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BREATHERS AND ROGUE WAVES FOR SEMILINEAR CURL-CURL
WAVE EQUATIONS

MICHAEL PLUM AND WOLFGANG REICHEL

Abstract. We consider localized solutions of variants of the semilinear curl-curl wave equa-
tion s(x)∂2tU + ∇ × ∇ × U + q(x)U ± V (x)|U |p−1U = 0 for (x, t) ∈ R3 × R and arbitrary
p > 1. Depending on the coefficients s, q, V we can prove the existence of three types of
localized solutions: time-periodic solutions decaying to 0 at spatial infinity, time-periodic
solutions tending to a nontrivial profile at spatial infinity (both types are called breathers),
and rogue waves which converge to 0 both at spatial and temporal infinity. Our solutions
are weak solutions and take the form of gradient fields. Thus they belong to the kernel of
the curl-operator so that due to the structural assumptions on the coefficients the semilinear
wave equation is reduced to an ODE. Since the space dependence in the ODE is just a para-
metric dependence we can analyze the ODE by phase plane techniques and thus establish
the existence of the localized waves described above. Noteworthy side effects of our analysis
are the existence of compact support breathers and the fact that one localized wave solution
U(x, t) already generates a full continuum of phase-shifted solutions U(x, t+ b(x)) where the
continuous function b : R3 → R belongs to a suitable admissible family.

1. Introduction

Localized solutions of nonlinear wave equations on Rd × R have been a research topic
for many decades both in the physics and the mathematics community. One type of such
solutions are breathers which are time-periodic solutions with localization in space. Another
type of solutions are rogue waves which are localized both in space and time. Both types
have been known for the nonlinear Schrödinger equation (NLS) for a long time, i.e., bright
breathers in the focusing case [33], dark/black breathers in the defocusing case [34], and the
Peregrine solution [27] as an example for a rogue wave also in the focusing case. For other
completely integrable equations like the Korteweg-de-Vries equation and the sine-Gordon
equation bright breather solutions are known, cf. [1,11]. Whereas (at least in the scalar case)
both bright and dark/black breather solutions converge at spatial infinity to a (possibly zero)
limit, the terminology separates them with regards to the profile of their absolute value of
their intensity: for bright breathers the absolute value stands above the limit at infinity,
whereas for the dark breathers the absolute value of the intensity appears as a relative dip
below the background limit at infinity.

For the above mentioned completely integrable systems the inverse scattering transform
developed in [11] is the key to finding explicit localized solutions. For wave equations where
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the nonlinearity is S1-equivariant it is much simpler to find complex valued time-harmonic
breathers of the type u(x, t) = eiωtuuu(x). They are much easier to obtain by variational
methods and have been studied extensively for the nonlinear Schrödinger equation, cf. [5,30],
and more recently for spatially periodic potentials in e.g. [2, 26]. In our case it is also very
simple to find monochromatic, time-harmonic, complex valued breathers, cf. Remark 6(c)
and Remark 10 below, and it is remarkable that this is true under (almost) exactly the same
assumptions as for the existence of polychromatic, real valued breathers in Theorem 5 and
in Theorem 9.

As soon as one steps away from completely integrable systems or from time-harmonic
breathers, the number of examples of known localized solutions of nonlinear wave equations
becomes quite small. In discrete nonlinear lattice equations breathers are still more com-
mon, cf. [15, 17]. For semilinear scalar 1 + 1-dimensional wave equations with non-constant
coefficients it is a challenging task to find bright breathers. This was accomplished for the
first time in [6] by making use of spatial dynamics and center manifold reduction, and sub-
sequently by variational methods in [14, 18, 20, 29]. While the physics literature on rogue
waves is quite abundant, cf. [16] for a text book on oceanic rogues waves, mathematically
rigorous proofs for the existence of rogue waves are much more rare. Beyond Peregrine’s first
example [27] they have been found for integrable systems like derivative NLS, focusing NLS
and modified Korteweg-de-Vries in [7–9], and recently also for nonintegrable variants of the
NLS as perturbations of the Peregrine solution in [13,31,32].

In this paper we consider for p > 1 two 3+1-dimensional semilinear curl-curl wave equations
of the form

(1.1)± s(x)∂2
tU +∇×∇× U + q(x)U ± V (x)|U |p−1U = 0 for (x, t) ∈ R3 × R

and

(1.2) s(x)∂2
tU +∇×∇× U − q(x)U + V (x)|U |p−1U = 0 for (x, t) ∈ R3 × R.

Here we assume that s, q, V : R3 → (0,∞) are positive functions. Note that (1.1)± and
(1.2) differ in the sign in front of the linear term q(x)U and that in (1.1)± the sign in
front of the nonlinearity may be positive or negative whereas in (1.2) only positive coeffi-
cients in front of the nonlinearity are admissible. All our results apply verbatim when the
curl-curl operator in (1.1), (1.2) is replaced by a differential expression P (x,∇)∇× where
P (x, y) = (Pij(x, y))i,j=1,2,3 is a 3 × 3-matrix with Pij(x, y)), i, j = 1, . . . , 3 being polyno-
mials in y = (y1, y2, y3) with x-dependent coefficients. Examples are P (x) = ∇ × A(x)∇×,
P (x) = A(x)∇×∇× with a 3× 3-matrix A(x).

Both (1.1)± and (1.2) have certain similarities with the second-order form of the cubic
nonlinear Maxwell problem, and this motivates us to study these equations. In the ab-
sence of charges and currents, and for a simplified Kerr-type material law D = ε0(1 +
χ1(x) +χ3(x)|E|2)E, a second-order wave-type equation derived form the nonlinear Maxwell
problem for the electric field E = E(x, t) is given by ∇ × ∇ × E + ε0µ0(1 + χ1(x))∂2

tE +
ε0µ0χ3(x)(|E|2E)tt = 0 in R3×R. Here ε0 > 0 is the vacuum electric permittivity, µ0 > 0 the
vacuum magnetic permeability, and χ1, χ3 : R → R denote the first and third order electric
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response tensors of the material (second order responses do not appear in centrosymmetric
materials). The nonlinear Maxwell problem differs from our semilinear equations by the
second time derivative of the nonlinear term. However, since the particularity of the appear-
ance of the curl-curl operator instead of the Laplacian is the same for both problems, we are
motivated to investigate the effects of the curl-curl operator. In fact, most of our results are
only true because the appearance of the curl operator.

For (1.1)±, where both the + and the − sign in front of the nonlinear term V (x)|U |p−1U
is admissible, as well as for (1.2) we will establish the existence of real-valued breathers
(time-periodic spatially localized solutions). The difference between the breathers for the
equations (1.1)± and (1.2) is this: for (1.1)± we will show existence of breathers which decay
to 0 at spatial infinity whereas for (1.2) we will find breathers which have a nonzero profile
at spatial infinity. One might be inclined to call the first type of breathers (decaying to 0)
“bright breathers” and the second type (having a nonzero profile at infinity) “dark breathers”
but we will not do this, since in general we have no evidence that the absolute value of the
intensity of the second type has a dip which is below the absolute value of the intensity at
spatial infinity. In contrast to the existence results for breathers, the existence of rogue waves
(solutions which are localized in space and time) will only be done for (1.2).

Our results depend strongly on the assumption that (at least some of) the coefficients
s(x), q(x), V (x) in (1.1)± and (1.2) depend on x. In this sense we are close to the results
in [6] and [14, 18] since these papers also make strong use of spatially varying coefficients.
However, even more important in our setting is the particular property of the curl-operator
to annihilate gradient fields. This enables us to construct gradient field breathers by ODE-
techniques which lie in the kernel of the curl-operator.

Results for real valued localized solutions for (1.1)± or (1.2) are rare. To the best of our
knowledge we are only aware our our previous paper [28]. If instead of real valued breathers
one considers complex valued breathers of the time harmonic type U(x, t) = eiωtUUU(x) then
the resulting elliptic equation for the profile UUU is the same whether one starts from (1.1)±,
(1.2) or from the above mentioned nonlinear Maxwell problem. For the latter there are
numerous results on the existence of time harmonic solutions relying on refined methods for
vector valued elliptic variational problems, cf. [3,4,10,21–25], or fixed point methods, cf. [19].

In our previous paper [28] we have considered the situation where s, q, V are radially
symmetric coefficients. Accordingly, we constructed classical solutions to (1.1)± of the form

U(x, t) = ψ(|x|, t) x
|x|
.

which has the property that ∇×∇×U = 0 since U is a gradient field. In the current paper
we generalize this approach by making generalized symmetry assumptions given below on
the coefficients s, q, V and using the ansatz

U(x, t) = ψ(g(x), t)
∇g(x)

|∇g(x)|
with the additional assumption that |∇g(x)| = G(g(x)) and with suitable regularity condi-
tions on g : R3 → R and G : R→ (0,∞). Again U is a gradient field and thus ∇×∇×U = 0.
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Obviously the choice g(x) = |x| reduces to the previously considered situation. In order to
stay methodically close to the previous situation we require a kind of compatibility condi-
tion between the function g and the coefficients s, q, V . We express the precise compatibility
conditions in the following way denoting Rg(g) = g(R3):

(C1) g ∈ W 1,1
loc (R3) and is continuous with ∇g 6= 0 a.e. on R3.

(C2) |∇g(x)| = G(g(x)) with G : Rg(g)→ (0,∞) continuous, infRg(g) G > 0.

(C3) For s, q, V : R3 → (0,∞) assume s(x) = s̃(g(x)), q(x) = q̃(g(x)), V (x) = Ṽ (g(x))
with s̃, q̃, Ṽ : Rg(g)→ (0,∞) continuous.

We use the abbreviation

σ(x) =

√
q(x)

s(x)
and τ(x) =

( q(x)

V (x)

) 1
p−1

and

σ̃(ζ) =

√
q̃(ζ)

s̃(ζ)
and τ̃(ζ) =

( q̃(ζ)

Ṽ (ζ)

) 1
p−1

where the functions σ, τ : R3 → (0,∞) and σ̃, τ̃ : Rg(g)→ (0,∞) are continuous.

Using arbitrary constants γ > 0, r0 ≥ 0 and the notation r =
√
x2

1 + x2
2 we present in

Table 1 examples of functions g, G satisfying (C1)-(C2). We also indicate the applicability
of Theorem 5, Theorem 9, and Theorem 11 for reasons that will be explained in the remarks
following the statement of the theorems.

g(x) G(x) Theorem 5 applies Theorem 9 applies Theorem 11 applies

γ|r − r0|+ x3

√
1 + γ2 no yes no

γ|r − r0|+ |x3|
√

1 + γ2 yes yes yes√
(r − r0)2 + x2

3 1 yes yes yes
Table 1. Examples of functions g,G fulfilling (C1)-(C2). Applicability of the
main theorems is indicated. Notation: γ > 0, r0 ≥ 0 are arbitrary constants,
r =

√
x2

1 + x2
2.

In contrast to our previous paper [28], where we considered only classical solutions, the
solutions we construct in the present paper are suitably defined weak solutions in a sense
made precise below.

In Section 2 we look for real-valued weak solutions U : R3 ×R→ R3 which are T -periodic
in time and spatially exponentially localized. The notion of exponential localization in space
and in space-time (needed later in Section 3) is described next.

Definition 1 (exponential localization). Let U∞ : R3 ×R→ R be a vector field. A function
U : R3 × R→ R3 is called

(i) spatially exponentially localized w.r.t. U∞ if there exists δ > 0 such that

sup{
∣∣U(x, t)− U∞(x, t)

∣∣eδ|x| : (x, t) ∈ R3 × R} <∞,



BREATHERS AND ROGUE WAVES FOR SEMILINEAR CURL-CURL WAVE EQUATIONS 5

(ii) space-time exponentially localized w.r.t. U∞ if there exists δ > 0 such that

sup{
∣∣U(x, t)− U∞(x, t)

∣∣eδ(|t|+|x|) : (x, t) ∈ R3 × R} <∞.

Remark 2. Both in Theorem 5 and Theorem 11 the vector field U∞ will be zero. In The-
orem 9, where we look for time periodic solutions U , the vector field U∞ will also have to
be time periodic. In fact, it will be a nontrivial gradient field which solves (1.2) at spatial
infinity.

Weak solutions are defined as follows.

Definition 3 (weak solution). For −∞ ≤ T1 < T2 ≤ +∞ a function U : (T1, T2) →
L∞loc(R3)3, which satisfies U ∈ L2((T1, T2);Hcurl(B))∩H2((T1, T2);L2(B)3) for every open ball
B ⊂ R3, is called a weak solution of (1.1)± on (T1, T2) if and only if for a.a. t ∈ (T1, T2)∫
R3

(
s(x)∂2

tU(x, t) ·v+∇×U(x, t) ·∇×v+
(
q(x)U(x, t)±V (x)|U(x, t)|p−1U(x, t)

)
·v
)
dx = 0

for all v ∈ Hcurl(R3) with compact support. Weak solutions of (1.2) are defined analogously.

Remark 4. For −∞ < T1 < T2 < +∞ a weak solution U is T = T2 − T1-periodic if
U(·, T1) = U(·, T2), ∂tU(·, T1) = ∂tU(·, T2), where the equalities are understood in the sense
of the L2(B)-equalities traceU |t=T1 = traceU |t=T2 and trace ∂tU |t=T1 = trace ∂tU |t=T2 for
every open ball B ⊂ R3 since U, ∂tU ∈ H1((T1, T2);L2(B)3).

For the case of (1.1)± we consider both the case of the coefficient +V (x) and −V (x) in
front of the nonlinearity. In both cases we have existence results which differ in only one
hypothesis. Our main result for breathers reads as follows.

Theorem 5. Let s, q, V : R3 → (0,∞) and g : R3 → R satisfy (C1)–(C3) and suppose
additionally that

(B1) σ∞ := lim|x|→∞ σ(x) exists and supR3 |σ(x)− σ∞|eδ|x| <∞ for some δ > 0,
(B2) σ ≤ σ∞, σ 6≡ σ∞ on R3,
(B3) supR3 τ <∞.

Then with ω := σ∞ there exists a T = 2π
ω

-periodic R3-valued weak solution U 6≡ 0 of (1.1)+

(called breather) which is spatially exponentially localized w.r.t. U∞ = 0. The breather
generates a continuum of phase-shifted breathers Ua(x, t) = U(x, t+a(g(x))) where a : R→ R
is an arbitrary continuous function. The same statements hold for (1.1)− if (B2) is replaced
by

(B2)’ σ ≥ σ∞, σ 6≡ σ∞ on R3.

Remark 6. (a) Let us denote by D the set of all finite accumulation points of (g(x(n)))n∈N
when (x(n))n∈N is an arbitrary sequence in R3 with |x(n)| → ∞ as n→∞. Then assumption
(B1) implies that σ̃ ≡ ω = σ∞ on D. For the first example g(x) = γ|r − r0| + x3 in Table 1
we find D = R so that σ̃ ≡ ω = σ∞ and thus (as will become clear from the proof) U ≡ 0 is
the only outcome of the construction of Theorem 5. For the other two examples in Table 1
one finds D = ∅.
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(b) An interesting aspect of Theorem 5 may be that one can construct breather solutions with
compact spatial support when the function g has the property that g(x) → ∞ as |x| → ∞.
We will prove this statement after the end of the proof of Theorem 5 in Remark 14. If in
addition to the assumptions of Theorem 5 we suppose that σ̃ is identically equal to ω = 2π

T

outside the ball BR(0) ⊂ R3, then we will see that the entire family Ua of breather solutions
has compact spatial support within Bρ(0) provided ρ is so large that g(x) ≥ R for |x| ≥ ρ.
(c) Under the same assumptions as in Theorem 5 one can directly construct monochromatic
complex-valued exponentially localized breather solutions U : R3 × R → C3 of the form

U(x, t) = ϕ(g(x))eiωt ∇g(x)
|∇g(x)| with a suitable real-valued profile ϕ : Rg(g) → R. The proof

is by an explicit construction which is virtually the same as in [28, Theorem 3].

For (1.2) we can show the existence of another type of exponentially localized breather
having a possibly non-zero norm-limit at infinity. For such solutions we are not aware of any
other existence result for (1.2). We begin with the constant coefficient case.

Theorem 7. Let s ≡ 1, q ≡ 1, and V ≡ 1. For T ≥ 2π√
p−1

there is a T -periodic weak solution

U∗(x, t) = y(t) ∇g(x)
|∇g(x)| of (1.2) where y is a positive T -periodic solution of ÿ− y+ |y|p−1y = 0.

Remark 8. For T ∈ (0, 2π√
p−1

) the exists also a T -periodic weak solution of (1.2) of the above

type with sign-changing y, cf. Figure 2.

In case of non-constant coefficients our result is the following.

Theorem 9. Let s, q, V : R3 → (0,∞) and g : R3 → R satisfy (C1)–(C3), (B1), (B2)’ and
suppose additionally that

(B3)’ τ∞ := lim|x|→∞ τ(x) exists and and supR3 |τ(x)− τ∞|eδ|x| <∞ for some δ > 0.

Then for 0 < ω ≤ σ∞
√
p− 1 there exist a T = 2π

ω
-periodic R3-valued weak solution U of (1.2)

(called breather) which is spatially exponentially localized w.r.t. U∞(x, t) = τ∞U
∗(x, σ∞t)

for some σ∞T -periodic solution U∗ from Theorem 7. The breather generates a continuum
of phase-shifted breathers Ua(x, t) = U(x, t + a(g(x))) where a : R → R is an arbitrary
continuous function.

Remark 10. (a) Under slightly weaker assumptions one can directly construct monochro-
matic complex-valued breather solutions U : R3 × R → C3 which are of the form U(x, t) =

ϕ(g(x))eiωt ∇g(x)
|∇g(x)| . In fact, one can drop (B2)’ and take ω ≥ 0 arbitrary. Then the profile ϕ

can be taken as ϕ(ζ) := ( ω2

σ̃(ζ)2
+ 1)

1
p−1 τ̃(ζ) with ζ ∈ Rg(g). It implies that U(x, t) is exponen-

tially localized with respect to U∞(x, t) = ( ω
2

σ2
∞

+ 1)
1
p−1 τ∞e

iωt ∇g(x)
|∇g(x)| .

(b) For ω = 0 the construction in (a) yields the stationary solution U(x) = τ(x) ∇g(x)
|∇g(x)| which

is exponentially localized w.r.t U∞(x) = τ∞
∇g(x)
|∇g(x)| . A second, time-periodic solution U , which

is also exponentially localized w.r.t. the same function U∞ is given by Theorem 9 by taking
ω = σ∞

√
p− 1.
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In Section 3 we consider solutions (called rogue waves), which are simultaneously localized
in space and time. For rogue waves solutions of (1.2) our main result is the following, and
we are not aware of any other existence result.

Theorem 11. Let s, q, V : R3 → (0,∞) and g : R3 → R satisfy (C1)–(C3). Suppose
moreover that

(R) infR3 σ > 0, supR3 τ(x)eδ|x| <∞ for some δ > 0.

Then there exists an R3-valued weak solution U 6≡ 0 of (1.2) on R (called rogue wave) which
is space-time exponentially localized w.r.t. U∞ = 0. The rouge wave generates a continuum
of phase-shifted rogue waves Ua(x, t) = U(x, t+a(g(x))) with the same space-time exponential

localization provided a : R → R is an arbitrary continuous function with supR3
|a(g(x))|

1+|x| < ∞.

Each of the rogue waves Ua can be approximated (locally uniformly in x and t) by a family
of T -periodic solutions of (1.2) when T → ∞. However, these T -periodic solutions are not
localized in space when, e.g., σ ∈ L∞(R3).

Remark 12. (a) Recall from Remark 6 the definition of the set D of all finite accumulation
points of g as |x| → ∞. Condition (R) shows that τ̃(ζ) has to tend to 0 as dist(ζ,D) → 0.
And since for the first example in Table 1 we have D = R there is no positive and continuous
function τ = τ̃ ◦ g with property (R) in this case.
(b) An explicit example of a family of rogue waves can be given as follows. Assume s ≡ q ≡ 1,
p = 3 and V = V (|x|) ≥ Ceδ|x| for some C, δ > 0. Then

U(x, t) =

√
2√

V (|x|) cosh(t)

x

|x|

is a rogue wave solution of (1.2) which is space-time exponentially localized w.r.t. U∞ = 0.
Clearly, −U also solves (1.2).

The paper is organized as follows. In Section 2 we consider breather solutions of (1.1)± and
(1.2), and we prove the existence results of Theorem 5, Theorem 7, and Theorem 9. Section 3
deals with rogue waves of (1.2) and contains the proof of Theorem 11. In the Appendix we
give the proof of a technical result which is used in the proof of Theorem 9.

2. Proof of the main results for breathers

We begin by looking for solutions U of (1.1)± of the form U(x, t) := ψ(g(x), t) ∇g(x)
|∇g(x)|

under the assumptions (C1)–(C3) as well as (B1) and (B2), (B2)’, respectively, and (B3) of
Theorem 5. In order to explain the underlying idea, we start with a formal calculation which
will be made rigorous later. Due to the assumption |∇g(x)| = G(g(x)) a.e. in R3 we see that
for fixed t

U(x, t) = ∇xFt(g(x)) where F ′t(ζ) = ψ(ζ, t)/G(ζ),

i.e., Ft(ζ) is a primitive of ψ(ζ, t)/G(ζ). With U being a gradient field we find that U solves
(1.1)± if and only if the function ψ = ψ(ζ, t) : Rg(g)× R→ R satisfies

(2.1)± s̃(ζ)ψ̈(ζ, t) + q̃(ζ)ψ(ζ, t)± Ṽ (ζ)|ψ(ζ, t)|p−1ψ(ζ, t) = 0 for (ζ, t) ∈ Rg(g)× R
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where ψ̈(ζ, t) stands for d2

dt2
ψ(ζ, t). The next obvious reduction is to use the fact that (2.1)±

is autonomous and ζ = g(x) just acts as a parameter. Thus, rescaling (2.1)± suggests to set

ψ(ζ, t) := τ̃(ζ)y(σ̃(ζ)t) where σ̃ =
√

q̃
s̃
, τ̃ =

(
q̃

Ṽ

) 1
p−1 and y satisfies

(2.2)± ÿ + y ± |y|p−1y = 0.

The analysis of (2.2)± is well–known and we recall next from our previous paper the most
important facts, cf. Lemma 4 and Lemma 5 in [28]. For the reader’s convenience we also
present in Figure 1 plots of the phase plane of (2.2)±.

Lemma 13. Define the functions A± : R2 → R by A±(ξ, η) := η2 + ξ2± 2
p+1
|ξ|p+1. Then A±

is a first integral for (2.2)±, i.e., every solution y of (2.2)± satisfies A±(y, ẏ) = const. = c
for some c ∈ R. Every bounded orbit of (2.2)± is uniquely characterized by the value of c in
the range of A±. Whenever a solution y on such an orbit is periodic and non-stationary let
the minimal period be L±(c) and the maximal amplitude N±(c) := maxt∈R |y(t)|. Then, for
the “+”-case we have:

(i) L+ : (0,∞) → (0, 2π) is continuous and strictly decreasing with limc→∞ L+(c) = 0
and L+(0+) = 2π.

(ii) N+ : [0,∞)→ [0,∞) is continuous and N+(c) ≤
√
c for all c ≥ 0.

(iii) M+ = L−1
+ : (0, 2π)→ (0,∞) has the expansion

√
M+(s) =

√
α(2π−s)

1
p−1 (1+O(2π−

s)) as s→ 2π− for some constant α > 0.

For the “-” case one finds:

(i) L− : (0, p−1
p+1

) → (2π,∞) is continuous and strictly increasing with limc→ p−1
p+1

L−(c) =

∞ and L−(0+) = 2π.

(ii) N− : [0, p−1
p+1

)→ [0, 1) is continuous and N−(c) ≤
√

p+1
p−1

c for all c ∈ [0, p−1
p+1

).

(iii) M− = L−1
− : (2π,∞) → (0, p−1

p+1
) has the expansion

√
M−(s) =

√
α(s − 2π)

1
p−1 (1 +

O(s− 2π)) as s→ 2π+ for the same constant α > 0 as in the “+” case.

Proof of Theorem 5: We give the proof only in the “+” case and indicate at the end
of the proof the necessary changes for the “-” case. We begin by choosing a continuous
curve γ : [0,∞) → R2 in phase space such that A+(γ(c)) = c, where A+ is the first integral
from Lemma 13. Such a curve is e.g. given by γ(c) = (0,

√
c). There is a continuum of

other possible choices of γ. The choice of γ actually only selects a particular member of the
continuum of phase-shifted breathers (we will comment on this aspect after the end of the
proof in Remark 14).

Let us denote by y(t; c) the solution of (2.2)+ with
(
y(0; c), ẏ(0; c))

)
= γ(c). Then y :

R× [0,∞)→ R is a C2-function and y(t; c) is L+(c)-periodic in the t-variable. Now we define
the solution ψ : Rg(g)× R→ R of (2.1)+ by

(2.3) ψ(ζ, t) := τ̃(ζ)y(σ̃(ζ)t; c) with σ̃(ζ) =

(
q̃(ζ)

s̃(ζ)

)1/2

, τ̃(ζ) =

(
q̃(ζ)

Ṽ (ζ)

) 1
p−1

.
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Figure 1. Part of the phase plane of (2.2)± for p = 3. Left: “+”case with
periodic orbits (blue, red). Right: “−”case with periodic orbit (blue), two
heteroclinic orbits (red).

The requirement of T -periodicity of ψ in the t-variable tells us how to choose c as a function
of the variable ζ ∈ Rg(g), i.e.,

σ̃(ζ)T
!

= L+(c).

Recall from Lemma 13 the definition M+ = L−1
+ and that M+ has a continuous extension

M+ : (0, 2π]→ R which is strictly decreasing. Now

(2.4) c(ζ) := M+(σ̃(ζ)T ) with T =
2π

ω

has to be inserted into (2.3). Note that the assumption (B2) of Theorem 5 guarantees that
c(ζ) is well-defined for ζ ∈ Rg(g). Next we show that ψ(g(x), t) is exponentially decaying to
0 as |x| → ∞. First note the estimate

|ψ(g(x), t)| ≤ τ(x)N+(c(g(x)))

≤ τ(x)
√
c(g(x)) by Lemma 13(ii)

≤ (sup
R3

τ)
√
M+(σ(x)T ).

By assumption (B1) of Theorem 5 the argument of M+ in the above inequality tends to 2π
as |x| → ∞. By Lemma 13(iii) we have the estimate

(2.5) |ψ(g(x), t)| ≤ (sup
R3

τ)
√
α (2π − σ(x)T )

1
p−1 O(1) as |x| → ∞.
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Using again assumption (B1) from Theorem 5 the above estimate yields |ψ(g(x), t)| ≤
C exp(−δ̃|x|) for x ∈ R3 and some C, δ̃ > 0 which proves the exponential decay of

(2.6) U(x, t) := ψ(g(x), t)
∇g(x)

|∇g(x)|
as |x| → ∞.

Next we verify that U as in (2.6) is indeed a weak breather solution of (1.1)+. First note
that (B1), continuity and positivity of σ imply that infR3 σ > 0 and the same also holds for
σ̃. This implies that the function x 7→ c(g(x)) with c from (2.4) is continuous and bounded
on R3. Using that infRg(g) G > 0 by (C2) we obtain that

ζ 7→ ft(ζ) := τ̃(ζ)y(σ̃(ζ)t; c(ζ))
1

G(ζ)

as well as
ζ 7→ ψ(ζ, t) = τ̃(ζ)y(σ̃(ζ)t; c(ζ))

are (uniformly w.r.t. t ∈ [0, T ]) bounded and continuous functions of ζ ∈ Rg(g). If we
denote by Ft : Rg(g)→ R a primitive function of ft : Rg(g)→ (0,∞) then the chain rule for
W 1,1
loc -functions, cf. [12, Lemma 7.5], tells us that Ft ◦ g ∈ W 1,1

loc (R3) and

∇(Ft ◦ g) = (ft ◦ g)∇g = U(·, t)

because Ft is continuously differentiable with bounded derivative and g ∈ W 1,1
loc (R3) by defi-

nition. This implies that in a distributional sense ∇×U = 0 as the following calculation for
ϕ ∈ C∞c (R3) shows:∫

R3

U(x, t) · ∇ × ϕ(x) dx =

∫
R3

ψ(g(x), t)
∇g(x)

|∇g(x)|
· ∇ × ϕ(x) dx

=

∫
R3

∇(Ft ◦ g)(x) · ∇ × ϕ(x) dx

= −
∫
R3

Ft(g(x))∇ · ∇×︸ ︷︷ ︸
=0

ϕ(x) dx = 0.

Hence we have found that ∇ × U = 0 for every fixed t ∈ [0, T ]. Together with continuity,
boundedness and exponential decay of the map R3 × [0, T ] 3 (x, t) 7→ ψ(g(x), t), we see
that U ∈ C2([0, T ];Hcurl(R3)). The fact that U is a weak solution of (1.1) then reduces to
multiplying (2.1)+ with a compact support function v ∈ Hcurl(R3) and integrating over R3.

The asserted continuum of solutions U(x, t + a(g(x))) arising from arbitrary continuous
functions a : R → R is a direct consequence of the fact that (2.1)± is autonomous with
respect to t and that ζ = g(x) plays the role of a parameter. Additionally, it is important
to note that now U(x, t + a(g(x))) is the x-gradient of the function F̃t ◦ g, where d

dζ
F̃t(ζ) =

τ̃(ζ)y(σ̃(ζ)(t+ a(ζ)); c(ζ)) 1
G(ζ)

.

Finally, let us comment on the changes that are necessary in the “-”case. Here the param-
eter c of the first integral ranges in [0, p−1

p+1
) and the period function L− : [0, p−1

p+1
)→ [2π,∞) is
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continuous and strictly increasing with inverse M− = L−1
− : [2π,∞)→ [0, p−1

p+1
). The choice of

the curve γ : [0, p−1
p+1

)→ R2 in phase space is again such that A−(γ(c)) = c, but additionally

we require γ(0) = (0, 0) in order to ensure that the curve γ hits the small periodic orbits in-
side the two heteroclinics connecting (±1, 0). In the “+”case the normalization γ(0) = (0, 0)
was automatically fulfilled. In (2.4) we replace M+ with M− and this time assumption (B2)’
guarantees that ζ 7→ c(ζ) is well-defined on Rg(g). The definition of ψ in (2.3) remains the
same and the verification of its properties as well as the properties of the solution U follows
exactly the same lines as before. This finishes the proof of Theorem 5. �

Remark 14. (a) Here we give some details on the observation that the constructed breathers
may have compact support. We assume in addition to the assumptions of Theorem 5 that the
coefficients q, s are chosen in such way that supp(σ̃ − ω) ⊂ (−R,R) and that (for simplicity
of the example) |g(x)| → ∞ for |x| → ∞ (weaker assumptions on g are also possible). Note
from Lemma 13 that L±(0) = 2π and hence M±(2π) = 0. Therefore, whenever ζ ∈ Rg(g) is
such that σ̃(ζ) = ω = 2π

T
then from (2.4) we obtain c(ζ) = 0 and consequently ψ(ζ, ·) ≡ 0. By

choosing a suitable ρ > 0 we find for |x| ≥ ρ that |ζ| = |g(x)| ≥ R and thus U(x, t+a(g(x))) =
0. Hence the entire family U(x, t+ a(g(x))) has compact support in Bρ(0).
(b) As in [28] we will now comment on the choice of the initial curve γ(c) = (0,

√
c) which led

to the solution family y(t; c) such that (y(0; c), ẏ(0; c)) = γ(c). Our objective was to determine
some continuous curve such that A+(γ(c)) = c. The particular choice γ(c) = (0,

√
c) is

convenient but arbitrary. Let us explain other possible choices of γ. E.g., using our previous
choice for y, we may take

γ̂(c) :=
(
y(b(c); c), ẏ(b(c); c)

)
for an arbitrary function b ∈ C([0,∞);R). Clearly, A+(γ̂(c)) = A+ (y(b(c); c), ẏ(b(c); c)) = c
since A+ is a first integral of (2.2)+. With the new curve γ̂ we can define a new solution
family ŷ(t; c) through the initial conditions(

ŷ(0; c), ˙̂y(0; c)
)

= γ̂(c)

By uniqueness of the initial value problem the new and old solution families have the simple
relation

ŷ(t; c) = y(t+ b(c); c).

In order to see the effect of the choice of the new curve let us compare the solutions U , Û
generated by γ, γ̂, i.e.,

U(x, t) = τ(x)y(σ(x)t; c(g(x)))
∇g(x)

|∇g(x)|
,

where c(ζ) = L−1
+ (σ̃(ζ)T ). Likewise

Û(x, t) = τ(x)ŷ(σ(x)t; c(g(x)))
∇g(x)

|∇g(x)|

= τ(x)y(σ(x)t+ b(c(g(x))); c(g(x)))
∇g(x)

|∇g(x)|
= U(x, t+ a(g(x))),
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where a(ζ) = b(c(ζ))/σ̃(ζ) is a continuous function on Rg g. Hence, this different choice of
the initial curve leads to a phase-shifted breather.

The proofs of Theorem 7 and Theorem 9 follow the same idea and we look for breather

solutions of (1.2) with the same ansatz U(x, t) := ψ(g(x), t) ∇g(x)
|∇g(x)| as in the proof of the

previous theorem. Thus, in order to obtain that U solves (1.2) the function ψ = ψ(ζ, t) :
Rg(g)× R→ R needs to satisfy

(2.7) s̃(ζ)ψ̈(ζ, t)− q̃(ζ)ψ(ζ, t) + Ṽ (ζ)|ψ(ζ, t)|p−1ψ(ζ, t) = 0 for (ζ, t) ∈ Rg(g)× R.
Rescaling (2.7) as before by setting ψ(ζ, t) := τ̃(ζ)y(σ̃(ζ)t) with σ̃, τ̃ as in (2.3) the function
y has to satisfy

(2.8) ÿ − y + |y|p−1y = 0.

The analysis of (2.8) is not difficult due to the first integral

(2.9) A(ξ, η) = η2 − ξ2 +
2

p+ 1
|ξ|p+1,

i.e., A(y, ẏ) = const. = c for every solution y of (2.8). Orbits are uniquely characterized by
the value of c ∈ (1−p

1+p
,∞). The origin is a saddle point attached to two homoclinic orbits

corresponding to c = 0. The points (±1, 0) correspond to c = 1−p
1+p

and are stable centers

surrounded by “small” periodic orbits for c ∈ (1−p
1+p

, 0). The values c > 0 corresponds to

“large” periodic orbits surrounding the union of the two homoclinic orbits, cf. Figure 2 for a
sketch of the phase plane in the case p = 3.

The proofs of both Theorem 7 and Theorem 9 rely on the following analogon of Lemma 13
for (2.8). Its proof is given in the Appendix.

Lemma 15. For every solution y ≥ 0 on an orbit of (2.8) given by c ∈ (1−p
1+p

, 0) let the

minimal period be L(c). Then we have:

(i) L : (1−p
1+p

, 0) → ( 2π√
p−1

,∞) is continuously differentiable and strictly increasing with

L(1−p
1+p

+) = 2π√
p−1

, limc→0− L(c) = +∞.

(ii) M = L−1 : ( 2π√
p−1

,∞) → (1−p
1+p

, 0) is continuously differentiable, strictly increasing,

and M( 2π√
p−1

+) = 1−p
1+p

and M ′( 2π√
p−1

+) = 12(p−1)3/2

πp(p+3)
.

Since (2.8) is autonomous, we need to normalize the solutions y = y(·; c) by choosing for
each value of c initial conditions at t = 0. This is somewhat arbitrary. The next lemma
suggests a certain normalization and consequently develops continuity properties of the map
c 7→ y(·; c).
Lemma 16. Let a : [1, (p+1

2
)1/(p−1)] → [1−p

1+p
, 0] be the strictly increasing function given by

a(ξ) := −ξ2 + 2
p+1

ξp+1 so that A(a−1(c), 0) = c for all c ∈ [1−p
1+p

, 0]. If we normalize the

solutions y(t; c) of (2.8) by y(0; c) = a−1(c) and ẏ(0; c) = 0 then the map c 7→ y(·, c) is
1
2
-Hölder continuous uniformly for c ∈ [1−p

1+p
, 0] in the sense that

‖y(·, c1)− y(·, c2)‖L∞([0,T ]) ≤ CT
√
|c1 − c2|
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Figure 2. Part of the phase plane of (2.8) for p = 3 with “small” periodic
orbits (green,red), “large” periodic orbit (brown) and homoclinic orbits (blue).

with a constant CT depending on the chosen time-interval [0, T ].

Proof. We first note that the function c 7→ (a−1(c)−1)2 is continuously differentiable on the
interval [1−p

1+p
, 0] since by a direct computation one can check that the derivative has limits at

the endpoints of the interval. Since c 7→ (a−1(c)− 1)2 is Lipschitz one can easily check that
c 7→ a−1(c) is uniformly 1

2
-Hölder continuous on [1−p

1+p
, 0].

Next we consider c1, c2 ∈ [1−p
1+p

, 0] and set z(t) := y(t; c1) − y(t; c2). Then z̈ − z + q(t)z =

0 with q(t) = |y(t;c1)|p−1y(t;c1)−|y(t;c2)|p−1y(t;c2)|
y(t;c1)−y(t;c2)

. Since y(t; c1) and y(t; c2) are small periodic

solutions inside the homoclinic they are both bounded from above by (p+1
2

)
1
p−1 , and hence

|q(t)| ≤ p(p+1)
2

. If we use that

d

dt
(z2 + ż2) = 2zż + 2ż(1− q(t))z = 2zż(2− q(t)) ≤ (z2 + ż2)C

with C = 2+ p(p+1)
2

then a Gronwall argument implies z(t)2 + ż(t)2 ≤ (a−1(c1)−a−1(c2))2eTC .

Therefore the uniform 1
2
-Hölder continuity of c 7→ a−1(c) implies |y(t; c1)−y(t; c2)| = |z(t)| ≤

CT
√
|c1 − c2| for all t ∈ [0, T ] as claimed. �

Proof of Theorem 7: By Lemma 15 we know that for every given period T > 2π√
p−1

there

exists a value c = M(T ) = L−1(T ) such that on the level set A−1(c) there are two periodic
orbits with period T , cf. Figure 2. This extends to T = 2π√

p−1
where for c = M(T ) we have
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that A−1(c) consist of the two equilibria (±1, 0). Choosing y = y(t; c) to be the positive
periodic orbit (positive equilibrium in case T = 2π√

p−1
) with A(y, ẏ) = c the theorem follows

if we set U∗(x, t) := y(t; c) ∇g(x)
|∇g(x)| . �

Proof of Theorem 9: First we choose a reference function U∞ at spatial infinity by

U∞(x, t) = τ∞y(σ∞t;M(σ∞T )) ∇g(x)
|∇g(x)| where by assumption σ∞T ≥ 2π√

p−1
. Here we use from

Lemma 16 the normalized family y(·; c) of positive periodic orbits lying on the level set A−1(c)
of the first integral function A.

Next we construct a T = 2π
ω

-periodic solution of (2.7) by

ψ(ζ, t) := τ̃(ζ)y(σ̃(ζ)t; c(ζ)) with c(ζ) := M(σ̃(ζ)T ).

Note that c(ζ) is well defined for ζ ∈ Rg(g) since by (B2)’ we have σ̃(ζ)T ≥ σ∞T ≥ 2π√
p−1

.

In order to show that U(x, t) = ψ(x, t) ∇g(x)
|∇g(x)| is exponentially localized w.r.t. U∞ we need to

estimate

|U(x, t)− U∞(x, t)| =|τ(x)y(σ(x)t;M(σ(x)T ))− τ∞y(σ∞t;M(σ∞T ))|
≤|τ(x)− τ∞|y(σ(x)t;M(σ(x)T ))

+ τ∞|y(σ(x)t;M(σ(x)T ))− y(σ∞t;M(σ(x)T )|
+ τ∞|y(σ∞t;M(σ(x)T )− y(σ∞t;M(σ∞T )|.

Due to periodicity it is sufficient to consider the above estimate for t ∈ [0, T ]. Now we use

that ‖y(·; c)‖∞ ≤ (p+1
2

)
1
p−1 , ‖ẏ(·; c)‖∞ ≤

√
p−1
p+1

, supR3 σ = Σ < ∞, and employ Lemma 16,

and (B1), (B3)’ to estimate further

|U(x, t)− U∞(x, t)| ≤|τ(x)− τ∞|(
p+ 1

2
)

1
p−1 + τ∞‖ẏ(·,M(σ(x)T )‖∞(σ(x)− σ∞)T

+ τ∞CT
√
|M(σ(x)T )−M(σ∞T )|

≤C1|τ(x)− τ∞|+ C2|σ(x)− σ∞|+ τ∞CT
√
T
√
σ(x)− σ∞

√
sup

[ 2π√
p−1

,ΣT ]

M ′

≤Ce−
δ
2
|x|.

This finishes the proof of the exponential localization of U(x, t) w.r.t. U∞. The proof that
U is a weak solution of (1.2) follows the line of the proof of Theorem 5. �

3. Proof of the main result for rogue waves

Now we work under the assumptions (C1)–(C3) and (R) of Theorem 11 and look for rogue

wave solutions U of (1.2) of the form U(x, t) := ψ(g(x), t+ a(g(x))) ∇g(x)
|∇g(x)| . As before we see

that U is a gradient field.

Proof of Theorem 11: Let y0 : R→ (0,∞) denote the positive homoclinic solution of (2.8)

with y0(0) =
(
p+1

2

) 1
p−1 , ẏ0(0) = 0 so that A(y0(t), ẏ0(t)) = 0 (any other initial value except

(0, 0) on the homoclinic orbit as well as the negative homoclinic orbit would also work).
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Asymptotically, we have |y0(t)| = e−|t|(1 + o(1)) as |t| → ∞ and hence |y0(t)| ≤ C0e
−|t| for

all t ∈ R and some C0 > 0. Then

(3.1) ψ(ζ, t) := τ̃(ζ)y0(σ̃(ζ)t)

solves (2.7) provided σ̃, τ̃ are defined as in (2.3). Therefore U0(x, t) = ψ(g(x), t) ∇g(x)
|∇g(x)| provides

a solution of (1.2). Moreover, since 0 ≤ τ̃(g(x)) ≤ Ce−δ|x| and infRg(g) σ̃ = σ̃∗ > 0 from
assumption (R) we see that U0 is space-time exponentially localized w.r.t. U∞ = 0. This
establishes the existence of one particular rogue wave. Next we set

(3.2) U(x, t) := U0(x, t+ a(g(x))) = ψ(g(x), t+ a(g(x)))
∇g(x)

|∇g(x)|

for an arbitrary continuous function a : Rg(g) → R with |a(g(x))| ≤ C̃(1 + |x|) and some
positive constant C̃ > 0. Repeating the details from the proof of Theorem 5 one finds that
U is a weak solution of (1.2) on R3 × R. Note that the fact that from a gradient-type
solution U0(x, t) of (1.2) we can generate other gradient-type solutions U of (1.2) by setting
U(x, t) = U0(x, t + a(g(x)) has already been exploited for (1.1)± and it remains valid in the
context of (1.2).

Next we check that U is also space-time exponentially localized. Using again assumption
(R) and the bound |y0(t)| ≤ C0e

−|t| we find the estimate

|U(x, t)| ≤ τ̃(g(x))C0e
−|σ̃(g(x))(t+a(g(x)))|

≤ CC0e
−δ|x|−σ̃∗|t+a(g(x))|.

By the estimates{
σ̃∗|t+ a(g(x))| ≥ σ̃∗

2
|t| if |t| ≥ 2|a(g(x))|,

δ|x| ≥ δ
2
|x|+ δ

4C̃
|t| − δ

2
if |t| ≤ 2|a(g(x))|

we obtain
|U(x, t)| ≤ CC0e

δ
2 e−δ̃(|x|+|t|)

where δ̃ = min
{
δ
2
, σ̃∗

2
, δ

4C̃

}
which proves the claim.

Finally, we explain that U can be approximated by T -periodic solutions as T →∞. Recall
from the properties of (2.8) as explained in Lemma 15 that “small” periodic orbits of (2.8)
around the equilibrium (1, 0) inside the positive homoclinic are associated to negative values
of the first integral A(ξ, η) from (2.9). Recall also that the function L : (1−p

1+p
, 0)→ ( 2π√

p−1
,∞),

which assigns to each value c of the first integral the minimal period of the orbit of (2.8) with
A(y, ẏ) = c, strictly increases from 2π√

p−1
at c = 1−p

1+p
for the equilibrium (1, 0) to +∞ at c = 0

for the positive homoclinic, cf. Figure 2 and Lemma 15. By choosing1 a continuous curve

γ : [1−p
1+p

, 0]→ [0,∞)×R of initial values with A(γ(c)) = c and such that γ(0) =
(
(p+1

2
)

1
p−1 , 0

)
we can normalize the positive periodic orbits of (2.8) by the requirement (y(0; c), ẏ(0; c)) =

1An example of such a function is given by γ(c) = (a−1(c), 0) with a(ξ) = −ξ2 + 2
p+1ξ

p+1 for ξ ∈
[1, (p+1

2 )
1

p−1 ].
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γ(c) for c ∈ [1−p
1+p

, 0]. In particular y(·; 0) = y0(·) where y0 is the positive homoclinic from the

beginning of the proof. Using that M = L−1 from Lemma 15 has a continuous extension
M : [ 2π√

p−1
,∞)→ [1−p

1+p
, 0) we may define a T -periodic weak breather solution of (1.2) by

UT (x, t) := ψT (g(x), t)
∇g(x)

|∇g(x)|
with ψT (ζ, t) = τ̃(ζ)y

(
σ̃(ζ)t;M(σ̃(ζ)T )

)
with σ̃, τ̃ as in (2.3). Note that the above construction requires T > 2π√

p−1σ̃∗
. Therefore, as

T →∞ we get that M(σ(x)T )→ 0 uniformly in x ∈ R3 and thus UT (x, t)→ U0(x, t) locally
uniformly in (x, t) ∈ R4 as T → ∞. Adding the function a(g(x)) in the time-variable as in
(3.2) both to UT and U0 yields the approximation claim. Note that if σ ∈ L∞(R3) then for
each admissible finite T > 0 the breather solution UT is not localized in space since at every
space point x ∈ R3 it oscillates according to a periodic orbit of (2.8) which has a positive
distance from the homoclinic as well as from the equilibrium (1, 0). �

Remark 17. We could have given other approximations UT of U0 by utilizing the “large”
periodic orbits outside the two homoclinics, cf. Figure 2. However, it is not clear to us if and
in which sense these periodic breathers converge to a rogue wave.

Appendix

Proof of Lemma 15. Let k(y) := 1 − y2 + 2
p+1

(yp+1 − 1). Then k′(y) = 2(yp − y) and

k′′(y) = 2(pyp−1 − 1). If we set k− := k|[0,1] and k+ := k|[1,( p+1
2

)1/(p−1)] then k− is strictly

decreasing from p−1
p+1

to 0 on the interval [0, 1] and k+ is strictly increasing from 0 to p−1
p+1

on

the interval [1, (p+1
2

)1/(p−1)]. For c ∈ [1−p
p+1

, 0] we can therefore define N±(c) = k−1
± (c̃) with the

shorthand c̃ = c+ p−1
p+1

. Then N±(c) with N−(c) ≤ 1 ≤ N+(c) denote the two extreme points

with speed ẏ = 0 on the positive orbit whose first integral has the value c. Recall that L(c)
is the minimal time-period of an orbit parameterized by c ∈ (1−p

1+p
, 0). Since such an orbit has

the symmetry that for ξ > 0, η ∈ R we have that A(ξ, η) = c if and only if A(ξ,−η) = c, we
find the following expression

(3.3) L(c) =

∫ L(c)

0

dt = 2

∫ N+(c)

N−(c)

dy√
c+ y2 − 2

p+1
yp+1

= 2

∫ N+(c)

N−(c)

dy√
c̃− k(y)

where we have used the substitution ẏ(t) dt = dy and A(y, ẏ) ≡ c.
Step 1 – differentiability of L(c) and expression for L′(c): We claim that for c ∈ (1−p

1+p
, 0) the

function c 7→ L(c) is continuously differentiable and that

(3.4) L′(c) =
1

c̃

∫ N+(c)

N−(c)

k′(y)2 − 2k(y)k′′(y)

k′(y)2

dy√
c̃− k(y)

.
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The proof is done by splitting the integral L(c) =
∫ N+(c)

N−(c)
. . . dy =

∫ 1

N−(c)
. . . dy+

∫ N+(c)

1
. . . dy

and substituting y = k−1
∓ (c̃z) in the two integrals, respectively. This results in

(3.5) L(c) = −2

∫ 1

0

√
c̃(k−1
− )′(c̃z)√
1− z

dz + 2

∫ 1

0

√
c̃(k−1

+ )′(c̃z)√
1− z

dz

Now we can consider differentiation w.r.t. c. We only show the result for the first of the two

integrals. Using the formulas (k−1
− )′ = 1

k′(k−1
− )

and (k−1
− )′′ = − k′′(k−1

− )

k′(k−1
− )3

we find

∂

∂c̃

2
√
c̃(k−1
− )′(c̃z)√

1− z
=

1√
c̃

(
(k−1
− )′(c̃z) + 2c̃z(k−1

− )′′(c̃z)
) 1√

1− z

=
1√
c̃

(
(k′)2 − 2kk′′

(k′)3

)
(k−1
− (c̃z))

1√
1− z

.

(3.6)

Next we see that ((k′)2 − 2kk′′)
′
(y) = −2k(y)k′′′(y) = −4p(p − 1)yp−2k(y) so that using

k(1) = 0 = k′(1) this implies

(3.7)
(
(k′)2 − 2kk′′

)
(y) = −4p(p− 1)

∫ y

1

tp−2k(t) dt.

By a straightforward computation we see that 1
k′(y)3

(∫ y
1
tp−2k(t) dt

)
and hence ((k′)2−2kk′′)(y)

k′(y)3

have limits as y → 1. Therefore they are continuous functions on the entire interval
[N−(c), N+(c)]. In particular, for c̃ in compact subintervals J ⊂ (1−p

1+p
, 0) there exists CJ > 0

such that ∣∣∣∣∣ ∂∂c̃ 2
√
c̃(k−1
− )′(c̃z)√

1− z

∣∣∣∣∣ ≤ CJ√
1− z

for z ∈ (0, 1).

This upper bound shows continuous differentiability by a dominated convergence argument
and that for c ∈ (1−p

1+p
, 0)

d

dc

(
−2

∫ 1

0

√
c̃(k−1
− )′(c̃z)√
1− z

dz

)
=
−1√
c̃

∫ 1

0

(
(k−1
− )′(c̃z) + 2c̃z(k−1

− )′′(c̃z)
) dz√

1− z
.

By (3.6) and by reverting the substitution z = 1
c̃
k(y) we get

d

dc

(
−2

∫ 1

0

√
c̃(k−1
− )′(c̃z)√
1− z

dz

)
=

1

c̃

∫ 1

N−(c)

k′(y)2 − 2k(y)k′′(y)

k′(y)2

dy√
c̃− k(y)

.

Together with an analogous computation for the second integral in (3.5) we obtain the claim
of Step 1.

Step 2 – alternative expression for L′(c): Next we claim that

(3.8) c̃L′(c) = 8p(p− 1)

∫ N+(c)

N−(c)

yp−2

k′(y)4
Φ(y)

√
c̃− k(y) dy
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where Φ(y) :=
[
3y2−pk′′(y)

(∫ y
1
tp−2k(t) dt

)
− k(y)k′(y)

]
. Eventually, the formula will follow

from an integration by parts. If we insert (3.7) in (3.4) we obtain

c̃L′(c) =− 4p(p− 1)

∫ N+(c)

N−(c)

1

k′(y)2

(∫ y

1

tp−2k(t) dt

)
dy√

c̃− k(y)

=8p(p− 1)

∫ N+(c)

N−(c)

1

k′(y)3

(∫ y

1

tp−2k(t) dt

)
d

dy

√
c̃− k(y) dy

=8p(p− 1)
1

k′(y)3

(∫ y

1

tp−2k(t) dt

)√
c̃− k(y)

∣∣∣N+(c)

N−(c)

− 8p(p− 1)

∫ N+(c)

N−(c)

d

dy

[
1

k′(y)3

(∫ y

1

tp−2k(t) dt

)]√
c̃− k(y) dy.

Recall that (3.7) implies that 1
k′(y)3

(∫ y
1
tp−2k(t) dt

)
is convergent at y = 1 and hence contin-

uous and bounded on the entire interval [N−(c), N+(c)]. Together with the fact that c̃− k(y)
vanishes for y = N±(c) this allows us to further compute

c̃L′(c) = 8p(p− 1)

∫ N+(c)

N−(c)

yp−2

k′(y)4

[
3y2−pk′′(y)

(∫ y

1

tp−2k(t) dt

)
− k(y)k′(y)

]√
c̃− k(y) dy.

This proves the claim of Step 2. Note that the integration by parts is justified since in the
last formula the function Φ(y) is O(y − 1)4 near y = 1.

Step 3 – monotonicity of L(c) for p ≥ 2: We check the sign of Φ(y) in (3.8) by first computing
its derivative

Φ′(y) =− 3(p− 2)y1−pk′′(y)

(∫ y

1

tp−2k(t) dt

)
+ 3y2−pk′′′(y)

(∫ y

1

tp−2k(t) dt

)
+ 3k′′(y)k(y)− k′(y)2 − k(y)k′′(y)︸ ︷︷ ︸

=(2kk′′−(k′)2)(y)

.

Using (3.7) and the explicit form of k and its derivatives we find

(3.9) Φ′(y) =
(
6(p− 2)y1−p + 2p(2p+ 1)

)︸ ︷︷ ︸
>0 for p≥2

(∫ y

1

tp−2k(t) dt

)
.

Hence Φ′(y) > 0 on (1,∞) and Φ′(y) < 0 on (0, 1). Since Φ(1) = 0 we get the desired result
Φ > 0 on (0,∞) \ {1}.
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Step 4 – monotonicity of L(c) for 1 < p < 2: Here we deduce the sign of Φ(y) in a slightly
different way. Using the final formula (3.9) from Step 3 we compute

(yp−2Φ(y))′ =yp−2Φ′(y) + (p− 2)yp−3Φ(y)

=yp−2
(
6(p− 2)y1−p + 2p(2p+ 1)

)(∫ y

1

tp−2k(t) dt

)
+ (p− 2)yp−3

[
3y2−pk′′(y)

(∫ y

1

tp−2k(t) dt

)
− k(y)k′(y)

]
=yp−210p(p− 1)

(∫ y

1

tp−2y(t) dt

)
+ (2− p)yp−3k(y)k′(y).

Since 1 < p < 2 we see that both summands are negative on (0, 1) and positive on (1,∞).
Using Φ(1) = 0 we deduce yp−2Φ(y) > 0 on (0,∞) \ {1} as in Step 3.

Step 5 – limit behaviour of L(c): Recall from (3.3) that

L(c) =

∫ L(c)

0

dt = 2

∫ N+(c)

N−(c)

dy√
c+ y2 − 2

p+1
yp+1

.

Using that N−(c)→ 0 and N+(c)→
(
p+1

2

) 1
p−1 as c→ 0− together with Fatou’s Lemma leads

to

(3.10) lim inf
c→0−

L(c) ≥ 2

∫ ( p+1
2

)
1
p−1

0

dy

y
√

1− 2
p+1

yp−1
=∞.

In order to complete the proof of Lemma 15(i) it remains to expand L(c) as c → 1−p
1+p

. The

double zero of y 7→ k(y) at y = 1 shows that k(y) = (p− 1)(y − 1)2 + O((y − 1)3) as y → 1
and hence

(3.11)

√
k(y)

k′(y)
→ ± 1

2
√
p− 1

as y → 1±

Applying l’Hospital’s rule three times we also find

(3.12)
Φ(y)

k′(y)4
→ p+ 3

48(p− 1)2
as y → 1.

According to (3.5), using (k−1
± )′ = 1

k′±(k−1
± )

and (3.11) we get

L(c) = −2

∫ 1

0

√
c̃z

k′(k−1
− (c̃z))

dz√
z(1− z)

+ 2

∫ 1

0

√
c̃z

k′(k−1
+ (c̃z))

dz√
z(1− z)

= −2

∫ 1

0

√
k

k′
(k−1
− (c̃z))

dz√
z(1− z)

+ 2

∫ 1

0

√
k

k′
(k−1

+ (c̃z))
dz√

z(1− z)

c→ 1−p
1+p−→ 2√

p− 1

∫ 1

0

dz√
z(1− z)

=
2π√
p− 1

.
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Next we split the integral in (3.8) into
∫ 1

N−(c)
. . . +

∫ N+(c)

1
. . . and substitute y = k−1

± (c̃z),

respectively. This implies

L′(c) =− 8p(p− 1)

∫ 1

0

[
yp−2 Φ(y)

k′(y)4

]
y=k−1

− (c̃z)

√
c̃z

k′(k−1
− (c̃z))

√
1− z
z

dz

+ 8p(p− 1)

∫ 1

0

[
yp−2 Φ(y)

k′(y)4

]
y=k−1

+ (c̃z)

√
c̃z

k′(k−1
+ (c̃z))

√
1− z
z

dz.

If we note that
√
c̃z

k′(k−1
± (c̃z))

=
√
k
k′

(k±(c̃z)) and use the relations (3.11), (3.12) then we obtain

L′(c)
c→ 1−p

1+p−→ p(p+ 3)

6(p− 1)
3
2

∫ 1

0

√
1− z
z

dz =
πp(p+ 3)

12(p− 1)
3
2

as claimed.

Step 6 – limit behaviour of M(c) for c → 2π√
p−1

+: Step 5 shows that L(1−p
1+p

+) = 2π√
p−1

and

L′(1−p
1+p

+) = β := πp(p+3)

12(p−1)3/2
. Therefore the inverse M = L−1 has the property M( 2π√

p−1
+) =

1−p
1+p

and M ′( 2π√
p−1

+) = 1/β. This completes the proof of Lemma 15. �
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