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SCATTERING OF THE THREE-DIMENSIONAL CUBIC NONLINEAR SCHRODINGER
EQUATION WITH PARTIAL HARMONIC POTENTIALS

XING CHENG, CHANG-YU GUO, ZIHUA GUO, XIAN LIAO, AND JIA SHEN

ABSTRACT. Inthis paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger
equation (NLS) with partial harmonic potential

{i@tu +(Ags — 2?) u = [uf?u,

’U,|t=0 =Uuop-.

(NLS)

Our main result shows that the solution w scatters for any given initial data uo with finite mass and energy.

The main new ingredient in our approach is to approximate (NLS) in the large-scale case by a relevant
dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the new
(DCR) system is greatly inspired by the fundamental works of Dodson [29,311[32] in his study of scattering
for the mass-critical nonlinear Schrédinger equation. The analysis of (DCR) system allows us to utilize the
additional regularity of the smooth nonlinear profile so that the celebrated concentration-compactness/rigidity
argument of Kenig and Merle applies.

Keywords: Schrodinger equation, scattering, partial harmonic potentials, dispersive continuous resonant
system, profile decomposition.

Mathematics Subject Classification (2010) Primary: 35Q55; Secondary: 35P25, 35B40

1. INTRODUCTION

1.1. Background and motivation. Consider the Cauchy problem for the following family of nonlinear
Schrodinger equations in R?, d € N, with harmonic oscillators:

(L) {z'&tu + Agau = (WY + [2*) u = pluftu,

u|t:0 = Uy,

where 1 < p < oo, (y,z) € R x R%_ d =dy + dy, and dy,dy € N, dy > 1. The complex-valued function u =
u(t,y,z):R xR¢ - C is the unknown wave function. The parameter w = 0 or 1, with w = 1 corresponding
to the quadratic potential case, while w = 0 corresponding to the partial harmonic oscillator on the left
hand side. The parameter ¢+ = 1 or ;4 = —1 corresponds to the defocusing or focusing case respectively.
Equation (L.1)) arises as models for diverse physical phenomena, including Bose-Einstein condensates in
a laboratory trap [591/77] and the envelope dynamics of a general dispersive wave in a weakly nonlinear
medium. It can also be derived in the NLS with constant magnetic potential, see for example [40]. The
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associated conserved mass and energy of equation (L1)) read as

M) = [ty 0)Pdyde

and
eBw® = [

It is natural to take the initial data from the following weighted Sobolev space

1
d1 xRd2 2

1 I
Vyut, y, @) + 3 (w?ly[? + |2 ?) [u(t,y, ) * + oL 1|U(lf,y,96)|7“1 dydz.

wo e {f = F(y.2) € L2 (BY) < 195 s gy * 1l flis_quy + 0 Wl L ia_ gty + 1z, oy < 0]

In view of the Sobolev embedding

<q<2+75  ifd>3
HY(RY) - LI(RY), 2<g< o0 ifd=2
<g<oo ifd=1,
. : . . l<p<l+-t ifd>3
the initial data is of finite energy in the energy-subcritical case P -2 1
l<p<oo ifd=1,2,
and we call the critical case p = 1 + d;f? d > 3 the energy critical case.

The global well-posedness of (L.1) has been established in the energy-subcritical case by R. Carles
[141116] in the defocusing case p = 1, and by J. Zhang in the focusing case ;o = —1 when the initial
energy is assumed to be less than the energy of the ground state of the related elliptic equation. The
Cauchy problem for the equation (L.1)) with quadratic potential (that is, w = 1) in the energy-critical case
was considered by R. Killip, M. Visan, and X. Zhang in the radial case, and in the general case later by
C. Jao [55/56]. They proved the global well-posedness for the defocusing case and also for the focusing
case when the initial energy (resp. kinetic energy) is less than the energy (resp. kinetic energy) of the
ground state. We would also like to mention the work of C. Hao, L. Hsiao and H. Li [50,/51]], where the
authors proved the global well-posedness for the equation (L.1) (when w = 1) with an additional angular
momentum rotational term.

It is well-known that solutions of the equation (L.1) with a quadratic potential (i.e. w = 1) can not
scatter. However, intuitively, in the defocusing case, if we turn off the confinement in some instead of all
of the directions, it should suffice for the condensate to evolve asymptotically freely: Indeed, if w = 0,
then the operator 0, + A, should yield large time dispersion and one expects a scattering theory for the
equation (L1). When w = 0, the scattering phenomena for the equation (I.1) in the defocusing case has
already been showed by P. Antonelli, R. Carles and J. D. Silva [1] (see also [18]]) in the fully weighted
space when w = 0, = 1, d; = 1,2,3, dy = 1 and 1 + % <p<l+ ﬁ. The focusing case of (L.1)
has been investigated by A. H. Ardila and R. Carles [2] recently when the energy is strictly less than the
static energy of the ground state. In this aspect, one expects the global-in-time well-posedness result for
the defocusing/focusing (when energy is strictly less than the static energy of the ground state) energy-
critical and subcritical cases for (L.1)). On the other hand, the potential influences strongly the asymptotic
dynamics of the solution. In (L.1)), the z—direction is not expected to have a global in time dispersive
estimate in view of the Mehler’s formula

; —t lof*+132 cos -z
AP f(y,0) = (misin(2t)) P [[| (T H o)

Rd2

f(y,2)dz, Vy e R" z e R%,



from which we can only derive the following periodically in time dispersive estimate

M) f(y, )| SISO T 1£(,2) |y V4 SZ,Vy € RE

L2 (R2)

Nevertheless, we have the following global in time dispersive estimate in the y—direction:

where we used the dispersive estimate for the semigroup e+ together with the L?-norm conservation
for the unitary of the operator eit(Ac—le?) - Thuys, according to the scattering theory for the nonlinear
Schrodinger equations without potential, see for instance [81,[83]], one expects a scattering result in the
weighted Sobolev space when w = 0 in the case 1 + dil <p<1l+ rh%fw with d; + dy > 2. Generally, to
obtain the scattering in the inter-critical case, one relies on the Morawetz estimate, see for instance [[1]]. It
is difficult to deal with the scattering on the two endpoints p = 1+ 5= Landp=1+-—2— 7 d —» Which correspond
to the usual d; dimensional mass-critical and d; + ds d1mens10na1 energy-critical nonlinear Schrodinger
equation without potentials respectively. For the endpoint p = 1 + m’ the scattering is a byproduct
of the proof of the global well-posedness, and we need to use the induction on energy method [25]] or the
concentration-compactness/rigidity argument to prove the global well-posedness. It seems for us
one of the main difficulty is to establish a more delicate global in time Strichartz estimate which should
be a lot combination of the local Strichartz estimate of 3 dimensional Schrédinger equations as in [3,147].
We refer to for more illustration on the proof of the scattering of the nonlinear Schrodinger equations
at critical regularity Sobolev space. For the endpoint p = 1 + %, global well-posedness is quite easy to get,
and the main obstacle is to show the scattering. We cannot prove the scattering by the Morawetz estimate
even when the initial data lies in a better regular Sobolev space H, , because the Morawetz estimate

) d
(S8 f(y, )| S 10 pye

Lo L2 (Rd)

1

only provides a priori estimate of the non-endpoint Strichartz norm on the H,' L2-level but cannot give
a priori estimate of the Strichartz norm on the L?-level, which is not enough to yield the scattering in
this case. Therefore, to show the scattering, we still need to use the concentration-compactness/rigidity
argument and its mass-critical counterpart [29,[3113211631164./66,/84186]] to show the finiteness of
the L?—level Strichartz norm. In the L?-level Strichartz norm, we need to consider not only the space and
time translations of the equation (L.1)) as in the case 1 + % <p<l+ but also the following partial
Galilean invariance

d+d -2°

U(t, Y, ZL’) = 67it|§0|26iy-§0u(t7 Y- 2§0t7 l‘),

where & € R%, of the equation (L.1). In addition, by a limitation operation, it is realized that a new

mass-critical nonlinear Schrodinger system can be embedded into (L.1), this new mass-critical nonlinear

Schrédinger system inherits the above invariance and also has the scaling invariance in space-time, and its

global well-posedness and scattering should be proven by the argument from [29}3132./631/64166./84./86].
In this paper, we will consider the following Cauchy problem for the defocusing cubic NLS on R?

» s —22) = |ul?
(12) {Z@tqu(AR r?)u = |ul?u,

U|t:0 = Uy,
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where u = u(t,y,z):R x R? x R - C is an unknown wave function. The following mass and energy
quantities are conserved by the evolution of the equation (1.2)

ME) M) = [ Jut.y.2) dyds,

1 1 1
g(u(t)) = ‘[R2><]R §|vy,xu(t7y7x)|2 + §$2|U(t,y,$’)|2 + Z|U(t,y,$)|4 dydl’

Motivated by the mass and energy formulations, we take the initial data in the following weighted Sobolev
space

(1.3) ug € B(R?) = {f e L2 .(R*) || flses) = |V flliz, @) + | fl22a@exm) < 00},
with | fllaa ) = | flm2 @) + |12f | 22R)-

By the Sobolev embedding H'(R?) — LI(R3), 2 < ¢ < 6, the initial data is of finite mass and energy.

Observe that equation (L.2)) is a special case of equation (L1}, namely, corresponding to d; = 2,d; =
lLw=0pu=1p=1+ di‘l = 3 in (L1). In this case, the scattering phenomena is not yet clear. As we
are in the energy subcritical case 1 < p = 3 < 5, the equation (L.2)) is global well-posed and the scattering
of the solutions follows in the small initial data case |ug|y, << 1, which is a by-product of the small data
well-posedness theorem. We will briefly explore these results in Section [3] and outline the ideas of the
proofs as we did not find them in the literature.

1.2. Main results. Our main result of this article is the following scattering result for solutions of the
defocusing cubic NLS (1.2). Recall that X(IR?) is defined in (1.3).

Theorem 1.1. For any initial data ug € Y.(R3), there is a unique global solution u € CP(R,X(R?)) of
equation (L.2)). Moreover, the solution scatters, namely there exist u, € 2 (R3) such that

Hu(t) - eit(AR3’m2)uiH2(R3) -0, ast - *oo.

In order to treat the general initial data with finite (but not necessarily small) X-norm [ug|y, < oo,
we turn to the celebrated concentration-compactness/rigidity argument developed by C. E. Kenig and F.
Merle [611162]], where one key ingredient is the linear and nonlinear profile decompositions for solutions
with bounded Y¥—norm. The proof of Theorem [L.1]shall rely on (a corollary of) Theorem[1.2] given below.

As for the nonlinear profile decomposition, we will consider a sequence of solutions exhibiting an
extreme behavior to study the concentration of the data. More precisely, we need to study the behavior of
the nonlinear profile uy when A - oo. The (simplified) nonlinear profile uy, A > 0, is the solution of the

equation (1.2))
(1.4) {i@tu,\+Ayu,\l+ (A, = 22) uy = |uy|?uy,
w\(0,y,) = 36 (%,7).
taking the initial data by rescaling the function ¢ only in the y-variable. Set
wy(t,y, ) = e’it(A“’w2)u,\(t,y,x),
and we obtain from (1.4)) the following evolutionary equation for w
{(i@t + A wy = o-it(Do-a?) (‘eit(A”_IQ)wx‘z eit(Aw—x2)w>\) ’
wx(0,y,x) = %(b(%,x) :



=15(L. ¥ > sati
= Av(v, A,:)3), then v satisfies

{ (i0,+A,) b = o-iNt(Az-a?) (‘eiA2t(Azfx2)f)‘2 6i)\2t(Az—x2)1~)) :
0(0,y,2) = ¢y, x).

Denote by II,, the orthogonal projector on the n** eigenspace of —A, + 22 (see Section [2| below for more
details). Applying II,, to the equation for v, we arrive at the following equation for v,, = I1,,0:

If we define w)(t,y,x)

. ~ £y 2 £y 2 . ~ = ~
(’Lat ¥ Ay) Up = eiA t(2n+1)Hn Z e~ iAT(2n1-2n2+2n3+1)t Uy OnyUns |
nhngﬂmEN

0n(0,y,2) = n(y,x) = lng(y, ).

Letting A - oo, we can formally get a limiting equation

(10, + Ay) vp(t,y,x) = > 11, (Uny Unyny ) (t,y, ),
(1.5) pnaneel

Un(07y7x) = ¢n(y7x)7

By reversing the above process, we get an approximation solution of w:

. 1 t
(1.6) ix(t,y,x) = et Bema) 3 (—vn (—, g:c)) , (ty,2) e RxR*xR,
S\ A2\
where v, is the solution of (L.3]).
In the above deduction, the following equivalent form dispersive continuous resonant (DCR) system
enters naturally

(DCR) {z@tv + Agzv = F(v),

v(0,y,7) = ¢(y, ),

where the nonlinear term F'(v) is defined by

F(U) = Z 11, (Um@nzvng) .

ni,n2,n3,neN,
ni—n2+nz=n

This (DCR) system can be viewed as a dispersive version of the (CR) system derived by E. Faou, P.
Germain, and Z. Hani in their study of the weak turbulence of the nonlinear Schrodinger equations
on compact domains; see also [9,26,[28.391142//43]]. This new (DCR) system is very similar to the resonant
nonlinear Schrodinger system arising in [5211[22//47./48]). It has nice local well-posedness theory, and also
scatters for small data in L2H].

In our second main result, we prove the following large data global well-posedness and scattering theo-
rem for (DCR), which might be of independent interest.

Theorem 1.2. For any ¢ € L2H,(R? x R), there exists a unique global solution v of the equation (DCR)
in CYL2HL(R x R? x R) satisfying

||U||Lg°L§H;mL§7yH}D(RxR2xR) <C,
where C = C (|| ¢| Lgyi) is a constant. Moreover, the solution scatters, namely there exist v, € L:H1 such
that

|v(t) — e

A H - -
0.,
Vel 21 (r2xR) 0,ast—=



Theorem [1.2] shall be proved in the final two sections and it takes a vast bulk of the paper. We prove it
again by the concentration-compactness/rigidity argument from [61,/62]. The system (DCR)) is essentially
a defocusing mass-critical nonlinear Schrodinger system. In the proof, we follow the framework for
scattering of mass-critical nonlinear Schrodinger equation [29,311[32,/86]] and our argument is also partly
inspired by the scattering of the resonant Schrodinger system derived from the NLS on cylinders [21}22),
47.1481192[95]).

We would like to comment briefly on the relation between (DCR) and weak turbulence.

Remark 1.3 (The (DCR) system and weak turbulence). We can rewrite (1.5) in the Hermite coordinate
(see (2.1) below for the definition of the Hermite functions): Taking the solution v, (t,y,z) = ¢, (t,y)h,(x)
in the equation (L.3), we get an equivalent but simplified equation

(1.7) (10 + Agz) cn(t,y) = >° DiyngngnCni CngCns,s

ni,n2,n3eN,
ni—n2+n3=n

where Dy, 1y nyn is the number such that 11, (hnﬁn2 hng) (z) = Dpympngnhn(z), x € R It would be
very interesting to understand the constant Dy, 1, nyrn in (L7). Comparing with the success of the proof
of the weak turbulence on cylinders given by Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia [48],
the unclear expression of the nonlinear term of the (DCR) system seems to be one of the main obstacles
to study the weak turbulence of the nonlinear Schrodinger equations with (partial) harmonic potentials;
for more information we refer to [49]. However, there are some interesting recent attempts toward this

direction in [41|145]].

Remark 1.4 (Focusing NLS equations with harmonic potentials). In this paper, we only consider the
scattering of the defocusing NLS with partial harmonic potentials. It is an interesting problem to study the
scattering of the focusing version of (L2). It seems difficult to find the threshold of the scattering of the
focusing NLS. On the other hand, if we were able to find the threshold of the scattering, then most likely
the scattering can be proven by following the argument in [29-321163)|8486]]. We refer to [2)14,[12,|821194]
and the references therein for the study of the instability/stability of soliton which may give some clues on
the threshold of the scattering of the focusing NLS.

1.3. Brief outline of the proofs. The model with partial harmonic potential studied in this paper can
be compared to the NLS on wave-guide R? x T, which was considered previously in [21,/91]. One key
difference is that in our case, the linear operator has more complicated spectral theory, for example the
eigenfunctions cannot be written explicitly.

The proof of this paper contains two main ingredients. In the first part, we prove that Theorem [1.2]
implies Theorem[L.1l The proof of Theorem[L.1/has a very standard skeleton based on the concentration-
compactness/rigidity argument introduced by C. Kenig and F. Merle [61]], and it consists of three main
steps: linear profile decomposition, the existence of an almost periodic solution to the defocusing cubic
NLS (1.2), and a rigidity theorem.

First of all, we establish the linear profile decomposition of Schrodinger operator with partial harmonic
potentials, namely the linear solutions can be divided into several orthogonal bubbles modulo some trans-
forms. This can be viewed as a vector-valued version of linear profile decomposition of the Schrodinger
equation in L2, which was first established by F. Merle and L. Vega in 2D, and then extended to
general dimensions; see for instance [64] for more details. The proof of this part is very similar to the
wave-guide case in [21]], and it is essentially related to the description of the lack of compactness of the
embedding e(2x3 %) : $(R3) Lﬁy’Hi_EO, for some fixed 0 < ¢ < 3.
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In the second step, we prove the existence of a critical element by the construction of approximation
solutions. Since the non-linear flow is not commutable with the transform groups derived in the first step,
in order to construct the approximation solutions, we need to assume that the limiting equations, which
is exactly the (DCR) system, is globally well-posed and scatters, as stated in Theorem [.2l The idea of
using limiting equations was first considered in [53]], and was widely used in [21},122,147,54,55]]. Then,
similarly as in [21]], we use the normal form method to exploit additional decay to approximate the non-
linear profile. In the wave-guide case [21]], the eigenfunctions, which are the plain waves %7, can be
easily computed, thus the Fourier coefficients are summed naturally. The difficulty in this step is that we
need to sum up the spectral projections of the solution properly. To some extent, the main innovation
of this paper is that we utilize the additional regularity of the smooth non-linear profile to update the /!
summation of projections to 2.

In the third step, we borrow the idea used in [21] to prove the non-existence of non-trivial critical
element. The key point is the use of the interaction Morawetz estimate developed by J. Colliander, M.
Keel, G. Staffilani, H. Takaoka and T. Tao [24], which is very important in the remarkable work on
scattering for energy-critical NLS in 3-D, and was further developed in [23,/78]. Then, we can arrive at
the contradiction similar to [61,/62] using the compactness property of the critical element.

The second part of this paper is devoted to the proof of Theorem[1.2l The proof is greatly inspired by the
fundamental work of B. Dodson [29/311[32] in his study of mass critical NLS. We also refer to [92]], and the
principal difference between and this paper is that our system (DCR)) involves the spectral projection
of Schodinger operator with harmonic potential. Here, one key observation is that the (DCR)) system is
scaling invariant, which indicates that the classical method as developed in [21122//86] could be potentially
applied to our situation. Indeed, the linear profile decomposition developed for the Schrodinger propagator
in L2H, (R? x R) (see Theorem [4.1]) can be directly applied here. The essential difficulty occuring in the
proof of Theorem [L.2llies in precluding the almost periodic solution to the (DCR) system.

There are two cases of the critical element: high-to-low frequency cascade and the quasi-soliton scenar-
ios. We exclude these scenarios based on the rigidity argument of B. Dodson [29}[31,32]]. The key tool is
to establish a vector-valued version of 2D long time Strichartz estimate in [31]. The long time Strichartz
estimate is developed by B. Dodson to show the scattering of the mass-critical nonlinear Schrodinger equa-
tions and has been proved as an important technique in the scattering theory of nonlinear dispersive and
wave equation. We refer to [34-371165.(76.[79,90] for more application of this powerful tool. The proof of
the long time Strichartz estimate in our situation here is rather technical due to the spectral projection and
the failure of 2D end-point Strichartz estimate. For the high-to-low frequency cascade scenario, it is more
delicate and we have to exploit some additional regularity of the critical element through the long time
Strichartz, and then preclude it using energy conservation law. For the quasi-soliton scenario, we mainly
use the long time Strichartz to control the error terms of low frequency cut-off of interaction Morawetz
identity. With all these ingredients at hand, the contradiction argument of C.E. Kenig and F. Merle [61./62]]
allows us to conclude the proof.

The rest of the paper is organized as follows. Section[2/contains some basic notations and preliminaries.
In Section[3] we record the local well-posedness, the small data scattering result and the stability theory for
system (.2)). For convenience of the readers, we present the proofs in the Appendix. In Section 4] we will
give the linear profile decomposition for data in :(R?) and also analyze the nonlinear profiles, therefore
we reduce the non-scattering in X(IR?) to the existence of an almost-periodic solution. In Section [5] we
will show the extinction of such an almost-periodic solution. The scattering of the (DCR)) system shall be
proved in Section |6l where the proofs of two auxiliary theorems are left to the final Section 7L



2. BASIC NOTATIONS AND PRELIMINARIES

In this section, we introduce some basic notations used in this paper. We will use the notation X <Y
whenever there exists some constant C' > 0 so that X < C'Y. Similarly, we will write X ~ Y if X Y < X.
We use N to denote the set of all non-negative integers.

Throughout the paper, we will take €, to be some small fixed number in (0, %)

2.1. Fourier transform and Sobolev spaces. For any a € R? d € N, the Japanese bracket (a) is defined
1 A~
to be (a) = (1 +|a|?)2. We define the Fourier transform f:R¢ — C of a function f:R? - C, as

)= e f(2)dz
CRrwed M OLD

For each s € IR, the fractional differential operator |V|* is defined by [V[°f(¢) = |¢[*f(€). We also define
(V)® as an operator between function spaces by (V) f(£) = (1 +1[¢[2)2 f(&). In the following we will use
(V.)® to emphasize the application of the operator on the x-variable.

We will frequently use the partial Fourier transform F, f of a complex-valued function f:R? xR - C
defined as

Fuf(6n) = o-

where = € R is viewed as a parameter.

We shall also use the the Littlewood-Paley projections. Take a cut-off function y € C'* ((0,00)) such
that x(r) = 1if » < 1 and x(r) = 0if r > 2. For N € 2%, let xn(r) = x(N7'r) and ¢n(r) =
xn(r) = xnj2(r). We define the Littlewood-Paley dyadic operator Pey f = F~! (XN(|§|)f(§)) and
Pyf:=F1 (¢N(|§|)f(§)) We also define the partial Littlewood-Paley projections to be PY\ f(y,x) :=
Fyt Oew(©) (Fyf) (€,2)) and P f(y, ) = F (dn ([€]) (Fy f) (€ 7).

Next, we denote the usual Lebesgue space as LP(R?), and some time we write | f|, = || ] »(ga for
abbreviation. For any s € R, we define the Sobolev space as

WoP(R?) := {f € LP(RY) : | fliwemray = (V) fll o ray < +o00} -
We also define H*(R%) = W#2(RR%).

f2 et fy,x)dy, €eR?,
R

2.2. Harmonic oscillator and Hermite-Sobolev spaces. The harmonic oscillator —A, + 22, = € R, has
been studied by many authors, and we refer to the lecture notes of B. Helffer and also the seminal
work of H. Koch and D. Tataru [69] and the references therein for a few basic facts that we shall record
below. The harmonic oscillator admits a Hilbertian basis of eigenvectors for L2(RR), and for each n € N, we
will denote the n' eigenspace by E,, and the corresponding eigenvalue by ), = 2n + 1. Each eigenspace
FE, is spanned by the Hermite functions h,,, where

@.1) () = s (1)
' T /nl2sni dx™

for n € N. We also let IT,, be the orthogonal projector on the n*" eigenspace F,, of -A, + 2.
For s € R and p > 1, the Hermite-Sobolev space W*P(R) is defined as follows:

WP(R) = {ue LE(R) : [ulwer = [(V)*ulp + || [l p < 00} .

(™),
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In particular, if p = 2, we denote W5 (R) by H:(R), and the HL(R)-norm was given in (L3). By [91],
we have

s/2
Julwee ~ (=2 +2%)"u| +ul,.

The Hermite-Sobolev space LyH3 with 1 < p < co and s € R is defined by

1/p
LZHQSE = {f € Lng(Rz X R) : HfHLZH;(R?xR) = ([R? |f(ya‘)’§{;(R)dy)

P 1/p
L3 (R)

where f,, = II,, f. Similarly, for any time interval / € R and v : I x R? x R - C, we define the space-time
norms LYW, 9L" and LY LEH? of u as

1
2

M [ONCTERINTACES

neN

1/p

pq
T - ( S w091, ey 00 dt) ,

plq 1/p
Hu’|LfLZHg(IxR2><R) = ([I([R? I\U(t,y,-)%;(m dy) dt) )

where 1 < p,q,7 < 0o, and s € R. When s = 0 and p = ¢ = r, we shall write i, , for LYW’ L’ Similarly,
when p = ¢, we shall write L7 H3 for Ly LyH;. We also use the followmg space -time norm. For any
{un(t,y,z)} o With (t,y,2) € I x R?2 xR, we set

”Un || LPLq L'rlQ

RIZ (IxR2xRxN) ~ Al LPLI LT (IxR2xR)
where 1 < p,q,r < co.
Lemma 2.1. The Dirac function 6y(x) belongs to H;'(R).
Proof. By definition, we have
2.2) [60(2) |51 = Z (2n+1) e,
where ¢, = (5o(2), hn(2)) = h,(0). Since e = Z L) x2)m = Z 4 _Oe*””2 -2 we have
dn e _ 0, n is odd,
dan 20 ((1)), n!,  niseven.

Thus

0, n is odd,
ha(0) =1 v» (% .

n: 7 1S even.
Vaior ()0

Together with (2.2), this implies

[ee]

! & 1
So(2) |20 <7i ¢ S L gnama1) S
[0(2) 32 <7 n;,HQ"((%)!)Q(le) ;02m(4m+1)

neve
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3. LOCAL WELL-POSEDNESS AND SMALL DATA SCATTERING

In this section, we will review the local well-posedness theorem and the stability theorem for solutions
of (1.2)), which shall be crucial in proving the existence of the critical element, and then record another im-
portant theorem on the scattering norm in Theorem[3.4] which says that a weak space-time norm Liy’;’-[ifeo
is sufficient to prove the scattering result. We shall only state these results in this section and leave the
proofs to Appendix A. In fact, the results in this section can be proved by following the exact arguments
as in [21} Section 2] or [22], upon noticing the embedding H2*(R) — L= (R).

Different from the Strichartz estimate for the harmonic oscillator, which is a local estimate, we have a
global Strichartz estimate for the partial harmonic oscillator similar to the Schrédinger equation on waveg-
uides [21.[221/87./88]]. Before giving the Strichartz estimate, we first introduce the following definition.

Definition 3.1 (Strichartz admissible pair). We call a pair (p,q) is Strichartz admissible if 2 < p < oo,

2<g<oo, and++1i=1
p q 2

We can now state the Strichartz estimate. The proof is almost identical to Proof of Proposition 2.1],
we also refer to Proposition 3.1 in [1]], and we omit the proof here.

Proposition 3.2 (Strichartz estimate for the partial harmonic oscillator). For any Strichartz admissible
pair (p,q), we have

et(301=2") f(y, )

<
LPLIL2(RxR2xR) ~ HfHL@%w
Meanwhile, for o = 0, 1, it holds

HeitAyf(yVT)HLng'Hg(RXR2XR) S HfHLleg(R%Ry

The following nonlinear estimate, which follows from the Holder and Sobolev inequalities, is useful in
showing the local well-posedness result.

Proposition 3.3 (Nonlinear estimate). For any 0 < € < 3, we have

||U1UQU3 ”L 2<0 N HulHL;{yH;‘EO ‘U2HL;1 yq.[clc‘fo ‘U3HL;1 yq.[clc‘fo :

3
t,y' T

Using Proposition [3.2]and Proposition[3.3] one can easily prove the following local well-posedness and
small data scattering in L2} (R? x R) and ¥(R?). The local solution can be extended to be global by the
conservation of mass and energy, we refer to [14,83]. The proof of the local well-posedness is given in

the Appendix; see also [[1,2,13H15[17,[18]] for a comparison.

Theorem 3.4 (LWP and scattering in L2} and ).

(1) (Well-posedness) Let ug € L2H1, there exits a unique solution u € C)L2HL(I x R? x R) of (L2),
where I € R is the maximal lifespan. Furthermore, if ug € X(R?), the solution u can be extended
10 be global in CY%,, ,(R x R? x R).

(2) (Scattering norm) If the solution u € CP3, (R x R?) of (L2) satisfies ||UHL§yHJ;’EO (Exr2xr) S M

for some positive constant M. Then u scatters in (R3), that is there exist u, € 3, ,(R? xR) such
that

(3.1) [utty,2) - @~ (y,2) | >0, ast— oo,

Y,T
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We now state the stability theory in L2H;(R? x R). The proof is again given in the Appendix. For
a comparison, see [25}64,[71]], in particular, Theorem 3.7]. We also contend that the result in the
following theorem can extended to X (RR3).

Theorem 3.5 (Stability theorem). Let I be a compact interval and let u be an approximate solution to
(L2)) in the sense that u satisfies 10, + Agst — 220 = |u|>w + e for some function e.
Suppose

Il e rampors wa <M

for some positive constant M.
Let ty € I and let u(ty) obey

(3.2) lu(to) = ulto)] L2py < M’

for some M’ > 0. Assume in addition that the smallness condition holds
i(t-to)(Ags—2? _ 5

(3.3) 07 (ulty) ~ alto) Lt " HeHL?’LH}C =6

for some 0 < € < €1, where €1 = ¢(M, M") > 0 is a small constant. Then, there exists a solution u to (1.2))
on I x R? x R with an initial data u(ty) at time t =t satisfying

=il s 5y <COLM e, Ju= e < C(M, MM,

and |[u] e rayinrs a0 < C(M, M),

4. EXISTENCE OF AN ALMOST-PERIODIC SOLUTION

In this section, we will show the existence of an almost-periodic solution by the profile decomposition
and the nonlinear approximation.

4.1. Linear profile decomposition. In this subsection, we will establish the linear profile decomposition
in 3(IR?), which depends on the corresponding decomposition in L2?(IR?). The linear profile decomposi-
tion in L? for the mass-critical nonlinear Schrodinger equation has been established by F. Merle and L.
Vega [74], R. Carles and S. Keraani [19], and P. Bégout and A. Vargas [7]]. We also refer readers to [[64,71]]
for other versions of the linear profile decomposition.

Theorem 4.1 (Linear profile decompositionin L2H!(R? xR) and X). Let {uy},,, be a bounded sequence
in L2H1(R? x R). Then after passing to a subsequence if necessary, there exists J* € {0,1,---} u{oo}, 50
that for any J < J*, we have functions ¢7 € L2ZHL(R* xR), 1 < j < J, r{{ e L2HL(R? x R), and mutually
orthogonal frames {()\i, ti, yi, Sft’)}k>1 c R, x R x R? x R? in the sense that for any j # 7',

. ., . 12 j 2 j 5’ 2 4
NN gl o2 |yi - ‘()‘k) b, - ()‘k) b,
(4.1) e Sh N e - e _ 00, as k — oo,
NN NN NN

such that, for every 1 < j < J, we have a decomposition
J

J 1 . j . . y—-vy
up(y, ) = Y —eW (e ) ( ko + 1l (y,x).
(.2) = 3 e (o) | =5 {,2)
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In addition,

J
. 2 112 2
42 (Il - X1 - il ) -0
iz
4.3) )\f;e’itiAy(eii()‘?vywj’%)g’r;’ ()\fgy + yi,x) ) —~0, in LyH,, as k — oo, for j < J,
4.4) 1irkn_)s<;1p et(Bg3=a) Lt et -0, asJ - J".

Furthermore, if {uy},., is a bounded sequence in ¥.(R?), then in the above conclusion, we can further
Si‘ < Cj, for every 1 < j < J. And we have a slight different decomposition

take)\{t—>10roo,ask—>oo,

J=1

3 ; 7 S iy &l [ ith Ae DI 1] y—yi J
el e) = Lo D) il 0 = g e (b Plgd) ) i),
Jj=1 , 7
where
» ¢ (y, ), if lim A =1,
P]gqu(y,[[): ) ) k‘%oo k
Pf()\j)eqﬁ](y>x)a lf}llm )\gc = 00,
<N m

and 0 is some fixed positive sufficiently small number. In addition, we also have a slight different decou-
pling

J .
(4.5) Jim (5(uk) NACA —g(r,{)) =0,
[ee] j=1
and
J .
(4.6) Jim (M (uk)—ZM(gﬁfg)—M(r;j)) =0,
[ee) j=1

where £ and M are given in (ME). Other conclusions (4.1)-(4.4) hold as before.

To prove the above theorem, we need to establish the inverse Strichartz estimate in Proposition |4.6|
below. We first recall the following refined Strichartz estimate which is essentially established in [21},22].

_f0
Proposition 4.2 (Refined Strichartz estimate, [21,[22]]). For any f € L;Hi 2 we have

3 1
e SIAI = et fo
€% 71y, ruganiy S WL, (g&gl@ e el )

where

D= J{[27k1,27 (k1 + 1)) x [27k2,27 (ko + 1)) : (K1, ko) € Z*}

JEZ
is the collection of all dyadic cubes, and fg is defined by F,(fo) = xo Fyf-

To prove the inverse Strichartz estimate, we shall need the following two facts:
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Proposition 4.3 (Local smoothing estimate, [27,/89]]). For any given € > 0, we have
1 2 e
L L (valieme £) )] (o)< dydadt 5 LF12, geony

Furthermore, if € > 1, then we have
L L (e ) (o) (o)~ dydedt 5 171, oy
Lemma 4.4. For each f € HL(R) and any R > 0, we have
£l o 8 B (1£@)liz + £ @) 17 @ )
Proof. For any f € HL(R), we have
@) = [T de= [T RE 2001 () dz
then by Holder’s inequality, we get

|2f2(@)] o $ 1122 + I f (@) 22 ]f (@) 2.
Therefore, for any R > 0,

£ @ ez oy 5 7 (1722 + lof @I 51 @)1, )

We also have the following estimate.

Lemma 4.5. By interpolation, the Holder inequality, the embedding L3(R) < H~*(R), and Proposition
13.2] we have
x

itA A, £ itA A, £ 2 1-3
4.7 Hel nyLf’nyéO S HeZ nyl?f,yHil Hel nyLf,yHclv S Hel nyszym Hf”LgfL}c .
We can now prove the inverse Strichartz estimate.
Proposition 4.6 (Inverse Strichartz estimate). For { fi},., ¢ L2H1(R? x R) satisfying
: _ . itA -
(4.8) i [ felpzpg =A  and - Jim 52 fi 4 o0 =€

there exist ¢ € LEH} and (A, ty, &k, yr) € Ry x R x R? x R?, 50 that passing to a further subsequence of if
necessary, we have

e~ Orvsw) (itelee fi ) (Ay + yi, ) =~ ¢y, ) in L2, as k — oo,

48

. € \<o
(4.9) im (1l = 1= OulBgny) = B0l 2 42(5) "
28
(4.10) limsup |22 (fi - ¢1)], e’ (1-ea ()"
) lrlisoljp e k— Pk Lﬁy%;*o—e ¢ A ’

where c and [ are small positive constants, and

1 LN -
ou(y, ) = )\—kely'gk (6 g R2¢) (y)\kyk,f)-
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Moreover, if { fi }rs1 is bounded in (R3), and also
(.11) lim [filg =4 and  Jim €552 fel 1y 5 =€,

then we can take M\, > 1, || S 1 and ¢ € L7H;(R? x R) such that

(4.12) e~ ok Qo) (82 fi ) (\gy + yi, @) = ¢(y, &) in LMy, as k — oo,
and

e 48
@13 Jim (1Al = 1 - 6ul) = Jim lnl 2 4% ()™

Proof. Case 1. { fi.},, is bounded in L2H}. By Proposition4.2] (4.7) and (4.8)), there exists {Q},,, € D
so that

(4.14) €0 AT STminf |Qx [52 (fi)g, |y
— 00 ty,x

Let \; be the inverse of the side-length and ¢, be the center of the cube (). By Holder’s inequality and

(4.8), we have

. RN e B2 2Ny
lminf |Qr| 2 ||e™®22 (fi)g,| 1y $lminf ) (esoA 60)
k—o0 Lt_z,z k—o0

3
e (el
YT

Together with (4.14), this implies

B (g s ey 74"
k—oo k k Qk L;Oy,x(RXR2XR) ~ .

Then by Lemmal4.4]and Bernstein’s inequality, we have

. . it/
ll]gf_l)glf )\k He’ R2 (fk)Qk HL:’%Z(RXR2X{‘$‘2R})

1 1
st ignint e (10, g+l (R, @I s 10 (0 )L )
SRt timint A (107 iz, + QU Ieh s 10l )

_1.. . 1 1
~Rottimint (1 less, + [0l Fsy 10ufillfngy ) >0, as R oo,

Therefore, we can take R large enough such that
, 1 22 4 24
liminf )\, [|e™®r2 < —e0A <.
- k H (fk)QkHLfyywﬂﬂzR) 2

As a consequence, there exists (g, yr, %) € R x R? x R with |z;| < R, so that

1-24

(4.15) liminf Mg |(e2%2 (i), ) (e, 22)| 2 €0 A5
. k—o0 k k)Qu Yk, Tk )| < :

Since |zx| < R, we may assume, up to a subsequence, z;, — x*, as k — oo, with |z*| < 1.
By the weak compactness of L27{}, we have

Ape Q) (eiteBe2 £} (\py + yp, ) =~ d(y,x) in L2H,, as k — oo.

x?

By the very basic fact in Hilbert space /I that

g —~gin H= g% - lgr - gl7 = 9l
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we have
lim (1 fel250 = 1 = 082300 ) = 1613270
We now turn to the remaining part (4.9). Define h so that F,h is the characteristic function of the cube

[-3 1]2. By Lemmal[2.1] the function (z,y) = h(y)do(x) € LZH,*(R? x R). From (4.13)), we obtain

272
[((y)oo(w). (o +.2)),,| =T (6D, [ B e 8O0 (63 ) (gg o e+ )

. 21 g 2
(4.16) = lim Ay (€222 (fr)g, ) (yrs )| 2 €0 A 50,

from which it follows
. 24 1_24
o (y,x+x )HL@%H% >c0 A <.
At the same time, since
loCy, )22 2 @ (v x + )| o + )@ (v, 2+ 27) [ 12 = [|2*[ @ (g 2+ 27) | 2
Yy ytx Y,T Y,z
=y, z+ ") 290 = l2" | D(y, 2)] 23,
we get
l¢(y, 2 +27) | 23 < |Dlzae + 12" 1@]2z, S 1] 29er-

Therefore |¢] 271 2 e A" % and (4.9) follows. We turn to (4.10), by Proposition 4.3] and the Rellich-
Kondrashov theorem, we have

ei8w2 (e G CRurum) (82 £ ) (\py + yi, @ + 1)) = €22 (y, ), as k — oo,

for almost every (¢,y, ) € R x R? x R. By the refined Fatou’s lemma [72]], we obtain

e il €42 I; 222
R — R — — R
He fk,‘ L?’y,}_[l—eo (& (.fk‘ ¢k‘) L?’y,HCl[eo (& ¢k2 L%yy,]_[;feo d 0, as k — 00.

T

Thus, by the invariance of Galilean transform, we have
. , 4 ) - 4 . 4
@I timsup |05 (f = 00, i =lmsp ([0 el - [ ol o)
k—oco t,y k— o0 tyy ty

2 q_2\4 ; 4
= (esoA 6o) - He tAnaz?qSHL4 210 -
tyy'tT
We now take ¢(t) € C™ which has compact support on [-1, 1], such that

itA _
le())ehl 4 =1.

Then by (4.16), we have
24 q_24
Z €<o A €0

[ h)ana),6 (o + 7)), d
On the other hand, by Holder’s inequality, Sobolev’s inequality and Lemmal[2.1]

(D)), & (9,2 + 7))y, | =| [ (2 (e(h@)o(2)) €06 (g, +a%)), dt
/. | |

slet® (@) 3 ™6 0),y pn0 sl 0w 2)] ;5 e
t,y ’ ’
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Therefore, by the above two estimates and (4.17), we get (4.10).
Case 2. { fi.} > is bounded in ¥(IR?). In this case, we have

hr]flsup P RkaL2H1 o S(R)™ lir]flsup | fils(msy = 0, as R — oo.
For R € 2% large enough depending on A and ¢, by (4.11), Sobolev embedding, and Strichartz estimate,
PY, fi, satisfies

: itA o : itA o : 1itAgo
Yim e85 P ful g gy = i €552 f g oo = B 052 P2 fly g1

> hm He”ARQf HL4 1 —C hm H YTk 60A

Hqu_Ll €0 2 2

So we can replace f; by PZ,f, in the above case, and for R = R(A,€) > 0 large enough, we may take
{Qk}ysy € D and |Qk] S R2 such that \;, > R7!, and |£] $ R. As in the proof of Case I, we still have
(4.12) and also (@.9), (4.10). Furthermore, if lim sup \;, < oo, then

k—o0

e e Qe (%2 Y Ay + yp, ) ~ Gy, )

holds for some ¢ € ¥(R? x R). To show (4.13)), we just need to consider the case when )\, — oo because
the situation when limsup Ay < oo is as in Case 1. We note

k— o0
2 48
€ €
> A2 (—) ’
L2} A

Then the decoupling of the ¥—norm comes from .0 — Idin L2H} and .12). O

. 2 .
Jim [ ¢r s, > Jim prkng

Proof of Theoremld. 1 The conclusion follows by applying Proposition 4.6 repeatedly until the asymptot-
ically linear evolution of the remainder is trivial in Lﬁy?-[i’eo. The decoupling (4.3)) and (4.6)) follow from

(.13)) and the orthogonality (4.1). d

Remark 4.7. For a linear profile decomposition for the Schrodinger propagator of the Schrodinger op-
erator —A + |z|? in L2, we refer to the work of C. Jao, R. Killip, and M. Visan [58)] and C. Jao [57], we
believe that some part of their argument can be applied in our equation. We also refer to the linear profile
decomposition proved by A. Ardila and R. Carles [2]].

4.2. Approximation of the nonlinear profile - The case of concentrated initial data. In this section,
we will show that the nonlinear profile u, given in (1.4)

{i@tu)\ + Apsuy — 22uy = |uy|?uy,
u,\(O,y,x) = %Qﬁ(%,l’),
can be approximated by 1, given in (L.6)

ity z) = etdes?) 3° (lvn (i %)) (t,y,2) eRx RZ xR,

A A27 )\
neN
when \ is sufficiently large. Here v, is the solution of the (DCR) system (L.5])
(i8t+Ay)Un(tuyax) = > I, (Vny Uy ng) (F, 9, 7)),

ni,n2,n3elN,
ni—n2+nz=n

v (0,y,2) = on(y, z) = (y, ).
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The following corollary can be proven from Theorem [L.2|by following the argument in [25/64]]. In partic-
ular, we refer to [24, Lemma 3.12].

Corollary 4.8 (Corollary of Theorem[L.2} Preservation of higher regularity). Suppose that ¢ € L2H1(IR? x
R) and v is the global solution of (DCR)) given as in Theorem|L.2l For any s; > 0 and s > 1, if we assume
further v|i—g € Hy' Hz? (R? x R), then the solution v € C? Hy*H3? (R x R? x R) and satisfies

”U”Lijlﬂj;?mL;lW;l"‘Hi? (RxR2xR) <C (”¢| Hy H3? (RZXR)) :

Relying on Corollary [4.8] we can now prove the following general result on approximation of the non-
linear profile in the large-scale case. We will prove it with the help of Theorem [3.5]

Theorem 4.9. Forany ¢ € L2H1, 0 <0 << 1, (Mg, b, Y, §x) € Ry x RxR? xR, [&4| S 1 and Ay, — oo when
k — co. There exists a global solution uy, € CY L2H}. of

i0pug + Ayuy + Aguy — 2wy, = [ugl?uy,
up(0,y, ) = A\ et (e“kAyPS)\qu) (y;zk,x) ,
for k large enough, satisfying
HukHL;"L@H;nLng;(RxR?xR) SWHLgH}: 1

Furthermore, assume that ¢, = €4 (||¢H L2 H;) is a sufficiently small positive constant and v € H"H;° such
that

|6 = Vlrz < ea.

Then there exists a solution v € CY H2HL(R x R? x R) of (DCR), with
U(anvx) = @D(y,x), lftk =0,

tl_}go lv(t,y,z) - €itAywHL§H}C =0, if t), > *oo,
such that for k large enough, we have |uy, HL?L%?—L;mLf,yH}C(RXRQXR) S 1, with
[ur(t) —wa, (t)HLf"L%?—L;an,yH;(RxR%R) =0, as k — oo,
where

+tk

wy, (t,y, 1) = itk piy-E )\;1€it(Arw2)U ( t

Y=y — 28, (t - ty)
F s )\ , I -
k k

Proof of Theorem4.9] By translation invariance, we may take y; = 0. By Galilean transformation and |¢|
is bounded, we may take &, = 0. Then

4 t
wy, (t,y,x) = )\gle’t(A””—x2)v — +th i,x
SRR
When t;, = 0, we will show w, is an approximate solution to (1.2). After a simple computation, we see
e, = (z’@t + A+ A, - :)32) wy, — [wy, [Pwy,

| | t
(4.18) = =N Y et N enitimnaana ) (T (v, D, Uy ) (— i,x).

neN ni,n2,n3eN,
ni—n2+ns3+n
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We will show this error term is small in the dual Strichartz space. Dividing the right hand side of (4.18])
into three terms:

- —it(2n =2it(n1—n2+nz-n - t )
ex (t,y,x) =— AL Z omit(2n+1) Z o~ 2it(n1-nz+ng )szz—w (Hn (Vny UnyUny ) (F’ )\—,a?))
neN n1,n9,n3eN k

. . t
+ )\];3 Z efzt(2n+1) Z 672zt(n17n2+n37n)PZyz_lo (Hn (Un1 @nz Ung) ( Y ))

—,—,T

PR )
neN n1,n2,n3eN, )\k )\k
ni—n2+nz=n

, . t
- )\];3 Z 6_Zt(2n+1) Z 6—21t(n1—n2+n3—n)P§y2710 (Hn ('Unlﬂnzvng) (_ i71’))

227\
neN ni,n2,n3eN, k "k
ni—n2+n3+n

1

—. 2 3

)\k'

We first consider eik and shall use Bernstein’s inequality, Leibnitz’s rule, Plancherel’s identity and Holder’s
inequality to estimate as follows:

3
1
L3 M

(4.19)
_ s 2 _9s 2 _ o _
Heik (t,y,x)H . s)\kl Z e IALt(2n+1) Z e 2iA;t(n1-n2+ng n)Hn (vyvnl Tpy U’ﬂg) (t,y,l’)
Lt,y’Hx neN ni,n2,n3eN Lt'g H1
AL ‘ oM (De=a?) (axit(Ax—x?)vyv . ez’)\%t(Az—mQ)Uez’)\it(Ax—xQ),U) (t,y,:):)‘

- 2
S)‘kl HvaHL;{yH}C HUHL%H; -0, as k — oo,

where --- are the missing two terms with V,, acting on v, and v,,,.

We now turn to the estimate of eik. Using Bernstein’s inequality and Leibniz’s rule as above, we have

S)\;l 4o

Z 6—i)\it(2n+l) Z Hn(vyvnl . @n2vn3) (t, 1, x)

neN n1,n2,n3eN,

n1—n2+n3=n

(4.20) N
_ 1 -

A ( Z |<n>2 Z 1L, (Vyn, * UnyVng ) (t,y, ) | ) e

neN n1,n2,n3€N,
ni—n2+n3=n

2
3.1,
ek

3
1
Ly M

where --- are the missing two terms with V,, acting on v, and v,,,.
We observe the following elementary inequality: for n = n; —ns + ng

+ ...
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Using the fact {(n)~1} _ €2, the Minkowski inequality and boundedness of II,,, we have

1 _
<n>2 Z 1T, (vyvnl : Unzvns) (t,y, I)

ni,n2,n3eN,
ni—n2+n3=n

<n>_1 Z <n1>2<n2>2<n3>2 1L, (VyUny * UnyUng) (L, Y, )|

ni,n2,n3eN,
ni—n2+n3=n

2. (ma)X(n2)*(ns)” [(Vyvn, - Onytny) (6,9,2) | 12

ni,n2,n3eN

4
L3 L212

tyyxz'n

AN

4
3 272
L3, L3212

N

3
Lt,y

By Holder’s inequality and the embedding #H'(R) < L*°(R), we find

| (VyVn, * UpyVng) (tayax)“Lg(R) S Hvyvn1(taya$)HLg(R) [vn, (tvyax)“?-[}c(R) ans(tuyvx)H’H;(R) :

Similar arguments can be applied to the other two terms on the right hand side of (4.20). All together lead
to the estimate:

2 -1 2 2 2 =
HeAk HL;ilij; S\, H(nl) (n2)*(ns) ||(Vyvn1-vmvng)(t,y,x)HLg L%yl}”%l}bg

X )2 22032 [y - Fyomons) ) s | 4, )
t,y'nyngng

(4.21) A1) (n2)203) | (0 - B Vyms) (£, 2) 1

4
371 71 g1
Lt,ylnl l"2 l"3

N 200220130 190, (1Y o (9 s (o ] s
t,y'ny'ng ng

_ 2 _
N0y g 1012 s 50 (100 ) € (16030 ) = 0, a5 b oo,
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|

-
=,
Ak

>

t
S 2
f it ) (Ay+Ap-z )6‘;)\ (7_) dr
k
0
;x| dr
k
ni—n2+n3+n
ni—n2+n3+n
ni—n2+n3+En

Now, we only need to deal with e?j\k. We will use the normal form transform to exploit additional decay
of A\, since it possesses time non-resonance property. Integrating by parts and direct computation imply
t .
- _ )\];3 Z / ezt(Ay—2n—1)€—z7'Ay P<y2_10 Hn (,Un1 1—)”2,(]”3)
n1,n2,n3,neN 0 B
-3 it(Ay-2n-1) ~ithy (A Y L py . ty
=-\; Y By e y(—sz) PY, oI (Vn, UnyUny ) Vi
n1,n2,n3,neN, - E Nk
. ~ -1
+ )‘l;3 Z elt(Ay*%l*l) (_ZAZ/) P<y2—10Hn (Unl’(_an’UnS) (07 £7 Z’)
n1,n2,ns,neN, h Ak
+ A2 Y te”(Ay’%’l)e’”Ay(—iA )710 PY oI, (U, UnyUns ) T L)) dr
k 0 Y T <2-10+"n ni1“n2vng )\2 ) )\ )
ni,n2,n3,neN, k k

ni—n2+n3+n

. ! _
:)\;3 Z €Zt(Ay+Aw_x2)(—'lAy) PSyzflOHn (Unlvngvng) (O, )\ﬂk, flf)

ni,n2,n3,neN,
ni—ng+n3#*n

. . <~ -1 t vy
-3 —2it(n1-na+ng)—it (_ : ) Y -
AL Y ooe iAy) Pyl (Uny UnyUny) VI x
ni,nz,n3,neN, k
ni—n2+n3+n

. t X ~ —
+ )\];3 Z elt(Ay—Zn—l) /(; 6—27’Ay(_z.Ay) 107P§y27101__[n (,Un1@n2vn3) (

ni,n2,n3,neN,
ni—n2+n3+n

Ty
=L x)d
)\2? Aka) T?

where the operator Ay is defined to be

Ay =2(np —ng+n3—n)+ A,

This is a perturbation of the Laplacian operator and we suppress the parameters n,ns, ng,n. The inverse
X\ L. .
operator (—Ay) is defined by the Fourier transform

7 ((Hi4,) " £) o) = i(F, 1) (& )

2(ny —ng +nz—n) — &2

This operator is invertible when 1y — ny + n3 —n # 0 and || < 2710, We will use this expression in the
remaining of the proof.

Denote

ei}j o )\];3 Z eit(Ay+Ag¢—x2)P§2_lo ((—iAy)‘l (Hn (Vny UnyUns ) (0, )%,x)))

n1,n2,n3,neN, L} HL
ni1-n2+n3#n Y

. - ¢
ei’f = )\];3 Z 6—22t(n1—n2+n3)—zt(_iAy) 1 (Psyz-lonn (Um T_JnQUnS) (F, )%, LL’))
k

n1,n2,n3,n€eN, L} HL
ni1-n2+n3#n Y

)

Y
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and

6>\k .

) t -~ P
PSS et [0 e (—iA,) (8 Py 1011, (Vny Unyns ) ()\—z, )%,x)) dr

n1,n2,n3,neN,
ni—n2+n3z+n

Then, we have

3,1 3,3
~ ey +eAk +ey

t .
(422) H[ eZ(t_T)(Ay+Aw_x2)eik (7-7 Y, .Z(})dT
0 L ML

. . -l
First, we consider the term ei”:. By the boundedness of the operator P<2 10( sz) when n; —ng+ns #n
and Minkowski’s inequality, we may estimate as follows:

(4.23)
1 X\ _ Yy
eikl IIAE Z )\/LC?)PE2 10( sz) IL, ((vnlvmvng) (O, )\—,x))
n1,nz,n3eN k 2Lz
ni—n2+n3+En ’
_ 1 _ Y
S)\ks <7’L>2 Z n((vrn'ungvng) (0,)\—,1'))
n1,n2,n3eN k L2 L212
ni—n2+n3*n
_ 1 _
5)‘k2 <n>2 Z HHn ((Umvnzvng) (07 Y, 1’)) ”Lﬁ
ni,n2,n3eN 1212

r'n

YD

[ (2) 3 TL, (0, 80,005) (0,9, )|
nl,nz,ngd\]

S)\;2 Z ||Un1(0ay>x)”LgH; ”Unz (O7y7$)||LgH; ”UTLJ (O>y7$)||LgH;

ni,n2,mn3eN

9 3
2O (1000,9,2) 13 ) = 0, a5k — oo.

S Z | (Vs Oy 0ny) (Oa%x)HLgH}C

2 2
Lval" ni,n2,n3eN

|
Next, we consider the term ¢? A\ ?_ Asin the estimate of ¢ ey By the boundedness of the operator Psyz,lo (—sz)
when ny — ny + n3 # n, Minkowski’s inequality, the fractional Leibniz rule, Sobolev’s inequality and
Holder’s inequality, we have

(424) 6§\f S)\];3 (n)% Z 672“(”17”2%“)’)7%( ZA ) P<2 10 n( (Unlz_]nzvns) (%7 )%7:(:)
k

ni,n2,n3eN
ni—n2+nsz+n

_ 1

o (I
ni,n2,n3eN
ni—n2+nsz+n

Li L33

AN
=

Hn( (Vny UnyVns) (;2 ’ )\ﬂ :L’))

rallpirzez

|
Njo

_é
2

SA t 3
k nl,n;geN ||Un1'Un2Un3” ?—Ll L4 ”U( Yy, T )”Wy?*AHQ p
,g 3 3
AL SAkQO(w(o,y,x)nHﬁHg) 0, as koo
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Finally, we are left to consider the term ei’f. Applying the Strichartz estimate, we obtain

(4.25)

. t . X ~ -
IS 6zt(Ay—2n—l)/ B (=iA,) 1 0, P, o1, (0 Tra ) %’ﬂjz dr
0 < AL Ak

ni,n2,n3,neN,
ni—n2+nz*n

4 251
Ly Ha

AN

(i0s+ Ay + A, —2?) Y it(@u2n))

n1,n2,n3,neN
ni—ng+nz#*n

t ! _ Ty Ty Ty
Py ZTAy—A a—,—Hn )\371 R no |l 303 n3 |l N2\ d
[ R B e MRS ¥

We observe, after some computation, that

LIL3H}

t .
) ) o » . -1
(10, + Ay + A, —2?) Y etlBvntl) f e Tv(=iA,)  PY
n1,n2,n3,neN, 0
ni1—ng+nz#*n

'&Hn)\_gnii niﬁ n,iﬁ d
(kvl()\z,)\k,x Unsy A%’)\k’x Upg A%’)\k’x T

-2it(n1-n2+ng)—i ‘A V7L - t oy Lty Lty
= > gEtmmnams) t(—sz) P, 1,01, ()\k?’vm (A—z,)\—k,x) Vny ()\—i,)\—k,:)s)vn3 (A—z,)\—k,x))

ni,n2,n3,neN
ni—n2+nz*n

Therefore, by the above observation, Plancherel’s theorem and Leibniz’s rule, we have

(4.26)
#@.25) <

(z( =

neN \ ni,ng,nzeN,

—2it(n1-no+nz—n)—1 ; 1 11 - t Y
€ t( e ) t( ZAy) P<y2 108t n()\k3vnl ()\k’ )\k 7 x)
ni1-n2+nz3*n

t oy ty N
Uno | 30 3 X | Uns | 790y > <n>)
()‘2 Ak ) ()‘i Ak ))) LIL2L2

(5( 5 Jom (o (s )55 o5 12-2))
ni1-ng+n3#n

S

o)

Ly
-2 — -2
SAk Z 10vny + Uy Vg ”L%LZ’H}C + A Z va '81*”“2”"3“L1L2H1
ni,n2,n3eN ni,nz,ngeN v

N )\];2 Z HUTM . T)n2atvn3 ”L%Lgﬁ}t ’
n17n2’n36N
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We shall only show how to estimate the first term on the right hand side of (4.26) as the other two terms
can be estimated similarly. By Holder’s inequality, and the fact that v satisfies (DCR)), we have

- 2
m’n;gd\] “atvmvnzvnaHL}LgH}c SHUHLngHg “atUHLngH%

Z I, (Vny UnyUng)

n4,n5,n6,n1€N,
n4a—ns+neg=ni

S0P sgas I Ayl szgs + 1ol s

LILSHS

Applying Holder’s inequality and the Sobolev embedding, we have

Z 1L, (UM Uns Ums) S

~

3 _
<n1> 2 Z Hm (Unzlvns UHG)

friien KR e LR,
S| 2 Am) T na) (ns) (n6)* [, (0, s s )|
nq4,ns,neeEN, L?LSL%lil

n4a—ns+ne=ni

S

>, (na)*(ns5)* (1) [vn, Uy ngl 12

na,ns,neeN L?Lg
3
3
S| X s oLy Do b ool 5 ol <C (1015, )
na,ns,neeN y Ttz

L3LY

where in the last inequality we use the fact that by Corollary 4.8 we have

ol zpzgrs < C (100 12)

and
18001 gs < C (12080 17 ) -
Combining all these estimates together, we finally obtain
2 2 3
@ﬂ)eﬁsaﬂcuw%@)Cquu%9+ch%%)OUwﬁ%))»m%kew
To apply Theorem[3.3] we see

]11_{{.10 Hw>\k (O,y,x) - uAk(Ovyax)HLg?{}c = H(b - wHL?JH}C < €,

Zo( 5L ol
= oo T2
)\k Ai’ )\k’ L LZHL»

HwAkHLngH;(RxWxR) = ‘
Ly L

and

1 t vy
rmmwﬁmwwm=%?(gq;ﬂ = Jolog

4 91
Lt,yer

These together with the estimates (4.19), (4.21), (4.22), (4.23), (4.24), (4.27) and Theorem [1.2] yields
Theorem 4.9 when ¢, = 0.
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If t;, > +o0, as k — oo, v is the solution of (DCR) with
i fo(t,y,z) - "1 2901 = 0.

By the argument in the case t; = 0, we can also obtain Theorem [4.9]in this case. U
4.3. Existence of an almost-periodic soltuion. Define

A(L) = sup Hu”Lf’nyEO (RxR2xR)?
where the supremum is taken over all global solutions u € CP (R, 2(R3)) of (1.2) with

E(u(t)) + M(u(t)) < L.

The proof of Theorem [3.4limplies A(L) < oo for sufficiently small L. Let
(4.28) Linax =sup{L >0:A(L) <o0}.

If Lax < 0o, then following the arguments in [21,122]], one can show the existence of an almost periodic
solution with the help of Theorems K. 1land 4.9l The proof is rather standard, we refer to [21,221/61,/62./64!
186]] and omit the proof here.

Theorem 4.10 (Existence of an almost-periodic solution). Assume that L,,,, < oo. Then there exists a
solution u,. € CY (R, X(R3)) of the defocusing cubic NLS with partial harmonic potential (L2)) satisfying

(4.29) E(ue) + M(ue) = Lypar  and HuCHLﬁy’H;_EO(RxRQX]R) = o0.

Furthermore, u, is almost periodic in the sense that for any n > 0, there is a Lipschitz function t — y(t)
and a sufficiently large positive number C(n) such that

(4.30) /" wltoy )P dy<m. VieR.
ly+y(£)[2C(n) [uc(t.y )”Hé y<n

5. RIGIDITY THEOREM

In this section, we will exclude the almost-periodic solution in Theorem[4.10]by the interaction Morawetz
estimate with an appropriately chosen weight function. Once the almost-periodic solution is excluded, we
can finish the proof of Theorem L1l

Proposition 5.1 (Non-existence of the almost-periodic solution). The almost-periodic solution u. as in
Theorem does not exist.

Proof. For each ry > 0, we define the interaction Morawetz action

My = [ [ 3 (el )ty o)) 9y, (g =3 e (4.5.) dydadgdz,

where J = Im denotes the imaginary part of a complex number and v,,;: R — R is a radial function defined

as in [23.(78]] with
Aty (r) = foo slog(f)wm(s) ds,
r T

where

1 .
=, 1f s >7rg,

wn(s) - {

0, if 5 < ro.
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It is straightforward to verify that 1), is convex and |V,,| is uniformly bounded (independent of ry), with

A () = i—jéo<r> ().

Using the above properties of the weight function 1),,, one can show (see Section 3.3]) for all 7 > 0,

To 1 9 2 3
(5.1) L Jllwul? (et lae)| dudt $ ekt 190l i, 51

By (4.30) and the conservation of mass, we have

(52) s |/ Juc(t,.)[7: d
. —< U, Yy, T .
2 ORI A

5)
100
where m,. := M(u.) > 0 by (4.29).
Therefore, for each T}, > 0, by (5.2), Sobolev’s inequality, and (5.1), we deduce

2
m%TO To )
</ (f o ety )5 dy | dt
2 ~To ly+y(t)]<C(me) 2

0 (g55) o (L etz dy)i)Q i
(100)fT0 fR 9ol (let, . 2)13)| 100)

Letting 7j — oo, we obtain a contradiction, and this concludes the proof. U

dydt < C’(

Finally, we can now reach to Theorem [L.1]

Proof of Theorem|L.1]. By Theorems|[1.2]and[3.4] to prove the scattering of solutions to (1.2)), it suffices to
show the finiteness of the Lﬁy?-[i*eo —norm of the solution of (1.2)).

To this end, let L, be given as in (4.28)). Then, equivalently, we need show that L., = co. Suppose
for a contradiction that L,,, < co. Then Theorem 4.10| would yield an almost-periodic solution of (1.2)),
which is impossible in view of Proposition[5.1l This completes the proof. U

6. SCATTERING OF THE (DCR)

In this section, we will prove Theorem[1.2] that is the global well-posedness and scattering of the (DCR)
system:

100 + Agzv = F(v),
{U(U,y,x) =¢(y, @),
where
F():= Y I, (I, 0ll,v)

ni,n2,n3,neN,
ni—n2+n3=n

and II,, is the orthogonal projector on the nt* eigenspace FE,, of —A, + 22,

We will mainly follow the approach to the global well-posedness and scattering of the two-dimensional
mass-critical nonlinear Schrodinger equation as in [31]]. The main ingredient is to establish an infinite
dimensional vector-valued version of 2D long-time Strichartz estimate, which helps us to preclude certain
almost periodic solutions.



26

The (DCR) system is Hamiltonian with an energy functional

1 1 _ _
Ew) = 5%[}1@2& |V, vnl? dydz + 1 > fR?xR Vny UniyUng U dydir,

n,n1,n2,n3,n4€N,
nip—n2+n3—n4=n

under the symplectic structure on L2 ,(R? x R) given by w(f,g) = T [z, f(y,2)g(y, ) dydz. It also
conserves the following mass M and kinetic energy &:

M) = [ foty,2) dyd,

)= fo

We shall divide this section into three subsections. In Section[6.1] we establish the local well-posedness
theory for (DCR) and reduce the scattering to the exclusion of almost periodic solutions. In Section [6.2]
we derive the long time Strichartz estimate and in Section[6.3] we exclude the almost periodic solution.

2

dydz = 3 (2n+ DlvalZz _recr) = 10172501 2y -
neN '

1
2

v(t,y,x)

(—Ax + 172)

6.1. Local well-posedness and reduction to the almost periodic solution. In this subsection, we will
present the well-posedness theory of the (DCR). Then following similar ideas as in [21},122,186,092]], we
shall prove that there is an almost periodic solution of (DCR) if the system is not global well-posed and
if the solution does not scatter in LZH}. That is we reduce the global well-posedness and scattering of
(DCR)) to the exclusion of this almost periodic solution.

6.1.1. Local well-posedness theory and the existence of almost periodic solution. The local well-posedness
theory of the (DCR) system follows from a more or less standard argument: the Strichartz estimate in
Proposition [3.2] and the nonlinear estimate in Lemma [6.2] The proof of the nonlinear estimate relies on
the following Strichartz estimate for the harmonic oscillator.

Lemma 6.1 (Strichartz estimate for the harmonic oscillator, [14,160]). For 2 < q,r < co with % +1=1 we
have the following estimate

eit(Aw—xz)f

< < (R).
2 S 1S 225 ()

LIWS™ ([-T1,Ti ]x
holds for any 17 > 0 and s > 0.

We can now give the nonlinear estimate.

Lemma 6.2. For functions F, F», F3 defined on R? x R, we have
(6.1) S I, (1L, FAIL,, FOIL,, Fh)

ni,n2,n3,neN,
nip—n2+n3=n

SNF N pare [F2) pare 1F5l a2 »

L3L?

and consequently, for any [ > 0,
(6.2) > I, (I, AL, FoIl,, Fs)

ni,n2,n3,neN,
ni—n2+nz=n

< min HF H
reos I T llLa28

FT(Q)HLALLH% HFT(?)) HL4L§ )
L3 HE ! !

where o3 is a permutation of the set {1,2,3}.
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Proof. Let Iy € LAL2, by Holder’s inequality and Lemmal6.1] we have

y-x

< Z N 1L, (HanlHn2F2Hn3F3)7FO)
ni,n2,n3,nel,
ni—n2+n3=n

1
=_ Z [ 2zt(n1 na+nz—n) , Hn1F1Hn2F2Hn3F3H Fy dydxdt
R2x

nl,ng,ng neN

/ /};2 ]R (-Asa?) F (y :L’)e’t( Ag+a? )F (ya ) Zt(—Ax-FJJZ)Fg(y’l.)eit(—Ax+x2)F0(y’x) dyd![’dt

S
R2

el t(-Ag+z?) Fo(yax) eit(_Aw+x2)F1 (yax) €it(_A””+x2)F2(yvx)

L5° L2 ([0,7]xR) L2L4([0,7]xR) LALE([0,7]xR)

6it(fAz+x2)F3(y’ Zlﬁ')

Lo Y

eit(—Ax+x2)F2 (y’

it(—Ag+x2
S[R2 HFO(ya'r)“LQ(R) Het( : )Fl(y7x)"L§L%([O,W]

et( Ag+a? F(%x)H

16
L, LE([0,7]xR)

LTLs( [0,7]xR) dy

$ [ @)1z 1. 0)] e | Pa( ) | FaC)] .

Therefore,
Z IL, (HanIHn2F2HTL3F3) S HFlHL‘lL% HF2 HL4L% HF3 “L‘ng ’
ni,n2,n3,neN, L;j L2 Y Y Y
nip—n2+n3=n
which is (6.1). One can similarly prove (6.2)) using the fractional Leibniz rule. d

Lemmal6.2 provides the following estimate for the nonlinearity F'(v).

Lemma 6.3. For each solution v of (DCR), we have
[F@)] 4

gy Sl
L3 M

||L4 g where a =0, 1.

Thus by Proposition|3.2 the solution v of (DCR) satisfies the Strichartz estimate

3
(6.3) HUHLfLZHg(IXRQXR) S |‘U0HL§H%(R2XR) + HUHL%H%(M@X@), Jor a=0,1,
where I C R, and (p, q) is Strichartz admissible pair.

As a consequence of Lemmal6.3] and (6.2)), we obtain the following well-posedness theory. Since the
proof is well-known (see for instance [21},22]/64.183]]), we omit it.

Theorem 6.4 (Well-posedness and scattering of the equation (DCR))).

(1) (Local well-posedness) Assume |vy| 1231 < 0. The (DCR) admits a unique solution
ve(COLAHL 0 LY, HY) ((-T,T) x R* x R)

for some T’ > (.
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(2) (Small data scattering) There is a sufficient small constant § > 0, such that when |vy|| rzut < 0,

(DCR) admits a unique global solution v with v(0) = vy, which scatters in L2H}. in the sense that
there exist v* € L2H (R? x R), such that

|v(t) — A -0, ast — +oo.

+
v
HL%?—L}C
(3) (Scattering norm) Suppose v is a maximal lifespan solution on I with |v||1s 12 (1.r2xm) < 00, then
YT

v globally exists and scatters in L2H].

We also have the stability theorem by Lemmas [6.2] and [6.3] The argument is similar to the proof of
Theorem [3.3] and we also refer to [25[64]].

Theorem 6.5 (Stability). Let I € {0,1}, I be a compact interval and v € (CPL2HL 0 L} HL) (I x R? x R)
be an approximate solution of (DCR) with the error term e = 10,0 + A0 — F'(0). Then for any € > 0, there
is 6 > 0 such that if

le] +[o(t0) - UOHL%; <9,

L%y%fc(IXR2XR)
then (DCR) admits a solution v € (L L2H1 0 Lf‘vy’Hé) (I xR2 xR) with v(ty) = vy and

(o UHLﬁylemLfL%H}c(IxRQxR) <€
To prove (DCR)) is globally well-posed and scatters for large data, by Theorem [6.4] we need to prove

HUHLgng(RxRZxR) < 00,

where v is a solution to (DCR) with initial data vy € L2H1(IR? x R). For the solution v of (DCR) with
maximal lifespan interval /, let

S(m) =sup {HU“Lf,yLi(IxRQXR) : HU(O)HL?%H;(R“R) = m},

and
mg =sup {m: S(m) <oo,Vm<m}>0.

If have mg = oo, then the global well-posedness and scattering in L2H] of (DCR) hold. Following the
argument in [64}186], and using Theorems 6.5 and 4. 1| during the proof, we have

Theorem 6.6 (Existence of an almost periodic solution to (DCR)). Assume mg < oo. Then there exists an

non-zero almost periodic solution v € CY LZH} 0 L, L2 (I xR? xR) to (DCR) with I the maximal lifespan
interval such that M(v) = my. In addition, for any n > 0, there exists C(n) > 0 and (y(t),£(t), N(t)) €

R2 x R2 x R, such that

o(t,y,2) |3 dy + f

(6.4) f Fo)t,&x)|2, dé<n, Viel.
ly-u (1) S (D) 2C(N (D) | (Fyv)( )HH}C Ui

Furthermore, we can take [0,00) € I, and N(0) = 1,£(0) =y(0) = 0, with
N(t) <1, [N'(@)[ +]£' ()] s N(t)?, Vte[0,00).
As in [29311[321164.[79], we see the almost periodic solution in Theorem[6.6]has the following property:
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Theorem 6.7. (1) If J € I is an interval which is partitioned into small intervals Jy, in the sense that
HUHLfng(JkXszR) =1, then we have

3 : 3
6.5) N(Jk)~/;k N(1)*dt ~ inf N(1), and J;JN(Jk)~[]N(t) dt,
where N (Ji) = sup N(t).

teJy
(2) For any interval J < [0, ), we have

6.6) fJ NS [0l g pupmmy S 14 fJ N(t)?dt.

Proof of Theorems 6.6l and|6.74 With Theorems [4.1] and [6.5] at hand, one can follow the arguments in [21),
22,1293111321164,[79.186]. O

6.1.2. Some functional spaces and bilinear Strichartz estimates. As in [31]], due to the failure of the
endpoint Strichartz estimate in 2-D, we need to utilize the function spaces U} and V} introduced originally
in the seminal work of Koch and Tataru [68]]; see also [46L[70,/71]] for more detailed study on these spaces.
The structure of our (DCR) system motivates us to introduce the Banach spaces UX (L2) and VX(L?2) as
follows.

Definition 6.8 (UX (L2) space). For 1 < p < oo, let UX(L2) be an atomic space, where an atom v7 is
defined to be

N N
U'y(t,y,l’) = Z X[tkvtk+1)(t)eltAyvg(y?x)? with Z H'U]Z(y’x)Hig =L
k=0 k=0 ®

In the expansion of v7, N may be finite or infinite, to = —oo, and t 1 = oo if N is finite. We impose a norm
on |- ||Ug(Lg) as

HUHUZ(L?C) = inf {Z ley| s v = ZCWU”’, where v7 are UR (L2) atoms}.
v v
For a time interval I € R, we define
lvlluz z2.ry = [vlrluz z2)-
Let DUY (L2) be the space
DUR(L2) = {(i0, + Ay)v: ve UR(L2)},

endowed with the following norm

t _
1(i0: + Ay) v(t,y, x) ||DU£(L%) = H[O e =2 (30, + A, )v(s,y, ) ds

vR(3)
For each time interval I € R, we can similarly define the restriction space DUX (L2, ).

Definition 6.9 (V{(L2) space). For 1 < p < oo, VX(L2) is defined to be the space of right continuous
functions v € L° L , such that

o] [0+ sup 3 [l (i) — e o(n) ], < co.

p _
VAR {titw” &

coT2
t Ly,z
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When the time is restricted to I € R, We can similarly define the function space V{(L2,I). Then we have
6.7) (DUR(L2))" = VE (L2).

The following basic properties are strightfoward to verify. For the proofs, see [46L[71].
Remark 6.10 (Basic properties of U (L2) and VX(L2)). Forany 1 <p < q< oo and a < b < c, we have

(6.8) UR(L7) € VR(LZ) € UA(L3),

(6'9) HUHUZ(L%,[a,b]) < HUHUZ(Li,[a,c])a and HUHUP (L2,[axc]) = HUHUP R (L2,[a,b]) + HUHZZ(L%,[b,c])’
and

(6.10) [vlloz 22y S lvleollzz , + 10 + Ay) vl pyp 12 -

Moreover,

(6.11) Lf’L;'Li ¢ DUX(L2), and UX(L3) € LY L, L%, where (p,r) is Strichartz admissible.

Following the argument in [31]], we also have
Lemma 6.11. Suppose I = U, IJ, where IJ = [a;,b;], aj. =b;. If f € LyL2 (I xR? xR), then ¥Vt € I,

1
2

(Z “f”DUi(L? 1])) )

m

_ZTAyf(’T d’T

t .
[ o055y
to

vz
where
HfHDUg(Lg,n) = f f f(r,y,2)w(r,y,z) drdydz.
17 JR2xR
‘w‘vi(ﬁ i

By the bilinear Strichartz estimate in [8]], Minkowski’s inequality, Holder’s inequality, and interpolation,
we have the following two propositions. The proofs are similar to the bilinear Strichartz estimates in

(31,32

Proposition 6.12 (Bilinear Strichartz estimate I). Let (p, q) satisfy 1 < p,q < oo, % + % = 1. For M «< N,
assume supp Fyug € {€: [§] ~ N} and supp F,vo € {€ :|€| ~ M}. Then we have

(6.12) e o],

< (MY
tlrpry(rxr2) ~ (N) lolzs..[vol .

Furthermore, suppose that g (t,y —9) and h (t, Y- gj) are convolution kernels with respect to y-variable
and

<1

NI

LL(R?)

+ ||sup |2 (t, y)]
teR

suplg(t, y)|
teR

LL(R2)

we also have
1

M\7»

< | —
sy S () Tolig, Tl

itA itA
[l %y €l [y e Soun],
x x

Similar to the argument in the proof of Lemma 3.5 in [31]], we can transfer the estimate (6.12)) to the U}
space. Therefore, we have
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Proposition 6.13 (Bilinear Strichartz estimate II). Let (p, q) satisfy 1 < p,q < oo, % + % =1. For M «< N,
assume supp Fyu € {§ : |§| ~ N} and supp Fyo € {£ : [§| ~ M }. Then we have

1

M\?»
s S\ lullve 2y lvllus (z2)-

H ||UHL§ HUHLg

6.2. Long time Strichartz estimate. From now on, we shall take our following setting as standarding
assumpmtions. Fix

(6.13) 0<e3<<ey<e<1landeg< el
By Theorem 6.6 we can take

(6.14) V(0] + ()] <276 N (1),

and

6.15) [ by |

_1
ly-y(t) 12— — |E=£(8)[22720e5 T N (2)

If [0,7] is an interval with

H(}-yv) (t,f,f)”il; d¢ < 6%-

T
(6.16) [o071 12 (oryerenr) = 2 and f N(t)3 dt = e32% for some kg > 0,
tyy“x ) 0
.o, . M71 .
then we can partition [0,7'] = U J¢, where J are intervals that satisfy
a=0
6.17) fJ (VP sy ) = 265,

We can define the interval Gi Nnow.

Definition 6.14. For any nonnegative integer j < ko, and nonnegative integer k < 2=, we can define

o (k+1)29-1
(6.18) Gi= U Jo

a=k27
For j > ko, we simply define Gi =[0,T]. Welet £ (Gi) =£ (tf;), where tf; is the left endpoint of Gi.

On the time interval Gi defined above, we have

Lemma 6.15. (1) Let J; be the small intervals contained in Gi. By (6.9) and (6.17), the following estimate

holds:
(k+1)27-1 ‘
(6.19) > N(Jl)s[_N(t)3dts > f N(t)dt § 2es.
G;c a=k27 Je

JicGl,
(2) By (6.14) and Definition6.14) we have for eacht e G,
(6.20) €(t) — € (GI)] < 27956,
Thus, for any t € G2, and i > 7,
©21) {27 <le-g()| <20 e {e 2 < e ¢(Gh) < 27 e {€ 270 < - (1) < 27,
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and also
(6.22) {E:le-e@ <2 e {¢: e -¢(Gh)| <27} e {¢: € - € <27}

Lemma 6.16. For the almost periodic solution v(t) to (DCR), and assume HUHL;;ng(JszxR) <lonJcR,
then we have

||U||U2(L2 J)<]_ and ‘Py v SEQ,
>2- 4534N(J) Ui(L%,J)
where N (J) = sup N(t).
teJ

Proof. Let J = [tg, 1], by (6.10), (6.8), (6.7), and (6.11]), we have

[olvz 2. S loCto) ez, + 10178 r2semeam) S 1
By (6.15)), we have

‘Py v <||\PY ., w < €.
2 20534N(J) LL2 , (JXR?xR) >270e AN lpger2  (JxR2xR)

Therefore, by Strichartz estimate, we have

<

~

PY v

PY . v(to)
2 4631N(J)

] P F(v)
27206, TN ()

2746, TN(J)

+
L2 (JxR2xR)

3 6
U3(L2,J) L2 LJ L2(JxR2xR)

PY v
52— 206341\/(J)

Sey+ HUH%?LgL%(JszxR)

oo T2
Lt Ly»w

sert e ([00t0) i, ey + 103 12 (samnmy) S €

We also have the following fact as a consequence of the above lemma.
Remark 6.17. If N(J) < 2052, we have

Y

S 1
>2-20¢, TN (J)

3 6 < v
L2 Ly L2(JxR2xR)

|

v ||L3L6L2 (JxR2xR) S

(Gl ) 22 2< <22+2F(,U)|
L L2, (JxR2xR)

where the operator PE(GL ) 2i-2<.c9iv? is given in Definition|6.18 below. Thus, for 0 < i < 11, and N (G?)) <

1
2i=5¢2, by the fact that G%, is a union of at most 2'* small intervals, we have

H £(G1),21-2<.<2i+2 ( )‘L2L5L2(Gl (R2xE) <€2.
We can now define the long-time Strichartz estimate norm as in [29,311132]]; see also [21122].

Definition 6.18 (Long-time Strichartz estimate norm). For any G?. € [0,T7], let

2
2
Y

3 (Gi),%-?sszmv

Y

Uz (22.¢7)

”2 Z 2Z J H S(Gl ) 2i-2<. <21+2,U

2 2 ) * Z
0<Z<] G@ CGJ UA(vaGZ'x)

i>j
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where

Py

£(t),272< <oi2U = etV g(t)sz 24.<9i+2 (e_iyf(t)v) .

We define the X ko, norm to be
= sup sup ouf}

lol%
0<j<kg G]J;Q[O’T] (G])

Xio ([0,77)

For any nonnegative integer k, < ko, we take

(6.23) lvl% sup  sup o]

X, ([0,T]) ~ 0<j<ks Gig[O,T] (GJ)

To close our bootstrap argument in the proof of the long time Strichartz estimate, we also need to
introduce the following norm to measure X, norm of v at scales much higher than N(t).

Definition 6.19. Let

2
2, = S 2 I 4 ‘Py,_ v .
lvly v(c) 0;]. Gg;;g;, £(Gh)2-2esiv2? UR(L3.GL) %é: g(Gy)2i2ec2iv 02 (12.60)
. .rl b
N(GL)<2i5¢2 N(Gi)szi—56§

We can define the norm vy, o1y similar to (6.23) in definition

For i < j, and the solution v on the time interval G}, we can define the Littlewood-Paley projector
around £(t) of v as
_i-t —iy-E(t _i-t it
Py o Ve pY (emwsty) Pl ot GvEO pY (e weny),

Then, as a consequence of (6.7), (6.8), (6.11), the Littlewood-Paley theorem and Proposition [3.2 we
have the following estimates which reveal the relationship between the Strichartz norm LYL] L2 of the
Littlewood-Paley projector around £(¢) of v and the long time Strichartz norm of v. We still refer to
for the argument and without presenting the proof here.

Lemma 6.20. Fori < j, we have

(6.24) $2% v

H (1), 2:¥ L{;LgL%(G{:XRQXR) H)Z'J(Gi)a

(6.25)

. S v j
H £(t),22"Y LYLYL2 (G xR2xR) H HX(Gi)’
where (p,q) is Strichartz admissible pair.

Our aim is to prove the long time Strichartz estimate.

Theorem 6.21 (Long time Strichartz estimate). For the almost periodic solution v in Theorem which
satisfies (6.13), (6.14) and (6.15)), there exists a positive constant C' = C(v), such that for any nonnegative
integer ko, v and N (t) satisfy (6.16), we have

|‘U|‘Xk0([0,T]) <C.
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To prove Theorem [6.21] it suffices to show for any 0 < j < ko and G, ¢ [0, 7],

2
2
Y

2Z 7 g(Gi)72i—23_g2i+2U

0<2<j Gi, CGJ

<C.

H é’(G’L ) 2i— 2< <27,+2

U2(L2Gl)+z

ij Ug(Lg,Gi)

To reach the above estimate, we will perform an induction argument on 0 < k, < ky and then a bootstrap
argument in Subsections[6.2.1]and [6.2.2] respectively.

6.2.1. Basic inductive estimates. First we show the basic estimates to start up our induction.
Lemma 6.22 (Basic inductive estimate).

3
(6.26) “UHXO([O,T]) <C, and HUHY/O([O,T]) <Cey.

For 0 <k, < ko, we have

2 2
(627) H,UHXMH( 2H,UHX L([0,17)° and ||U||S}k*+1([OT 2H,UHyk ([o,r"
Proof. By Lemmal6.16] we have

(6.28) |vllvz 22,52y $ 1, for any J* in the decomposition of G7 in (6.18).

Therefore, by Strichartz estimate, (6.10), (6.11)), (6.8), we have for ¢, € J,

2 2
(Z H f(Ja) 2 2<<2H2 Ui(L?cha)) S H/U(t )HL2 + HU“L3L6L2(JO‘XR2XR)

S [ota) g + 10135 gz oy 5 1

Thus, HUHXQ([O,T]) < C
At the same time, by (6.15)), the conservation of mass, and (6.28)), we infer that

1

> n )
) )
Jao 22—2332“2 -
5. £(J%), UZ (L2,7°)
1 -
N(J*)<e2 2P
S| PY 3 v(ta) + || PY _% F(v)
§(J%) 286, 2 N(J%) 2, Il emesgnee) LIL2(JoxR2xR)
S|P ., w pr . F(v)
£(t),24e,2 N(t) L L2, (JoxR2xR) £(t),24e5 2 N (1) LiL2 (J¥xR2xR)
i 1 9 3
sl (11 Tl o) 58
~ 1 coT2 o R2 2(72 ~ €9 -
&(t),2e52 N(t) Ly L o (J*xR?xR) UA(LZ, %)

LEL2  (JoxR2xR)

3
Thus, by Definition[6.19, we have |v||y, 77, < Cé; -
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By Definition[6.14) we see G5 = G4, UGY,.,, with G, NG}, = @, then for 0 < i < j, if Gi, € G},
we have G, ¢ GJ, or G, ¢ G, .. Thus

2
i—(j+1)
(629) Z 2 ‘ {(Gl ) 2i-2<. <27,+2 ‘ U2 (L2 Gi )
0Si<j+1 G'L CG]+ A 2.GY
<27t Z i H v H v‘
> G1)),21-2<.<2i+2 i G1)),2i-2<.<2i+2 ;
0<i<j G CG] (G5, U3 (L2,GL) &(GL), U3 (L2.G5)
a* 2k+1
2 2
o gy(G%k)Qj_QS'QﬁQU 2 j i Pﬁy(Gék 1) oi-2c.coiv2’ )
Uz (£2,63;) U3 (12,1

<5 (1P g+ Py, )

At the same time, by (6.21) and (6.9), we see

2
(6.30) P, v
. LN 9i-2 o c9i+2 ;
isgan I S(G )22 Hlys (12 i+
( ’ 2 2
y
> v pPY o
< GJ+1 2i-2<.<i+2 - ” GItLY 9i-24.<9i+2
i>75+1 5( ) UZ(Lvaék) 5( k )’ T (Lw k+1)
2 2
= Z ‘ ] )2i—3<_<2i+3v 5 J + gy(GJ’ )2i—3<_<2i+3v i :
Z>j+1 k ’ o UA(LivGQk) 2k+177 o (L2 G k+1)
Therefore, by (6.29) and (6.30), and Definition[6.18] we get
<2|v
H HXk +([0,1]) H HXk ([o,17)"
By a similar argument, we can deduce
2
V=
” ||Yk*+1([0 H HYk 1o, 7]

U

6.2.2. The bootstrap estimate. In the following, we will establish the bootstrap estimate, which is neces-
sary for the proof of Theorem[6.21l For 0 < j < k¢ and G, € [0, 7T']. By Duhamel’s formula, we have for
0<1<7,

(6.31)

7 i— i S pr 7 i— 7 v tl ‘
H £(GY)),2172<.<20 +2U UX(L%HG%) £(GE),2172<.<21+2 (a) Lg,w

+ L el(t= 7')AyP§/(GZ 21.72S_§2H2F(U(7-)) dr

UA(L2,GL)
Here we take ¢!, to satisfy

P?

= inf (G,

L2 . teGi,

H £(Gi) 2i-2<.<2i+2V (tza)‘
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We now consider the first term on the right hand side of (6.31). By (6.17) and Lemmal6.15| we have

. 2

1— 1
>, 27 H £(Gi,), 2i-2<.<iv2V (ta) 2
0<i<g

Y,r
J 3 4 Y 2
$27¢; /G?; (N(t) +€3||U(t)|L§L%(R2XR))O;i<j HPsa),zi-Ss-sw””(t)H% dts 1.

For ¢ > 7, we can just take ti to be the left endpoint of GZ, then we have

2
3 | Prapyacsar @], 1D, 51
Thus
2 . 2
(632) ngi;j 20 o CGJ H E(GL), gi-2<.<9i+2V (tfx)‘ L2, + ; Pg(Gi),Qi’ZS'SW*ZU (tk) " <1.

We next consider the second term on the right hand side of (6.31). Observe that there are at most two
small intervals, called for instance J; and .J5, which intersect fo but are not contained in Gi' Then by

Lemmal6.16land (6.11)), we have
6.33) 27 ) | HF(U)||L1L2 L((GLA(J1UJ2))xR2XR) ~ S > 2" J“F(U)HLngx((J1uJ2)><R2><R)
0<i<j GggGi; 0<i<j ’

+ [v)© Sl

S v HL?LSL%(JQXRQXR) ~

” L3ILY L2 (J1xR2xR)

Then by (6.9), (6.11), (6.33)), (6.14)), (6.19) and Definition[6.14, we obtain

(634) Z 217) Z ‘ L Z(t T)Aypgy(gz ) 2i—2s,32i+2F(v(T))d7—

0<i<y GQEGi,

2

UR(L3,GY)

. . e 1
N(G%)>2175¢2

SOZQW Z H §(G,),2072<<21+2 F(v )HDU2 (L2,GinJ)

<i<j GégGi, JlrwGJ +Q
1
N(G§)22 %€}
i-j
S Z ’2 Z _ Z HF(U)HLle 2((GENT)xR2xR)
0<i<yj GégGi’ JlmGi#:Q
1
N(GL)z2-seh

SL+ ), 2’”( 2. IF(v)HLlem(JlszxR))51+ 2 2 27sh

0<i<y JLEG?;, JlEGi Osifj,

) 1 i 96, 2
N(Jl)222_6632 2'<2 €3 N(Jl)

. , 1
On the interval G, with N (Gi) > 2%¢2, by (6.14) and (6.17), we have

(6.35) [G N(t)dr s 1.
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Thus, by Minkowski’s inequality, (6.3)), (6.19), (6.6), and (6.35]), we have

(6.36)

2

pY F(v)

2 6
5(G‘£),2i72§~§2i+2 S HF(/U) “

2 ‘ L2 ,(GLxR2xR) S HUHL?Lng(GixR?xR) S

ij,

N(Gi)z?‘%é

L}r3 (G4 xR2xR)

Thus, by (6.31), (6.32), (6.34), and (6.36), we infer

2

(6.37) |\v|\§((G£) SEEDY ‘

i2j,

t
i(t—-1)Ay DY
L ¢ yPﬁ(Gi),Qi—ZS.SQHZF(U(T)) dT

k Uz (2,67)

N(Gi )S2i_5 e;)%

IS

0<i<y GQEG?C,

2

t .
L el(tiT)Ay P§G3)72i72332i+2F(U(T)) dr

UA(L2,GE)

N(Gg)gzi*56§
We can further get
2

©38) ol st 2 ‘

127,

t
i(t—-1)Ay DY
fy‘ e yPg(Gi),2i-2s-s2i+2F(U(T)) dr

k U3 (22.67)

N(Gi)g?’losé

IS

0<i<y Gfx gGi:’

2

)
UA(L3,GL)

t .
/t:' i(t=T)Ay Pl iy gy F(0(7)) dr

1
N(Gi)<2i71062

1 . 1 . . .
because the contribution of those terms for ¢ satisfying 2i-1%2 < N (¢) < 2¢-5¢7 in the right hand side of
(6.37)) is small by similar argument as in the proof of (6.37).

By a similar argument as above for (6.38), we also refer to for more expatiation. Then, we have

2

¢
i(t-1)A Y
'/t; ’ yPf(Gi)in‘Qs-gzin(v(T))d7'

639 ol ysd e Y \

J
o i,

U2 (L2,G°
N(Gj )<2i’1oe% A( k)
k)= 3

IS

0<i<y Gl (;Ggc7

2

t .
/t:' i(t=T)Ay pg( Gy F(v(r))dr

UR(L2.GE)

1
N(Gi)<2i71062
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Remark 6.23. By Lemmal6.22| Remarkl6.17) and (6.11)), we have

2

¢
5 [ i(t-m)Ay py F(o(r))d
e v v(r))dr
— J G ),2i-2<.<2i+2 )
0<i211, K ()2 v3(£2.6)
. 1
N(Gi)ﬁ?“seg
2
F(v(r))dr S 1.
UR(L3,GE)

i—j i(t-17)Ay PY
v, 2 2. ’[t Pean prccoin
0<i<11 GZEGiv a
1
N(Gi)<2752
So we can further reduce the summation over i on the right hand side of (6.38)) and (6.39) t0 i > 11

Therefore, we have reduced to the proof of the following estimate

Theorem 6.24 (Reduced estimate).
2

t
1(t-1)Ay DY
ftj e yPg(Gi),Zi—%-Q”?F(U(T)) dr

k

vz (22.¢7)

(6.40) Z

127,
N(Gi)s?’meg%

iy x|
0<i<y GégGi7
N(GE)<2i10¢2

F(v(r))dr

UR(L2.GE)

i(t-T)Ay DY
/t: P{(G’ 21—23_§2i+2
[e3

ol o (1100 o)

1
sed 101 o2 1012 oy + 112 oy
Once this theorem is proved, we can close the proof of Theorem [6.21/ by a bootstrap argument. In the

proof given below, we shall assume Theorem[6.24] holds, while leaving its proof to Section [Z.11

Proof of Theorem|6.21 Suppose
< 062 < €9,

HUHX L([0,7]) < COv and HUHY .([0,7])

and from (6.27), we have
2
|v ”Xk (0T < 2Cy, and ||v|| ([0,77) < 26

Then, by (6.38)), (6.39), and (6.40), we can further get
2

2 5 3
lol%, . qor <C(1+e§ (200)6+e;+62(1+200)8),

and
3 2 5 3 3
H HYk*H([OT < C'(EéL +€23 (2C0)6 +€22 + €9 (1 +200) )

If we choose Cj = 26C, and ¢, small enough, then we may deduce

1
“U“X,c*ﬂ([O,T]) <Cy, and HUHYMH([O,T]) <6

Theorem [6.21] now follows from this and (6.26) by performing an induction on k
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6.2.3. The low frequency localized interaction Morawetz estimate. As an application of the long time
Strichartz estimate, we can obtain the low frequency localized interaction Morawetz estimate of the
(DCR). The Morawetz estimate is a very important tool to prove the scattering of the nonlinear dis-
persive equations for the radial case [[73l[75]. In the non-radial case, J. Colliander, M. Keel, G. Staffilani,
H. Takaoka, and T. Tao [24] develop the interaction Morawetz estimate, which is used to prove the scatter-
ing of the nonlinear Schrodinger equation [25129.1311[32./84.85]] in the non-radial case. The low frequency
localized interaction Morawetz estimate will be used to preclude the soliton-like solution in Theorem[6.26]

Theorem 6.25 (Low frequency localized interaction Morawetz estimate). Let v(t,y,z) be the almost
periodic solution in Theorem|6.6lon [0, T] with fOT N(t)3dt = K. Then we have

N 2
(6.41) “Alvy|2(PSleeIlKU(t,y,(L’)| )dx

The proof of this theorem follows from similar arguments in [29,[31,[32] and relies on Theorem [6.24]
(and also some part of the proof). In our (DCR) system, the interaction Morawetz quantity is

My(t) = [[[R2 R2| v(t, y,x)|2|y y|3(vvyv) (t,y,x)dydgdzdz,

which is invariant under the Galilean transform in the R? component. Following the argument in [23}[78]],
we can get

So(K).
L2 ([0,T]xE2)

S [Mo(T) = Mo(0)].

| L1905 (ot .0)P) da

Replacing v by its low frequency cut-off P < 106;

L2, ([0,T]xR?)

1, U, we then get the low frequency localized interaction

Morawetz quantity

Vo= [ ke

Because for any 7 > 0 independent of €;, by Theorem [6.6]and Bernstein’s inequality, we have

[M(T)| +[M(0)] s nk,

<10611Kv(t y,x)| —J(P<y105 1KUVyP<105 1Y )(t,y,x) dydydzdz.

we then obtain

SnK + &,
L ,([0,T]xR2)

| L9l (ote.g.20p) |

where & are the error terms coming from the low frequency cut-off of the solution of the (DCR). These
error terms can be proven to be o(K), using Theorem [6.24] and also some estimates from the proof of it.
We shall leave the detailed proof of this theorem to Section [7.2

6.3. Exclusion of the almost periodic solution.
Theorem 6.26. The almost periodic solution to (DCR) in Theorem|6.6ldoes not exist.

Proof. We will preclude two scenarios in the following.

Casel. [;” N(t)?dt < oo.
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By the proof of Theorem[6.21] as in [31}[32], we have

oo 3
(6.42) Hv(ta%x)HLngLg([o,oo)xR?xR) Smo (/(; N(t)g dt) :
By (6.42)) and (6.4), we have

€500 ] 4,0 S NBC () +7(t)2 >0, ast - oco.

Thus, for any e > 0, we can take sufficiently large positive constant ¢, such that [[e®¢(t0)v(tg)]| ;1,2 < €. In
y T

the following, We can assume ¢, = 0 because of the Galilean invariance. By Minkowski’s inequality, the
Gargliardo-Nirenberg inequality, and Holder’s inequality, we have

E(v(t)) =E(v(0)) s I\U(O)IIH1L2 <
Because we can take € as small as we wish, this scenario does not exist.
Case Il. [” N(t)?dt = oo

By Holder’s inequality and Sobolev’s inequality, we have

[ ik

100
|y—y(t)\§T

Hv(O)Hsz

C( 100
Y
P 0(t y,x)| dydz § ( N )

[ (i

<10e 1KU(t y? )| )d:l7

Ly

o)1
By Theorem 6.6 we have for K > C’( 183/@ )’

HUHL2 f f
C( vu%@)

ly-y (Dl ——F—

2
PyloqlKv(t,y,x)| dydz.

<

By the above two estimates, together with Theorem [6.23] and the conservation of mass, we have the
following contradiction when K is sufficiently large,

T
HUHAigszf N(t)g(f 12, f
» 0 C( . y,z) R

ly-y(D|s——Fxm—
J (|7

2
<10e7 1KU(t7y7$)| ) dx
This completes the proof of Theorem [6.26] O

2
2
P vty x)| dx dy) dt

2

S o(K).
L2, ([0,T]xE2)

Proof of Theorem|[.2l This is an immediate consequence of Theorem [6.6 and Theorem [6.26] O
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7. PROOF OF THEOREMS [6.24 AND[6.25]

7.1. Proof of Theorem [6.24. In this section, we complete the proof of Theorem [6.24] To prove this

theorem, we decompose the nonlinear term P (i) 2i-2<. <2HQF (v) and also use the fact that on the time

interval G, £(t) can replace £(G?) up to 2120 by (6.20). Then, we can see it is enough to prove the

estimate the left hand side of (6.40) with P ; ( i) 2Z.,QS.SQZ.&F(U) being replaced by

(71) PéJ(GL ) 2i-2<. <2z+20( Z Hn (Pé/(Gé),Z2i_5vn1 ng(t)’zgi—lovrmvmi) )

ni,n2,n3,neN,
ni—n2+n3z=n

(7'2) +P£'J(t) 2i— 2< <22+20( Z H (P (t) <2’L 1OU7L1P£(G'L ) <22 1O/UTL2P§(G2 ) 22 o< <22+o ns) )

n1,n2,n3,neN,
ni—n2+n3=n

we also has similar fact of the nonlinear term P;’(G]) pioe <2MF (v), where the symbol “O” represents the

different frequencies will be located in different v,,s’, [ = 1,2, 3. Since their estimates are almost identical,
we denote them as a single “O”. The estimate of the Duhamel propagator of the term (Z.1)) is very short
and easy, and mainly relies on the bilinear Strichartz estimate in Proposition [6.13] The estimate of the
Duhamel propagator of the term (Z.2)) is lengthy. This is because to prove the estimate of the Duhamel
propagator of the term (Z.2)), we need to prove the bilinear Strichartz estimates on the union of the small
intervals. It turns out the proof of these bilinear Strichartz estimates cannot be proven just by the harmonic
analysis but also rely heavily on the structure of the (DCR) system or more precisely the corresponding
interaction Morawetz estimate of (DCR)). During the proof of this part, some terms can be estimated by
the following bilinear Strichartz estimate established recently [11]] instead of the interaction Morawetz
estimate as in [31]]. This new bilinear Strichartz estimate is very useful in [80].

Lemma 7.1 (Bilinear Strichartz estimate, [11]]). Let 1 < q,7 <2, - + 2 <3, and suppose M, N € 2% satisfy
M << N, then for any ¢, € L*(R?),

3_2_§

H e”APN¢€ZmPM¢ HL;IL;(RXRQ) ST

NIL -1 HPN¢“L2(R2) “PM¢||L2(R2

7.1.1. Estimate of (Z.1). We first deal with (Z.1).
Theorem 7.2. For any fixed G, € [0,T], j > 0, we have
RS
0<i<y GgEG]J;,

N(GE)<2i10¢2

i(t—7 high
L i (t— )Aypgy((}b ) 22, <2L+2F g (U(T))

UA(L2,GE)

¢
i(t— frhigh
+ Z /.J 6Z(t T)Aypy GJ 2i-2<.<i+2 kyl]g (U(T)) ”U”X ([o,771) H HY( 0,77)
i>j, t ¢(ah) 22 2 (ra
IR Uz(r2.64 )
N(G])<2i10€2
where
hzgh Y DY
F (,U(t)) nl,nzé,neN, H" (PS(G) 220 dvans(t) >27 10U"QU"3) (t)

ni—n2+n3=n
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and

high
FE ()= T (Pl ot Py syt ) (1):

ni,n2,n3,neN,
ni—n2+n3=n

l .
Proof. On the time interval G%, with N (G%)) < 217103, we take w € VX (L2, G",) be normalized so that
(Fyw) (t,€, ) is supported on

fe:2= <fe-e(Gh)] < 2)
for any (¢,7) € R x R. By the Cauchy-Schwarz inequality, (6.1)), Proposition [6.13] the conservation of
mass, (6.8)), (6.11]), Lemmal6.20] and (6.15)), we infer

@3) [ (w(@). B () ar

1
2 =
< Z HwHL2 iy otV 5 5 ‘Py iyl 3 . Jw]?
1>i-5 (G )2 LELE (G4, xR?) §(Ga) 2 L7 LY L2 (G} xR2xR) L7 LI L2(Gi, xR2xR)
H £(t),»2i-10Y Lt%L;,OLg(ngWXR) HUHLf"L%,x(ngR%R)
6 G
g% 2! U2 (r2,ai) 7 €622 10 LPL2 (GixR2R) NI £(0),22° 10 L2 L30L2(Gi, xR2xR)

2 2
UX(L2,GL)

i=l
UQ(LZG)N 6||U||X(0T (225 5(Gl)2l ‘

As in [31]], we see for any 0 < [ < j, G overlaps 2i intervals Glﬁ and for 0 < i < I, Glﬁ overlaps 2!
intervals G . In addition, every G*, is contained in one Glﬁ. Thus, we can divide the summation in the left

hand side of the following (Z.4)) and (Z.3)) into different groups according to [ > 7 and 0 < [ < j. Then by
some easy calculation and reordering the summation of ¢ and [/, we have

. 2
(7.4) 2177 ( 25 | Py | )
o;iq cgc;;, l; Feenalazan

1
N(G?)<2710¢2

3 izl
S 26H,UH ([OT Z 2 Ps(gz)gl |

and
2
(7.5) D, > 2% ) oV NE “UHY(OT])
127, 1>i-5 ( k)’ U2 L%vGi
1
N(G])<210¢2
Theorem [7.2] follows from (6.7)), (Z.3)) and (Z.4]). d
7.1.2. Estimate of (1.2). Now we turn to the estimate of (Z.2). Denote
lO'LU Dy
(U(t)) Z H (Py(t) S2i‘1ovn1 Pﬁy(t),sﬂ_lo Uny ng((y) 2i5<.<2i+svn3) ’
ni,n2,n3,neN, k)’ -

ni—n2+n3=n
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and

Féfzw(v(t)) = Z I, (ng(t)éQi—l()/Unlng(t)éQi—lO/UnzPg(Gg)Qi—SS_SQiJrSUnS) .

n1,n2,n3,neN,
ni—n2+nz=n

Then, we have

. 1
Theorem 7.3. For any 0 < i < j, on the time interval G, ¢ G with N (G)) < 27192, we have

(7.6) ’

f i(t— T)AyPy Flow(U(T)) dr
t’L

f(Gl ) 21-2<.<Qi+2

UA(L2,GL)

4
&2+ [olsyqory (1+ 1ol 2, qorp)) -

H §(Gi) 2oz Y UZ(Li,Ga)(

. 1
In addition, for i > j, N(G7) < 217102, we have

t
t=m)A low
/t;; ‘ yPﬁ(GJ) 2i-2<.<Qi+2 k,j (,U(T)) d7—

(7.7) ‘

U3 (22.67)

Y
Pg(Gi),%Sg-QHSU

4
(e Il omy (14 105, 0p) )
U3 (22.¢7)

Proof of Theorem|[7.3] We will only prove (7.6), as (Z.7) follows by a similar argument. Fix G? with
1

N (G?) < 2719¢2 . We can see there are no more than two small intervals .J; and .J, which overlap G, but

are not contained in G . Let G = G\ (J; u J,), by (6.8), (6.7), (6.9), and (6.11)), we have

(7.8) ‘

ﬁ(Gl ) 2i— 2< <2L+2

[ i(t- T)Aypy Flow(U(T)) dr
ta UA(LZ,GE)

<

~

z(t T)Aypy Flow o(T)) dr
PR T .

+[Fler@)] 4 +|Fler )]

L3 yL2((J1nGL)xR2xR) L3 L2 ((J2nGl, )xR2xR)

Here, we may assume ti, € G , because if %, ¢ G , we may move ti, into (¢, with the errors being absorbed
by the last two terms on the right hand side of the above inequality. We can show the last two terms on the
right hand side of (Z.8) is small in the following.
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On the intervals J; for [ = 1,2, by Propositions [6.12] and [6.13] (6.11)), the fact N () < 2~ 563 on G,
(6.14)), (6.15), Lemmal6.16l and (6.11)), we can get

(7.9)
HF{ﬁU(U(t))“Léng((JlmGg)szxR)
P:(Jl) <531N(J )U| 12 g(Gg)72i—5g.32i+5U 12 Lfyy((JmGé)szxR) Hpgy(t)SQi_lo,U‘ L;lnya%((JmGg)xRQXR)
e atvin” H €G22 U L8 pa o (ains)rem) HPf@)é”"”” L} L8 L2 ((1inGi,) <B2R)

E(J1),2eg P N(Jy) L5 L2, ((JinGE, ) xR2xR)

s122"z

Pl ) e |7
€(GY,),2075<<2%5 ‘UX(L%G@) H E(J1),2F UX(L%JI) £(GY), 210 9i+5 U

‘1 UZ (L2,GY)
2k<e, TN (Jy)
N ‘Py i) 9i-5 i+sU .
§(GY),2075<<2 U2 (L2,Gi)

Thus, we can simplify the estimate of (Z.8) to the case that G, is the union of finite many small intervals
Jy’s. (If not, we just need to add the right hand side of (7.9)). Let

lowl Dy
2( (t)) Z Hn(ng(t)leUnlpg(t),3212U”2Pg(Gg),2l < 2Z+rvn3)

ni,n2,n3,neN,
ni—n2+nz=n

then by Lemmal6.11] we have

LHS of (7.8) S A1 + Ay + As + Ay,

where
3
7.1 A = | P Flowt(o(t))|
710 1 0<12; 10( Jl% Y Py
N(Jl)zeg%212’5
—i low,l
(7.11) Ay = ’[] tAyng(Gz)2i-2g-g2i+2Fa,z‘ Z(U(t))dt ’
0<l2<i-10, l Ly
JlEGla,
1
N(J;)>e32l27°
1
3
low,l
(7.12) A3: Z ( Z HP(Gz)zl 2<<2z+2Fa7i 2( ( )H 2 2 ~l2 ) ’
0<l2<i-10 G?EGQ, DU L G )

N(G?)Sea% 2/2-5
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and

.13 Ar- | Py aercae P 00
0<lg<z 10,

ZZCcz

L2,
]\T(Gi;2 )SE?? 2l2-5
The proof of the first two terms are easy. We first prove the following auxiliary estimate.

Lemma 7.4. Let (po, qo) be Strichartz admissible with qq > 20. Suppose that w(t, y, :)32 e LI°LP L2 (J, x R? xR)
satisfies that Fw(t,-, ) is supported on {& : 202 <|€ = £ (GL)] < 212} If N(J;) > €221275, then we have

[ [Q[w(t y,x)Flof’b(v(t,y,x))dydxdt
Jl R

<2 qOE q02 QHUJHLPOL‘ZOLQ(JlszxR) H £(G) 21 o<<2l+dv(t Yy,x )‘

(7.14)

U2(Gi,L2)

_1
Proof. By (6.14), we see |£ —&(t)] < 2/2*2 implies |£ —&(J;)| < €52 N(J;) for t € J;. By the argument in the
proof of Lemmal6.2l and Holder’s inequality, we have

(7.15) f f fw(t y,:)s)FlOM%((t,y,x))dydzdt‘
< T ( Ag+x2 ) Y ZT(*AerLEQ)
=° wpg(t) 2l2€ Lg?zLi’OL%([OJr]XRXJlsz)
S pY e’ ( Ag+x )UPy . . 627(—Am+x2)v )
‘ f(Jl)wE‘; N(Ji) e Lﬁ% ﬁ}IL%ow]xRlexﬂ@)

By Minkowski’s inequality, Holder’s inequality, Lemma [6.1] Bernstein’s inequality and the conservation
of mass, we have

ez ( Agp+x2 )wa eiT(fAerxQ),U

(7.16) ot

Lgoch?O Lg([(]’ﬂ']XRXJlXRz)

< ’iT(—A;C+:L‘2)

~

e

e T(—Ax+:1,‘2),U‘

21’0([07r 1xR) H £(t),2"2 2p0([0 m]xR) LPOLQ(J xIR2)

S 2 q‘) HwHLPOLqOB(JlxR?xR)

< Yy
Stolsapszcrseoee Pyt oz cnnsis

Next, we use the vector-valued version of transference principle to estimate

Py ei ( Agp+z2 )Upy Z’T(*Az+.’ﬂ2)

L =5 ’L+oe
f(Jl)WeS N(Jp) §(GY),2075<<2

(%

LQE)CL‘L?O Lg([oﬂf]XRle sz)

Then, using the similar argument of Corollary 1.6 in [[L1]], we are reduced to consider PY B v and
&(J1),5€52 N(J1)
P! ) 2i-5<.cqivs U ATE UZ (L2)-atoms. Let

£(G,
PY 0=y 1€ 1 (Y, 1), PY o i sV = Y Xa€ g (y, 1),
E(Jl),SE;%N(Jl) ; £(GY),2179<<2 Jzé;
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where 7 and J are partitions as in the definition of UZ (L2). We see by Lemma(7.1] Holder’s inequality
and Lemmal6.1]

‘ 6itAy eiT(—Ax-%—:cz)fleitAy 6727'(—Ax+x2) J| po po
kot ot L2([0,7]xRxJ; xR2)
1 2
; P .
<2% (63 N(Jl)) 0 Ax-%—x f‘ err(—Axﬂc g7 ‘
LzLPO 20T (B2 [0 x]R) L2L”° PO (R2af07]R)
1 2
L 1 3 %
2 (G V) Uil o,
Then, we have
3 T iT(—Ag 72
(7.17) ‘Py e’ ir(-As ),Upéy(Gz)2i—5<_<2i+5e . )U po _po_
E(Jz)we3 N(Jp) T Lot ot L2([0,m]xRxJ; xR?)
12
S27% (632N(Jl))2 " Py (Y ‘ £(GY,),2i-5<. <22+o 5 .
ﬁ(Jl)yNESEN(Jl) UZ(JI,LZ UA(leLi)
Therefore, (Z.14) follows from (Z.13)), (Z.16)) and (Z.17). O

We first consider (Z.10). By duality, we have

@ih= 3 ( > sup
JcGY, [wll

0<l2<i-10 v2(9.22)7 1

7 N low,l
[ o L oErm Py s P (009, 2)) dydact
N(Jl)263,%2l2 -5

By HwHLfOLgOLg(JlexR) S HwHVg(Jl,Lg) < 1, and (Z.14), we get

1
ay 12 B
(2.10) < Z ( Z 24, ©2 ) €(Gl)22-_539”51)(15,y,:c)|

0<l2<i-10 JlgGéw
1
N(Jl)>57 20275

c(atwem)

We now consider (Z.11). By duality and Lemmal7.4] we have

UR(G4.L3)

Y
Pﬁ(G’ ) 22‘—5332“51}

; ~ 2” i~5<.coi+5 U o
U2 (G5, L2) €(GL), 2722 M2 (12 G

@.18) H [ Bl L0y 2))

1

2 y 63 ‘“)2’5

2
Ly,z

itA Py

£(GL), 215 <.<2i+5 Y

< sup He yon

PO 7490712 2
lwol > =1 L,°L,° L2 (J;xR%xR)
ya

. Y
UA(G4,L3)

where F,wq is supported on {&:275 <[§ ~ ¢ (GE)| <277} in the above estimate. For fixed i, we take
qo = 20 + 2i, then 27 < 1. For the right hand side of (Z.18), by Holder’s inequality, Young’s inequality,




47

(6.14), (6.3), (6.19), and the conservation of mass, we have

2 1-L
(Z11) g > sup 2we, ©272 He”A w H v
~ 3 0 LPoLro L2(JxR2xR g Gi,),2i75<.<20+5 2 1o
0<l2<i-10, HwOHL% m:l (Ji ) ( ) UA(GY,L2)
JLEGfl, ’

N(J)sed 21275
2 i itA %
S 0<l§; 10 2 qO E " ( Z Hel ywOHLPOLQOLQ(JLx]RZXR) )
N(J;)>e2 2275

po-1

i ﬂLl Po
{2 @) P2t
JZG ( §(GL)2 <2 My (@i, 12)
1=
1_ A 21 RIS
S 2‘10 64 0 He” yon PO 7 , (2qo+2) T H v
O<lagi10, L9 LI L2(GE xR2xR) £(GE)),2075<.<2145 U3 (Gi, L2)
_1
212752, 2 N ()
21y l__ y
< a0 9 9% )
~ Z 2 63 2 PE(GZ ) 21 3'322 U2 (Gl L2) f(Gl ) 21 o< <2z+o Ui(L%,Ga) .

0<l2<i-10,
_1
202-5<c 2 N (Jy)

For the estimates of (7.12) and (Z.13), we separate the proofs in the next section using two bilinear
Strichartz estimates. l

7.1.3. Two bilinear Strichartz estimates. We have the following two bilinear Strichartz estimates.
Theorem 7.5 (First bilinear Strichartz estimate). Let wg € L2 ,(R? x R) with supp F,wq is supported on
{€:275 < |€ = € (GL)| < 215}, Then for any 0 < ly <i - 10, we have on Glg c G,

(7.19) A,

12 | Pey.c22? ‘

Slwols (1410l 6, )

e
2

Lgy(G;Z xR2)

Theorem 7.6 (Second bilinear Strichartz estimate). Let wg € L2 ,(R? x R) with supp F,wy is supported
on {£:275 <€ - & (GL)| <275}, we have

itA,

2 || Pery.cn ¥ ‘

v, Slwol?y (1+ 1015, 6, )-

e

(7.20) D

0<l2<i~10

zI1L7 ,(GExR?)
With the above two bilinear Strichartz estimates, we can now estimate (7.12) and (7.13)).

Estimate of (1.12). For any 0 <, <i - 10, by the fact that G, consists of 2'° subintervals G';'%, Proposi-
tion[6.12] and Theorem [7.3] on the subintervals G%‘lo, we get

(7.21)

el er))-

L U P v . =V (1
H H é‘(Gl 217‘)3_§2'L+o &(t) <2l2 ‘ H é‘(Gl 217‘)3_§2'L+o UZ(L%,G?I)

L2 (GL XR2)
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For any Glﬁ2 c G, choose wlg e V2 (L%,Glg) with supp]:ywlﬁ2 c {£:272<|€-€(GY)| <272} and

ng Hvz( 12.6%) 1. Then by Holder’s inequality, (6.1)), and (Z.21), we have
A x) ﬁ
(7.22)
_ 2 1
l2 Y Y Y
( lz _ Hwﬁ >, 1L (Pg(t) oty Ui Pg(t),szlzvnng(cz 21*5332”5@”3) ) - )
G2eci, 1 nznnel, L}, . (G2 xR2xR)

N(Gz )353% 2l2-5

f(t) 22V i

s [kl
( ! i L2

2
G2ecr,, UX(L2,GL) (1 ’ ”U”XNG@)) '

12, (G2 xm2) ) H @ zssaet
N(GZ )363% 2l2-5
1
By Proposition|[6.13] (6.8)), (6.11), and N (Glg) < €22275 we can estimate the term in the first bracket on
the right hand side of (Z.22)) as follows

L O
3 1 i
pY Y 2 <
L2 Pety 21)‘ 121l a2 (G2 xm2) H B HL?LSL%(G?XR%R) Hpﬁ(t)ﬂbv L3L812(G3 xR2xR) ~ Vi(GL)”
Thus, by the above inequalities we obtain
2
H £(GL),2i- o<<2l+o Ui(L%,Ga) (% ; i) (1+ “UHXz(Ga))
O

Estimate of (Z13). Letwy € L2 , have unit norm with 7wy is supported on {£ : 2072 < [ — £ (G| < 272}
By the Holder inequality and Proposition[6.12] we have

—1 low,l
[Glz tAyPSy(Gl ),2i72<. <2l+2F )i 2(rU(ta Y, :L')) dt
B

2
L?Jyx

< sup HeitAywo . F;?;UJQ (U(tvyux))HL%y x(GlB2 XR2><R)

|inHL§@=1
S sup ||| v, | PV v‘ Py v‘ Py SV
~ 2 lo lo G’L 2i— o< <2'L+o

lwol2 =1 Ll e@.22 Tz 17 e).22 g 117 £(Ga), Ll (o m2)

Y,T )

lg—i
<273 Y o v
~ 1 l i—5 i+5 .

G2 ,212’236212*2 ‘ H £(t) <22 )2 70<<2 L2 !
§( ﬁ) U2 L2 Glz “ v Liy(G;XRz)

Then by the Cauchy-Schwarz inequallty and (Z.20), we have

P

1
2 2
@13) s ||v] v, ( )
“ HYZ(Ga) Lf,y(GQXRQ)

Y
v 5U
H t <2l2 ‘ 2 G’L 2i— o< <2z+o 2
Z ol g2Vl e [ Tecen), 12

[o1% ) -

v (
5 +5 .
w22V lyz 13 6

S vl
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U

Therefore, this completes the proof of Theorem [Z.3l Then we can prove Theorem [6.24] by summation
with respect to 7 in the same way as (Z.6) and (Z.7) in Theorem[7.3]and Theorem[Z.2

7.1.4. Proofs of the bilinear Strichartz estimates. It remains to prove the two bilinear Strichartz estimates,
that is Theorem [Z.5] and Theorem [Z.6l The proofs of these results are basically the same and rely on the
interaction Morawetz estimates of the (DCR)) system, the argument here follow from that in [31]]. We shall
only present the proof of Theorem[7.5|here, because argument of the proof of Theorem[7.6]is similar to the
proof of Theorem[7.5and also rely on the result of Theorem [Z.3/as the proof of the corresponding bilinear
Strichartz estimate in [31].

Proof of Theorem|7.5 Let w = e"*®vwg and w = P?

where

and Ny = ( 4 py ) v with 4 pPY being given by the Fourier multiplier -V ¢ (57252(’5

(1) <212 V" Then w and w satisty :0,w + Ayw = 0, and

10,0 + Ay = F(0) + Ny + Ny = F(w) + N,

Ni=PY F(v)-F(d),

£(1).<2"2

dt &(t), <2l2 dtt g(t),<2l2

We define the interaction Morawetz action

+f / |w(t,gj,i)| Yy J(0vyw) (t,y, z) dydgdadz.
R2xR JR2xR ly - 9|

After some tedious calculation, we get

(7.23)

(7.24)

(7.25)

_— 2
fGl; fR fR fR|w (t,y,i)w(t,y,x)| dzdzdydt

21272 sup [M(t)]

lteGl2

4l f fR fRff| (t,5,7) ;| (N (v, - i€(t)) ) (t,y,x)dxdjdydgdt‘
1l f [RQ[RZ[[W(t y,x)| = (E(vy—ig(t))zv)(t,y,x)dxdszdydgdt‘
4+ 9lo-2i fGlz fR2 fRz/ﬂ;/B;’J(w(vy—z’f(t))w)(t,yj,f)é:‘;’J(EN) (t,y,x)dxdifdydyjdt‘.

By the invariance of the Galilean transformation of M (t), Holder’s inequality, and the conservation of
mass, we infer that 2/2-% sup |M (¢)| can be bounded by the right hand side of (Z.19).

teG/l@,2

Estimate of (7.23).
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By (6.14)), (6.17), Bernstein’s inequality, the conservation of mass and the Strichartz estimate, we have

|@23)] 5257 | Ny

Lt% LZ(G? «R2x )H(vy_lg(t))wuyl L%(G?XRQXR) H HLOQLQ ( lszQXR)

+ 2 % ||w||iooL2 l2 xR2xR f fl2 |€ ( |H S(t) 2la—-3<«. S2l2+3v(t7y?$)
(v, —icw) Py, <212v<t,y,x>HL2~ s
Yy

S22 NV

2
Ly

. ~ 2 219-2i 2
L3 LZ(G? YR2xR) ”(vy - Zéﬂ(t))wHL;{yL%(G? xR2xR) ”w() ||L§,x +277% Hwo “L%x

Let m(t,&) = =50 (g—g(t) ), by Minkowski’s inequality, Young’s inequality, sup H(}'glm) (t, y)HL}J $1

2h 2h
and (6.24), we get
19, = 360) @y o tpamonn) S 5 |0 =1E0) Pty ot
L [ Fetm) (ty - 9) | (t,3,7)| , a7
0<l1<12 ‘ ‘ ‘ ( &), 2l1 ) Lz Liy(Gf’J?XRQ)
< ol || pY S 9o |y S22 0] 2.0y
2 2 Pl sy 3, 2 212 ey (o) 52 Pl
Thus, it implies
209—21 2 ~ o— 2
23127 ool Bl Pl 8 1 oy * 22 Tl
Let vt = Py(t) ops¥ and v’ = Py(t) o150+ We can then decompose N as
Ny =
(7.26)

! l
Piy(t)ﬁ?lz ( Z I, (Umv’l“? U"S) ) B Z I (Pﬁy(t) <2l2 Unlpiy(t) <2l2 m PE(t) <2l2 U"S)

n1,n2,n3,neN, n1,n2,n3,neN,
ni—n2+n3=n n1—n2+n3=n

(7.27)

l h I py 1 h
+2(P fy@),<2l2( > (”"1“52%))' 2, L (P (<212 Vmi D) <o Vna L, <2l2”"3))

n1,n2,n3,neN, n1,n2,n3,neN,

ni—n2+nz=n ni—n2+n3z=n
(7.28)
y Uk gl _ y ] h pY l
+ P &), <l2( Z IL, (Um Umvm) ) Z I, (P £(t),<202 Um Pg(t) <ot2 Uno Pg(t) <22 Um)
n1,n2,n3,neN, n1,n2,n3,neN,
nip—n2+n3=n ni—n2+n3=n
(7.29)

Y h b Y Y h
+ O(Pg(t) <22 ( Z IL, (Unl Unsy U”S) ) - Z 1L, (Pg(t) <22 U”l Pg(t) <212 Uns Pg(t) <2l2 U”S) )’
n1,n2,n3,neN, n1,n2,n3,n€eN,

ni—n2+n3=n ni—n2+n3=n

where the “O” in (Z.29) means there are two high frequency factors in it. Observe that

(2.26) = 0.
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We next consider (7.27) and (7.28). Since their estimates are very similar, we only prove (Z.27)). Since
(F,vl.) (t.0,) is supported on {o : |0 — £(t)| < 222+10}, we have

(7.30)

Y L 1 ,,h Y I py 1 pY h
Pﬁ(t),<212( > Hn(vmvzzvng))— > Hn(Pg(t),mvmpg(t)ézb%Pw)mUng)

n1,n2,n3,neN, ni,n2,n3,neN,
n1-n2+n3=n ni—-ns+nz=n

(7.31)

Z Z m 6*2'?35(15)1_[” ((ng(t),?l Uil) (g, x) e—1z&(t) (ng(t),sﬂlvim) (Z, x)vZS («9, x))

l1<l2 n1,n2,n3,neN,
ni—n2+n3z=n

. [/f (=) +in(§-=) +io(2-0) ( ( s ( 5—27?2@) ) 4 (a —2l§2 (t))) 5 (0—2—l2§ 1(015)) (- (n2—lla)) dodndédzdgdd
(7.32)

+ lz > f/ 11, (e—z‘gs(w (Pfg),gzzlvfu) (7, ) e-iz®) (ng(twl %) (z,z)vk (6, x))

1<l n1,n2,n3,neN,
nip—n2+n3=n

.Meii(yfﬂ)ﬂn@ﬁ)ﬂcr(z—@) ((¢(§—2_i(t)) _¢(0—2l€2(t)))¢(02;2§1(§)))wll(n_gw(f;—hn) dodndedjd=ds.

We shall only prove estimate (7.31)), as the proof of (7.32)) is similar.

@.31) = Z Z [/ K(t;9,z, Q)Hn(e—i(y—ﬂ)f(t) (ng(t)ﬂllvin) (y-ij.7)

l1<l3 n1,n2,n3,neN,
ni—n2+n3=n

. ei(yfgfz)f(t)(ng(t)’gyl /U1l’Lz) (y — g -z, J})U:LLS (y - g -z - (9, ,I‘) ) dgdZde,

where

K (t53.20) = [[] e ((6(552) -0 (T552)) o (T2 ) vt - mo (7)) cnde

By the estimates | — 1| ~ 211 |n — 0| < 24, and the fundamental theorem of calculus, we obtain

(S50 (52)

S 2—l2|€ _ 0.| S 2l1—12‘

This implies

(734) sup [ K (17,2,0)| djdzdf 5 2",
t
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Thus, by Minkowski’s inequality, Holder’s inequality, (7.34), Lemmal6.20l and the conservation of mass,
we infer

l h DY h
‘ ng(t) <2l2H ( Z Umvflz Un3) B Z IL, (ng(t) <2l2 Um ng(t) <2l2 Uitz ng(t) <2lz ns)

(o)
l ~
‘ [/ |K(t y7Z 0)| H H f(t) 2l1 (y yv ( £(t), <2l1 )(y—y—Z,l') L2
: th (y-9g-2z-0,x) HL2 ,dgdzdd
7 L}
l1-1l2 l Y l h
l; 2 E(t) <2h HL;"L%M HPE(t)Qllu ‘L§L§L3 HU HL§L§L2 v “X (GL)”
We now consider (7.29). Since
. -
O( 2 T (P (<2t (”"1”32”"3) Petey <o Vm Py o V0 () a2 ”"3)) TR
T Liy L (6 B2 R)
olirg 2y S0l gy
y-z
it follows that
(7.35) (e

L3 L2(GEXR2 ) ~ ” ”X (Gi)’
and therefore, we have

(2.23) 5 2272 o 2 (g (1 + 101 ) -
Estimate of (7.24).

Applying integration by parts, we have

Z.24) < [1.23) + 21=7% [[[12 [f|w(t y,x)|2—|fﬁ(wN) (t,y,x) dydgdadzdt|.

By the Strichartz estimate, (Z.33)), (6.14)), (6.17), Bernstein’s inequality, and the conservation of mass, we

have
[l2 [f [ wt, g, % | R(@N) (t,y, ) dydgdedidt
5212_21”11}0 HL%,Z2_? [ |£ (t |H £(t), 2l2-3<. <212+3 H(Vy Zg(t)) §(t) <212

+ 22 w2

212 21

dt

2
Lyyﬂf

s 2% w3, (1+[vl% g))-

L} 12 (G? XszR)HNl ”Lt%’ng(Gf,J?x]I@ )H ~HL<><> L2 (Glz xR2xR) ~
Thus

@228 5 2> w3, (1+ [0l 6, )

Estimate of (7.23).



By Bernstein’s inequality and the conservation of mass, we have

2l2—2i

fGlﬁz fR fR fR fRﬁ(w(Vy—z’f(t))w)(t,y,x)é:;J@Nz)(t,g,i«)dydgdxdgzdt

)
Liz

2
Ly,z dt) S Hwo “Lﬁ,x

suwouiiz(wl? [ €O Pty arsacast] 1y [T = 6@IPE 0

il
+ ”wOHig,ﬁ (2 2 [ |§ (t)| H f(t) lo—-3<- <l2+3

We now turn to the estimate of

S Jo o L 20060 53N .5 8) gz

sy | (Fu=6@)EPL, v

2l2 21

Since
(7.36) Ji 3( S, (wmw_mwng))(:f)dsho,
R n1,m2,n3,neN
ni—n2+n3=n
we See

[ZJ wann)(x)dx [ (an (1) .<202 Z Hn(vnlv_mvng))(a?)dx

R peN ni,n2,n3eN,
ni—n2+nz=n

Using the decomposition v = v* + v!, where v = PY £(t), <22

(7.37) fZJ(w_ann (7) = fZ(F0n+F1n+F2n+F3n+F4n)(x)d:):

neN R peN

_s v, together with the above equality, we have

where Fj,, consists of j v—terms and 4 — j v} —terms, for j = 0,1,2,3,4, in

3(111_,1P£y(t)7<212 >y (04, Ungvny) )

ni,n2,n3eN,
ni—n2+n3=n

We now consider the estimate of the F); terms, j = 0,1,2, 3,4 as follows.

By (7.36)), we have
[ % Fon(t.5.7) di =0,

R eN

By Bernstein’s inequality, (6.1) and Lemmal6.20, we have

Joo . [ [W J.3 05, = e@)) () L (i ) (1.5.9) sz

2 wo |7

2l2 -21

$ 227 lwo[ 7z 0[5

L3L6L2 (Glz XR2><]R) H HL°°L2 (G,l@? XR2XR) X (Gz )’

53
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By a direct calculation, we have

(7.38)

1 1
2, Fin = ZJ( etz L oo ey e 20 T (“nl%vna)
neN neN n1,n2,n3€N,

nip—n2+n3=n

= E——— ! h
+ vﬁLPé’(t) <212( Z 11, (vnl Pé’(t)’zzlrzv%vm) +2 Z 11, (vvazPé’(t) ola- 2vn3) ))

ni,n2,n3eN, ni,n2,n3eN,
ni—n2+n3=n ni—n2+n3=n

Since the support of the partial Fourier transform with respect to § of Y. Fi, (¢,7,Z) is contained in
neN

{&:]€| > 2274}, we can apply the integration by parts with respect to ¢, the Hardy-Littlewood-Sobolev
inequality, Bernstein’s inequality, the Strichartz estimate, (6.25)), and (6.24)) to give the following estimate

2!27272

n’eN

%L;AAA A2j(m(vy—¢§(t))wn)(t,y,x)f/:;( > Fio)(t..7) dydgdedidt

< l2—21 o
$2 fGlz fR fRfR i§(t))wn)(t,y, ) Iy 710 (-4;) f(nZE:NFln)(t j,%) dz| dydjdadt
<2l2 2ZHwHL3L6L2(Gl2XR2XR) H(Vy Zg(t))wHLng (GlszQXR) a ( Ay ) [(ZNFln)d$ LﬁLﬁ(Gl R)

n'e t2 5 ,6‘2X 2

$ 227 Jwol 75 vl%

SQ—i ”wOHigw H'U ”3 Xi(Gi)

h
sudia(cramnen) | RI(GeReR) S

We are now left to show

(739) 2% 3 [ L Zﬁ(w—n(vy—z’w))wn)(t,y,x)éjég,n«t,g,:ﬁ) dydjdedzdt

n,n’eN

Slwol2, (1+ ||v||X(Gz)).

Similar to the estimate on the term involved F above, from integration by parts, Bernstein’s inequality
and (6.23)), we conclude

5 oo fo fo 2@ - Oy o,

212 2ZHwHL3L6L2( l2XR2XR) H(vy Zg(t))wHLoo[g ( lszsz)

212—2i

J= yl f( P>yl2 10F2,nf) (t,9,% )dxdxdydydt‘
n’eN

95 (~0;)” ( [ S Py mFm,d@)

R p7eN

Lt% L;?T (¢ xr?)

"]

- 2
$27 wollZs v

lo—i 2 2
L4 13(G2 xR2xR) L3LSL3 (G2 xR2xR) S 27 Z”onLi,mHUHXi(Gg)'



55

We now turn to the estimate of the low frequency part of F5. First of all, we can decompose I3,/ as

(7.40)
FZ,n’ (ta'ga‘%)
1 py h . h .l l Y [
N2 Py 20 T (“ni“ ! 3) LT TP B YRR ey
ny,ny,nyeN, ni,ny,nzeN,
nf-nh+ns=n’ nf—nbH+nf=n’
Y h 11 Y h Y L . h,l
+2P5(t) o2 Vn Pg(t) <ol2 Z I, (U 1 Upg ,) +P5(t) o2 Vn Pg(t) <ol2 Z 1L, (Un,lvn v, )
n’ ,nh nheN n’ ,nh nheN
/17 /27 3, 7/ ,17 /27 3, 7/
nj—nh+ni=n Ny TNy tng=n
Since
~ Yy Yy h _
N2 2 FPpantnlle (bl Pl o) | =0
n'eN nf,njH nieN,
ni-nS+ng=n’
and
ol Y R _
Z Z Un’H"' (P £(t),<2!2 (Un’lvn’ ) Ung) - 0’
n’eN nf n} nfeN, ?
nt —nl+nh=n’
17Ny tNg=
we obtain

e h o h l l h
27 Z v, P(t) ol Z, IT,, (U o U ) Z P(t) ool nP(t) o Z, IL,,/ (v i vné)
nf,nfh,nieN, nf,nh,nheN,
nf-nS+ns=n’ ni-nhj+ns=n'

(7.41)

~ Y h pY l l Y h Y h
> n;N , ZN (P (t).<2t2 U D) <on T (“ni“nzv ) Petty <o ¥ n'H"’( P £(t).<2'2 Un} ))
ny,ny,n3eN,
nf-nh+nf=n’

(7.42)
+237 Z Z ( l ng(t) <ot 1l (Uzivh v 3) _UT”'H”' (Pﬁy(t) <2l2 (UZ&U—Z&) Uil%))

n'eN nf nj nieN,
ni-nhj+nh=n'
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For (2.41)), by (Z2.30), (7.34)), Lemmal6.20/ and the conservation of mass, we have
(7.43)

olai f (@.41)(z) de
R L} (¢33 xr2)
lo—i ||,k
SQ o HU HL%@L%(G? XRQXR)
! h h
Z 11 ng(t) <2l2 (U Uilz”m) N Z I, (U Ul ng(t) <212U7L3) 4 ,
ni,n2,n3,neN, n1,n2,n3,neN, Lf’ng(GgQ szxR)
ni—n2+nz=n n1—n2+n3=n ’
=i, . L-ls || py y ! h ol
$227 vl %) > 2hh Pg(t) <o V HLOOLZ HPg(t),zllv ‘L%Lsm H HL3L8L2 s 27 Z”U”X(Gl)
11<l2 t Y.z t Fyle
To estimate (7.42). We note similar to (7.33)), we have
§1+ 8- () &1 !
o (22 - o (5| s 2t - <o

Then by Lemmal6.20] and the conservation of mass, we have
[ @4
R

27 v

2l2—i

Lg'y(G? xR2)

!
HL;”Lgyx(GE xR2xR)

2 P enlln (“h ”22“53)' 2 (P (1,<2n (“31”_22) “53)

ni,n2,n3,neN, ni,n2,n3,neN, LiL? Z(Gl2 xIR2 xR)
n1-no+nz=n n1-no+nz=n Ys B
- 2
527 o] l 2Py, | $ 227 .
L3LSL2 (G2 xR2xR) 11;2 §0:21 7 N3 rsr2 (G2 xr2xR) ~ H HX (GL)

Now we turn to the remaining terms in (Z.40Q). Observe that

~ l Y h o ,h Y h Y I o h ol
J Z Z Pg(t) <212H (v v, vn,) + Z Z Pg(t) <otz Un Pg(t) S2Z2Hn, (vn, v vn,)
’ /AN 2 3 7 /AN ’ 1
n’eN n/ n} nfeN, n'eN nf ,nf nieN,
nf-nh+nf=n’ nj-nh+nfh=n'

(7.44)
Z Z (ng(t) <212 Z Pg(t) <212H (Uiz’lvigv ! ) ng(t) <2l2 Un 1Ly (U ng(t) <2l2 Uh Ul '3))

! ! ! 7
n'eN nf,njnleN,

’ 7 1 _
TLl *’I’LQ +’I’L37’I’L

(7.45)

~ 1 Y h Y h Y h
+ ) > 3 (vn,Pf(t) ot (vn, vhv ,) + Pg(t) <ot UL L (v Pg(t) <ot U Uy )) .
n’eN nf,nf,nfeN ’ 2
1 ) )
nf—nbH+nf=n’

Similar to the arguments for (Z.43), we have

21| [ (@ad)do S 21l
R

1, ('2x22) Hi(@L)’
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Z Z Pﬁy(t) <2l2-10 ( : ng(t) <2le (Uh' “LQUZQ)

7

Thus, to show (Z.39), we just need to consider the term that contains (Z.43). By direct calculation, we get
n’eN n n2 n3

270 [ Jl] 329, i@y v =

+PY ol I, (U 4 v ,))(t v, 1) dydydedzdt

£(1).<2t2 Un’ £(1).<2'2 Unf

:212‘”fc;2f/ X 3@V, = ig(O)wn) (Ly+ 26 (G5) ) Z >k Let

TL€N nf nzn eN
nj—nh+ni=n’

)) (t,g+ QE(Glz)t i) dadidydgdt.

/

ol PY

Aol T (kb pY
J(vn,lvn,g (vn,vn,2 P e(1)<22 U

£(t),<212
We may take & (Glg) = 0 in the right hand side of the above equality by the invariance of the Galilean
transformation. By the inverse Fourier transform, we have

S 8 o [l 2w o=

n,n’eN n n M3 "eN,
nf- n2+n3—n

J((Unfvl,) (Uh UZ - Py

£(t).<2'2Un

Py

<2l2 10

vl PY

£(t) <212 s

Z Z f f/[/J(wn(vy i€(t))wn) (t, y,:):) Y-y (f// (771 +T]2212+17(])3 +774) (N1 +m2+n3+14)

n,n’eN n n nEN
nl n2+n3n

o (Foty ) (tmss ) (Favng ) 0, @) (Fovly) (6o ) (Fpoly ) (20, )

(1 ) (m;if(t)) & (7’2_27[5(”)) dmdmdngdm) dydjdaedzdt.

)) (t,9,7) dydgdadzdt

Let

q(n) = [mP? +nal? = |ns)* = |mal?,

as in [31]], we have % is a convergent sum of terms with operator norm being dominated by ™

1
Pl ™
b on the support of (1 -6 (2582 ) ¢ (252 )) & (725) & (7).
Let Glg = [to,t1]. Applying integration by parts (with respect to time), we have

[ JiNi Z,q(ln)(%eiw)s(w—n(vy—zf(t))wn)(t,y,@éj;as(%“;j pih)

i3 +n+n+m0) (1 i (770 - &(t) ) é (772 -&(1) )) (eit|770|2 (m) (t, 10, 3) el ( ) (t, 1, %)

9l2 912

el (Fyol, ) (b, ) e (Fpul, ) (4 s, ) d771d772d773d770) dydjdedzdt
::Bl+BZ+B3+B4?
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where

(7.46)

B = fff [/] [f ﬁeitq(ﬁ)j (w—n(vy — Zg(t))wn) (t, v, x) é : §| ¢ (771 + 7}22;123 + 770) T (m +n2+73+70)

(1 o (770 ;g(t) ) 4 (772 ;E(t) )) (6it|7702 (m) (£, &) e-it2P (T“n:) (t. 10, 7)

t1

Y

eitlm? (}-gvful) (t,m1, &) el (}-gvilg) (t,m3,7) d770d771d772d773) dydydadz

to

(7.47)

e [ I o s, s )

i+ 13 70) (1 ¢ (770 ;E(t) ) é (772 ;g(t) )) (e—itno2 (m) (£, 170, %) e~ tim (Tvnhz) (t,m2,7)

eitlm [? (]:z?viul) (t,m, &) eitins? (}—Qvizg) (t,m3,T) dmdngdngdm) dydydxdzdt,

(7.48)

B [ ] I ] e @, = o) () =t

0 (¢ (771 + 1722;3)3 + 770) ST 4+ +0) (1 B ¢(770 —lé“(t))¢ (772 30 ))) (e—itno|2 (W) (t, 10, %)

ot ol ol

itz |? (—fﬂvz'z) (t, 72, %) eitlm? (*7:37”2'1) (t,m, %) eitins? (fgvilé) (t,m3,T) dmdngdngdm) dydydxdzdt,

(7.49)

B [ I I oty 03 5, =) () = ()

s (1o (B0 (B 2)) e (F) o 2y (T

G (Fauty ) (e, 2) € (Fyol ) (60, 7) dnldngdngdno) dydgdadzdt.
For (7.46), set

i (E: 02 71, 15 713 = q(177)¢(771 +7722l2+172)3+770) (1_¢(U0 —2l§(t))¢(nz ;E(t)))
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Then we have

@8 =i I [I] [ 30, ieew) xR 201, 200 (G - 20.9)

t1
vﬁ,z (t, 7 — 29, 9?)21;,1 (t, - 21,T) vilé (t, 7 — 23,7) dzydzedzzdzodzdzdydy|
to
where
(750) K(t, 20,215 %2, 23) = M m(t, Mo, MN1,M2, T]3)€izlm €iz2772 €i23n3 eiz‘mo d’fhd’f]gd’f]gd’f](],

which satisfies

(7.51) sup [ |K (t; 20, 21, 22, 23)| dz1dzedzsdzg S 2722,
t

by the Coifman-Meyer theorem [44]. Thus, by Bernstein’s inequality, (Z.51)) and the conservation of mass,
we have

212—2i Z Z m

n,n'eN nf ni nieN,
’ 7 T
ni-nh+ni=n

$2 2wl ey, 1Ty~ 6Ol s [[[] 1K 20,202 20) [0 (15 - 20,8) |2 [0 (85 - 2 9]
Hv (t,9 - 21,7) HLi HU (t,y—zg,x)HLg dz1dzodzzdzody

lo—i 2 o-2ly |,k 12 2
527 ZHWOHL?J,%Q ? v HL?"L?QNC v HLgfng S ”wOHL%,,x'
Next, we turn to the estimate of (Z.47). By a direct computation, we have
0 . _ ,
=3 [ @0, —i&()w) (g x)do

2
- @;(t)Hwn(t,y,x)H%g + % 0, R [ (W0 ~i6(1)0yw0) (1y. ) do
k'=1

yk’ f yk/wn(ayk _ng(t))wn) (t,y,x) dax.
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Thus, we get

(1.47) -

(7.52)
/ /_ff /_U f/ €(t ) wn (2, wa)HmK(t 20, 21, %2, 23) U0 (8,9 — 20, T )vz,2 (t,7 — 22,7)

vn,l (t,g— 2,7 )vnf3 (t, U — 23, %) dzydzodzzdzodydydedzdt

kk/ f f[//ﬂf (TZ ?Z| Yi! (w_n(gyk_igk(t))ﬁyywn)(tayax)K(t;Zoaz1722,Z3)

o, (t,7 - 20, x)vn,2 (t,9 — 22, x)vn,1 (t,y — 21,7) Uié (t,9 — 23, 1) dzy1dzodzzdzg dydgdadzdt

kk, f f[//ﬂf (TZ ?Z| ! (3yk,u7n(3yk—ka(t))wn)(t,y,x)K(t;zO,zl,z%Z?))

o, (t,7 - 2o, x)vn,2 (t,9 — 22, x)vn,1 (t,y — 21,7) Uié (t,9 — 23, ) dzydzedzzdzedydydrdrdt,

(7.53)

(7.54)

where K (t; zq, 21, 22, 23) is given in (Z.5Q).
By (Z.51), (6.14)), (6.19), Bernstein’s inequality and the conservation of mass, we have

Sy @ g I RPN SO0 R
n,n'eN n17n2,n3€N Gﬁ ’
nl TL2+TL3 TL

212 -2 < 2l2 222 2o ”wHL‘”L?

Integrating (Z.33) by parts in space, we derive
(Im)

kk/ f /fff//ff(lyékk’m (y_?fy)]i(j;g)k)%(w_"(ayk i€(t)) yk,wn)(t,y,x)

K (t; 20,21, 22, 23)0", (¢, 9 - 20, 93)2171,2 (t,9 — 22, f)vil,l (t,9—21,7) viL,S (t,9 — 24, %) dz1dzodzzdzodzdzdydydt.

Therefore, by the Hardy-Littlewood-Sobolev inequality, (Z.51), Lemma [6.20, the Sobolev embedding
theorem, the fact Glﬁ2 c G, [€(1)] << 22 and I, < i, we have

212—22'

2l2 222222 2o ”w”L6L3L2

H lHLooL4L2 ~ HwOHL2 ”U“X (Gi)”

n,n'eN ni ni nieN,

’ 7 1 _
’I’LlfTL2+TL3—TL

By a similar argument, we infer

2 Y Y @Sl

2 2
n,n’eN nllynlg,n’gEN, ~ Hw(] HL%M HFUHXZ(G(Z)

’ 7 1 _
nl—nz +n3 =n

Now we turn to (7.48). As (Z.46), we have the corresponding integral kernel
K(t;20,21,22,23) = [/ff m(t; 10,1, 12, 13 )€1 €721 523 200 day dapy g,
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where

m(t; 00,75 M2,M3)

_ 2 ¢(7h+7)22l;17(7)3+770)((v¢)(770 5(15)) (ﬁz—f(t))Jr(b( =&t ))(V¢)( 5(t)))

q(n) 2l 2l

The kernel function K (t; 20, 21, 22, 23 ) satisfies

sup f ‘f((t;zo,zl,z%z;),)‘ dzdzedzsdz < 27302,
t

Thus

212 21

2, ), @4®)

n,n’eN ”1 n2 TL36N

L""L2 H lHLoo L2 (~[Gf32 |€/(t)|dt) p ||7»UOH%§£
ni-nb+ni=n

Finally, we consider the term (7.49). Following the argument for the estimates (Z.46) and (7.48), by the
Bernstein inequality, the conservation of mass and Lemmal6.20, we deduce

>, ), (@129

n,n'eN "1 n2 n3€N
nj—nh+ni=n

S 272k Z“w“LwLZ

!

g2 s 22 wo 2, (1 ol )

Therefore, we eventually arrive at
@23 5 Jwol2s (1+01% )
The proof of Theorem [7.3]is complete. O
7.2. Proof of Theorem [6.25]
Proof of Theorem6.25] By Theorem [6.21] we have

(7.55) loal 2, (tor-2r1y S 1,
where

2ko
(7.56) o(t,y,x) = Mo (M2, Ay, x) with A = =2
Let w = PY_ v,. Then w satisfies

<2ko
100 + Ay = F(w) +
where
N = <2kOF(’U)\)
Let

M(t) = [ /[Rz Rzl w(t, y,x)| | | (wa )(t y, ) dydydzdz.
Then a direct calculation similar to [.,[LL[LLL%U gives

| 193t (e, P) o S sup [M(D)] 46,

L2 ([0A2T]xR2)  te[0,A"2T]
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where
& =
72T Y7 - — o ~ ~
(7.57) 2 /(; f fR /11.@ /]1; (w(vy - zf(t))w) (t,y,z )|y — §|J (wN) (t,9,7) dydgdzdzdt
(7.58) a/fAzW|“%@ﬁ |(MW i€(1)0) (t,y, ) dydgdedidt
(7.59) ?[[AQW|@%@W |(mw—wﬁwxw@mmwmmp

Since N(t) < 1, we have N)(t) < 632 °. By Theorem 6.6 and the Bernstein inequality, for any 7 > 0, if
K > C(n), we have

(7.60) I(vVy —i&(t)) wHme L([0A2T]xR2xR) ® s 2.
Therefore, by the Galilean transformation and the conservation of mass, we get

sup IM(t)I sn2k.
te[0,A"2T

We now consider (.57). As in (Z.37), let v} = P*
tion

[j(EN)(t7g7j)dj:[FO(t7g7j)+Fl(t7g7j)+F2(t7g7j)+F3(t7g7j)+F4(t7g7j) dz.
R R

We can see

eoko-3UA and U;\l = szko_sv,\, then we have the decomposi-

/Q%@g@ﬁdj:&
R
Following the same argument as the proof of (Z.23), we may obtain
[]R HF2 (t7g7j) + Iy (t7g7j) + Fy (tagvj)HLtl’g([O,)\ﬂT]x]l@) dz s 1.

Then by (7.60) and the conservation of mass, we have

LS (@@, i€®)) () L=

To estimate the contribution of the term with F in (Z.57)), we see the support of the spatial Fourier trans-
form of [, F(t,9,2)dz is in {£ : [{| > 2%~} as in (Z.38)). Therefore, by integration by parts, the Hardy-
Littlewood-Sobolev inequality, the Bernstein inequality, Lemmal[6.20 and (Z.35)), we have

ng%Fjgjé2Jg23(ﬁ(vy—i500)w)(ty>xhggé%(jgfﬂ(tﬂgi)di)dydgdxdt

[ N @9, -ie@)d) (ty.a)da| - —— - (t,.7) di
0 R2 JR2 [JR |yy|

L s Y (G () ] IO

+ Fy+ Fy) (t,9,7) dydgdadzdt| s n2ko.

dydgdt

0 (-85 [ Fi(t,5.5) d

4
L3, ([0,A2T]xR?)

—k . ~ 1 3
27 [(vy - Zg(t))wHLgng([o,x2T]xR2xR) HUAHLgng([o,,\-2T]xR2xR) :
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By the Bernstein inequality, Lemma[6.20] and (Z.53)), we have

L _0
H'U)\HLG S L2([0A2T]xR2xR) ~ 0<lz<:k 232 S 3
0
Note that
(7.61) ||(Vy —Zf(t)) lZJH 5 < Z 293 2 (ko-1) < ko

L2 LOL2([0,A72T]xR?xR)
Interpolating (Z.61)) and (Z.60), we obtain

. _ 3
(762) ” (Vy - z§(t)) w|‘L§yL§([O,)\‘2T]xR2xR) S ns 2k0 .

Thus, by the above estimates, we have

0<i<kg

(2.57) s =2
Now, we turn to (.58)). By (Z.33) and (Z.53), we have
(Z.58) < Hw”L°°L2 2([0,A2T]xR2xR) HN”

. N 5,
2 ([0,\-2T]xR2xR) H(Vy - Zg(t))w’|L§yL%([07>\*2T]xR2xR) U/ EVA

Finally, we consider (Z.39). Applying integration by parts, we have
(Z.59) <(@.58)

72T .
f f f f f Iw(t,g,f)lz%m(wjv)(t,y,x)dydgdxdg}dt.
0 R JR JR2 JR2 ly — 9l

By (6.1) and (Z.36), we see
(7.63) <

AT 1 3
~ ~ ~N\ (2 ~ h ~
aeh [ [ [ I (4.9, )1z oty )z |4 v, 2) [, dydgat

\72T ~ L 1 ~ ~
I A B R ) P LD D5, oty 0)] ,, dydidt.

By the Hardy-Littlewood-Sobolev inequality, (Z.60), (7.62), Lemma [6.20] the Sobolev embedding theo-
rem, the conservation of mass, and interpolation, we have

(7.63) +

; 3
(2.64) 5 HU}\HL‘l JL2([0A2T]xR2xR) @ “L4 LL2(0A2TIxR2R) ns 2k,
and

2 1
~ l 59ko
w 90 HU H 60 S ns2to,
xRZxR) H “L?Lyfg L2([0,A2T]xR2xR) A LgLyu L2([0,A2T]xR2xR)

@63 5 oAl g g2 orom

Thus, by the above estimates, we have

| L9t (e, 08) e

Undoing the scaling in (Z.56)), we finally reach the desired estimate (6.41). d

Sn%2k°.
L7, ([0,A2T]xR2)
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8. APPENDIX: WELL-POSEDNESS THEORY FOR (1.2)
In this appendix, we present the proofs of the recorded results in Section [3] for self-contained. Let
X1(t) = xsin(t) —icos(t)0, and Xo(t) = x cos(t) +isin(t)0,.
We have the point-wise identity: for any f € S(R?),
8.1) X2 f (g, )+ 1Xo () f (g, )| = o f (g, ) +10. (g, ), VEeR.
The next result follows by direct computation. We refer to [14]] for more explanation.

Lemma 8.1. The operators X,(t) and Xo(t) satisfy the following properties:
(1) They correspond to the conjugation of gradient and momentum by the free flow,

X1 (t) = e(Be3=2%) (g, ) e H(Brs %)
Xo(t) = (B3 =2%) gomit(Aga=a?)
(2) They act on the nonlinearity like derivatives, that is for j = 1,2, we have
12 (#) (lulPu) | < ul® | X5 ()ul.
As a consequence, we have

ety - u

= Hu(t) — it(Brs=a?)y,

X0 () - G|k | Xa) (u(r) - O,

+ :
L2H} L2, Lo
We now show the local well-posedness part of Theorem [3.4]in the following formulation. This is essen-

tially following the argument in [20}/83]].

Theorem 8.2 (Local well-posedness). For any E > 0 and ug with |ug| L2 wexr) S B, there exists Jo =
do(E) > 0 such that if

eit(ARgf.’Ez)u Xl (t)eit(A]l@*mz)u X2(t)€it(AR3f.’E2)u 507

A A :
L?,yL%(IXRQXR) L?,ng(IxRQXR) L?,ng(IxRQXR)

where I is the time interval, there exits a unique solution u € CY L2H] (I x R? x R) of (L2) satisfying

pit(Bgs-a?),,

HUHL;{yH;(nszR) <2 and HUHL?LgH;(IszxR) <C HUOHLgH; .

L} HL(IxR2xR)
Proof. Let

(I)(u) _ 61t(AR37r2)u0 —i[ ez(t—s)(AR;;fm?) (|u|2U) (S) ds,

0

and set the space X to be

X = {ue CPLZHL : ul iz 1301 < 2, Jull s pur <205},
or
X = {u € C’?Lz’}-{}ﬁ : HUHL?Lg,,: <2, ”“HL;{yLi <20, HXj(t)uHLZ,QL%@ <2F, HXj(t)uHLg’ng <20, j= 1,2}.

For any u € X, by Proposition [3.2] Holder’s inequality, Sobolev’s inequality, Lemma 8.1} and (8.1), we
have

H(I)(U)HL;’"LZ%@ S ||U0HL5J + ||UHL;{ng ||UH%;{yHy
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and

X0 (OB gogs + 1 Xa(D)(0) |

$ Vool + louolls + Juls (160l e g+ 100l gy 12 )
Thus
B2 [8(W)lyery, + X OO gy + 1Xa(DPW)] oy, < B+ (208)° < 2E.
Similarly, we can obtain
(8.3) (@) Lo ra + 1X0(OP(w) |1 2 + [Xo(OP(u)] g 2 <00+ (2C60)° < 2C%,.

In the same time, for any u, v € X, by the Strichartz estimate, Holder’s inequality, and Sobolev’s inequality,
we have

(8.4) [©(u) - (o)l s p2 $ lufu- |”|2“HL§ng Slu=vlls 12 (”“H%ﬁyﬂg + “U”if,yH;)

< (2060)° lu-vlps 1z
Combining (8.2)), (8.3), and (8.4), we have for §, small enough, ® : X — X is a contractive map. There-
fore, the theorem follows from the fixed point theorem. O
We now turn to the proof of the scattering norm in Theorem [3.4
Proof of the scattering norm part of Theorem We need to show
8.5) ”uHLfyy?-[}anfW;AL%(RxR?xR) <C(M),

then by the scattering theory of the nonlinear Schrodinger equations [[11[17,/83]], we have scattering in (3.1)).
By well-posedness part of Theorem [3.4] it suffices to prove (8.3) as an a priori bound.

Divide the time interval R into N ~ (1 + %)4 subintervals [; = [¢;,1;,1] such that

(8.6) <9,

u ”L;{yﬂi’éo (I;xR2xR)

where § > 0 will be chosen later.
On each [, by (8.1), the Strichartz estimate, the Sobolev embedding and (8.6)), we have

H“H LnylALiﬂLf,y’H}c(Ij xR2xR)

<C (||u(t])|2 + H|u|2uHL§ 2 + HXl(t) (|u|2u)HL% 2 + HXQ(t) (|u|2u)H 4 )

3 72
t,y Lt,yL»"”

<C (Ju (4l + T2y s (b o+ X0l gy + 1Ol 1) + Dl gz Bl i)
Y ’ ’ Y

IN

C
€ (hr (0l k2, e (b + 19l g+ Nlulag e+ Vo))
<C (lu (s + ul sy rznns sa)

1
Choosing d < (% ) * leads to the estimate

||UHL;*Wyl"‘LgnL;{yH;(IijZxR) <20 |lu(ty) HEW ‘

The desired bound (8.5)) now follows by adding up the bounds on each subintervals ;. U
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We now provide the proof of Theorem 3.5l First, we show the following short-time version.

Lemma 8.3 (Short-time stability theorem). Let I be a compact interval and let i be an approximate
solution to (L2)) in the sense that i0,u + Agst — 20 = |u|>u + e for some function e. Assume that

(8.7) H@HL;’%@H;([XR?XR) <M

for some positive constant M. Let ty € I and u(ty) be such that

(8.8) [u(to) = @(to)] L2p < M’
for some M’ > (.
Assume also the smallness conditions hold.:
(8.9) HaHLngH}C(IxIRQXR) <6
i(t—to)(Apz—a? 7
(8.10) B (u(to) = ato) i ”e”L;%L;%H}C =6

for some 0 < € < €1, where €, = e,(M, M") > 0 is a small constant. Then, there exists a solution u to (1.2))
on I x R? x R with initial data u(ty) at time t =ty satisfying

(8.11) lu=il s s Se.

(8.12) Ju =] o p2pr S M,
(8.13) |ulperzas S M+ M,
(8.14) | ulu - |a|2aHL§L§H; Se.

Proof. By symmetry, we may assume t, = inf /. Let w = u — w, then w satisfies
10w + Agsw — 2*w = |0+ w* (4 +w) - |a*a - e.
For t € I, we define

D(t) = o+ wi(@sw)-lafal g o
ty'tx ’

By (8.9), we have

2
(8.15) D(t) s HwHL;{yH}c (”UHL;{yH; + ||w||igyﬂr¢;) S ”w”if,y?{}c([to,t]xRQXR) * 6% ||w||L§,yH}c([to,t]xR2xR)'
On the other hand, by the Strichartz estimate and (8.10), we get

(8.16)
ei(t—to)(ARg—xz)w(to)

|‘wHL§yH;([to,t]xR2xR) S
Combining (8.15) and (8.16)), we obtain
D(t) s (D(t) +€)’ + & (D(t) +¢).
A standard continuity argument then shows that if ¢; is taken sufficiently small, then
D(t)Se Vtel,

+D(t)+]|e]|L% N S D(t) +e.

L} HL([to t]xR2xR) L([to,t]xR2xR) "~

which implies (8.14).
Using (8.14)) and (8.16)), one easily derives (8.11). Moreover, by the Strichartz estimate, (8.8)) and (8.14)),
[w] g 31 (1xr2xr) $ [0 (t0) | a3y + [T +w]? (@ +w) - |@|2@\\L§y% + HeHLiH; SM' +e,
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which establishes (8.12)) for ¢; = €, (M") sufficiently small.
To prove (8.13), we use the Strichartz estimate, (8.7), (8.8)), (8.14) and (8.9)),

[l s rry S 1(E0) | gy + u(to) = (o) gy + | e = |a|2aHL§yH% n Hml%”ﬁﬂ;

5M+M’+e+||ﬁ|\L4 SM+M +e+eél.

Hl ~
The proof is complete by choosing €1 = €1 (M, M") sufficiently small. U

We now show the proof of Theorem [3.3]
Proof of Theorem|3.51 We divide the interval [ into N ~ (1 + é)4 subintervals [; = [t;,£;:1],0<j < N-1
such that

HaHLg‘yy'}'—[;(lijQXR) < €1,

where €, = €;(M,2M") is given by Lemmal8.3

By choosing ¢, sufficiently small depending on .J, M and M’, we can apply Lemma [8.3] to obtain for
each jand all 0 < € < ¢4,

Hu - a”Lini(IjXRZXR) < C(.])€7 Hu - aHL?L%'H}D(Ijx]RQXR) < C(])Mlv

||UHL;>°L§H;(1ij2xR) <C(j)(M+M"), H|u|2u - |ﬁ|2

C(@j)e,

L3 SHE XR2XR)

provided we can prove that analogues of (3.2)) and (3.3) hold with ¢, replaced by ;.
In order to verify this, we use an inductive argument. By the Strichartz estimate, (3.2)), and the inductive
hypothesis,

but) =500 g B0) =00 gy PGPy el

j-1
SM' +5 C(k)e+e.
k=0

Similarly, by the Strichartz estimate, (3.3), and the inductive hypothesis,

e () (Bes=2%) (4 (t,) - a(t;))

L# HL(I;<R2xR)

ei(t—to)(AR-‘S*mz) (u(to) — ﬂ(to) H H

2 1~25
L , 3 ) Lo+ H|u| u - |l uH 1
¢y Ha (I xR2xR) L, Hi ([to,t;]xR2xR)

L3 HL ([to,t;]xR?xR)

-1
se+ > C(k)e.
k=0

It is clear now we may choose ¢, sufficiently small, depending on N, M and M’, such that the hypotheses
of Lemmal8.3|continue to hold as j varies. This completes the proof of Theorem 3.5 O
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