,y) €
K; x (K2 x K3) = . Dual variables will be denoted by £ and 1. We define Fourier multipliers (0,)* and
{dy»? on D by
(0> ))& m) = <O (©). (@ NEm) = ) F (& m).
We are ready for the proof of Proposition A.2, whose statement is repeated for convenience:

Proposition A.2. Let D = K; x Ky x K3 with K; € {R; T}, o, > 0, § > 0, and % =
following estimate holds:

1€0:5¢0y)° (W) 22, 0y < [€0:)¢0y) ull 2

zy zy

1,1
» + 7 Then the
(D)HUHL;{;(D) + H<ax>a+5U”L§L§(D) ”<ay>5uHLfL§(ID))~ (84)

Proof. We use a paraproduct decomposition for the x frequencies. Let Py denote dyadic Littlewood-Paley
projections in the z-frequencies. First note that by the usual fractional Leibniz rule (81) we find for the low
frequencies:

[€02Y™(0,Y* Pea ()22, S IK0,YP ()2, S 160, Pula ol

By Littlewood-Paley theory, we write

2. 2
| Pzaulz ) = Z | Pyullzz, -
Ne2No

For N € 2o we estimate the High-Low interaction as follows:
1€0:5°¢0y )" Py (PxuPenu)|z, ~ N°[[€0,)" (PenuPenu)| 2|
< N[0y’ Panvulrz
< [€02)*¢0,)" Pyullrz, | Panul zz,
+ N0 Pyt 2 1y | Pen {0y ull Lr 13 -

Penulny + [Ponul 13 €0,)" Panul Ly 2

The claim follows from square summation. The High-High-Low interaction can be estimated likewise. O

Remark A.3. The é-derivative loss can likely be removed by modifying the arguments from [4] to the
anisotropic setting, but we do not need this in the following.
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APPENDIX B. SEMILINEAR ILL-POSEDNESS ISSUES

In this section, we prove that the Cauchy problem for (KP-I) is semilinearly ill-posed for initial data
in H*v*2(R3) for any (s1,s2) € R? and o < %2, namely we prove that the flow-map for (KP-I) cannot
be C2-differentiable at the origin. For similar results for the two-dimensional equation on R?, we refer to
[15, 13, 18).

Theorem B.1. Let a < %, 5€ R? and D = R3. Then there exists no T > 0 such that (KP-1) admits a

unique local solution defined on the interval [=T,T] such that the flow-map for (KP-I)
I':ug— u,
is C%-differentiable at zero from H®(R3) to C([-T,T], H*(R?)).

Proof. We consider the following Cauchy problem for v € R:

O — DY0u— 07 Ayu = 0, (u?), (z,y,t) ER x R? x R, (85)
u(0) = y¢ € H5°2(R3).
Suppose that u(v, z,y,t) solves (85). Fix T' > 0 such that the map I' is C? and let ¢ € (0, 7). Then,
t
w(y,@,y,t) = 1Sa(t)o(z,y) + J Sa(t =t uly, z,y, " ug (v, z,y,t")at'. (86)
0
Then
ou
%(Oa z,Y, t) = Soz(t)d)(x’ y) =iul (’I, Y, t)
(92'11; t (87)
07’}/2(0’ Z,Y, t) = 2J Sa(t - tl)ul(x7 Y, tl)awul (J"a Y, tl) =: UQ(J:’ Y, t)
0
The C? assumption enables us to write
2
u(y,,9,8) = yur(@,y,) + Jrua(e,y,t) + 0(3%),
and
lua (s t) | s sy < ||¢|§{§(R3)~ (88)

We show that there exists initial data ¢ such that (88) fails. For & € R,n € R?, define ¢ by its Fourier
transform as follows:

(&) = D] *1p, () + |Do| 2N (H 21y, (¢ ), (89)
where Dy and Dy are defined as follows and |D;| denotes the measure of the sets D;,i = 1,2:
Dy = [B/2,8] x [-Va +18%, o + 152] x [—ﬂ%+25”8%+26]7
Dy :=[N,N + f] x [Va+ IN?, Va + IN? + 2] x [-N27% N+77].

Here N, 3,6 > 0 are real numbers such that N » 1, 3,6 « 1 and will be chosen later. A simple computation
gives that @] gsms) ~ 1. Using [16, Lemma 4], we can write uy as follows:

(90)

_ o Eeit(T I =)
us(w,y,t) = CJ et @&ty n+t(€[E|% +Inl"/&)) — Ty # (&, m, T)dEdndr. (91)
R ™ —glel -
Using the definition of wuy, the expression for uy # uy is given by
2 2. . R
demen) = | o(r-alal - '"gl' ~ &l6l” - "?2')¢(51,m>¢(£2,n2>d51dm. (92)
R:

Set
—itQa(§1,m1,62,m2) _

) = EeilatrynTt(Ele| +In?/6) €
ro(gh i £2a 772)

q)(xvyat7£17nl7€27n2 :

We split ug into three parts:
UQ(xay,t) = C(fl(xayvt) + f2($7y7t) + f3(xayvt))a
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where

C

fi(z,y,t) = D1 J;él,m)eDl O(z,y,t, &1, m, &2, m2)dE1di dEadna,
! (€2,m2)€D1
C

fQ(zay7t) = |D |N2(Sl+(1+%)52) ﬁ§17n1)€D2 @(1‘7yat7£177717527n2)d£1d771d§2d772a

2 (‘527772)€D2

C

f3(x7 Y, t) = |D1|% |D2|%Nsl+(1+%)s2 <ﬁ£11n1)€D1 + ﬁfl,ﬁl)EDz )@(xy Y, ta 51) m, 527 772)d§1d771d52d772

(§2,m2)€D2 (&2,m2)eD1

We focus on the high-low interaction viz. f3. The spatial Fourier transform of the same is given by

f (5 t) Cfeit(f|f\cx+|n|2/f) (J )e—itQa(flﬂlhfzmz) _ 1d§ p
3.6, 1, = T 1 ars a)g +J dny.
Diff|DafNe e G e OeGom Gm)

Employing [16, Lemma 5], we have the following bound on the size of the resonance function.

Lemma B.2 (Size of the resonance function). Let (&1,m1) € D1, (§2,7m2) € D2 or (§1,m1) € D1, (€2,m2) € Da,
then

Q0 (1,71, & m0)| S N 182

Proof. We first note that we can relate the resonance functions in the two and three-dimensional cases as

follows:
(e = Emn)?

03d — _ 93
a (5177717/11’5277727/12) a (‘517771a§2>772) 5152(§1+§2) ) ( )
where the notation is self explanatory. Consequently,
2
QBd b ) ) b bl S maX ( Q2d b) ) b ) (51/]72 _ 52771) )'
| a (51 1, K1 52 2 /1’2)| | «a (51 m 52 772)| |£1£2(€1 +§2)|
From [18, Theorem 1.2], we have the following bound:
Q51 (€0 m, Ga,m2)| < NOTHB2.
We bound the second term on the right-hand side of (93) as follows:
(&2 — &am)? ( €172 |&am |? ) “1-25 46
=== < max , < max(8N , B49).
§162(& + &2 §1€2(&1 + &) [§162(&1 + &) ( )
We choose § « 1 so that
Q31 < NoT B2, (94)
O

We continue with the proof of Theorem B.1 and denote Q3¢ by Q,, as there is no confusion.

Proof (ctd.) We choose N, 3,4 such that N~ 182 ~ N9 ie, B~ N27372 and § = & for 0 < 6 « 1.

Then,
et (€1,m1,61,m2) _

= [t| + O(N7°).
Qoz(glanlvg%f’h) | | ( )
We calculate the H¥(R?) norm of f3(¢):
Di|? s 1_s s
U sy & N D1 ENAE < NI (95)
2

From (88), we have
2emsy 2 NBFH = N(F=5)—,

L~ l¢|
15

which is true only if o > 2. O

Acknowledgment. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
— Project-ID 317210226 — SFB 1283 (S.H.) and Project-ID — 258734477 — SFB 1173 (R.S.).



36

(1]
2]
(3]
(4]
b
[7]

(8]

(9]
(10]
(11]
(12]
(13]
(14]

[15]
(16]

(17]
(18]

(19]
20]

21]
(22]

SEBASTIAN HERR, AKANSHA SANWAL, AND ROBERT SCHIPPA

REFERENCES

J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution
equations. I. Schrédinger equations. Geom. Funct. Anal., 3(2):107-156, 1993.

D. Chiron and F. Rousset. The KdV/KP-I limit of the nonlinear Schrédinger equation. STAM J. Math. Anal., 42(1):64-96,
2010.

V. S. Dryuma. Analytic solution of the two-dimensional Korteweg-de Vries (KdV) equation. Sov. Phys. JETP Lett., 19:387,
June 1974.

L. Grafakos. Multilinear operators in harmonic analysis and partial differential equations. In Harmonic analysis and non-
linear partial differential equations, RIMS Kékytroku Bessatsu, B33, pages 11-27. Res. Inst. Math. Sci. (RIMS), Kyoto,
2012.

L. Grafakos and R. H. Torres. Multilinear Calderén-Zygmund theory. Adv. Math., 165(1):124-164, 2002.

Z. Guo and T. Oh. Non-existence of solutions for the periodic cubic NLS below L2. Int. Math. Res. Not., 2018(6):1656-1729,
2018.

M. Hadac, S. Herr, and H. Koch. Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H.
Poincaré C Anal. Non Linéaire, 26(3):917-941, 2009.

M. Hadac, S. Herr, and H. Koch. Erratum to “Well-posedness and scattering for the KP-II equation in a critical space”
[Ann. I. H. Poincaré—AN 26 (3) (2009) 917-941] [mr2526409]. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27(3):971-972,
2010.

M. Ifrim and D. Tataru. Local well-posedness for quasilinear problems: a primer. arXiv e-prints, page arXiv:2008.05684,
Aug. 2020.

A. D. Ionescu, C. E. Kenig, and D. Tataru. Global well-posedness of the KP-I initial-value problem in the energy space.
Invent. Math., 173(2):265-304, 2008.

B. B. Kadomtsev and V. L. Petviashvili. On the stability of solitary waves in weakly dispersing media. Sov. Phys., Dokl.,
15:539-541, 1970.

C. Klein and J.-C. Saut. Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili
equations. J. Nonlinear Sci., 22(5):763-811, 2012.

F. Linares, D. Pilod, and J.-C. Saut. Dispersive perturbations of Burgers and hyperbolic equations I: Local theory. SIAM
J. Math. Anal., 46(2):1505-1537, 2014.

J.-L. Lions. Quelques méthodes de résolution des problémes auz limites non linéaires. Dunod, Paris; Gauthier-Villars, Paris,
1969.

L. Molinet, J. C. Saut, and N. Tzvetkov. Global well-posedness for the KP-I equation. Math. Ann., 324(2):255-275, 2002.
L. Molinet, J.-C. Saut, and N. Tzvetkov. Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation.
Duke Math. J., 115(2):353-384, 2002.

L. Molinet, J. C. Saut, and N. Tzvetkov. Global well-posedness for the KP-I equation on the background of a non-localized
solution. Comm. Math. Phys., 272(3):775-810, 2007.

A. Sanwal and R. Schippa. Low regularity well-posedness for KP-I equations: the dispersion generalised case. Preprint,
arXiv:2205.02037v2, 2022.

R. Schippa. Short-time Fourier transform restriction phenomena and applications to nonlinear dispersive equations. 2019.
H. Takaoka and N. Tzvetkov. On 2D nonlinear Schrédinger equations with data on R x T. J. Funct. Anal., 182(2):427-442,
2001.

T. Tao. Global regularity of wave maps. II. Small energy in two dimensions. Comm. Math. Phys., 224(2):443-544, 2001.
T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for
the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence,
RI, 2006. Local and global analysis.

FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, POSTFACH 10 01 31, 33501 BIELEFELD, GERMANY
Email address: herr@math.uni-bielefeld.de

FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, POSTFACH 10 01 31, 33501 BIELEFELD, GERMANY
Email address: asanwal@math.uni-bielefeld.de

KARLSRUHE INSTITUTE OF TECHNOLOGY, ENGLERSTRASSE 2, 76131 KARLSRUHE, GERMANY
Email address: robert.schippa@kit.edu



	1. Introduction
	Outline

	2. Notations and function spaces
	2.1. Fourier transform
	2.2. Function spaces
	2.3. Linear Strichartz estimates

	3. Resonance and bilinear estimates
	4. Short-time bilinear estimates
	4.1. Dyadic estimates
	4.2. Proof of Proposition 4.1

	5. Energy estimates
	5.1. Energy estimates for the solution
	5.2. Reductions
	5.3. Energy estimate for the difference of solutions

	6. Proof of Theorem 1.1
	7. Local well-posedness for fifth order KP-I equation
	7.1. Function spaces
	7.2. Proof of bilinear estimate

	Appendix A. Anisotropic Leibniz rule on mixed domains
	Appendix B. Semilinear ill-posedness issues
	Acknowledgment

	References

