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ANALYSIS OF A DIMENSION SPLITTING SCHEME FOR MAXWELL
EQUATIONS WITH LOW REGULARITY IN HETEROGENEOUS MEDIA

KONSTANTIN ZERULLA

Abstract. We analyze a dimension splitting scheme for the time integration of linear Maxwell
equations in a heterogeneous cuboid. The domain contains several homogeneous subcuboids,
and serves as a model for a rectangular embedded waveguide. Due to discontinuities of the
material parameters and irregular initial data, the solution of the Maxwell system has regularity
below H1. The splitting scheme is adapted to the arising singularities, and is shown to converge
with order one in L2. The error result only imposes assumptions on the model parameters
and the initial data, but not on the unknown solution. To achieve this result, the regularity
of the Maxwell system is analyzed in detail, giving rise to sharp explicit regularity statements.
In particular, the regularity parameters are given in explicit terms of the largest jump of the
material parameters. The analysis is based on semigroup theory, interpolation theory, and
regularity analysis for elliptic transmission problems.

1. Introduction

Maxwell equations belong to the fundamental equations in physics, and are in particular
used to describe a large number of phenomena in optics, see [32, 25, 9, 17]. Their solutions
are hence of great interest in many applications, like the design of waveguides, see Section 9.3
in [45]. To model waveguides, heterogeneous media are often studied that consist of several
homogeneous submedia. This approach leads to material parameters that are discontinuous
at the interfaces between different submedia. Maxwell equations with discontinuous material
parameters, however, usually have irregular solutions, see [15, 8, 7, 11, 12, 13] for instance.
This poses severe difficulties for the analysis of numerical schemes for the considered Maxwell
equations. To tackle these difficulties, we employ semigroup theory, interpolation theory, and a
detailed regularity analysis of an elliptic transmission problem.

On domains with tensor-structure, alternating direction implicit (ADI) schemes are very at-
tractive methods for the time integration of linear isotropic Maxwell equations. In the ADI
splitting from [56, 42], the Maxwell operator is split according to the spatial dimensions in
which derivatives arise. The split system is then integrated in time by means of the Peaceman-
Rachford scheme, see [44]. The splitting from [56, 42] can also be integrated in an energy
conserving way, see [10]. These schemes are implicit and can be shown to be unconditionally
stable, see [56, 42, 10, 29, 31, 38] for instance. Despite being implicit, the mentioned ADI schemes
are also computationally cheap. In particular, the implicit steps can be shown to decouple into
essentially one-dimensional problems amounting to linear complexity, see [56, 42, 10, 29, 30, 38].
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In [47, 48], the Peaceman-Rachford ADI scheme is transformed into an even more efficient for-
mulation, being called fundamental ADI-FDTD scheme. There is also a modified ADI scheme
that uniformly preserves the exponential decay behavior of the Maxwell equations with interior
damping, see [53].

Despite their practical relevance, it seems to the best of our knowledge that only few rigorous
error results are known about ADI schemes. In [29, 20, 21, 19, 18], the material parameters are
required to beW 1,∞ respectivelyW 1,∞∩W 2,3 regular on the entire cuboidal domain. In presence
of appropriate initial data, the ADI schemes from [56, 42, 10] are then shown to be of order
two in H−1 and L2, respectively. While the mentioned error statements focus only on the time
discretization, a fully discrete error analysis is performed in [38, 31] for the Peaceman-Rachford
ADI scheme in combination with a discontinuous Galerkin discretization in space. [31] moreover
provides estimates on time- and space-derivative errors. In [54], the Maxwell equations are
considered with positive material parameters being piecewise constant on two adjacent cuboids.
Assuming appropriate initial data, time discrete approximations of the Maxwell system provided
by the Peaceman-Rachford ADI scheme from [56, 42] are here shown to be of order 3/2 in L2.
The error analysis of ADI schemes on the heterogeneous medium from the current paper is not
covered by the existing literature, to the best of our knowledge. In particular, the solution of the
considered Maxwell system has lower regularity than required in the above mentioned literature.

We study the time dependent linear isotropic Maxwell equations
∂tE = 1

ε curlH− 1
εJ, ∂tH = − 1

µ curlE,
E(0) = E0, H(0) = H0,

(1.1)

for t ≥ 0 on the cuboid

Q = (a−1 , a
+
1 )× (a−2 , a

+
2 )× (a−3 , a

+
3 )

with the boundary conditions of a perfect conductor

E× ν = 0, µH · ν = 0

on the boundary ∂Q. Conditions on the divergence of E and H are incorporated in an appropri-
ate state space for (1.1), see (2.9) and Remark 2.2. The vector ν denotes the unit exterior normal
vector at ∂Q, E = E(x, t) ∈ R3 stands for the electric field, H = H(x, t) ∈ R3 for the magnetic
field, and J = J(x, t) ∈ R3 is a given external electric current. The functions ε = ε(x) > 0 and
µ = µ(x) > 0 are the electric permittivity and magnetic permeability, respectively, and describe
the properties of the material Q consists of.

The following assumptions on the parameters ε and µ are essential throughout the paper. The
conditions are inspired by a model of a rectangular embedded waveguide, see Section 9.3 in [45]
for instance. To formulate the preconditions, we make the following geometric constructions.
The cuboid Q is divided into a chain of smaller cuboids Q̃1, . . . , Q̃L, where the interfaces between
adjacent cuboids should be parallel to the x2-x3-plane. We collect these interfaces in a set F̃int.
Each cuboid Q̃i further contains smaller subcuboids Q̃i,1, . . . , Q̃i,K , that are separated from each
other, and touch the planes {x3 = a−3 } and {x3 = a+

3 }. The smaller subcuboids Q̃i,1, . . . , Q̃i,K
are, however, not allowed to touch an interface in F̃int. The remainder of Q̃i is then denoted
by Q̃i,0. The resulting partition of Q corresponds to a specific composition of materials. The
subcuboids Q̃i,1, . . . , Q̃i,K play the role of embedded waveguide structures, while Q̃i,0 serves as
the surrounding medium. An example of the considered configuration is given in Figure 1 with
L = 2 and K = 1. Note that our analysis can in a straightforward way also be transferred to the
case that each cuboid Q̃i,j , j ∈ {1, . . . ,K}, contains further embedded subcuboids that again
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(a) Three dimensional
picture of model domain

Q̃1,1

Q̃1,0

Q̃2,1

Q̃2,0

(b) Illustration of
subdomain notation

Figure 1. Example of a heterogeneous model domain Q

touch the planes {x3 = a−3 } and {x3 = a+
3 }, but no other face of Q̃i,j . For the sake of a clear

presentation, we however omit this extension.
For the material parameters ε and µ, we throughout impose the assumptions

ε|Q̃i,j , µ|Q̃i,j ∈ R>0, ε|Q̃i,0 ≤ ε|Q̃i,l , µ|Q̃i,0 = µ|Q̃i,l , (1.2)

for i ∈ {1, . . . , L}, j ∈ {0, . . . ,K}, and l ∈ {1, . . . ,K}. These assumptions mean that each
subdomain Q̃i,j should consist of a homogeneous medium. Additionally, µ is assumed to be
constant in each cuboid Q̃i. One main goal of this paper is to express the regularity of the
solutions in terms of the largest relative jump of ε inside a cuboid Q̃i, see Corollary 5.2 and
Remark 5.3.

Due to low regularity in the x1-x2-plane of the solutions of (1.1), see Remark 5.3, we use a
different directional splitting of the Maxwell operator than the standard one from [56, 42]. (The
solution of (1.1) is not contained in the domains of the standard splitting operators. Hence the
standard Peaceman-Rachford ADI scheme is not applicable to the original solution, see [29].)
The idea behind the directional splitting, we consider, is to treat the x3-direction independently,
and to leave the x1-x2-directions coupled, see Section 6.1. The split system is then integrated
in time by means of the Peaceman-Rachford scheme [44], see (6.3). The resulting scheme is
shown to be unconditionally stable, see Lemma 6.3. For the implicit steps in the scheme (6.3),
decoupled two-dimensional elliptic problems have to be solved for the third components of the
approximations to the electric and magnetic fields, see Remark 6.4. All other components of
the electromagnetic field approximations are obtained by solving only one-dimensional elliptic
problems.
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Note that the present geometry only allows singularities at the interior edges. This is essential
for the numerical splitting scheme (6.3). In particular, the scheme relies on the fact that the
solution of the Maxwell equations is H1-regular in the x3-direction. The scheme is not applicable
to the solution of (1.1) in absence of this regularity.

Our main result is given in Theorem 6.5, stating that the directional splitting scheme (6.3)
converges with order one in L2 to the solution of (1.1). The error result is rigorous in the sense
that we impose assumptions only on the material parameters and the initial data. Furthermore,
we can deal with less regular initial data than comparative literature [29, 21, 20, 19]. For these
irregular data, we can, however, only show convergence of order one instead of order two. Indeed,
the local error can only be expanded to terms of second order in the time step size, since higher
order error terms cannot be controlled properly in our regularity setting. We are also going to
provide a rigorous convergence result of order 2 − κ for scheme (6.3) in a subsequent work in
preparation. (The number κ > 0 depends on the largest jump of the parameter ε at the interior
edges.) There we, however, have to impose stronger assumptions on the initial data.

To establish Theorem 6.5, we study the regularity of (1.1) in detail. The regularity of the
time-harmonic counterpart of (1.1) on more general heterogeneous polyhedral domains has been
analyzed in several papers, see [8, 15, 13, 7, 11, 12] for instance. We provide a regularity
analysis here to have sharp regularity statements for our model problem that explicitly link the
size of the jumps of the material parameters to the regularity of the problem, see Corollary 5.2
and Remark 5.3. Moreover, we obtain that some components of the electric and magnetic
field have differing regularity. This turns out to be crucial for the numerical approximation
scheme. The regularity statement and the associated reasoning will additionally be employed
in the above mentioned follow-up work to derive higher regularity statements. For the sake
of a clear presentation, we hence give a detailed account of the arguments. In particular,
we localize at the interior edges in our medium, and study elliptic transmission problems in
a neighborhood of these edges, see Section 3 and [14, 15, 12]. To obtain the desired sharp
and explicit statement of Corollary 5.2 and Remark 5.3, the first nonzero eigenvalue of a one-
dimensional transmission problem has to be determined, see Lemma 3.5. The actual regularity
and wellposedness statement in Corollary 5.2 is then deduced by constructing a regular state
space X1 in (2.9) and by applying semigroup theory on the latter space in Proposition 5.1.

Structure of the paper. In Section 2 we recall useful function spaces, and introduce an
analytical framework for the Maxwell system (1.1). In particular, we construct a space X1
in (2.9) that turns out to be a regular state space for (1.1). In the spirit of [15], we then
study the regularity of a transmission problem for the Laplacian in Section 3. Using these
findings, the space X1 is shown to embed into a space of fractional Sobolev regularity, see
Section 4. In Section 5 we then prove the wellposedness of (1.1) in X1, and in this way the
desired regularity statement. A directional splitting scheme is constructed in Section 6. It
is shown to be unconditionally stable, and a rigorous error estimate is established there, see
Theorem 6.5.

Notation. For convenience, we use a partition of Q that is different from the above Q =⋃L
i=1

⋃K
j=0 Q̃i,j . The new one is subordinate to the one above, and obtained by appropriate

refinement. In particular, the material parameters ε and µ are assumed to be constant on
each element of the new partition. We arrive at N smaller open cuboids Q1, . . . , QN with
Q =

⋃N
i=1Qi. These cuboids should not overlap and again touch both planes {x3 = a−3 } and

{x3 = a+
3 }. It is also assumed that if two subcuboids share an interface, that the edges of the

corresponding faces then coincide.
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We denote the open faces of Q by
Γ±j := {x ∈ ∂Q | xj = a±j , xl ∈ (a−l , a

+
l ) for l 6= j}, Γj := Γ+

j ∪ Γ−j (1.3)

for j ∈ {1, 2, 3}. The set of interfaces of the fine partitionQ1, . . . , QN is called Fint, and the set of
exterior faces is Fext. We also assign a unit normal vector νF ∈ R3 to every face F ∈ Fint∪Fext
in the following way. In case F is an interface being parallel to the xj-x3-plane, we choose νF as
the canonical unit vector el, l 6= j ∈ {1, 2}. Otherwise, F is an exterior face, and νF coincides
with the outer unit normal vector ν of ∂Q. We also employ a set of effective interfaces F eff

int that
contains all physical interfaces. It is defined via

F eff
int := {F ⊆ Q is a face of Q̃i,j , i ∈ {1, . . . , L}, j ∈ {1, . . . ,K}} ∪ F̃int. (1.4)

Normal vectors for interfaces in F eff
int are defined similarly as for interfaces in Fint.

The restriction of a function f ∈ L2(Q) to a subcuboid Qi is denoted by f (i) for i ∈ {1, . . . , N}.
We also need a notation for jumps of functions at interfaces in Q. To that end, let F be an
interface between two cuboids Qi1 and Qi2 with face vector νF pointing from Qi1 to Qi2. Assume
additionally that the restrictions f (i1) and f (i2) have well defined traces trF f (i1) and trF f (i2)

at F . The jump JfKF of f at F is then defined as JfKF := trF f (i2) − trF f (i1).
For a linear operator A on a normed vector space (X, ‖·‖), we denote its domain by D(A),

and its graph norm by ‖x‖2D(A) := ‖x‖2 + ‖Ax‖2, x ∈ D(A).

2. Analytical preliminaries

This section is structured into two parts. The first one collects useful analytical concepts and
results about several function spaces that will throughout be employed without further notice.
We then proceed in the second part by interpreting the Maxwell system (1.1) as an evolution
equation on an appropriate state space.

2.1. Important function spaces. For our reasoning, the divergence operator div, and the
two- and three-dimensional curl2 and curl are essential. Formally, they are defined by

divφ =
3∑
i=1

∂iφi, curl2 v = ∂1v2 − ∂2v1,

curlφ =
(
∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1

)
,

for distributions φ = (φ1, φ2, φ3) on a Lipschitz domain Ω ⊆ R3 and v = (v1, v2) on a Lipschitz
domain S ⊆ R2.

For the sake of a clear presentation, we subsequently introduce only spaces and trace operators
related to the curl2, curl, and div operators on the cuboid Q and a rectangle S. The definitions
and results, however, can be transferred to the subdomainsQ1, . . . , QN by appropriate adaptions.
We first recall the Banach spaces

H(curl2, S) := {v ∈ L2(S)2 | curl2 v ∈ L2(S)}, ‖v‖2curl2 := ‖v‖2L2 + ‖curl2 v‖2L2 ,

H(curl, Q) := {φ ∈ L2(Q)3 | curlφ ∈ L2(Q)3}, ‖φ‖2curl := ‖φ‖2L2 + ‖curlφ‖2L2 ,

H(div, Q) := {φ ∈ L2(Q)3 | divφ ∈ L2(Q)}, ‖φ‖2div := ‖φ‖2L2 + ‖divφ‖2L2 .

We further use the subspaces H0(curl2, S), H0(curl, Q) and H0(div, Q), being the completion
of the space of test functions on S and Q with respect to the norms ‖·‖curl2 , ‖·‖curl and ‖·‖div,
respectively. For these spaces, Theorems I.2.5–I.2.6 in [24] state the following. The normal
trace operator v 7→ v · ν|∂Q extends continuously from C∞(Q)3 to the space H(div, Q), now
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mapping into H−1/2(∂Q) with kernel H0(div, Q). Moreover, Green’s formula can be extended
to H(div, Q), stating∫

Q
v · ∇ϕ dx+

∫
Q

(div v)ϕ dx = 〈v · ν, ϕ〉H−1/2(∂Q)×H1/2(∂Q)

for functions v ∈ H(div, Q) and ϕ ∈ H1(Q).
Concerning the curl operator, Theorems I.2.11–I.2.12 in [24] establish similar results. The

tangential trace operator v 7→ v × ν|∂Q has an extension to the space H(curl, Q) with kernel
H0(curl, Q) and range H−1/2(∂Q)3. Green’s formula reads∫

Q
(curl v) · ϕ dx−

∫
Q
v · curlϕdx = 〈v × ν, ϕ〉H−1/2(∂Q)×H1/2(∂Q)

for vectors v ∈ H(curl, Q) and ϕ ∈ H1(Q)3.
To cover the two-dimensional case, we additionally introduce the unit tangent νt on ∂S.

Denoting by νS = (ν1, ν2) the unit exterior normal vector of ∂S, it is defined by νt = (−ν2, ν1).
For the two-dimensional case, Theorems I.2.10–I.2.12 in [24] then yield that C∞(S)2 is dense in
H(curl2, S), and the tangential trace γt : v 7→ v · νt|∂S extends continuously to H(curl2, S) with
kernel H0(curl2, S) and range H−1/2(∂S). In this setting, the Green’s formula is given by∫

S
(curl2 v)φ dx−

∫
S
v · (∂2φ,−∂1φ) dx = 〈v · νt, φ〉H−1/2(∂S)×H1/2(∂S)

for v ∈ H(curl2, S) and φ ∈ H1(S). We simply call the application of all three Green’s formulas
integration by parts.

Closely related are intersections of the above spaces, that are useful to derive regularity
statements. We define the spaces

HT (curl, div, Q) := H(curl, Q) ∩H0(div, Q),
HN (curl, div, Q) := H0(curl, Q) ∩H(div, Q).

Both spaces embed continuously into H1(Q)3, meaning that there is a constant CT > 0 with

‖H‖2H1(Q) ≤ CT (‖curlH‖2L2(Q) + ‖divH‖2L2(Q)) (2.1)

for allH ∈ HT (curl, div, Q)∪HN (curl, div, Q), see for example Lemmas I.3.4, I.3.6 and Theorems
I.3.7, I.3.9 in [24].

During the proof of the global error bound in Theorem 6.5, we also use extrapolation theory,
see Section V.1.3 in [1] and Section 2.10 in [51]. Let A be a closed and densely defined operator
on a Banach space (X, ‖·‖X) with nonempty resolvent set. Let additionally λ be an element of
the resolvent set of A. Then the extrapolation space XA

−1 with respect to A is defined as the
completion of X in the norm ‖·‖XA

−1
= ‖(λI−A)−1·‖X . Note that this definition is independent

of the choice of the resolvent value λ. The operator A then has a unique and bounded extension
A−1 from X to XA

−1. It is called the extrapolation operator of A to X. The resolvent operator
(λI −A)−1 moreover extends to the bounded operator (λI −A−1)−1 from XA

−1 to X.
Interpolation theory is another important tool for our analysis. Throughout, we only employ

real interpolation on Hilbert spaces, which can be defined via the K-method, see Section 1.1
in [41] for instance. By means of interpolation spaces, we in particular define fractional order
Sobolev spaces, see [40, 49]. These spaces throughout serve as a measure for regularity state-
ments. Let s ∈ [0, 2], k ∈ {1, 2}, θ ∈ (0, 1) \ {1/2}, d ∈ N, O ⊆ Rd open with a Lipschitz
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boundary, and define
Hs(O) := (L2(O), H2(O))s/2,2, Hθ

0 (O) := (L2(O), H1
0 (O))θ,2. (2.2)

We additionally note that the spaces Hθ(O) and Hθ
0 (O) coincide for θ ∈ (0, 1/2) (this can be

verified by means of Corollary 1.4.4.5 in [27] for instance).
The spaces of functions with piecewise Sobolev regularity are also important. Let Γ∗ be a

union of some faces of Q. Define the spaces
PHq(Q) := {f ∈ L2(Q) | f (i) ∈ Hq(Qi), i ∈ {1, . . . , N}}, q ∈ [0, 2],

PHs
Γ∗(Q) := {f ∈ PHs(Q) | f (i) = 0 on ∂Qi ∩ Γ∗, i ∈ {1, . . . , N}}, s ∈ (1/2, 2],

equipped with the norms

‖f‖2PHq :=
N∑
i=1

∥∥∥f (i)
∥∥∥2

Hq(Qi)
, ‖g‖PHs

Γ∗
:= ‖g‖PHs ,

for f ∈ PHq(Q) and g ∈ PHs
Γ∗(Q).

The next lemma serves as a technical tool, establishing a useful density result for function
spaces related to the electric and the magnetic field. It uses to approximate with piecewise regu-
lar functions, that satisfy prescribed transmission conditions, and that vanish in a neighborhood
of all exterior and interior edges of Q. The result is applied in the proof for Lemma 3.2, and it
will play a crucial role in a subsequent work that is in preparation. For the statement, let Γ∗ be
a (possibly empty) union of opposite faces of the cuboid Q, and let Fint,j denote the set of all
interfaces whose normal vector is parallel to the j-th canonical unit vector ej , j ∈ {1, 2}.

Lemma 2.1. Let ε satisfy (1.2). Define the spaces
V := {ϕ ∈ PH1

Γ∗(Q) | JεϕKF = 0, JϕKF ′ = 0 for all F ∈ Fint,j ,

F ′ ∈ Fint \Fint,j},

W := {ϕ ∈ PH2(Q) ∩ V | ϕ(i) is smooth, supp(ϕ) ∩ Γ∗ = ∅,
ϕ vanishes in a neighborhood of all edges of Q1, . . . , QN ,

∂νFϕ
(i) = 0 for faces F ⊆ ∂Qi, i ∈ {1, . . . , N}}.

The space W is dense in V with respect to the norm in PH1(Q).

Proof. We show only the density of W in V in the case Γ∗ = Γ2 ∪ Γ3, and assume j = 2. All
remaining settings can be established with the same techniques, up to appropriate modifications.

1) Let ϕ ∈ V and δ > 0. Applying Lemma 2.5 in [15] to every interior and exterior edge of
Q, there is a function ϕ̊ ∈ V , that vanishes in an open neighborhood of all edges of Q1, . . . , QN
and satisfies

‖ϕ̊− ϕ‖PH1(Q) ≤ δ. (2.3)
Hence, there is a union T of tubes of inner radius ζ > 0 around all edges with ϕ̊ vanishing on
Q ∩T .

We next construct a piecewise smooth function fulfilling the required transmission, support,
and normal derivative conditions. We only deal with the cuboid

Q1 = (a−,11 , a+,1
1 )× (a−,12 , a+,1

2 )× (a−,13 , a+,1
3 ),

(setting a±,13 := a±3 ) and we assume that Q1 touches the faces Γ+
1 and Γ+

2 of Q, see (1.3). All
other cuboids can be treated in the same way with slight modifications. Let l ∈ {1, 2, 3}, and
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χm,l : R→ [0, 1] be a smooth cut-off function with suppχm,l ⊆ [a−,1l , a−,1l + 1
m ]∪ [a+,1

l − 1
m , a

+,1
l ],

χm,l = 1 on [a−,1l , a−,1l + 1
2m ] ∪ [a+,1

l − 1
2m , a

+,1
l ], and ‖χ′m,l‖∞ ≤ Cm for a uniform constant

C > 0 for all m ≥ ml ∈ N. Let

Γ±,1l = {x ∈ ∂Q1 | xl ∈ {a±,1l }, xj ∈ (a−,1j , a+,1
j ) for j 6= l},

and denote the pyramid with basis Γ±,1l and peak (a
−,1
1 +a+,1

1
2 ,

a−,12 +a+,1
2

2 ,
a−3 +a+

3
2 ) by P±,1l . Its

reflection at the face Γ±,(1)
l is called P̌±,1l . Let further Qik be the adjacent cuboid of Q1 in

coordinate direction k ∈ {1, 2}.
We then define the larger set Q̌1 := Q1 ∪

⋃3
l=1(P̌+,1

l ∪ P̌−,1l ), and put

gm,(1)(x) :=



ϕ̊(1)(x) for x ∈ P±,11 ∪ P−,12 ,

(1− χm,3(x3))ϕ̊(1)(x) for x = (x1, x2, x3) ∈ P±,13 ,

(1− χm,2(x2))ϕ̊(1)(x) for x = (x1, x2, x3) ∈ P+,1
2 ,

ϕ̊(i1)(x) for x ∈ P̌−,11 ,

ϕ̊(1)(−x1 + 2a+,1
1 , x2, x3) for x = (x1, x2, x3) ∈ P̌+,1

1 ,
ε(i2)

ε(1) ϕ̊
(i2)(x) for x ∈ P̌−,12 ,

0 for x ∈ P̌±,13 ∪ P̌+,1
2 ,

0 for x ∈ R3 \ Q̌1.

Since ϕ̊ is an element of V and vanishes on Q ∩ T , there is a number m4 ∈ N and an open
superset Q̊1 of Q1 with gm,(1)|Q̊1

∈ H1(Q̊1) for m ≥ m4. We then repeat the same reasoning
for all other subcuboids, by appropriately changing the definition of the function gm,(i) for each
subcuboid Qi. Define then a function gm on Q by gm|Qi := gm,(i)|Qi for i ∈ {1, . . . , N}.

Taking the exterior face conditions for ϕ̊ into account, the arguments from the proof of Lemma
2.1 in [21] show that g(i)

m converges to ϕ̊(i) in H1(P ) for P ∈ {P±,il | l ∈ {1, 2, 3}} as m → ∞.
There consequently is a number m̌ ≥ m4 with

‖gm̌ − ϕ̊‖PH1(Q) ≤ δ. (2.4)

We next employ the standard mollifier ρn,l that acts on the l-th coordinate, and that is
supported within [− 1

n ,
1
n ]. Let

ψ̃n,i := ρn,3 ∗ ρn,2 ∗ ρn,1 ∗ gm̌,(i), n ∈ N, i ∈ {1, . . . , N}.

By construction, the function ψ̃n,i is smooth, and it vanishes in a union T̃ of tubes with
radius 3

4ζ around all edges as well as in a neighborhood of all exterior faces in Γ2 ∪Γ3, provided
that n ≥ n0 ∈ N. We also remark that the function ψ̃n, being defined by ψ̃n|Qi := ψ̃n,i,
satisfies all required transmission conditions in Q for sufficiently large n. As a consequence of
standard mollifier theory, the sequence (ψ̃n,i)n furthermore converges in H1(Q̊i) to gm̌,(i). There
consequently is a number ň ≥ n0 with∥∥∥ψ̃ň,i − gm̌,(i)∥∥∥

H1(Q̊i)
≤ δ, i ∈ {1, . . . , N}. (2.5)

2) It remains to incorporate also the Neumann boundary conditions at the faces of Q1. This
is done by transferring a technique from the proof of Lemma 3.3 in [21] to our setting. Let
κ ∈ (0, a

+,1
1 −a−,11

2 ) be a fixed number. Let α̃ : [a−,11 , a+,1
1 ] → [0, 1] be a smooth function with
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supp α̃ ⊆ [a−,11 , a−,11 + κ
2 ], and α̃ = 1 on [a−,11 , a−,11 + κ

4 ]. Define then the function

h−k,1(x1, x2, x3) := ψ̃ň,1(x1, x2, x3)− α̃(x1)
∫ x1

a−,11

χk,1(s)∂1ψ̃ň,1(s, x2, x3) ds

=: ψ̃ň,1(x)− rk(x)

for x = (x1, x2, x3) ∈ P−,11 and k ∈ N. By construction of ψ̃ň,1, the functions h−k,1 and rk are
smooth. We next deduce that rk tends to zero in H1(P−,11 ) as k → ∞. The integrand of rk
is uniformly bounded in k, and converges pointwise to zero. Thus, (rk)k is uniformly bounded.
Applying now Lebesgue’s theorem of dominated convergence twice, we infer that rk converges
pointwise and in L2(P−,11 ) to zero as k → ∞. A simple computation further gives rise to the
formulas

∂1rk = (∂1α̃)
∫ x1

a−,11

χk,1(s)∂1ψ̃ň,1(s, ·) ds+ α̃χk,1∂1ψ̃ň,1,

∂lrk = α̃

∫ x1

a−,11

χk,1(s)∂1∂lψ̃ň,1(s, ·) ds, l ∈ {2, 3}.

Similar arguments to the ones above now imply that (∂1rk)k and (∂lrk)k are null sequences
in L2(P−,11 ). As a result, (h−k,1)k converges to ψ̃ň,1 in H1(P−,11 ), and ∂1h

−
k,1 = 0 on Γ−,11 . By

analogous constructions on all other pyramids P+,1
1 , P±,12 , and P±,13 , we further obtain similar

functions h+
k,1, h

±
k,2 and h±k,3 for k ∈ N. They are in particular smooth and coincide with ψ̃ň,1,

provided that the distance to the associated face is larger than κ
2 . Define now a new mapping

ψk,1 on Q1 via its restrictions ψk,1|P±,1j
:= h±k,j . As the function ψ̃ň,1 vanishes in T̃ (union of

tubes around all edges with radius 3/4ζ), we can choose κ > 0 so small that ψk,1 is smooth on
Q1. We then repeat the analogous construction for all remaining cuboids Q2, . . . , QN , obtaining
functions ψk,2, . . . , ψk,N for k ∈ N. Finally, we define the mapping ψk elementwise by ψ(i)

k := ψk,i,
for i ∈ {1, . . . , N}.

By construction, ψk is smooth on every cuboid, and it vanishes in an open neighborhood of
Γ2 ∪ Γ3 and of all edges of the subcuboids. It further satisfies the required normal derivative
condition at all faces for sufficiently large k. Using finally that the function ψ̃ň satisfies the
required transmission conditions, we conclude that ψk also fulfills by definition the transmission
conditions JεψkKF = 0, JψkKF ′ = 0 for all F ∈ Fint,2 and F ′ ∈ Fint,1. Taking also (2.3)–(2.5)
into account, ψk is contained inW , and the estimate ‖ψk − ϕ‖PH1(Q) ≤ 4δ is valid for sufficiently
large k. �

2.2. Analytical framework for the Maxwell system. Throughout, we consider the Maxwell
equations (1.1) as an evolution equation on the space X := L2(Q)6. The space is equipped with
the weighted inner product((

E
H

)
,

(
Ẽ
H̃

))
:=
∫
Q
εE · Ẽ + µH · H̃dx,

(
E
H

)
,

(
Ẽ
H̃

)
∈ X,

inducing the norm ‖·‖ on X. The positivity and boundedness assumption on ε and µ implies
that ‖·‖ is equivalent to the standard L2-norm.

On X we consider the Maxwell operator

M :=
(

0 1
ε curl

− 1
µ curl 0

)
, D(M) : = H0(curl, Q)×H(curl, Q). (2.6)
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Note that fields in D(M) have continuous tangential components at the interfaces.
We next incorporate the boundary conditions for the magnetic field, as well as divergence

and normal transmission conditions. Recall to that end the set of effective interfaces F eff
int . The

latter contains all interfaces between the submedia Q̃i,l, i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}. For each
effective interface F ∈ F eff

int , we put

V (F ) := (L2(F ), H1
F )1

2 ,2
, H1

F := {u ∈ H1(F ) | u = 0 on F ∩ ∂Q}. (2.7)

We then define the subspace

X0 := {(E,H) ∈ L2(Q)6 | div(εE|Q̃i,l) ∈ L
2(Q̃i,l), JεE · νF KF ∈ V (F ), (2.8)

div(µH) = 0, µH · ν = 0 on ∂Q, F ∈ F eff
int , i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}},

of X, which is inspired by the spaces Xdiv and X0 in [29, 21, 20]. The space X0 is complete
with respect to the norm

‖(E,H)‖2X0
:= ‖(E,H)‖2 +

N∑
i=1

∥∥∥div(ε(i)E(i))
∥∥∥2

L2(Qi)
+

∑
F∈F eff

int

‖JεE · νF KF‖2V (F ) .

To equip the Maxwell operator with the magnetic boundary conditions as well as the electric
and magnetic divergence conditions, we introduce the restriction M0 of the Maxwell operator
to the space X0, and consider it on the space

X1 := D(M0) := D(M) ∩X0, (2.9)

which is equipped with the norm∥∥∥∥(EH
)∥∥∥∥2

X1

:=
∥∥∥∥(EH

)∥∥∥∥2

X0

+
∥∥∥∥M (

E
H

)∥∥∥∥2
,

(
E
H

)
∈ X1.

Remark 2.2. By interpreting the Maxwell equations (1.1) on X1, we only assume that the
divergence of the electric field is an L2-function on every submedium Q̃i,l, i ∈ {1, . . . , L}, l ∈
{0, . . . ,K}. In particular, we allow for nonzero jumps of the normal component of the field
εE across effective interfaces in F eff

int . These discontinuities represent surface charges on the
interfaces, see Section 3.5 in [25]. ♦

Although the space X1 is mainly defined by means of the domains of the divergence and curl
operators, which themselves allow for irregular functions, the space X1 indeed embeds into a
space of functions with piecewise fractional Sobolev regularity above 2/3, see Proposition 4.6.

The next lemma deals with M0, and it shows that M0 is not only the restriction of M to X0,
but also its part in this space. The statement corresponds to relation (2.5) in [21].

Lemma 2.3. The identity D(Mk
0 ) = D(Mk) ∩ X0 is valid for all k ∈ N, and M(D(M)) is a

subset of X0. In particular, M0 is the part of M in X0, and the space X1 is complete.

Proof. We show only that the spaceX1 is complete. The remaining statements can be established
in the same way as identity (2.5) in [21].

To deduce the completeness of X1, we first note thatM0 is closed in X0 as the part of a closed
operator, and thus its domain X1 is complete with respect to the graph norm of M0. It hence
suffices to show that the graph norm of M0 coincides with the standard norm on X1.
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Let (E,H) ∈ X1 = D(M)∩X0. Combining the relation div(ε(M(E,H))1) = div(curlH) = 0
with the transmission conditions in H(curl, Q) and H(div, Q) and the definition of the norms
on X0 and X1, the identities∥∥∥∥(EH

)∥∥∥∥2

X1

=
∥∥∥∥(EH

)∥∥∥∥2

X0

+
∥∥∥∥M (

E
H

)∥∥∥∥2

X0

=
∥∥∥∥(EH

)∥∥∥∥2

D(M0)

immediately follow. �

The part of M in X1 is denoted by M1, and it is shown to generate a strongly continuous
semigroup on X1. Thus, the space X1 serves as a state space for the Maxwell equations (1.1),
see Proposition 5.1. Using a regularity statement for the space X1, we can then conclude that
the system (1.1) possesses solutions of piecewise H1−θ-regularity, θ ∈ (0, 1) appropriate, see
Corollary 5.2 and Remark 5.3. As a starting point, the following result states the generator
property of the Maxwell operator on X. The statement is part of Proposition 3.5 in [29].

Proposition 2.4. Let ε and µ satisfy (1.2). The Maxwell operator M generates a unitary
C0-group (etM )t∈R on X.

3. Analysis of an elliptic transmission problem

This section is concerned with investigations of transmission problems for a Laplacian on
the cuboid Q, see (3.1). The considered elliptic transmission problem arises several times in
literature, see [15, 36, 37, 39, 43, 34, 11, 12, 13] for instance. Note, however, that there are no
explicit regularity statements for our particular application of the embedded waveguide at hand,
to the best of our knowledge. In other words, we are interested in precise regularity results in
terms of the size of jumps of the parameters ε and µ. This is because the below system (3.1)
arises naturally when analyzing the regularity of the electric and magnetic field, see the proof
of Lemma 4.2 and [15, 11, 12]. Because we are also going to transfer some arguments from the
analysis of (3.1) to a different elliptic transmission problem in a subsequent work, we analyze
the problem here in detail to have a self-contained presentation.

Let η ∈ {ε, µ} satisfy the assumptions (1.2). The function η will throughout serve as a
placeholder for the material parameters ε and µ. Let further Γ∗ be a nonempty union of some
of the sets Γ1,Γ2,Γ3, consisting of opposite boundary faces of Q, see (1.3). Consider the elliptic
transmission problem

−∆ψ(i) = f (i) on Qi for i ∈ {1, . . . , N},
ψ = 0 on Γ∗,

∇ψ · ν = 0 on ∂Q \ Γ∗,
JψKF = 0 = Jη∇ψ · νF KF on F ∈ Fint,

(3.1)

involving a given function f ∈ L2(Q). System (3.1) can also be expressed equivalently by the
formula

∆Γ∗u = f, (3.2)

involving the Laplacian

(∆Γ∗u)(i) := ∆u(i), on Qi, i ∈ {1, . . . , N}, (3.3)
u ∈ D(∆Γ∗) := {v ∈ H1

Γ∗(Q) | div(η∇v) ∈ L2(Q), ∇v · ν = 0 on ∂Q \ Γ∗}.
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We next recall the decomposition Q =
⋃L
i=1

⋃K
j=0 Q̃ij from Section 1. To measure the regu-

larity of the solution of (3.1) in the case η = ε, we introduce the number κ ∈ (2/3, 1] with

max
i∈{1,...,L},
l∈{1,...,K}

(ε|Q̃i,l − ε|Q̃i,0)2

ε|Q̃i,lε|Q̃i,0
= − 4 sin2(κπ)

sin(κ2π) sin(3κ
2 π)

. (3.4)

Note that κ decreases if the relative discontinuities of the material parameter ε in the sub-
cuboids Q̃1, . . . , Q̃L become stronger, meaning the material becomes more heterogeneous. In the
limit case of homogeneous subcuboids Q̃1, . . . , Q̃L, on the other hand, the number κ is one.

The central result of this section is the following regularity statement for (3.1). To state it,
we employ the following notation. We define Q̃ := Q ∩ {x3 = 1/2}, Q̃i := Qi ∩ {x3 = 1/2},
i ∈ {1, . . . , N}, and interpret them as rectangles in R2. Piecewise Sobolev regularity on Q̃ is
then defined with respect to the partition Q̃1, . . . , Q̃N . We put

V2−κ := H2
x3((0, 1), L2(Q̃)) ∩H1

x3((0, 1), H1(Q̃)) ∩ L2
x3((0, 1), PH2−κ(Q̃)) (3.5)

for κ ∈ [0, 1). This space is canonically equipped with the sum of the norms.

Proposition 3.1. Let η ∈ {ε, µ}, and let ε and µ satisfy (1.2). Let further κ > 1− κ if η = ε,
and κ = 0 if η = µ. Assume also that f ∈ L2(Q), and let Γ∗ be nonempty. There is a unique
solution ψ ∈ V2−κ of (3.1) with ‖ψ‖V2−κ

≤ C ‖f‖L2(Q) for a constant C = C(Q, η, κ) > 0.

The remainder of this section is concerned with the proof of Proposition 3.1. The argument is
oriented towards the papers [36, 39, 15]: Using the Lax-Milgram Lemma, the Laplacian ∆Γ∗ is
bijective. Consequently, the regularity of functions in D(∆Γ∗) has to be studied. By means of a
cut-off argument, we separately study the behavior of functions in D(∆Γ∗) in cylinders around
interior edges and in the remainder of Q.

We first analyze the behavior in a cylinder around an interior edge. By means of cylindrical
coordinates, we can decompose the problem into a related elliptic transmission problem on the
unit disc, see Section 3.2, and a one-dimensional elliptic problem for the height variable, see the
proof of Lemma 3.11. On the remainder of Q, functions in D(∆Γ∗) are piecewise H2-regular,
see Lemma 3.12. The global regularity statement is then concluded in Section 3.3.

In the next subsection, we first derive an inequality that is useful to establish the energy
estimate in Proposition 3.1. It comes into play when we consider functions in D(∆Γ∗) on the
part of Q away from the interior edges.

3.1. Energy estimate for the Laplacian with transmission conditions. The next two
lemmas provide a useful energy identity and an a priori estimate for the Laplacian on D(∆Γ∗)∩
PH2(Q). This is done in the spirit of Grisvard, see [26].

Lemma 3.2. Let η ∈ {ε, µ} satisfy (1.2). The identity
N∑
i=1

η(i)
( ∥∥∥∂2

1u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

2u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

3u
(i)
∥∥∥2

L2(Qi)
+ 2

∥∥∥∂1∂2u
(i)
∥∥∥2

L2(Qi)

+ 2
∥∥∥∂1∂3u

(i)
∥∥∥2

L2(Qi)
+ 2

∥∥∥∂2∂3u
(i)
∥∥∥2

L2(Qi)

)
=

N∑
i=1

η(i)
∥∥∥∆u(i)

∥∥∥2

L2(Qi)

is valid for u ∈ D(∆Γ∗) ∩ PH2(Q).
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Proof. 1) We only treat the case Γ∗ = Γ1. A simple calculation first leads to∥∥∥∆u(i)
∥∥∥2

L2(Qi)
=
∥∥∥∂2

1u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

2u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

3u
(i)
∥∥∥2

L2(Qi)
(3.6)

+ 2
∫
Qi

(∂2
1u

(i))(∂2
2u

(i)) dx+ 2
∫
Qi

(∂2
1u

(i))(∂2
3u

(i)) dx+ 2
∫
Qi

(∂2
2u

(i))(∂2
3u

(i)) dx

for i ∈ {1, . . . , N}.
2) By Lemma 2.1, there are two sequences (ϕn)n and (ψn)n in PH2(Q) satisfying ϕ(i)

n → ∂3u
(i),

ψ
(i)
n → ∂2u

(i) in H1(Qi) as n → ∞, and fulfilling the boundary and transmission conditions
ϕ

(i)
n = 0 on Γ(i)

3 , ψ(i)
n = 0 on Γ(i)

2 ∩ ∂Q, and JϕnKF = 0 = JηψnKF for F ∈ Fint,2 for all
i ∈ {1, . . . , N} and n ∈ N. Employing Lemma 2.1 of [21] and Lemma 7.1 of [54], the relations

∂2ϕ
(i)
n = 0 on Γ(i)

3 , ∂3ψ
(i)
n = 0 on Γ(i)

2 ∩ ∂Q,

J∂3ϕ
(i)
n KF = 0 = Jη∂3ψ

(i)
n KF for F ∈ Fint,2,

are furthermore valid. An integration by parts then leads to
N∑
i=1

∫
Qi

η(i)(∂3ϕ
(i)
n )(∂2ψ

(i)
n ) dx =

N∑
i=1

∫
Qi

η(i)(∂2ϕ
(i)
n )(∂3ψ

(i)
n ) dx.

Taking limits, we infer the formula
N∑
i=1

∫
Qi

η(i)(∂2
3u

(i))(∂2
2u

(i)) dx =
N∑
i=1

∫
Qi

η(i)(∂2∂3u
(i))2 dx

for the last term on the right hand side of (3.6). Treating the fourth and fifth terms on the right
hand side of (3.6) analogously, we arrive at the desired statement. �

We next provide an energy estimate for piecewise H2-regular functions in the domain of ∆Γ∗ .
It is obtained by combining Lemma 3.2 with the Poincaré inequality, see Theorem 13.6.9 in [51].
Lemma 3.3. Let u ∈ D(∆Γ∗)∩PH2(Q), and η ∈ {ε, µ} satisfy (1.2). The estimate ‖u‖PH2(Q) ≤
C‖∆Γ∗u‖L2(Q) is valid with a uniform constant C = C(η,Q) > 0.
3.2. Analysis of a Laplacian on the unit disc with transmission conditions. The goal
of this subsection is a precise regularity statement for functions in the domain of a Laplacian
on the unit disc with transmission conditions representing the ones in system (3.1) for η = ε
near an interior edge, see (3.10). To that end, we derive an explicit spectral decomposition of
the Laplacian in terms of Bessel functions for the radial part and piecewise smooth functions for
the angular part. The resulting eigenbasis can be decomposed into a set of piecewise H2-regular
functions, and a one containing functions with lower regularity, see (3.14) and Lemma 3.6.
Treating both sets separately, the final regularity statement is derived in Corollary 3.9.

The next definition involves the union of all edges of the interfaces, being denoted by S and
called skeleton.
Definition 3.4. Let e ⊆ S ∩Q be an interior edge, and let Qin,1, . . . , Qin,4 be the four adjacent
cuboids to e. The material parameter ε has a strong discontinuity at e if ε|Qin,1∪···∪Qin,4 has
a strictly larger value on one cuboid than on the remaining three.

In the following, we fix an interior edge ein ⊆ S ∩Q. After translation and scaling we assume
the identity

ein = {(0, 0)} × [0, 1]. (3.7)
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We moreover assume that ε has a strong discontinuity at ein, and fix four cuboids Qin,1, . . . , Qin,4
having ein as a common edge. We denote by εin the restriction of ε to the latter cuboids. The
notation ε(i)

in then refers to εin|Qin,i . As ε satisfies (1.2), it then suffices to treat the configuration

ε
(1)
in = ε

(2)
in = ε

(3)
in < ε

(4)
in . (3.8)

As in [14, 15], we localize in a cylinder around the interior edge ein, see Section 3.3. Let Z
be a cylinder around ein with radius 1, that touches the faces Γ+

3 and Γ−3 of Q. After scaling,
we can assume that Z touches no interior edge (except ein, of course). Rotating appropriately,
we can assume the representation

Z ∩Qin,i = {(x, y, z) | (x, y) ∈ Di, z ∈ [0, 1]},
Di = {(r cosϕ, r sinϕ) | r ∈ (0, 1), ϕ ∈ Ii} (3.9)

for i ∈ {1, . . . , 4} with the intervals

I1 := (0, π2 ), I2 := (π2 , π), I3 := (π, 3
2π), I4 := (3

2π, 2π).

By (r, ϕ) we throughout denote polar coordinates. Note that D1, . . . , D4 give rise to a partition
of the unit disc D. The partition represents the regions, where εin is constant.

In this subsection, we study the two-dimensional Laplacian

∆Dψ := 1
εin

div(εin∇ψ), (3.10)
ψ ∈ D(∆D) := {ψ ∈ H1

0 (D) | div(εin∇ψ) ∈ L2(D)},

with transmission conditions on the unit disc D. Note that the transmission conditions fit to
the ones of the Laplacian ∆Γ∗ , see (3.3).

It is well known that ∆D is invertible with compact resolvent, and selfadjoint on L2(D) with
respect to the inner product

(f, g)εin,D :=
∫
D
εinfg dx, f, g ∈ L2(D), (3.11)

see [36] for instance. (Indeed, bijectivity is obtained via a Lax-Milgram-Lemma argument and
symmetry is derived with an integration by parts.)

The eigenvalue problem for ∆D can be handled by transferring the reasoning in [50]. This
means that we switch into polar coordinates, and separate between angular and radial variable.
As the coefficient εin depends only on the angle ϕ, it can be interpreted as a piecewise constant
function on the union I1 ∪ · · · ∪ I4.

The angular part leads to the eigenvalue problem

(ψ(i))′′ = −κ2ψ(i) on Ii, i ∈ {1, . . . , 4}, ψ, εinψ
′ ∈ H1

per(0, 2π), (3.12)

where H1
per(0, 2π) refers to the periodic H1-space on (0, 2π). By Lemma 4.2 in [37], (3.12)

has countably many eigenvalues 0 = κ2
0 < κ2

1 ≤ · · · → ∞, and associated piecewise smooth
eigenfunctions ψ0, ψ1, . . . . The latter form an orthonormal basis of L2(0, 2π) with respect to the
L2-inner product with weight εin.

A lengthy calculation leads to the following relation for the square root of the first nonzero
eigenvalue of (3.12), see [55]. It provides a crucial sharp lower bound involving the number κ
from (3.4).
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Lemma 3.5. Let εin satisfy (3.8). Then κ ≤ κ1 < 1 ≤ κ2, and κ1 satisfies

(ε(4)
in − ε

(1)
in )2

ε
(4)
in ε

(1)
in

= − 4 sin2(κ1π)
sin(κ1

2 π) sin(3κ1
2 π)

.

In the following, we construct an orthonormal basis of eigenfunctions for the Dirichlet Lapla-
cian ∆D. To this end, we employ the Bessel function Jν of order ν ≥ 0, and the eigenvalues of
(3.12). The positive zeros of Jν are denoted by 0 < µ

(ν)
1 < µ

(ν)
2 < · · · → ∞. We define

Ψk,l(r, ϕ) := Jκl(µ
(κl)
k r)ψl(ϕ), r ∈ (0, 1), ϕ ∈ (0, 2π), (3.13)

with k ∈ N and l ∈ N0. Note that the functions Ψk,1 have second weak derivatives with
singularities at r = 0. This eventually causes the weaker regularity statement than H2 in
Proposition 3.1. These singular functions are hence incorporated separately by means of the
spaces

M := span{Ψk,l | k ∈ N, l ∈ N0 \ {1}}, N := span{Ψk,1 | k ∈ N}. (3.14)
In the next lemma, we derive useful spectral properties of the Laplace operator ∆D. The

proof employs ideas from Theorem 2 in Section 5.5.2, Lemma 1 in Section 6.4.2, and Theorem 1
in Section 6.4.2 of [50].

Lemma 3.6. Let εin satisfy (3.8).
a) The family {Ψk,l | k ∈ N, l ∈ N0} is an orthonormal basis of L2(D) with respect to the

inner product (·, ·)εin,D from (3.11).
b) The spaces M and N are contained in the domain D(∆D). Furthermore, M is a subspace

of PH2(D). The eigenvector relation ∆DΨk,l = −(µ(κl)
k )2Ψk,l is satisfied for k ∈ N and l ∈ N0.

Proof. a) The asserted orthogonality follows by combining the choice of the functions {ψl | l ∈
N0} with Theorem 2 in Section 5.5.2 of [50]. The completeness of the system {Ψk,l | k ∈ N, l ∈
N0} can be concluded in the same manner as in the proof of Lemma 1 in Section 6.4.2 of [50].

b.i) Let k ∈ N and l ∈ N0. The function Ψin
k,l satisfies the transmission and boundary

conditions for ∆D due to the choice of ψl, see (3.12), and the definition of µ(κl)
k . Note further

that every function Ψk,l is at least H1-regular. To show that claim, let i ∈ {1, . . . , 4}. Since
ψl solves (3.12), the function Ψ(i)

k,l is as regular as the function (a(i)
l cos(κlϕ) + b

(i)
l sin(κlϕ))rκl

with appropriate real numbers a(i)
l , b

(i)
l . If l = 0, this means that Ψk,0 is piecewise smooth. In

case l ∈ N, Ψk,l then belongs to the space H1+κ(Di) for every κ < min{1, κl}, see [4, 5, 3] for
instance.

The stated eigenvalue-eigenvector relations are obtained in the same way as in Theorem 2
in Section 5.5.2 of [50] by means of the choice of ψl, see (3.12). As a result, M and N are
contained in D(∆D).

b.ii) It remains to show that every function in M is at least piecewise H2-regular. Let l ∈ N
with κl > 1. (The case κl ∈ {0, 1} can be handled by switching into cartesian coordinates.)
Since Ψk,l is as regular as the function ψl(ϕ)rκl , it satisfies the estimate∫ 1

0

∫
Ii

(
1
r |∂r(Ψk,l)(i)|2 + r|∂2

r (Ψk,l)(i)|2 + 1
r |∂r∂ϕ(Ψk,l)(i)|2

+ 1
r3 |∂ϕ(Ψk,l)(i)|2 + 1

r3 |∂2
ϕ(Ψk,l)(i)|2

)
dϕ dr <∞,

proving that Ψk,l is an element of PH2(D). �
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In view of the stated inequality in Proposition 3.1, we also need an a-priori energy estimate
for functions in D(∆D) in terms of the Laplacian ∆D. In Lemma 2.2 and the following Remark
in [36], the estimate

‖ψ‖PH2(D) ≤ C
(
‖ψ‖L2(D) + ‖∆Dψ‖L2(D)

)
, ψ ∈ D(∆D) ∩ PH2(D),

is derived with a uniform constant C = C(εin) > 0. By Lemma 3.6, M is a subspace of PH2(D).
Standard reasoning then leads to the inequality

‖ψ‖PH2(D) ≤ C‖∆Dψ‖L2(D), ψ ∈M , (3.15)

with a uniform constant C = C(εin) > 0.
To derive a counterpart of (3.15) for functions in the space N from (3.14), we transfer ideas

by Kellogg in the next two lemmas to our setting, see Theorem 5.2 and Lemma 5.6 in [36].
Let ν ∈ (1/2, 1) and f ∈ C([0, 1]). In a first step, a norm estimate is derived for the solution

of the one-dimensional problem

r1/2ψ′′(r) + r−1/2ψ′(r)− ν2r−3/2ψ(r) = f(r), r ∈ (0, 1), (3.16)
ψ(0) = ψ(1) = 0, ψ ∈ L2(0, 1).

The solution ψ is given by

ψ(r) = αrν + 1
2ν r

ν
∫ r

0
t1/2−νf(t) dt− 1

2ν r
−ν
∫ r

0
t1/2+νf(t) dt, r ∈ (0, 1),

involving the number

α := − 1
2ν

∫ 1

0
(t1/2−ν − t1/2+ν)f(t) dt.

We note that the expression on the left hand side of (3.16) corresponds to the radial part of
the Laplacian ∆D, acting on functions in N . The inequality provided by the next lemma will
thus be crucial for an energy estimate in N , see the proof of Lemma 3.8.

Lemma 3.7 is obtained in a straightforward way: Each summand on the right hand side of
the solution formula for ψ is estimated separately by means of the Young and Cauchy-Schwarz
inequalities. We thus omit the proof.

Lemma 3.7. Let κ > 2(1 − ν) with parameter ν ∈ (1/2, 1) from (3.16). The solution ψ of
(3.16) satisfies the inequality∫ 1

0
rκ(r−1(ψ′)2 + r−3ψ2) dr ≤ C

∫ 1

0
f2 dr

with a uniform constant C = C(κ, ν) > 0.

We next establish the desired a-priori estimate in fractional order Sobolev spaces for the
operator ∆D on the space N from (3.14). Recall the number κ from (3.4).

Lemma 3.8. Let εin satisfy (3.8), κ0 ∈ (2(1− κ), 1), and φ ∈ N
‖·‖D(∆D). The inequality

‖φ‖PH2−κ0/2(D) ≤ C‖∆Dφ‖L2(D)

is valid with a uniform constant C = C(κ0) > 0.

Proof. 1) Let φ ∈ N . We use the sets
Di,ξ := {(x, y) ∈ Di | |(x, y)| ≥ ξ}



ANALYSIS OF A SCHEME FOR MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA 17

for ξ > 0. Recall the definition of Di in (3.9). Note moreover that φ is smooth on each Di,ξ by
definition of N in (3.14).

Combining the inequality |x1|κ0/2|x2|κ0/2 ≤
√
x2

1 + x2
2
κ0
, (x1, x2) ∈ R2, with Lemma 2.12 from

[6], it suffices to prove the estimate

‖r
κ0
2 φ‖L2(D) +

2∑
j=1
‖r

κ0
2 ∂jφ‖L2(D) +

2∑
j,k=1
‖r

κ0
2 ∂j∂kφ‖L2(D) ≤ C‖∆Dφ‖L2(D).

Transforming to polar coordinates and integrating by parts with respect to the r- and ϕ-
variables, the formula

4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))(∂2

yφ
(i))− (∂x∂yφ(i))2] d(x, y)

=
4∑
i=1

∫ 1

ξ

∫
Ii

ε
(i)
in [rκ0(∂2

rφ
(i))(∂rφ(i)) + κ0(1−κ0)

2 rκ0−3(∂ϕφ(i))2] dϕdr

+
4∑
i=1

∫
Ii

ε
(i)
in [(1+κ0

2 (∂ϕφ(i))2)|r=1 − (rκ0−1(∂rφ(i))(∂2
ϕφ

(i))

+ 1+κ0
2 rκ0−2(∂ϕφ(i))2)|r=ξ] dϕ (3.17)

is obtained.
2) The first term on the right hand side of (3.17) is next treated separately by means of

Lemma 3.7. We first note that φ has the representation

φ(r cosϕ, r sinϕ) =
Z∑
k=1

αkJκ1(µ(κ1)
k r)ψ1(ϕ), (3.18)

for r ∈ (0, 1), ϕ ∈ (0, 2π), with numbers Z ∈ N and α1, . . . , αZ ∈ R. Since ψ1 is an eigenfunction
of (3.12) to the eigenvalue κ2

1, we deduce the identity

r1/2∆φ(i) = r1/2∂2
rφ

(i) + r−1/2∂rφ
(i) − κ2

1r
−3/2φ(i) =: f (i), r ∈ (0, 1). (3.19)

Combining (3.19) with Lemma 3.7, we then infer the estimate
4∑
i=1

∫ 1

0

∫
Ii

rκ0−1(∂rφ(i))2 dϕdr ≤ C̃
4∑
i=1

∫ 1

0

∫
Ii

r(∆φ(i))2 dϕ dr

with a constant C̃ = C̃(κ0) > 0. For the first term on the right hand side of (3.17), we
consequently arrive at the inequalities

4∑
i=1

∫ 1

ξ

∫
Ii

ε
(i)
in r

κ0(∂2
rφ

(i))(∂rφ(i)) dϕ dr

≥ −
4∑
i=1

( 1
16

∫ 1

ξ

∫
Ii

ε
(i)
in r

κ0+1(∂2
rφ

(i))2 dϕ dr + 4
∫ 1

0

∫
Ii

ε
(i)
in r

κ0−1(∂rφ(i))2 dϕdr
)

≥ −
( 4∑
i=1

1
16

∫ 1

ξ

∫
Ii

ε
(i)
in r

κ0+1(∂2
rφ

(i))2 dϕ dr + 4C̃‖
√
εin∆Dφ‖2L2(D)

)
. (3.20)

3) We next focus on the face integrals on the right hand side of (3.17). To that end, we analyze
the behavior of φ near the center of D. In view of (3.18), it suffices to consider the function
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φ̃(r, ϕ) := Jκ1(r)ψ1(ϕ). Using that ψ1 is an eigenfunction of (3.12) and that κ0 > 2(1 − κ1),
one can show that the functions rκ0−1(∂rφ̃(i))(∂2

ϕφ̃
(i)) and rκ0−2(∂ϕφ̃(i))2 possess continuous

extensions to [0, 1] × Ii, and that they tend to zero as r → 0. The dominated convergence
theorem hence yields

lim
ξ→0

4∑
i=1

∫
Ii

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i)) + 1+κ0

2 rκ0−2(∂ϕφ(i))2]|r=ξ dϕ = 0. (3.21)

4) For the next step, the formula

∂2
rφ

(i) = x2

r2 (∂2
xφ

(i)) + 2xy
r2 ∂x∂yφ

(i) + y2

r2 ∂
2
yφ

(i)

is useful. Combining (3.17) and (3.20), we derive the estimate
4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in (∆φ(i))2 d(x, y) + 4C̃‖

√
εin∆Dφ‖2L2(D)

≥ 1
2

4∑
i=1

( ∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))2 + (∂2

yφ
(i))2 + 2(∂x∂yφ(i))2] d(x, y)

− 2
∫
Ii

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i)) + 1+κ0

2 rκ0−2(∂ϕφ(i))2]|r=ξ dϕ
)
.

In the limit ξ → 0, the monotone convergence principle and (3.21) lead to the relation
(1 + 4C̃)‖

√
εin∆Dφ‖2L2(D)

≥ 1
2

4∑
i=1

∫
Di

rκ0ε
(i)
in [(∂2

xφ
(i))2 + (∂2

yφ
(i))2 + 2(∂x∂yφ(i))2] d(x, y).

The H1-norm of φ can finally also be bounded by ‖∆Dφ‖L2(D) using the Cauchy-Schwarz and
Poincaré inequality. �

The following corollary is an important and direct consequence of Lemmas 3.6 and 3.8, as
well as (3.15). It provides the desired regularity statement and energy estimate in the domain
D(∆D).

Corollary 3.9. Let εin satisfy (3.8), and κ > 1 − κ. Then D(∆D) ⊆ PH2−κ(D) with
‖u‖PH2−κ(D) ≤ C‖∆Du‖L2(D), u ∈ D(∆D), for a constant C = C(κ) > 0.

3.3. Conclusion of the regularity statement. We now establish the desired regularity state-
ment for functions in the domain of the operator ∆Γ∗ from (3.3), resulting in a regularity result
for the solution to the interface problem (3.1). To that end, we first use a cut-off argument to
focus on thin cylinders around interior edges. This principle is well known to experts in the
field, see [16, 14, 15] for instance. To have a self-contained presentation, we however sketch the
arguments.

Let us first fix some notation for the next statements. Recall that S is the union of all edges
of the interfaces. Let ein ⊆ S be an interior edge. Without loss of generality, we assume in
the following that all cylinders around the interior edges with radius 1 are disjoint from each
other. We denote by dist(ein, ·) : Q → [0,∞] the distance function to ein. Let additionally
χ : [0,∞)→ [0, 1] be a smooth cut-off function with χ = 1 on [0, 1/4] and suppχ ⊆ [0, 9/16].

Lemma 3.10. Let ε satisfy (1.2), and let ein ⊆ S be an interior edge. Let furthermore u ∈
D(∆Γ∗). The function χ(dist(ein, ·)2)u belongs to D(∆Γ∗).



ANALYSIS OF A SCHEME FOR MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA 19

Proof. We can assume that ein satisfies (3.7), and abbreviate v := χ(dist(ein, ·)2)u.
Recall definition (3.3). Using the product rule and construction of χ(dist(ein, ·)2), it suffices

to verify the first order transmission condition for v at interfaces touching ein. Let F be such
an interface. We assume the representation F = {0}× [0, 1]× [0, 1], and take x = (x1, x2, x3) =
(0, x2, x3) ∈ F . A straightforward computation then shows that ∇χ(dist(ein, x)2) ·νF = 0. This
means that v fulfills the same interface conditions as u, whence v is an element of the domain
D(∆Γ∗). �

Recall for the next statement Definition 3.4, (3.5), and (3.4).

Lemma 3.11. Let ε satisfy (1.2), and let ein ⊆ S be an interior edge, where ε has a strong
discontinuity. Let furthermore u ∈ D(∆Γ∗) and κ > 1−κ. The function χ(dist(ein, ·)2)u belongs
to V2−κ ∩D(∆Γ∗) and

‖χ(dist(ein, ·)u‖V2−κ ≤ C‖∆Γ∗(χ(dist(ein, ·)u)‖L2(Q)

with a number C = C(ε, κ).

Proof. 1) Without loss of generality, we can assume that ein satisfies (3.7). We moreover assume
that Γ3 ⊆ Γ∗. (The case Γ3 6⊆ Γ∗ can be handled with the usual modifications for homogeneous
Neumann boundary conditions.) Throughout, C = C(ε, κ) is a constant that changes from line
to line. As in the proof of Lemma 3.10, we set

v := χ(dist(ein, ·)2)u ∈ D(∆Γ∗).

Recall the cylinder Z = D × (0, 1). By construction of v, it suffices to prove

‖v‖L2((0,1),PH2−κ(D)) + ‖v‖H1((0,1),H1(D)) + ‖v‖H2((0,1),L2(D))

≤ C‖∆Γ∗v‖L2(Z ). (3.22)

2) The function v is odd reflected at Γ3 to the large cylinder Z̃ := D×(−1, 2). The parameter
εin is reflected in an even way. Note that v belongs to H1(Z̃ ), and that εin∇v|Di×(−1,2) is an
element of H(div, Z̃ ).

3) Let χ̊3 : R → [0, 1] be a smooth cut-off function with χ̊3 = 1 on [0, 1] and supp χ̊3 ⊆
[−1/2, 3/2]. We analyze the product χ̊3(x3)v in the following, and thereby use ideas and tech-
niques from [16, 14]. To that end, we extend the function χ̊3(x3)v trivially by zero in x3-direction
to the infinite cylinder D × R.

Put now

−∆(χ̊3v
(i)) =: f̃ (i) ∈ L2(Di × R), (3.23)

for i ∈ {1, 2, 3, 4}. The above extension procedure then implies the fact

‖f̃‖L2(D×R) ≤ C‖f‖L2(Z̃ ). (3.24)

Next we apply a partial Fourier-Transform with respect to the x3-variable, and we denote the
resulting function by ŵ for w ∈ L2(D ×R). The inverse transform of a function v ∈ L2(D ×R)
is denoted by v̌. We moreover call the new variable in Fourier space ξ. Relation (3.23) then
gives rise to the formula

(ξ2 − ∂2
x1 − ∂

2
x2 )̂ (χ̊3v

(i))(x1, x2, ξ) = (̂f̃ (i)), (x1, x2, ξ) ∈ Di × R, (3.25)

and we note that (̂χ̊3v)(·, ξ) ∈ D(∆D).
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4) Corollary 3.9, the triangle inequality and (3.25) provide the relation

‖̂ (χ̊3v)(·, ξ)‖2PH2−κ(D) ≤ C
(
‖ξ2 (̂χ̊3v)(·, ξ)‖2L2(D) + ‖̂ (f̃)(·, ξ)‖2L2(D)

)
. (3.26)

We next take also the estimate

0 ≤ −<
(
εinξ

2 (̂χ̊3v)(·, ξ),∆D̂ (χ̊3v)(·, ξ)
)
L2(D), (3.27)

into account, that is a consequence of the positivity of −∆D. Combining (3.25)–(3.27), we arrive
at the inequalities

‖̂ (χ̊3v)(·, ξ)‖2PH2−κ(D) ≤ C
(
‖
√
εinξ

2 (̂χ̊3v)(·, ξ)‖2L2(D)

− 2<
(
εinξ

2 (̂χ̊3v)(·, ξ),∆D̂ (χ̊3v)(·, ξ)
)
L2(D)

+ ‖
√
εin∆D̂ (χ̊3v)(·, ξ)‖2L2(D) + ‖

√
εin (̂f̃)(·, ξ)‖2L2(D)

)
≤ C‖

√
εin (̂f̃)(·, ξ)‖2L2(D). (3.28)

Integrating now with respect to ξ and using Plancherel’s Theorem, we conclude

‖χ̊3v‖2L2(R,PH2−κ(D)) ≤ C‖f̃‖
2
L2(D×R).

In view of (3.24), we consequently derive the relation

‖χ̊3v‖L2(R,PH2−κ(D)) ≤ C‖f‖L2(Z̃ ). (3.29)

5) Relation (3.27) further yields the inequality

‖ξ2 (̂χ̊3v)(·, ξ)‖2L2(D) ≤ C‖̂ (f̃)(·, ξ)‖2L2(D).

Integrating with respect to ξ and using (3.24), we infer the estimate

‖χ̊3v‖H2(R,L2(D)) ≤ C‖f‖L2(Z̃ ). (3.30)

With the selfadjointness of the operator (−∆D)1/2 and the Cauchy-Schwarz estimate, we next
deduce the inequality

‖
√
εin|ξ|(−∆D)1/2 (̂χ̊3v)(·, ξ)‖2L2(D) =

(
εin|ξ|2 (̂χ̊3v)(·, ξ), (−∆D )̂ (χ̊3v)(·, ξ)

)
L2(D)

≤ ‖
√
εin|ξ|2 (̂χ̊3v)(·, ξ)‖L2(D)‖

√
εin∆D (̂χ̊3v)(·, ξ)‖L2(D).

We now integrate with respect to ξ and use the equivalence of the H1-norm and the graph
norm in D(−∆D)1/2. Relations (3.24) and (3.28) now imply

‖
√
εinχ̊3v‖H1(R,H1(D)) ≤ C‖f‖L2(Z̃ ). (3.31)

Combining (3.29)–(3.31), inequality (3.22) is valid. �

For the next statement, we collect all interior edges ein, at which ε has a strong discontinuity,
into a set E (ε), see Definition 3.4. We also set E (µ) := ∅, and recall that χ is introduced at
the beginning of this Subsection. The below lemma then states that functions in the domain
D(∆Γ∗) from (3.3) are H2-regular near every edge of an interface at which ε has no strong
discontinuity.

Lemma 3.12. Let η ∈ {ε, µ} satisfy (1.2), and let u ∈ D(∆Γ∗). The function w := (1 −∑
e∈E (η) χ(dist(e, ·)2))u belongs to PH2(Q) and ‖w‖PH2(Q) ≤ ‖∆Γ∗w‖L2(Q).
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Proof. We only treat the case η = ε and Γ3 ⊆ Γ∗, as the remaining can be handled with similar
arguments. By Lemma 3.10, the function w is an element of D(∆Γ∗). In view of Lemma 3.3, it
suffices to show that w is piecewise H2-regular. To reach this goal, we analyze w on two adjacent
cuboids Q1 and Q2 that share an interface F with two interior edges. (The case of Q1 and Q2
touching the exterior faces Γ1 or Γ2 can be treated similarly.) Without loss of generality, we can
assume the identities

Q1 = (−1, 0)× (−1, 1)2, Q2 = (0, 1)× (−1, 1)2, F = {0} × [−1, 1]2.

A smooth cut-off function χ̃ : [−1, 1] → [0, 1] is furthermore employed. It satisfies supp χ̃ ⊆
[−7/8, 7/8] and χ̃ = 1 on [−3/4, 3/4]. Set also Q̃ := (−1, 1)3. By construction, the function
f(x1, x2, x3) := ηχ̃(x1)χ̃(x2)w(x1, x2, x3) is then an element of the space

{f ∈ PH1(Q̃) | ∆f |Qi ∈ L2(Qi), i ∈ {1, 2}, J 1
ηfKF = J∂1fKF = 0,

f(·,±1, ·) = 0, f(±1, ·, ·) = 0, ∂3f(·, ·,±1) = 0}.

By Proposition 8.1 in [54], the mapping f is then H2-regular on Q1 and Q2. �

Combining Lemmas 3.11 and 3.12, we derive the desired regularity statement for functions in
the domain D(∆Γ∗). Recall for the statement definitions (3.4) and (3.5).

Lemma 3.13. Let u ∈ D(∆Γ∗), and let η ∈ {ε, µ} satisfy (1.2). Choose further κ = 0 if η = µ,
and κ > 1−κ if η = ε. Then ‖u‖V2−κ

≤ C‖∆Γ∗u‖L2(Q) with a uniform constant C = C(κ, η,Q).

Proof. 1) In the following, C = C(κ, η,Q) > 0 is a constant that changes from line to line.
Integration by parts and the Poincaré inequality imply the well known estimate

‖∆Γ∗u‖L2(Q) ≥ C‖u‖H1(Q). (3.32)

2) For e ∈ E (η), we set ve := χ(dist(e, ·)2)u (assuming that the distance between interior
edges is greater than 2). Combining the triangle inequality with Lemmas 3.11 and 3.12, we infer
the inequality

‖u‖V2−κ ≤ C
( ∑

e∈E (η)
‖∆Γ∗ve‖L2(Q) + ‖∆Γ∗(u−

∑
e∈E (η)

ve)‖L2(Q)
)
.

With Young’s inequality, we then infer the estimate

‖u‖2V2−κ ≤ C
( ∑

e∈E (η)
‖∆Γ∗ve‖2L2(Q) + ‖∆Γ∗(u−

∑
e∈E (η)

ve)‖2L2(Q)

)
. (3.33)

3) Let e ∈ E (η), and abbreviate we := χ(dist(e, ·)2). Employing the product rule for the
Laplacian as well as Young’s inequality, we deduce the relation

‖∆Γ∗ve‖2L2(Q)

≤ C
N∑
i=1

(
‖(∆we)u(i)‖2L2(Qi) + ‖(∇we) · (∇u(i))‖2L2(Qi) + ‖we∆u(i)‖2L2(Qi)

)
.

We next take into account that all functions we have disjoint support. In view of the regularity
of we on Q and inequality (3.32), we arrive at the result∑

e∈E (η)
‖∆Γ∗ve‖2L2(Q) ≤ C

(
‖
∑

e∈E (η)
(∆we)u‖2L2(Q) + ‖

∑
e∈E (η)

(∇we) · (∇u)‖2L2(Q)
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+ ‖
∑

e∈E (η)
we∆Γ∗u‖2L2(Q)

)
≤ C‖∆Γ∗u‖2L2(Q). (3.34)

Analogous reasoning also establishes the statement

‖∆Γ∗(u−
∑

e∈E (η)
ve)‖2L2(Q) ≤ C‖∆Γ∗u‖2L2(Q). (3.35)

The desired estimate is a consequence of (3.33)–(3.35). �

Proposition 3.1 is now a direct consequence of Lemma 3.13.

Proof of Proposition 3.1. Using the Lax-Milgram Lemma, one can show that the operator ∆Γ∗
from (3.2) is bijective. Hence, there is a unique solution ψ ∈ D(∆Γ∗) of (3.1). Lemma 3.13 now
implies the asserted regularity and energy statements. �

We can also treat the pure Neumann case Γ∗ = ∅, as the difference only arises in the energy
estimates. For the statement, recall the space V2−κ from (3.5) and the number κ from (3.4).

Proposition 3.14. Let η ∈ {ε, µ} satisfy (1.2), and let f ∈ L2(Q). We set κ = 0 if η = µ, and
κ > 1− κ if η = ε. There is a unique function ψ ∈ V2−κ solving

(1−∆)ψ(i) = f (i) on Qi for i ∈ {1, . . . , N},
∇ψ · ν = 0 on ∂Q,
JψKF = 0 = Jη∇ψ · νF KF for F ∈ Fint.

(3.36)

It satisfies ‖ψ‖V2−κ
≤ C ‖f‖L2(Q) with a constant C = C(κ, η,Q) > 0.

Proof. To unify the arguments, we introduce the appropriate Neumann-Laplacian

(∆∅v)(i) := ∆v(i), D(∆∅) := {v ∈ H1(Q) | div(η∇v) ∈ L2(Q), ∇v · ν = 0 on ∂Q}.
As the reasoning in Lemmas 3.11–3.12 focuses only on the local behavior of functions in

the domain of ∆Γ∗ around the interior edges and also allows homogeneous Neumann boundary
conditions, the mentioned statements are also valid for functions in the domain D(∆∅). (In the
proof of Lemma 3.12, one uses Proposition 8.2 from [54] instead of Proposition 8.1.)

Adapting the arguments in the proofs of Lemmas 3.3 and 3.13 to the current setting of
Neumann boundary conditions, we furthermore derive the energy estimate ‖u‖V2−κ ≤ C‖(I −
∆∅)u‖L2(Q) for u ∈ D(∆∅) with a uniform constant C = C(κ, η,Q) > 0.

Using the Lax-Milgram Lemma, we moreover obtain that system (3.36) has a unique solution
in D(∆∅). The above regularity statement and energy estimate now imply the asserted result.

�

4. Regularity result for the space X1

This section is devoted to an embedding result for the space X1 from (2.9). To this end, we
extend the well known regularity results for the spaces HN (curl,div, Q) and HT (curl,div, Q),
see Sections I.3.4 and I.3.5 in [24] for instance. Throughout, we assume that ε and µ satisfy
(1.2). The corresponding spaces for our setting of discontinuous coefficients are

HN,00(curl, div ε,Q) := {E ∈ H0(curl, Q) | div(εE) = 0},
HN,0(curl, div ε,Q) := {E ∈ H0(curl, Q) | div(εE) ∈ L2(Q)}, (4.1)
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HT,00(curl, divµ,Q) := {H ∈ H(curl, Q) | div(µH) = 0, µH · ν = 0 on ∂Q}.

The first and last space are already complete with respect to the norm in H(curl, Q) (making
use of the bounded normal trace operator from H(div, Q) into H−1/2(∂Q)). The second space
in (4.1) is complete with respect to the norm

‖E‖2HN,0 := ‖E‖2L2(Q) + ‖curlE‖2L2(Q) + ‖div(εE)‖2L2(Q) .

Our first goal is to establish embeddings of the spaces from (4.1) into appropriate fractional
Sobolev spaces. In a next step, we then derive the desired embedding of X1, see Proposition 4.6.
In the literature, we could detect neither the precise explicit dependence of κ on ε and µ, nor the
distinction between the regularity of the single components of the electric and magnetic field.
These results, however, turn out to be essential for the error analysis in Section 6.2 and another
work that is in preparation. For a clear presentation, we hence deduce the desired embeddings
in a sequence of lemmas. Note that [7, 11, 12, 8] contain regularity statements for the above
or related spaces in a more general setting, allowing general polyhedral domains for instance.
Our plan is to transfer parts of the reasoning in paragraphs I.3.3–I.3.5 in [24] to our setting of
a transmission problem.

We start with the study of HN,00(curl,div ε,Q). Combining Theorem I.3.4 in [24] with an
integration by parts, we first obtain the injectivity of the curl-operator on this space.

Lemma 4.1. Let ε satisfy (1.2). The curl-operator is injective on HN,00(curl,div ε,Q).

We next introduce the space

Hε := {E ∈ L2(Q)3 | div(εE) = 0, εE · ν = 0 on ∂Q}.

The following statement characterizes the preimage of the curl-operator for the space Hε.
The result corresponds to Theorem I.3.6 in [24], and extends Lemma 6.3 in [8] to our setting
of multiple submedia in a cuboid. For the statement, we recall the number κ from (3.4), and
introduce the space

V1−κ := (PH1−κ(Q)2 ×H1(Q)) ∩ {v ∈ L2(Q)3 | ∂3v ∈ L2(Q)3}, (4.2)
‖v‖2V1−κ := ‖v‖2PH1−κ(Q)2×H1(Q) + ‖∂3v‖2L2(Q)3 , v ∈ V1−κ.

Lemma 4.2. Let ε satisfy (1.2), and let κ > 1−κ. Each function E ∈ Hε has the representation

E = 1
ε

curl Φ

with a unique function Φ ∈ HN,00(curl,div ε,Q). Moreover, Φ belongs to the space V1−κ, and it
satisfies the estimate ‖Φ‖V1−κ

≤ C ‖E‖L2(Q) with a constant C > 0 depending only on ε, κ,Q.

Proof. 1) Throughout the proof, C = C(ε, κ,Q) > 0 is a constant that is allowed to change from
line to line. In view of Lemma 4.1, it suffices to show the existence of the desired vector Φ as
well as its regularity.

Using Theorem I.3.6 in [24], there is a vector Φ̃ ∈ H1(Q)3 ∩ H0(curl, Q) with 1
ε curl Φ̃ = E

and div Φ̃ = 0 on Q. By (1.2), this implies

div(ε(i)Φ̃(i)) = 0. (4.3)

In general, Φ̃ does, however, not satisfy the additional transmission condition JεΦ̃ · νF KF = 0
for all interfaces F .
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2) We next extend the traces JεΦ̃ ·νF KF for the effective interfaces F ∈ F eff
int , see the notation

paragraph in Section 1. There is a function ψ̂ ∈ H1(Q) ∩ PH2(Q) with ∇ψ̂ × ν = 0 on ∂Q,
Jε∇ψ̂ · νF KF = JεΦ̃ · νF KF for F ∈ F eff

int , and

‖ψ̂‖PH2(Q) ≤ C
∑

F∈F eff
int

‖JεΦ̃ · νF KF‖V (F ) ≤ C‖E‖L2(Q). (4.4)

Recall that V (F ) is defined in (2.7). To show this claim, we consider the model case of four
subcuboids

Q1 = (−1, 0)2 × (0, 1), Q2 = (0, 1)× (−1, 0)× (0, 1), Q3 = (0, 1)3,

Q4 = (−1, 0)× (0, 1)2, Fj = Qj ∩Qj+1, j ∈ {1, 2, 3}, F4 = Q1 ∩Q4,

ε(1) > ε(2) = ε(3) = ε(4),

and construct a function ψ̊ on Q̃ := (−1, 1)2× (0, 1) that satisfies the extension property Jε∇ψ̊ ·
νF1KF1 = JεΦ̃ · νF1KF1 , homogeneous Neumann boundary conditions on ∂Q̃ \ Γ3, homogeneous
Dirichlet boundary conditions on ∂Q̃ ∩ Γ3, and the required regularity and energy properties
of ψ̂. Due to symmetry, the trace JεΦ̃ · νF4KF4 can be extended in a similar way. The desired
function ψ̂ is then obtained by combining this reasoning with a cut-off argument around the
edges in Q and the extension result from Propositions 2.2 and 2.3 in [2].

In the following, we use techniques from the proof of Lemma 3.1 in [20] and Lemma 8.13 in
[54]. Set g := Φ̃1|F1 , with Φ̃1 denoting the first component of Φ̃. Identify F1 with [−1, 0]× [0, 1],
and consider the Laplacian ∆F1 on F1 with domain

D(∆F1) := {u ∈ H2(F1) | u(·, 0) = u(·, 1) = 0, ∂2u(0, ·) = ∂2u(1, ·) = 0}.

The operator −∆F1 is then selfadjoint and positive definite on L2(F1). We can hence define
positive definite and selfadjoint fractional powers (−∆F1)γ , γ > 0, of −∆F1 . Hence, −(−∆F1)γ
generates an analytic semigroup (e−t(−∆F1 )γ )t≥0. Note further that

D((−∆F1)1/2) = {ϕ ∈ H1(F1) | ϕ(·, 0) = ϕ(·, 1) = 0}.
(This identity can for instance be obtained by means of Theorem VI.2.23 in [35].) Com-
bining furthermore the trace theorem with the boundary conditions for Φ̃, we conclude g ∈
(L2(F1),D(−∆F1)1/2)1/2,2 with

‖g‖(L2(F1),D(−∆F1 )1/2)1/2,2
≤ C‖Φ̃1‖H1(Q). (4.5)

Let χ : [−1, 1]→ [0, 1] be a smooth cut-off function with χ = 1 on [−1/2, 1/2] and support in
[−3/4, 3/4]. We then set

ψ̊(1)(x1, x2, x3) := χ(x1)x1
(
e−x1(−∆F1 )1/2

g
)
(x2, x3), (x1, x2, x3) ∈ Q1.

In consideration of the analyticity of (e−t(−∆F1 )1/2)t≥0, we conclude the identities

ψ̊(1)|F1 = 0, ∂1ψ̊
(1)|F1 = g, ψ̊(1)|Γ3 = 0,

as well as homogeneous Neumann boundary conditions on all other faces of Q1. We further
calculate

∂1χ̊
(1) =

(
χ′(x1)x1 + χ(x1)− χ(x1)x1(−∆F1)1/2

)
e−x1(−∆F1 )1/2

g,

∂2
1 ψ̊

(1) =
(
χ′′(x1)x1 + 2χ′(x1)− 2χ′(x1)x1(−∆F1)1/2 − 2χ(x1)(−∆F1)1/2
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− χ(x1)x1∆F1

)
e−x1(−∆F1 )1/2

g.

Wemoreover note that theH1- andH2-norm on F1 are equivalent to the norms ‖(−∆F1)1/2·‖L2(F1)
and ‖∆F1 ·‖L2(F1) on D(−∆F1)1/2 and D(∆F1), respectively. Using Remark 6.3 and Proposi-
tion 6.4 in [41], we hence conclude ψ̊(1) ∈ H2(Q1) with

‖ψ̊(1)‖H2(Q1) ≤ C‖g‖(L2(F1),D(−∆F1 )1/2)1/2,2
≤ C‖Φ̃1‖H1(Q),

see (4.5). Define now

ψ̊(2)(x1, x2, x3) := −ψ̊(1)(−x1, x2, x3), (x1, x2, x3) ∈ Q2,

ψ̊(3)(x1, x2, x3) := ψ̊(2)(x1,−x2, x3), (x1, x2, x3) ∈ Q3,

ψ̊(4)(x1, x2, x3) := ψ̊(1)(x1,−x2, x3), (x1, x2, x3) ∈ Q4.

By construction, ψ̊ belongs to PH2(Q̃) ∩ H1(Q̃), and satisfies the extension property Jε∇ψ̊ ·
νF1KF1 = JεΦ̃ · νF1KF1 as well as the continuity relation Jε∇ψ̊ · νFj

KFj
= 0 for j ∈ {2, 3, 4}.

Taking also (2.1) into account, we obtain the energy estimate

‖ψ̊‖PH2(Q̃) ≤ C‖Φ̃1‖H1(Q) ≤ C‖E‖L2(Q).

Altogether, ψ̊ is the desired extension on Q̃.
3) Proposition 3.1 provides a unique function ψ̃ ∈ D(∆∂Q) ↪→ V2−κ with ∆ψ̃(i) = ∆ψ̂(i) on

Qi and
‖ψ̃‖V2−κ ≤ C‖ψ̂‖PH2(Q) ≤ C‖E‖L2(Q). (4.6)

Altogether, Φ := Φ̃ − ∇ψ̂ + ∇ψ̃ is the desired function. The asserted norm estimate is a
consequence of (2.1), (4.3)–(4.6) and the definition of V2−κ in (3.5). �

The next proposition summarizes the results of the last two lemmas. The proof is a modifi-
cation of the one for Theorem I.3.7 in [24]. As an intermediate result of the proof is crucial for
the below reasoning, we elaborate the argument.

Lemma 4.3. Let ε satisfy (1.2), and choose κ > 1 − κ. Then HN,00(curl,div ε,Q) embeds
continuously into V1−κ.

Proof. Let E ∈ HN,00(curl,div ε,Q). Lemma 4.2 yields that the operator 1
ε curl is bijective from

HN,00(curl,div ε,Q) into Hε. Using the open mapping principle, 1
ε curl hence is an isomorphism

between these spaces. Lemma 4.2 and Remark I.2.5 in [24] further lead to the identities
1
ε

curl
(
HN,00(curl, div ε,Q)

)
= Hε

= 1
ε

curl (HN,00(curl, div ε,Q) ∩ V1−κ) .

This implies HN,00(curl, div ε,Q) ⊆ V1−κ. Lemma 4.2 furthermore yields
‖E‖H(curl,Q) + ‖E‖V1−κ

≤ C‖1
ε curlE‖L2(Q), (4.7)

with a uniform constant C = C(ε, κ,Q) > 0. Altogether, the identity I = (1
ε curl)−1 ◦ 1

ε curl is
bounded from HN,00(curl,div ε,Q) into V1−κ. �

To show the embedding property of the space X1 from (2.9) into V1−κ × PH1(Q)3, we next
prove that one can omit the L2-norm in the definition of ‖·‖HN,0 .
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Lemma 4.4. Let ε satisfy (1.2). The estimate
‖E‖L2(Q) ≤ CN0(‖curl E‖L2(Q) + ‖div(εE)‖L2(Q))

is valid for all E ∈ HN,0(curl, div ε,Q) with a constant CN0 = CN0(ε,Q) > 0.

Proof. Let E ∈ HN,0(curl,div ε,Q). By Proposition 3.1, there is a unique function φ ∈ D(∆∂Q)
with ∆φ(i) = divE(i) on Qi for i ∈ {1, . . . , N}. The difference ψ := ∇φ − E then belongs to
HN,00(curl, div ε,Q), and we can apply inequality (4.7) to it. In this way, we obtain

‖E‖L2(Q) ≤ ‖ψ‖L2(Q) + ‖∇φ‖L2(Q) ≤
C

min ε‖curlE‖L2(Q) + ‖∇φ‖L2(Q),

where C is the uniform constant from (4.7). In view of the weak formulation of the identity
∆∂Qφ = 1

ε div(εE) and the Poincaré inequality, we infer the estimates

‖∇φ‖2L2(Q) ≤ −
1

min ε

∫
Q
φ div(εE) dx ≤ 1

min ε ‖φ‖L2(Q) ‖div(εE)‖L2(Q)

≤ CP
min ε‖∇φ‖L2(Q) ‖div(εE)‖L2(Q) , (4.8)

employing the Poincaré constant CP > 0 for Q. �

In view of the assumptions (1.2), the parameter µ is piecewise constant on the chain Q̃1, . . . , Q̃L
of cuboids. As the setting of two cuboids from [54] transfers to the partition

⋃L
l=1 Q̃L in a

straightforward way, the reasoning for Proposition 9.7 in [54] yields the following statement.

Lemma 4.5. Let µ satisfy (1.2). The space HT,00(curl,divµ,Q) embeds continuously into
PH1(Q)3.

We now deduce the desired regularity statement for functions in the space X1. For the
statement, recall the number κ from (3.4) and the space V1−κ from (4.2).

Proposition 4.6. Let ε, µ satisfy (1.2), and κ > 1−κ. The space X1 embeds continuously into
V1−κ × PH1(Q)3.

Proof. 1) Let (E,H) ∈ X1 = D(M) ∩X0. We first show the asserted regularity of (E,H). In
view of Lemma 4.5, it remains to deal with the electric field E.

Consider the elliptic transmission problem

∆ψ(i) = divE(i) on Qi for i ∈ {1, . . . , N},
ψ = 0 on ∂Q,

JψKF = 0 for F ∈ Fint,

Jε∇ψ · νF KF = JεE · νF KF for F ∈ Fint,

(4.9)

which has a unique solution ψ ∈ V2−κ ∩H1
0 (Q). (The space V2−κ is defined in (3.5).) Indeed,

a modification of the reasoning in the proof for Lemma 4.2 and the precondition JεE · νF KF ∈
V (F ), F ∈ F eff

int , see (2.8), yield a unique mapping ψ̃ ∈ V2−κ ∩H1
0 (Q) with ∆ψ̃(i) = 0 on Qi,

satisfying the required boundary and transmission conditions in (4.9). By Proposition 3.1, there
also is a function ψ̌ ∈ D(∆∂Q) ⊆ V2−κ with ∆∂Qψ̌ = 1

ε div(εE). Altogether, ψ := ψ̃ + ψ̌ ∈
V2−κ ∩H1

0 (Q) is the solution of (4.9).
Hence, E−∇ψ is an element of HN,00(curl,div ε,Q) ⊆ V1−κ, see Lemma 4.3. The vector ∇ψ

being an element of V1−κ, we infer the stated regularity result.
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2) It remains to show the asserted embedding property. In the following, C = C(ε, κ,Q) > 0
is a constant that changes from line to line. Using Lemma 4.5, it suffices to deal with E.
Proposition 3.1 yields

‖ψ̌‖V2−κ ≤ C
N∑
i=1
‖div(ε(i)E(i))‖L2(Qi). (4.10)

The reasoning for (4.4) and (4.6) furthermore leads to the bound

‖∇ψ̃‖V1−κ ≤ C
∑

F∈F eff
int

‖JεE · νF KF‖V (F ). (4.11)

Applying Lemma 4.3 to E−∇ψ, the relations

‖E‖V1−κ ≤ ‖E−∇ψ‖V1−κ + ‖∇ψ‖V1−κ

≤ C
(
‖E‖L2(Q) + ‖curlE‖L2(Q) + ‖∇ψ‖L2(Q)

)
+ ‖∇ψ‖V1−κ

≤ C
(
‖M(E,H)‖+ ‖E‖L2(Q) + ‖ψ̌‖V2−κ + ‖∇ψ̃‖V1−κ)

follow. The desired embedding is a consequence of (4.10) and (4.11). �

5. Wellposedness of the Maxwell system in X1

The main result of Section 4 establishes a regularity statement for the space X1, see Propo-
sition 4.6. To conclude a corresponding regularity result for the solutions of the Maxwell sys-
tem (1.1), we show in this section that X1 is a state space of (1.1). This is done by means of
semigroup theory.

We next transfer techniques from the proof of Proposition 2.3 in [21] to the current setting.
Recall moreover that M1 is the part of M in X1.

Proposition 5.1. Let ε and µ satisfy (1.2). The operator M1 generates a contractive C0-
semigroup (etM1)t≥0 on X1. The latter is the restriction of (etM )t≥0 to X1.

Proof. 1) Employing the theory of subspace semigroups, see for instance Paragraph II.2.3 in [22],
the asserted generator property follows by showing that the family (etM )t≥0 leaves the space X1
invariant, and that it is strongly continuous on it.

We first note that etM (D(M)) ⊆ D(M) for t ≥ 0. Regarding the magnetic conditions, the
arguments in the proof of Proposition 2.3 in [21] apply also here. This reasoning results in the
invariance of the space

Xmag := {(u, v) ∈ X | div(µv) = 0, (µv) · ν = 0 on ∂Q}

under the resolvent map R(λ,M) for λ > 0, and in the invariance of Xmag with respect to the
family (etM )t≥0.

2) Let (ũ, ṽ) ∈ X1, and set (u(t), v(t)) := etM (ũ, ṽ) for t ≥ 0. Semigroup theory then
yields that the function (u, v) belongs to C([0,∞),D(M)). The Maxwell equations (1.1) with
J = 0 lead to the formula ∂tu = 1

ε curl v. Taking the divergence of this equation, the relation
∂t div(εu(t)) = 0 follows in L2(Q̃i,l), i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}, for the subdomains (Q̃i,l)
from Section 1. This is equivalent to

div(εu(t)) = div(εũ) (5.1)
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on Q̃i,l. As a result, the mapping [0,∞)→ H(div, Q̃l,k), t 7→ εu(t) is continuously differentiable.
Due to the continuity of the normal trace operator on H(div, Q̃i,l), the relations

∂tJεu(t) · νF KF = Jcurl ṽ · νF KF = 0, t ≥ 0,

follow in H−1/2(F ) for every effective interface F ∈ F eff
int , see the notation paragraph in Sec-

tion 1. This shows that the function
Jεu(t) · νF KF = Jεũ · νF KF (5.2)

belongs to the space V (F ) from (2.7) for F ∈ F eff
int , and that the mapping [0,∞) → V (F ),

t 7→ Jεu(t) · νF KF is continuously differentiable.
3) We finally note that Proposition 2.4 and (5.1)-(5.2) imply the contractivity of (etM |X1)t≥0

on X1. �

The next statement is a conclusion of Proposition 5.1. It transfers parts of Proposition 2.3
from [21] to our setting of discontinuous coefficients. Although the proof basically follows the
lines of the one for Corollary 9.24 in [54], we present it here for the sake of a self-contained
presentation. Note that the formula for ρF is also deduced in the Appendix of [46]. For the
external current density J, the space

W := L1([0, T ],D(M1)) +W 1,1([0, T ], X1),
‖f‖W := inf

f=f1+f2,
f1∈L1([0,T ],D(M1)),
f2∈W 1,1([0,T ],X1)

(
‖f1‖L1([0,T ],D(M1)) + ‖f2‖W 1,1([0,T ],X1)

)
, f ∈W,

is employed for fixed T > 0.

Corollary 5.2. Let ε and µ satisfy (1.2). Let T > 0, w0 = (E0,H0) be initial data from
D(M1) = D(M2) ∩ X0, and let g := (1

εJ, 0) : [0, T ] → X1 be the weighted external current
density that is continuous, and an element of W . The following items are valid.

a) The Maxwell system (1.1) possesses a unique classical solution w = (E,H), belonging to
C([0, T ],D(M1)) ∩ C1([0, T ], X1). It satisfies the bounds

‖w(t)‖X1
≤ ‖w0‖X1

+ ‖g‖L1([0,t],X1) ,

‖Mw(t)‖X1
≤ ‖w0‖D(M1) + ( 2

T + 3) ‖g‖W ,

for t ∈ [0, T ].
b) The volume charge density ρ(i) on Qi and the surface charge ρF are given via

ρ(i)(t) = div(ε(i)E(i)(t)) = div(ε(i)E(i)
0 )−

∫ t

0
div(J(i)(s)) ds,

ρF (t) = JεE(t) · νF KF = JεE0 · νF KF −
∫ t

0
JJ(s) · νF KF ds,

for t ∈ [0, T ], i ∈ {1, . . . , N}, and F ∈ F eff
int .

Proof. a) The stated classical wellposedness of (1.1) on X1 follows from Proposition 5.1 and
semigroup theory, see Theorem 8.1.4 in [52] for instance. Duhamel’s formula leads to the repre-
sentation

w(t) = etM1w0 +
∫ t

0
e(t−s)M1g(s) ds = etM1w0 +

∫ t

0
e(t−s)M1(1

εJ(s), 0) ds.

Taking the contractivity of (etM1)t≥0 into account, the first asserted estimate is obtained.
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Let ζ > 0 and (1
εJ, 0) = J1 + J2 ∈ L1([0, T ],D(M1)) +W 1,1([0, T ], X1) with

‖(1
εJ, 0)‖W ≥ ‖J1‖L1([0,T ],D(M1)) + ‖J2‖W 1,1([0,T ],X1) − ζ.

An integration by parts in the above Duhamel formula leads to the identities

Mw(t) = etMMw0 +
∫ t

0
e(t−s)MMJ1(s) ds−

∫ t

0
( d
ds

e(t−s)M )J2(s) ds

= etMMw0 +
∫ t

0
e(t−s)MMJ1(s) ds− J2(t) + etMJ2(0)

+
∫ t

0
e(t−s)MJ′2(s) ds.

Combining Lemma 7.6 in [54] with Proposition 5.1, the relations

‖Mw(t)‖X1
≤ ‖w0‖D(M1) + ‖J1‖L1([0,T ],D(M1)) + ( 2

T + 3) ‖J2‖W 1,1([0,T ],X1)

≤ ‖w0‖D(M1) + ( 2
T + 3)(‖(1

εJ, 0)‖W1 + ζ)

are derived. Letting ζ tend to zero, we infer the second stated estimate.
b) The representation for the current density is obtained by modifying the arguments from

Proposition 2.3 in [21] and part 2) from the proof of Proposition 5.1. The linear mapping
X1 → L2(Qi), (u, v) 7→ div(ε(i)u(i)) being continuous for i ∈ {1, . . . , N}, the regularity of w
implies that ρ(i) : [0, T ]→ L2(Qi) is continuously differentiable. Similar reasoning further shows
that [0, T ]→ L2(Qi), s 7→ div(J(i)(s)) is continuous. Taking the divergence in (1.1), leads to

∂t div(ε(i)E(i)(t)) = −div(J(i)(t)), t ∈ [0, T ],

in L2(Qi). The first asserted formula is obtained by integration with respect to t. Analogously,
the arguments in part 2) of the proof for Proposition 5.1 result in the stated formula for the
surface charge ρF in V (F ) for every effective interface F ∈ F eff

int . �

Remark 5.3. In view of Proposition 4.6, Corollary 5.2 provides a classical solution of the
Maxwell system (1.1) in the space C1([0, T ],V1−κ×PH1(Q)3) for κ > 1− κ with the number κ
from (3.4) and the space V1−κ from (4.2). ♦

6. Analysis of a directional splitting scheme

This section is concerned with the construction and analysis of a directional splitting scheme
for (1.1). The scheme can deal with the low regularity of the solution of the Maxwell system, see
Remark 5.3. In particular, the regularity requirement for the initial data is weaker than for the
ADI schemes from [56, 42, 10], see [29, 21, 19, 20, 23]. In Section 6.1, we introduce the splitting
and analyze the splitting operators. We furthermore comment on the efficiency of the scheme.
Subsequently, we bound the error of the scheme in Section 6.2. Here the regularity results from
Section 5 are essential.

6.1. Construction of a directional splitting scheme. In view of the H1-regularity in x3-
direction of the solution to (1.1), see Remark 5.3, we split the x3-coordinate off and leave the
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x1, x2 coordinates coupled. This strategy leads to the splitting

M

(
E
H

)
=
(

1
ε curlH
− 1
µ curlE

)
=



1
ε∂2H3
−1
ε∂1H3

1
ε curl2(H1,H2)
− 1
µ∂2E3

1
µ∂1E3

− 1
µ curl2(E1,E2)


+



−1
ε∂3H2

1
ε∂3H1

0
1
µ∂3E2
− 1
µ∂3E1

0


=: A

(
E
H

)
+B

(
E
H

)
(6.1)

involving the curl2-operator from Section 2.1. To define appropriate domains for the operators A
and B, we denote S := (a−1 , a

+
1 )× (a−2 , a

+
2 ), using the representation Q = (a−1 , a

+
1 )× (a−2 , a

+
2 )×

(a−3 , a
+
3 ). Employing also the space H0(curl2, S) from Section 2.1, we consider the splitting

operators A and B on the domains

D(A) := {(E,H) ∈ L2(Q)6 | (E1,E2) ∈ L2((a−3 , a
+
3 ), H0(curl2, S)),

(H1,H2) ∈ L2((a−3 , a
+
3 ), H(curl2, S)),

∂1E3, ∂2E3, ∂1H3, ∂2H3 ∈ L2(Q),
E3 = 0 on Γ1 ∪ Γ2},

D(B) := {(E,H) ∈ L2(Q)6 | ∂3E1, ∂3E2, ∂3H1, ∂3H2 ∈ L2(Q),
E1 = 0 = E2 on Γ3}. (6.2)

With these domains, the operators A and B are closed and densely defined on X = L2(Q)6.
Note additionally that Corollary 5.2 provides a classical solution of the Maxwell system (1.1)
that is contained in D(A)∩D(B). (This follows from Remark 5.3 and the embedding of X1 into
D(M).)

Let τ ∈ (0, T ) be a fixed time step size, n ∈ N with nτ ≤ T , and (1
εJ, 0) ∈ C([0, T ], X1). We

then approximate the solution (E,H) of (1.1) with initial datum (E0,H0) at time tn := τn ≤ T
by means of the Peaceman-Rachford directional splitting

(
En
Hn

)
= Tτ,n

[(En−1

Hn−1

)]
= (I − τ

2B)−1(I + τ
2A)

[
(I − τ

2A)−1(I + τ
2B)

(
En−1

Hn−1

)

− τ
2ε

(
J(tn−1) + J(tn)

0

) ]
(6.3)

with exact initial data (E0,H0) = (E0,H0) ∈ X1. For a different operator splitting, this
Peaceman-Rachford time integrator is employed in [44, 56, 42, 21, 29, 30, 47, 38, 18, 20, 31, 48,
54], for instance.

In the next two lemmas we derive that both splitting operators are skewadjoint. This implies
that the scheme (6.3) is well defined and unconditionally stable, see Lemma 6.3. Recall that the
inner product on X = L2(Q)6 is defined in Section 2.2.

Lemma 6.1. Let ε and µ satisfy (1.2). Then A and B are skewsymmetric on X.
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Proof. Let (E,H), (Ẽ, H̃) ∈ D(A). We next employ Green’s identities from Section 2.1. Taking
the boundary conditions in D(A) into account, we infer the equations(

A

(
E
H

)
,

(
Ẽ
H̃

))
=
∫
Q

[
(∂2H3)Ẽ1 − (∂1H3)Ẽ2 + (curl2(H1,H2))Ẽ3 − (∂2E3)H̃1

+ (∂1E3)H̃2 − (curl2(E1,E2))H̃3
]
dx

=
∫
Q

[
H3 curl2(Ẽ1, Ẽ2) + H1∂2Ẽ3 −H2∂1Ẽ3 −E3 curl2(H̃1, H̃2)

−E1∂2H̃3 + E2∂1H̃3
]
dx

= −
((E

H

)
, A

(
Ẽ
H̃

))
.

This shows that A is skewsymmetric. The operator B can be treated similarly, meaning that
the prescribed boundary conditions in D(B) are used in an integration by parts. �

Using arguments from the proof of Lemma 4.1 in [29], we next conclude that both splitting
operators are skewadjoint.

Lemma 6.2. Let ε, µ satisfy (1.2). Then A and B are skewadjoint on X. In particular,
(I − τL)−1 and (I + τL)(I − τL)−1 are contractive for L ∈ {A,B}, τ > 0.

Proof. 1) As A and B are densely defined, closed, and skewsymmetric, see Lemma 6.1, it suffices
to show that the operators I±A and I±B have dense range inX. We only consider the operators
I −A and I −B, and show that the space of test functions C∞c (Q)6 is contained in their range.
(The operators I +A and I +B can be treated with the same arguments.)

2) Let (Ẽ, H̃) ∈ C∞c (Q)6. We want to show the existence of a vector (E,H) ∈ D(A) with
(I −A)(E,H) = (Ẽ, H̃). This is equivalent to the system

E1 − 1
ε∂2H3 = Ẽ1, H1 + 1

µ∂2E3 = H̃1,

E2 + 1
ε∂1H3 = Ẽ2, H2 − 1

µ∂1E3 = H̃2,

E3 − 1
ε∂1H2 + 1

ε∂2H1 = Ẽ3, H3 − 1
µ∂2E1 + 1

µ∂1E2 = H̃3.

(6.4)

By formally inserting the left equations of the first and second line into the right equation of
the third line, we derive the formula

µH3 − ∂1(1
ε∂1H3)− ∂2(1

ε∂2H3) = µH̃3 + ∂2Ẽ1 − ∂1Ẽ2 =: f ∈ L2(Q). (6.5)

2) Recall the rectangle S := (a−1 , a
+
1 ) × (a−2 , a

+
2 ), being the projection of Q = (a−1 , a

+
1 ) ×

(a−2 , a
+
2 )× (a−3 , a

+
3 ) to the x1 − x2 plane. We consider the equation∫ a+

3

a−3

∫
S

[
µwϕ+ 1

ε (∇x1,x2w) · (∇x1,x2ϕ)
]
d(x1, x2) dx3 (6.6)

=
∫ a+

3

a−3

∫
S
fϕd(x1, x2) dx3, ϕ ∈ L2((a−3 , a

+
3 ), H1(S)),

being the weak formulation of (6.5). The Lax-Milgram Lemma provides a unique solution
w ∈ L2((a−3 , a

+
3 ), H1(S)) of (6.6). Note moreover thatH3 := w satisfies (6.5) and that 1

ε∇x1,x2H3
is an element of L2((a−3 , a

+
3 ), H0(div, S)). Put
E1 := Ẽ1 + 1

ε∂2H3, E2 := Ẽ2 − 1
ε∂1H3. (6.7)
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By construction, the left equations in the first and second line of (6.4) are then fulfilled. Using
(6.5), we then derive the relation

∂2E1 − ∂1E2 = ∂2Ẽ1 − ∂1Ẽ2 + divx1,x2(1
ε∇x1,x2H3) = µ(H3 − H̃3). (6.8)

As a result, curl2(E1,E2) is an element of L2(Q).
We next deal with the boundary conditions for (E1,E2). Let φ be an element of L2((a−3 , a

+
3 ), H1(S)).

With (6.7)–(6.8) and the fact that 1
ε∇x1,x2H3 is an element of L2((a−3 , a

+
3 ), H0(div, S)), we cal-

culate ∫ a+
3

a−3

∫
S

(E1,E2) · (∂2φ,−∂1φ) d(x1, x2) dx3

=
∫ a+

3

a−3

∫
S
Ẽ1∂2φ+ 1

ε (∂2H3)∂2φ− Ẽ2∂1φ+ 1
ε (∂1H3)∂1φ d(x1, x2) dx3

=
∫ a+

3

a−3

∫
S
−(∂2Ẽ1)φ+ (∂1Ẽ2)φ− div(1

ε∇x1,x2H3)φ d(x1, x2) dx3

=
∫ a+

3

a−3

∫
S

curl2(E1,E2)φ d(x1, x2) dx3.

With Lemma I.2.4 in [24] we conclude (E1,E2) ∈ L2((a−3 , a
+
3 ), H0(curl2, S)).

3) Treating the remaining equations in (6.4) in a similar fashion, we arrive at a desired vector
(E,H) ∈ D(A) with (I −A)(E,H) = (Ẽ, H̃).

4) We next deal with the splitting operator B, and proceed similar to the above case for A.
Solving the formula (I − B)(Ě, Ȟ) = (Ẽ, H̃) for (Ě, Ȟ) ∈ D(B) amounts to determining the
solution of the system

Ě1 + 1
ε∂3Ȟ2 = Ẽ1, Ȟ1 − 1

µ∂3Ě2 = H̃1,

Ě2 − 1
ε∂3Ȟ1 = Ẽ2, Ȟ2 + 1

µ∂3Ě1 = H̃2,

Ě3 = Ẽ3, Ȟ3 = H̃3.

(6.9)

Formally inserting the equation on the right hand side of the second line of (6.9) into the one
on the left hand side of the first line yields

Ě1 − 1
εµ∂

2
3Ě1 = Ẽ1 − 1

ε∂3H̃2 ∈ L2(Q). (6.10)

As in the proof of Lemma 4.3 in [29], we obtain a unique Ě1 ∈ L2(S,H2(a−3 , a
+
3 )) solving (6.10).

(We use here the fact that ε and µ are constant in x3-direction.) It satisfies the boundary
condition Ě1 = 0 on Γ3. We put Ȟ2 := H̃2 − 1

µ∂3Ě1. Then, ∂3Ȟ2 is an element of L2(Q), and
(6.10) leads to the identity

Ě1 + 1
ε∂3Ȟ2 = Ě1 + 1

ε∂3H̃2 − 1
εµ∂

2
3Ě1 = Ẽ1.

The remaining relations of (6.9) can be handled in the same way. Altogether, we obtain a vector
(Ě, Ȟ) ∈ D(B) with (I −B)(Ě, Ȟ) = (Ẽ, H̃). �

Combining formula (4.5) in [21] with Lemma 6.2, we can now conclude the unconditional
stability of scheme (6.3).



ANALYSIS OF A SCHEME FOR MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA 33

Lemma 6.3. Let ε and µ satisfy (1.2), τ > 0, and T > nτ . Let also (E0,H0) ∈ D(B), and
(1
εJ, 0) ∈ C([0, T ],D(A)). Then the estimate

‖(En,Hn)‖ ≤ ‖(E0,H0)‖D(B) + T max
t∈[0,T ]

‖(1
εJ, 0)‖D(A)

is valid.

Using the reasoning in the proof of Lemma 6.2, we can also draw an important conclusion on
the complexity of scheme (6.3).

Remark 6.4. Let ε and µ satisfy (1.2), and let τ > 0. Each application of scheme (6.3)
essentially amounts to solving only two-dimensional decoupled elliptic transmission problems
for E3 and H3, and one-dimensional decoupled elliptic problems for E1 and E2. To show this
claim, we first note that the main effort for (6.3) consists in evaluating the resolvents of A and
B. In the following, we analyze both resolvent operators separately.

1) Let (Ẽ, H̃) ∈ X = L2(Q)6, and (E,H) = (I − τ
2A)−1(Ẽ, H̃). We then arrive at system

(6.4) (with τ
2ε instead of 1

ε and τ
2µ instead of 1

µ). From the identity on the right hand side of the
third line in (6.4), we obtain the relations∫

Q
µH̃3ϕ dx =

∫ a+
3

a−3

∫
S
µH3ϕ+ τ

2 curl2(E1,E2)ϕ d(x1, x2)

=
∫ a+

3

a−3

∫
S

[µH3ϕ+ τ
2E1∂2ϕ− τ

2E2∂1ϕ] d(x1, x2) dx3

for all ϕ ∈ L2((a−3 , a
+
3 ), H1(S)). Inserting the equations on the left hand side of the first and

second line of (6.4), we arrive at the relation∫
Q
µH̃3ϕ− τ

2 Ẽ1∂2ϕ+ τ
2 Ẽ2∂1ϕ dx

=
∫ a+

3

a−3

∫
S
µH3ϕ+ τ2

4ε (∇x1,x2H3) · (∇x1,x2ϕ) d(x1, x2) dx3 (6.11)

for all ϕ ∈ L2((a−3 , a
+
3 ), H1(S)). Having solved the essentially two-dimensional problem (6.11),

E1 and E2 are directly obtained via the formulas on the left hand side of the first and second
line of (6.4). A similar statement is true for E3.

2) Let (Ě, Ȟ) = (I − τ
2B)−1(Ẽ, H̃). Then system (6.9) is valid with τ

2ε instead of 1
ε and τ

2µ
instead of 1

µ . The identity on the left hand side of the first line in (6.9) leads to the equation∫
Q
εẼ1φ dx =

∫ a+
3

a−3

∫
S
εĚ1φ− τ

2Ȟ2∂3φ d(x1, x2) dx3, φ ∈ H1
0 ((a−3 , a

+
3 ), L2(S)).

Plugging in the formula on the right hand side of the second line of (6.9), we conclude∫
Q
εẼ1φ+ τ

2H̃2∂3φ dx =
∫ a+

3

a−3

∫
S
εĚ1φ+ τ2

4µ(∂3Ě1)(∂3φ) d(x1, x2) dx3

for φ ∈ H1
0 ((a−3 , a

+
3 ), L2(S)), being the weak formulation of (6.10). Having solved this one-

dimensional elliptic problem, Ȟ2 is directly obtained as Ȟ2 = H̃2− τ
2µ∂3Ě1. Similar statements

are true for Ě2 and Ȟ1. ♦
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6.2. Error bound for the directional splitting scheme. This section is devoted to a first
order convergence result for scheme (6.3). The statement is proved by combining the regularity
results from Section 5 with the statements about the splitting operators from Section 6.1.

In order to expand the semigroup (etM )t≥0 for positive times, we additionally employ the
functions

Λj(t)w := 1
tj(j − 1)!

∫ t

0
(t− s)j−1esMw ds, Λ0(t) := etM , (6.12)

for w ∈ X, t ≥ 0 and j ∈ N, see [28, 29] for instance. Note that Proposition 5.1 implies that
Λj(t) leaves the space X1 invariant for j ∈ N0, and t ≥ 0.

Semigroup theory and Proposition 5.1 moreover lead to the useful relations

‖Λj(t)‖L(X1) ≤
1
j! , ‖Λj(t)‖L(D(M1)) ≤

1
j! , (6.13)

tMΛj+1(t) = Λj(t)−
1
j!I on D(M), j ∈ N0, (6.14)

for t ≥ 0, see Section 4 in [29]. Note also that Λj(t)(D(M1)) ⊆ D(M1) for t ≥ 0.
We next derive an error bound for scheme (6.3). Here arguments from the proofs of The-

orem 4.2 in [29], Theorem 5.1 in [21], and Theorem 10.7 in [54] are employed. Throughout
the statement and the associated proof, the solution of the Maxwell system (1.1) is denoted by
w = (E,H), while the approximate solution at time tn = nτ is wn. For the current J in (1.1),
we also use the space

WT := W 1,1([0, T ], X1) ∩ C([0, T ],D(M1))
with corresponding norm

‖·‖WT
:= ‖·‖W 1,1([0,T ],X1) + ‖·‖C([0,T ],D(M1)) ,

for a fixed final time T > 0, see Section 2.2. Note the relation D(M1) = D(M2) ∩X0.

Theorem 6.5. Let ε and µ satisfy (1.2), T ≥ 1, and w0 = w(0) ∈ D(M2) ∩ X0. Let also
(1
εJ, 0) ∈WT , and τ ∈ (0, T ). There is a constant C = C(ε, µ,Q) > 0 with

‖w(tn)− wn‖L2(Q) ≤ CτT
(
‖w0‖D(M1) + ‖(1

εJ, 0)‖WT

)
for all n ∈ N0 with nτ ≤ T .

Proof. 1) We first estimate the local error. Throughout the proof, C > 0 denotes a constant
that depends only on ε, µ, and Q. It is allowed to change from line to line. Let k ∈ N0 with
(k + 1)τ ≤ T , and recall the notation tk = kτ . Inserting the identity

1
εJ(tk + s) = 1

εJ(tk) +
∫ s

0
1
εJ
′(tk + r) dr, s ∈ [0, τ ], (6.15)

into the Duhamel formula for w, we infer the representation

w(tk+1) = eτMw(tk) +
∫ τ

0
e(τ−s)M (−1

εJ(tk + s), 0) ds

= eτMw(tk) +
∫ τ

0
erM (−1

εJ(tk), 0) dr

+
∫ τ

0
e(τ−s)M

∫ s

0
(−1

εJ
′(tk + r), 0) dr ds

= eτMw(tk) + τΛ1(τ)(−1
εJ(tk), 0) +Rk(τ),
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involving the remainder term

Rk(τ) :=
∫ τ

0
e(τ−s)M

∫ s

0
(−1

εJ
′(tk + r), 0) dr ds.

Using (6.15) in scheme (6.3), we on the other hand obtain the equations

Tτ,k+1(w(tk)) = (I − τ
2B)−1(I + τ

2A)
[
(I − τ

2A)−1(I + τ
2B)w(tk) + τ(−1

εJ(tk), 0)

+ τ
2

∫ τ

0
(−1

εJ
′(tk + r), 0) dr

]
= (I − τ

2B)−1
[
(I − τ

2A−1)−1(I + τ
2A−1)(I + τ

2B)w(tk)

+ τ(I + τ
2A)(−1

εJ(tk), 0) + τ
2 (I + τ

2A)
∫ τ

0
(−1

εJ
′(tk + r), 0) dr

]
.

Note that A is extrapolated in the second identity, as Bw(tk) is in general not contained in
D(A), see Remark 5.3. Note furthermore that the functions (−1

εJ(t), 0), Λ1(τ)(−1
εJ(t), 0) and

(−1
εJ
′(t), 0) belong to D(A) ∩D(B) for every t ∈ [0, T ], see Propositions 4.6 and 5.1, as well as

(2.9).
Subtracting the representations for w(tk+1) and Tτ,k+1(w(tk)), we conclude

Tτ,k+1(w(tk))− w(tk+1)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
(I+ τ

2A−1)(I+ τ
2B)−(I− τ

2A−1)(I− τ
2B)eτM

]
w(tk)

+ τ(I − τ
2B)−1

[
(I + τ

2A)− (I − τ
2B)Λ1(τ)

]
(−1

εJ(tk), 0)

+ τ
2 (I − τ

2B)−1(I + τ
2A)

∫ τ

0
(−1

εJ
′(tk + r), 0) dr −Rk(τ)

=: e1,k(τ) + e2,k(τ) + e3,k(τ)−Rk(τ). (6.16)

We next estimate the summands on the right hand side of (6.16).
2) We first deal with e1,k(τ). Recall that Λ1(τ) and Λ2(τ) leave the spaces D(M1) and X1

invariant. Thus MΛ1(τ)w(tk) is an element of D(B), and Λj(τ)w(tk) belongs to D(M2) for
j ∈ {1, 2}. Algebraic manipulations and (6.14) hence lead to

e1,k(τ)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
(I+ τ

2A−1)(I+ τ
2B)−(I− τ

2A−1)(I− τ
2B)eτM

]
w(tk)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
I + τ

2M + τ2

4 A−1B − (I − τ
2M + τ2

4 A−1B)eτM
]
w(tk)

= (I − τ
2B)−1(I − τ

2A−1)−1
[
I − eτM + τ

2M(I + eτM ) + τ2

4 A−1B(I − eτM )
]
w(tk)

= (I − τ
2B)−1(I − τ

2A−1)−1
[
− τMΛ1(τ) + τM + τ2

2 M
2Λ1(τ)

− τ3

4 A−1BMΛ1(τ)
]
w(tk)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
− τ2M2Λ2(τ) + τ2

2 M
2Λ1(τ)− τ3

4 A−1BMΛ1(τ)
]
w(tk).

Combining Corollary 5.2, Remark 5.3 and (6.13), we conclude the estimates

‖e1,k(τ)‖+ ‖(I + τ
2B)e1,k(τ)‖ ≤ Cτ2‖w(tk)‖D(M2)∩X0 . (6.17)
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3) We next deal with e2,k(τ). Note that MΛ2(τ)(−1
εJ(t), 0) is contained in D(B) for every

t ∈ [0, T ], as WT ↪→ C([0, T ],D(M1)), Λ2(τ) leaves D(M1) invariant, and X1 ↪→ D(B), see
Proposition 4.6. With (6.14), algebraic manipulations then lead to

e2,k(τ) = τ2(I − τ
2B)−1[1

2M −MΛ2(τ) + τ
2BMΛ2(τ)

]
(−1

εJ(tk), 0).

Proposition 4.6 and (6.13) then imply

‖e2,k(τ)‖+ ‖(I + τ
2B)e2,k(τ)‖ ≤ Cτ2‖(−1

εJ, 0)‖WT
. (6.18)

4) To bound e3,k(τ) and Rk(τ), we employ the embedding of X1 into D(A) ∩ D(B), see
Proposition 4.6, as well as the contractivity of (etM )t≥0 in X1, see Proposition 5.1. We then
infer the inequalities

‖e3,k(τ)‖+ ‖(I + τ
2B)e3,k(τ)‖ ≤ Cτ‖(−1

εJ, 0)‖W 1,1([tk,tk+1],X1), (6.19)
‖Rk(τ)‖+ ‖(I + τ

2B)Rk(τ)‖ ≤ Cτ‖(−1
εJ, 0)‖W 1,1([tk,tk+1],X1). (6.20)

5) The stated bound on the global error is now obtained in the standard way from the above
results for the local error and the stability of scheme (6.3). Using the Lady Winderemere’s fan
argument, we first derive the global error formula

wn − w(tn) =
n−1∑
k=0

[
(I − τ

2B)−1(I + τ
2A)(I − τ

2A)−1(I + τ
2B)

]n−1−k

·
(
Tτ,k+1w(tk)− w(tk+1)

)
.

We next combine (6.16)–(6.20) with the stability statement in Lemma 6.2. Abbreviating (I +
τ
2L)(I − τ

2L)−1 by γτ (L) for L ∈ {A,B}, we conclude

‖wn − w(tn)‖ ≤
n−2∑
k=0
‖(I − τ

2B)−1‖‖
(
γτ (A)γτ (B)

)n−2−k
γτ (A)‖

· ‖(I + τ
2B)(Tτ,k+1w(tk)− w(tk+1))‖+ ‖Tτ,nw(tn−1)− w(tn)‖

≤ C
n−1∑
k=0

(
τ2‖w(tk)‖D(M2)∩X0 + τ2‖(−1

εJ, 0)‖WT
+ τ‖(−1

εJ, 0)‖W 1,1([tk,tk+1],X1)
)

≤ CτT
(
‖w0‖D(M1) + ‖(−1

εJ, 0)‖WT

)
.

For the last estimate we employ Corollary 5.2 and the relation nτ ≤ T . �

The data that support the findings of this article are available in [55]. The author wishes to express
his appreciation for the valuable comments of the anonymous expert. The comments led to a significant
improvement of this preprint.
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