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Abstract

Solving the nonlinear Dirac equation in the nonrelativistic limit regime numerically
is difficult, because the solution oscillates in time with frequency of O

�
"
�2
�
, where

0 < " ⌧ 1 is inversely proportional to the speed of light. It was shown in [7],
however, that such solutions can be approximated up to an error of O

�
"
2
�

by solving
the semi-nonrelativistic limit system, which is a non-oscillatory problem. For this
system, we construct a two-step method, called the exponential explicit midpoint rule,
and prove second-order convergence of the semi-discretization in time. Furthermore,
we construct a benchmark method based on standard techniques and compare the
efficiency of both methods. Numerical experiments show that the new integrator
reduces the computational costs per time step to 40% and within a given runtime
improves the accuracy by a factor of six.

Key words: nonlinear Dirac equation, time integration, error bounds, nonrelativistic
limit regime

AMS subject classifications: 35Q41, 65M12, 65M15, 81Q05, 65M70

1 Introduction

The Dirac equation describes the relativistic motion of spin-1/2 particles such as, e.g.,
electrons, positrons, protons, neutrons, and quarks, under the influence of external elec-
tromagnetic fields. Since its derivation by Dirac in [10], it has become one of the corner-
stones of relativistic quantum mechanics; cf. [27]. Nonlinear versions of the Dirac equation
have been proposed to model self-interaction of particles and other phenomena; see, e.g.,
[11, 23, 26, 28]. In the nonrelativistic limit regime, the Dirac equation involves a small
parameter 0 < "⌧ 1 which is inversely proportional to the speed of light, and non-trivial
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solutions oscillate in time with frequency of O
�
"
�2
�
. Using traditional numerical meth-

ods to approximate such solutions is inefficient, because then the oscillations have to be
resolved with a tiny step size, which causes prohibitively large computational costs; cf. [2].
Hence, constructing and analyzing numerical methods for the nonlinear Dirac equation in
the nonrelativistic limit regime is a considerable challenge.

For the special case that no magnetic potential is present, it was shown in [3] that the
classical Lie-Trotter and Strang splitting with step size ⌧ have an error of O

�
⌧
1/2
�
, but

uniformly in ". For non-resonant step sizes, the accuracy improves to O(⌧) for Lie-Trotter
and O

�
⌧
3/2
�

for the Strang splitting. For the general case (with magnetic potential), uni-
formly accurate methods have been proposed and analyzed in [5, 8, 18]. Under certain
assumptions, the error of the time discretization with the multiscale time integrator pseu-

dospectral method from [5] is bounded by a constant times min{⌧2 + "
2
,
⌧
2

"2
}, where ⌧ is

the step size. This yields second-order convergence if ⌧ � " or ⌧ ⌧ " and, what is more
important, first-order convergence uniformly in ". The nested Picard iterative integrator

constructed in [8] converges even with order two in time and uniformly in ". However, the
correct implementation of both methods is not easy, because they are based on compli-
cated expansions and involve a plethora of terms. A different approach was proposed in
[18] in one space dimension. The idea is to consider an augmented problem where the slow
and fast time scales are distinguished. A formal Chapman-Enskog expansion is used to
construct initial data for the augmented problem such that the corresponding solution has
three uniformly bounded time derivatives, which paves the way for the construction of a
uniformly accurate second-order scheme. However, the price to pay is that the augmented
problem involves one additional dimension representing the fast time scale, which increases
the numerical work significantly.

The nonrelativistic limit of the nonlinear Dirac equation has also been intensively stud-
ied in analysis; cf. [7, 20, 21, 22, 24]. It was shown that the solution  "(t, x) 2 C4 can be
approximated by

 
"(t, x) = e

�it�/"2
'(t, x) +O(") (1.1)

where � = diag(1, 1,�1,�1) 2 R4⇥4 is a diagonal matrix, and where ' is the solution
of a nonlinear Schrödinger equation which does not depend on " and is thus easier to
approximate numerically. A precise formulation of this result and its proof are given in [7,
Theorem 2.3]. The main result of [7], however, is that a better approximation

 
"(t, x) = e

�it/"2
'
+
" (t, x) + e

it/"2
'
�
" (t, x) +O

�
"
2
�

(1.2)

can be obtained, where '±
" are the solutions of two coupled semilinear PDEs called the

semi-nonrelativistic limit system; see [7, Theorem 2.2] or Theorem 2.3 below for details. In
contrast to the above-mentioned nonlinear Schrödinger equation, the semi-nonrelativistic
limit system does still involve the parameter ", but in contrast to the original problem,
the solution does not oscillate in time; cf. [7, Theorem 2.2]. Hence, (1.2) offers a way
to approximate the highly oscillatory solution of the nonlinear Dirac equation without
having to solve a highly oscillatory problem. Of course, one cannot expect the error of this
approximation to be smaller than O

�
"
2
�
, but in this work we assume that this accuracy is
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sufficient. If a higher accuracy is required, one has to use the uniformly accurate integrators
from [8, 18] with a step size ⌧ < ", which is computationally intense.

Solving the semi-nonrelativistic limit system numerically is much easier than solving
the nonlinear Dirac equation in the nonrelativistic limit regime, but it is not straightfor-
ward. For example, explicit Runge-Kutta suffer from severe CFL conditions, whereas fully
implicit methods come at the price of solving a large nonlinear system in every time step.
Constructing splitting methods1 in a straightforward way is not an option, either, due to
the particular structure of the semi-nonrelativistic limit system. These problems can be
avoided with exponential integrators. Such integrators are typically constructed by apply-
ing variation of constants on the interval [tn, tn+1] (where tn = n⌧ are the times where
numerical approximations are supposed to be computed) and approximating the convolu-
tion integral, e.g. by expanding the nonlinearity in such a way that the integral can be
solved analytically. The corresponding techniques are nowadays well-known in the context
of dispersive equations and in particular highly oscillatory problems. Because of the special
structure of the semi-nonrelativistic limit system, however, such a method requires many
forward and backward Fourier transforms per time step, which is the dominating factor in
the computational costs. In this paper, we propose a non-standard second-order exponen-
tial integrator. The idea is to apply variation of constants over the interval [tn�1, tn+1],
which simplifies the treatment of the nonlinearity a lot. This approach leads to a two-
step method which we call the exponential explicit midpoint rule. The new method is
time-symmetric, simpler to implement, and considerably more efficient than the standard
second-order exponential integrator.

In Section 2 we introduce the nonlinear Dirac equation in the nonrelativistic limit
regime and sketch the derivation of the semi-nonrelativistic limit system as presented
in [7]. Moreover, we specify our assumptions and quote a number of important results
from [7]. Time-integrators for the semi-nonrelativistic limit system are constructed in
Section 3. The first method is an exponential integrator which is based on well-known
techniques, and which is therefore considered as a benchmark method. The second method
is the exponential explicit midpoint rule. For this integrator we carry out a detailed error
analysis; cf. Theorem 3.7. In Section 4 we test the efficiency of both methods in a numerical
experiment. It turns out that our new method reduces the computational costs per time
step to about 40% and, within the same runtime as the benchmark method, improves the
accuracy by a factor of about 6. We explain the reason for these improvements.

1
In [17] a splitting method for approximating the function ' in (1.1) was proposed. Our goal, however,

is not to compute ' in (1.1), but '±
" in (1.2), because then an approximation of  "

up to O
�
"2
�

is feasible.
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2 Problem setting

2.1 Nonlinear Dirac equation in the nonrelativistic limit regime

We consider the nonlinear Dirac equation (NLDE)

@t 
"(t, x) = �

i

"2
T" 

"(t, x)� iW (t, x) "(t, x)� iF ( ") "(t, x),

 
"(0, x) =  0(x)

(2.1)

for x 2 R3 and t > 0. In (2.1),  " :=  
"(t, x) 2 C4 is the complex-valued vector wave

function with initial data  0 =  0(x) 2 C4. The parameter " > 0 is inversely proportional
to the speed of light and thus is very small in the nonrelativistic limit regime. Furthermore,
T" and W denote the free Dirac operator and the electromagnetic potential, respectively,
given by

T" = �i
3X

j=1

"↵j@j + �, W (t, x) = V (t, x)I4 �
3X

j=1

Aj(t, x)↵j ,

where V (t, x) 2 R is the electric scalar potential and A(t, x) = (A1(t, x), ..., A3(t, x))T is
the magnetic vector potential. The Dirac matrices

� =

✓
I2 0
0 �I2

◆
, ↵j =

✓
0 �j

�j 0

◆

are determined by the Pauli matrices

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
.

Finally, F is the nonlinearity given by F (v) = �(v⇤�v)� + � |v|
2
I4 for �, � 2 R, where

v
⇤ = v

T denotes the conjugate transpose and |v| =
p
v⇤v the Euclidean norm of a vector

v, respectively. This type of nonlinearity is motivated by numerous applications in physics
and describes self-interaction of Dirac fermions; see, e.g., [11, 23, 26, 28] and the references
in [2, 3, 5, 8, 18]. For simplicity, we assume that � = 0 henceforth, but all results and
proofs can be adapted to the the case � 6= 0.

Throughout this paper, we will use the following notation: kvk
Hm denotes the standard

Sobolev norm of a scalar-valued function v 2 H
m(R3), whilst for a C4-valued function

v = (v1, ..., v4) 2 (Hm(R3))4, we set

kvk
Hm =

q
kv1k

2
Hm + ...+ kv4k

2
Hm .

We will repeatedly use that for m � 2, the bilinear estimate

kvwk
Hm  C kvk

Hm kwk
Hm (2.2)
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holds for all v 2 H
m(R3) and w 2 H

m(R3) or w 2 (Hm(R3))4, and that

kv
⇤
wk

Hm  C kvk
Hm kwk

Hm (2.3)

holds for all v, w 2 (Hm(R3))4. In both cases the constant C depends only on m.
The following assumptions regarding the initial data and the potential functions will

be made.

Assumption 2.1. Let 0 < T0 < 1 be an arbitrary fixed time. For some m � 2, we

assume that

(A)  0 2
�
H

m+4(R3)
�4

,

(B) V,Aj 2 C
�
[0, T0], H

m+4(R3)
�
, j = 1, 2, 3,

(C) V,Aj 2 C
1
�
[0, T0], H

m+2(R3)
�
, j = 1, 2, 3,

(D) V,Aj 2 C
2
�
[0, T0], H

m(R3)
�
, j = 1, 2, 3.

The following theorem quoted from [7, Theorem 2.1] provides well-posedness of the
NLDE (2.1) and regularity of solutions.

Theorem 2.2. [7, Theorem 2.1] Under the assumptions (A) and (B), there is a time

T1 2 (0, T0] such that for any " 2 (0, 1], the NLDE (2.1) admits a unique solution

 
"
2 C

⇣
[0, T1], (H

m+4(R3))4
⌘
\ C

1
⇣
[0, T1], (H

m+3(R3))4
⌘

with uniform estimates

sup
"2(0,1]

sup
t2[0,T1]

k 
"(t, ·)k

Hm+4  C,

where C is independent of ".

The original formulation of this result in [7] is slightly more general and applies also to
the case where the initial data in (2.1) depend on " to some extent.

Solving (2.1) numerically is a challenging task, because typical solutions oscillate in time
with frequency of O

�
"
�2
�

due to the term �
i
"2
T" 

"(t, x) on the right-hand side. Applying
traditional time-integrators such as, e.g., Runge-Kutta or standard multistep methods is
inefficient, because such methods only achieve an acceptable accuracy if the ratio of the
step size and the highest frequency is small; see, e.g., [2]. One possibility to solve this
problem is to construct special integrators which do not suffer from such a severe step size
restriction. This has been done in [5, 8, 18], but the implementation of such methods is
quite involved. In this paper we pursue a different goal. In [7] it was rigorously shown that
in the limit "! 0 the solution of the nonlinear Dirac equation (2.1) can be approximated
up to O

�
"
2
�

by solving a non-oscillatory system of PDEs known as the semi-nonrelativistic
limit system; cf. (2.11) below. Since this accuracy is good enough in many applications,
our main goal is to construct a particularly efficient method for the semi-nonrelativistic
limit system. This is done in Section 3. Before that, we briefly outline the derivation of
the semi-nonrelativistic limit system given in [7].
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2.2 Transformed Dirac equation

In this and the next subsection we summarize the main results from [7].
By performing an eigenspace decomposition in Fourier space, the operator T" can be

decomposed as [4, Eq. (1.22)]

T" = ⇤"⇧
+
" � ⇤"⇧

�
" (2.4)

with the scalar operator ⇤" =
p
Id� "2� and the two projection operators ⇧±

" given by

⇧±
" =

1

2

⇣
Id± (Id� "

2�)�
1
2T"

⌘
.

The identities ⇧+
" +⇧�

" = Id, ⇧+
" ⇧

�
" = ⇧�

" ⇧
+
" = 0 and (⇧±

" )
2 = ⇧±

" can easily be checked;
cf. [7]. As a mapping from (Hm(R3))4 to (Hm(R3))4 the projectors ⇧±

" are uniformly
bounded w.r.t. "; cf. [4, Lemma 2.1]. The decomposition (2.4) allows us to filter out the
main part of the temporal oscillations in a solution  " of the NLDE (2.1). This is achieved
by considering the functions

�
±
" (t, x) := e

±it/"2⇧±
" [ "(t, x)] (2.5)

instead of  ". Substituting (2.5) into the NLDE (2.1) shows that �+" and �
�
" are the

solution of the two coupled PDEs

@t�
±
" = ⌥iD"�

±
" � i⇧±

"

h
W

⇣
�
±
" + e

±2it/"2
�
⌥
"

⌘i

� i�⇧±
"

h
g"(�

+
" ,�

�
" , t)

⇣
�
±
" + e

±2it/"2
�
⌥
"

⌘i

�
±
" (0) = ⇧±

" [ 0]

(2.6)

with the differential operator

D" =
1

"2
(⇤" � Id) =

1

"2

⇣p
Id� "2�� Id

⌘

and nonlinearity

g"(�
+
" ,�

�
" , t) =

���+"
��2 +

����"
��2 + e

2it/"2(�+" )
⇤
�
�
" + e

�2it/"2(��" )
⇤
�
+
" ,

cf. [7, Sect. 2.1]. From the solution �
±
" of (2.6) we can reconstruct the solution  

" of the
NLDE (2.1) by

 
"(t, x) = e

�it/"2
�
+
" (t, x) + e

it/"2
�
�
" (t, x). (2.7)

In Fourier space, application of D" to a function v corresponds to multiplication of the
Fourier transform of v at ⇠ 2 R3 with

�"(⇠) :=
1

"2

⇣p
1 + "2|⇠|2 � 1

⌘
=

|⇠|
2

p
1 + "2|⇠|2 + 1

2


0,

|⇠|
2

2

�
. (2.8)
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This yields the bound

kD"vkHn 
1

2
kvk

Hn+2 8 v 2 (Hn+2(R3))4, n 2 N0, (2.9)

which means that the operator

D" : (H
n+2(R3))4 ! (Hn(R3))4 (2.10)

is uniformly bounded w.r.t. " for all n 2 N0. Hence, the first time derivative of a solution
�
±
" is uniformly bounded w.r.t. ", which is not true for a solution  " of the NLDE due to the

factor 1/"2 on the right-hand side. In this sense (2.6) is better suited for numerical purposes
than the original form (2.1) of the NLDE. However, solving (2.6) with standard methods
still suffers from severe step size restrictions, because the solution of (2.6) still oscillates
with the same frequency as the original problem, albeit with smaller amplitude. In the
next subsection, these oscillations are completely removed at the cost of an approximation
error.

2.3 Semi-nonrelativistic limit system

Omitting the terms containing highly oscillatory exponential functions in (2.6) (including
those in the nonlinearity g) yields the semi-nonrelativistic limit system [7, Eq. (2.14)]

@t'
±
" = ⌥iD"'

±
" � i⇧±

"

⇥
W'

±
"

⇤
� i�⇧±

"

h⇣��'+
"

��2 +
��'�

"

��2
⌘
'
±
"

i

'
±
" (0) = ⇧±

" [ 0] .
(2.11)

Well-posedness of (2.11) and regularity of solutions of (2.11) has been shown in [7]. Fur-
thermore, the authors proved that solutions of (2.11) provide approximations to a solution
of the original Dirac equation (2.1):

Theorem 2.3. [7, Theorem 2.2] Under the assumptions (A) and (B), there is a time

T2 2 (0, T0] such that for any " 2 (0, 1], the semi-nonrelativistic limit system (2.11) admits

a unique solution

'
±
" 2 C

⇣
[0, T2],

�
H

m+4(R3)
�4⌘

\ C
1
⇣
[0, T2],

�
H

m+3(R3)
�4⌘

with uniform estimates

sup
"2(0,1]

sup
t2[0,T2]

��'±
"

��
Hm+4  C,

sup
"2(0,1]

sup
t2[0,T2]

��@t'±
"

��
Hm+2  C.

Moreover, '
±
" remain in the eigenspaces associated with ⇧±

" , respectively. The approxima-

tion error is bounded by

sup
t2[0,T ]

��� "
� e

�it/"2
'
+
" � e

it/"2
'
�
"

���
Hm+2

 C"
2 (2.12)
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with T = min{T1, T2}. If in addition assumption (C) holds, then

'
±
" 2 C

2
�
[0, T2], (H

m+2(R3))4
�

with sup
"2(0,1]

sup
t2[0,T2]

��@tt'±
"

��
Hm  C.

In [7] this theorem is formulated in a more general way which, however, exceeds our
demands.

The inequality (2.12) implies that a solution of the NLDE (2.1) can be approximated
in H

m+2 (and thus also in H
m) up to O

�
"
2
�

using a solution of the semi-nonrelativistic
limit system. In this paper, we consider the case where " is small enough such that this
approximation is satisfactory. Thus, instead of developing time-integrators for the NLDE
(2.1) or its transformed version (2.6), we can focus on the simpler semi-nonrelativistic
limit system (2.11). Solutions of (2.11) are not affected by oscillations, because there is
neither a factor "�2 on the right-hand side (in contrast to (2.1)) nor oscillating exponentials
(in contrast to (2.6)). The solution only depends on " because the projectors ⇧±

" and
the differential operator D" do, but in a non-critical way. In spite of these advantages,
solving (2.11) with standard methods is still not a good option. If explicit Runge-Kutta
or multistep methods are used, then the spatial discretization of the differential operator
D" causes severe CFL conditions, whereas a time step with an implicit method somewhat
costly due to the nonlinearity and the projectors ⇧±

" . Applying a splitting method to (2.11)
in a straightforward way is not feasible, because the sub-problems involving the projectors
⇧±

" cannot be propagated exactly or particularly efficiently. These disadvantages can be
avoided by exponential integrators. Two such methods are presented and compared in the
next section.

To increase readability, we define the function spaces

S
m

T := C([0, T ], (Hm+4(R3))4) \ C
1([0, T ], (Hm+2(R3))4)

\ C
2([0, T ], (Hm(R3))4).

Theorem 2.3 states that '±
" 2 S

m

T
with uniform bounds in ".

3 Time integration methods for the semi-nonrelativistic limit
system

Our goal now is to compute approximations '±
n ⇡ '

±
" (tn) of the solution of the semi-

nonrelativistic limit system at discrete times tn = n⌧ , where ⌧ > 0 is the step size. We
propose two exponential integrators which converge with order two in ⌧ . The first one is
constructed by applying variation of constants over the interval [tn, tn+1], approximating
the integrand in a suitable way and computing the resulting integrals exactly. This strategy
is, of course, not new, and the related techniques have been used for various types of PDEs,
in particular in the context of highly oscillatory problems. We consider this first method
only as a benchmark method, and for this reason we refrain from an extensive error analysis.
The main contribution of this paper is the second time-integrator. The crucial idea is to
use variation of constants over the time interval [tn�1, tn+1] instead of [tn, tn+1], which
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makes the approximation of the resulting integrals much easier. This leads to a novel
exponential two-step method called the exponential explicit midpoint rule (EEMR). This
time-integrator is time-symmetric, simple to implement, and considerably more efficient
than the benchmark method. We present a detailed error analysis for the EEMR and
explain the speed-up observed in numerical examples.

Notation. From now on we fix m � 2 and consider the time interval [0, T ] with 0 < T 

min{T1, T2}, where T1 and T2 are the numbers from Theorems 2.2 and 2.3, respectively. Let
⌧ 2 (0, T ) be the time step size and let tn = n⌧ , n = 0, 1, ..., bT/⌧c. To improve readability,
we omit the spatial variable x on the solution and the potential in the following. For a
function f" = f"(s), we write f" = O(sp) for some p 2 N0 to express that

kf"(s)kHm  Cs
p

for s ! 0 with some constant C which does not dependent on s and ".
From now on we assume that " is small but fixed. We can thus omit the index " in our

notation such that the semi-nonrelativistic limit system (2.11) reads

@t'
± = ⌥iD'±

� i⇧± ⇥
W'

±⇤
� i�⇧±

h⇣��'+
��2 +

��'���2
⌘
'
±
i

'
±(0) = ⇧± [ 0] .

(3.1)

All bounds presented below are uniformly in " in the sense that the constants do not
depend on ".

3.1 The benchmark method

Using variation of constants, we can express the solution '
± of the semi-nonrelativistic

limit system (3.1) at time tn + ⌧ as

'
±(tn + ⌧) = e

⌥i⌧D
'
±(tn)� iI±1 ('+

,'
�
, tn)� i�I±2 ('+

,'
�
, tn) (3.2)

with I
±
j

= I
±
j
('+

,'
�
, tn) given by

I
±
1 =

Z
⌧

0
e
⌥i(⌧�s)D⇧± ⇥

W (tn + s)'±(tn + s)
⇤
ds,

I
±
2 =

Z
⌧

0
e
⌥i(⌧�s)D⇧±

h⇣��'+(tn + s)
��2 +

��'�(tn + s)
��2
⌘
'
±(tn + s)

i
ds.

The operators e⌥i(⌧�s)D and ⇧± are both bounded in (Hm(R3))4. Thus, in order to obtain
a third-order approximation (in ⌧) to the integrals, we need a second-order approximation
(in s) to the integrands. Under assumption (D), W (tn + s) can be replaced by the Taylor
expansion

W (tn + s) = W (tn) + s@tW (tn) +O
�
s
2
�
. (3.3)
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Since the second time derivative of '± is bounded under assumptions (A) - (C), we can
also expand

'
±(tn + s) = '

±(tn) + s⇥±('+(tn),'
�(tn)) +O

�
s
2
�
, (3.4)

with

⇥± = ⇥±('+(tn),'
�(tn), tn) := @t'

±(tn)

being the first time derivative of '± at time tn. It is obtained by evaluating the right-hand
side of the PDE (3.1) at time tn:

⇥±('+(tn),'
�(tn), tn) =⌥ iD'±(tn)� i⇧± ⇥

W (tn)'
±(tn)

⇤

� i�⇧±
h⇣��'+(tn)

��2 +
��'�(tn)

��2
⌘
'
±(tn)

i
. (3.5)

Before we continue by inserting (3.3) and (3.4) into (3.2), let us quickly comment on an
alternative approach to construct a second-order approximation to '

±(tn + s). Using
variation of constants once again, but now over a time interval of length s, and fixing '±

as well as W at time tn inside the integrals yields

'
±(tn + s) = e

⌥isD
'
±(tn)� i

Z
s

0
e
⌥i(s�r)D⇧± ⇥

W (tn)'
±(tn)

⇤
dr

� i

Z
s

0
e
⌥i(s�r)D⇧±

h
�

⇣��'+(tn)
��2 +

��'�(tn)
��2
⌘
'
±(tn)

i
dr +O

�
s
2
�
. (3.6)

This approach does only rely on boundedness of the first time derivative of '± and thus
is, at first glance, feasible under lower regularity assumptions on the potential W and the
initial data. Unfortunately, inserting (3.6) into (3.2) leads to integrals which cannot be
computed analytically. In order to avoid this problem, we could use the formal approxi-
mations

e
⌥isD

'
±(tn) = '

±(tn)⌥ isD'±(tn) +O
�
s
2
�
,

Z
s

0
e
⌥i(s�r)D⇧± [v] dr = s⇧± [v] +O

�
s
2
�

which can be rigorously justified for '±
2
�
H

m+4(R3)
�4 and v 2

�
H

m+2(R3)
�4. Using

these approximations in (3.6), however, yields exactly the same second-order approximation
to '±(tn + s) as (3.4) together with (3.5).

Now we continue the construction of the benchmark method. Inserting (3.3) and (3.4)
into I

±
1 yields

I
±
1 ('+

,'
�
, tn) = bI±1 ('+(tn),'

�(tn), tn) +O
�
⌧
3
�
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where bI±1 = bI±1 ('+(tn),'�(tn), tn) is given by

bI±1 =

Z
⌧

0
e
⌥i(⌧�s)D⇧± ⇥

W (tn)'
±(tn)

⇤
ds

+

Z
⌧

0
se

⌥i(⌧�s)D⇧± ⇥
W (tn)⇥

± + @tW (tn)'
±(tn)

⇤
ds

=⌧p1(⌥i⌧D)⇧± ⇥
W (tn)'

±(tn)
⇤

+ ⌧
2
p2(⌥i⌧D)⇧± ⇥

W (tn)⇥
± + @tW (tn)'

±(tn)
⇤
.

The functions p1 and p2 are defined by

p1(z) =

Z 1

0
e
(1�✓)z

d✓, p2(z) =

Z 1

0
✓e

(1�✓)z
d✓, z 2 C, (3.7)

cf. [12, Eq. (2.10) and (2.11)]. They can be computed as

p1(z) =

(
e
z�1
z

for z 6= 0,

1 for z = 0
and p2(z) =

(
e
z�z�1
z2

for z 6= 0,
1
2 for z = 0.

When inserting (3.4) into I
±
2 , we can additionally drop all O

�
s
2
�
-terms in the integrand

that arise due to the nonlinearity. Overall, we obtain

I
±
2 ('+

,'
�
, tn) = bI±2 ('+(tn),'

�(tn), tn) +O
�
⌧
3
�

where bI±2 = bI±2 ('+(tn),'�(tn), tn) is given by

bI±2 =

Z
⌧

0
e
⌥i(⌧�s)D⇧± ⇥

⇣± + s⇣
0
±
⇤
ds

= ⌧p1 (⌥i⌧D)⇧± [⇣±] + ⌧
2
p2 (⌥i⌧D)⇧± ⇥

⇣
0
±
⇤

with ⇣± = ⇣± ('+(tn),'�(tn), tn) and ⇣ 0± = ⇣
0
± ('+(tn),'�(tn), tn) defined by

⇣± =
⇣��'+(tn)

��2 +
��'�(tn)

��2
⌘
'
±(tn)

⇣
0
± =

⇣��'+(tn)
��2 +

��'�(tn)
��2
⌘
⇥±

+ 2Re
⇣
(⇥+)⇤'+(tn) + (⇥�)⇤'�(tn)

⌘
'
±(tn)

and ⇥± from (3.5). A third-order approximation to '
±(tn + ⌧) is obtained by simply

replacing the integrals I
±
1 and I

±
2 in (3.2) by their approximations bI±1 and bI±2 :

'
±(tn + ⌧) = e

⌥i⌧D
'
±(tn)� ibI±1 ('+(tn),'

�(tn), tn)

� i�bI±2 ('+(tn),'
�(tn), tn) +O

�
⌧
3
�
. (3.8)

This approximation suggests a numerical method with local error of order O
�
⌧
3
�

which,
however, would not be stable. The reason for this instability is the term ⌥iD'±(tn)
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which appears in ⇥±, cf. (3.5), and thus also in ⇣
0
±. A bound for the norm of D that is

independent of " can only be established when interpreting D as mapping from H
m+2 to

H
m as in (2.10). Hence, if '±(tn) 2 H

m+2, then in general ⇥± and thus ⇣ 0±, bI±1 and bI±2 are
only bounded in H

m, which would not be sufficient for stability. This is why we replace
D in ⇥± by a filtered version

eD(⌧) =
sin(⌧D)

⌧
. (3.9)

as, e.g., in [6, 8]. It is not difficult to show that for every ⌧ > 0, eD(⌧) is a bounded operator
from H

m to H
m with

�� eD(⌧)
�� 

1
⌧
, and that

��(D � eD(⌧))v
��
Hm 

⌧

2
kvk

Hm+4 .

for all v 2 (Hm+4(R3))4. Since Theorem 2.3 yields that '±
2 C

⇣
[0, T2],

�
H

m+4(R3)
�4⌘

under assumptions (A) and (B), it follows that replacing D by eD(⌧) in ⇥± and hence also in
⇣
0
± causes an error of O(⌧). But in I

±
1 and I

±
2 , the terms including ⇥± or ⇣ 0± are multiplied

by a factor ⌧2. Thus, substituting eD(⌧) for D in the right-hand side of (3.8) causes only
an additional error of O

�
⌧
3
�

and hence does not affect the overall approximation error.
All in all, this yields the numerical method

'
±
n+1 = �±

⌧ ('
+
n ,'

�
n , tn), n 2 N0, (3.10)

with the numerical flow

�±
⌧ ('

+
n ,'

�
n , tn) = e

⌥i⌧D
'
±
n � ieI±1 ('+

n ,'
�
n , tn)� i�eI±2 ('+

n ,'
�
n , tn). (3.11)

eI±1 and eI±2 correspond to bI±1 and bI±2 , respectively, but with D replaced by eD(⌧) in ⇥± and
⇣
0
±, i.e.

eI±1 ('+
n ,'

�
n , tn) = ⌧p1(⌥i⌧D)⇧± ⇥

W (tn)'
±
n

⇤

+ ⌧
2
p2(⌥i⌧D)⇧±

h
W (tn)e⇥± + @tW (tn)'

±
n

i
,

eI±2 ('+
n ,'

�
n , tn) = ⌧p1 (⌥i⌧D)⇧± [⇣±] + ⌧

2
p2 (⌥i⌧D)⇧±

h
f⇣ 0±
i
,

with

⇣± = ⇣±
�
'
+
n ,'

�
n , tn

�
=
⇣��'+

n

��2 +
��'�

n

��2
⌘
'
±
n ,

e⇥± = e⇥±('+
n ,'

�
n , tn) = ⌥i eD(⌧)'±

n � i⇧± ⇥
W (tn)'

±
n + �⇣±

⇤
,

f⇣ 0± = f⇣ 0±('+
n ,'

�
n , tn) =

⇣��'+
n

��2 +
��'�

n

��2
⌘
e⇥± + 2Re

⇣
(e⇥+)⇤'+

n + (e⇥�)⇤'�
n

⌘
'
±
n .

For an efficient implementation, the two integrals eI±1 and �eI±2 can be combined to

eI±('+
n ,'

�
n , tn) = eI±1 ('+

n ,'
�
n , tn) + �eI±2 ('+

n ,'
�
n , tn)

= ⌧p1 (⌥i⌧D)⇧± ⇥
W (tn)'

±
n + �⇣±

⇤

+ ⌧
2
p2 (⌥i⌧D)⇧±

h
W (tn)e⇥± + @tW (tn)'

±
n + �f⇣ 0±

i
.
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Under assumptions (A)–(D) the local error in H
m with m � 2 is bounded by C⌧

3 by
construction. With well-known techniques, it can be shown that under Assumptions (A)–
(D) there are constants ⌧0 > 0 and C such that for all step sizes ⌧ 2 (0, ⌧0] the bound

��'±
n � '

±(tn)
��
Hm  C⌧

2
, n = 1, 2, ..., bT/⌧c

for the global error holds. We omit the proof, because our focus is not on the benchmark
method.

Remark 3.1. The method (3.10)-(3.11) is certainly not new. We have described the con-

struction only for the convenience of the reader and in order to keep the paper self-contained.

In fact, (3.10)-(3.11) coincides with a “part” of the multiscale method for the NLDE (2.1)
which has been proposed in [5]. The idea is, roughly speaking, to make the ansatz

 
"(t, x) = e

�it/"2
'
+(t, x) + e

it/"2
'
�(t, x) + r(t, x),

i.e. to decompose the solution of (2.1) into the part provided by the semi-nonrelativistic

limit system plus a rest r(t, x) which, according to (2.12), is only O
�
"
2
�
. Substituting this

ansatz into the NLDE and replacing @t'
±

by (3.1) yields a PDE for r(t, x) with a rather

complicated right-hand side. Then, a numerical method for '
±

and r is constructed in [5].

Within this method the part which approximates '
±

is almost identical to what we call the

benchmark method. The only differences are that instead of (3.9) a different filter is used

in [5], and that the authors consider the full discretization in time and space.

Remark 3.2. In this work we only consider time discretizations. For a full discretiza-

tion in time and space on the torus, the benchmark method (3.10)-(3.11) can be combined

with a Fourier pseudospectral method, such that '
±
n is approximated by a trigonometric

polynomial. All operators involving spatial derivatives (which includes the projectors ⇧±
)

are applied in Fourier space, whereas pointwise multiplications of functions such as, e.g.,

W (tn)'±
n or W (tn)e⇥±

correspond to entry-wise multiplications of vectors. In order to com-

pute all terms required for one time step, the fast Fourier transform (FFT) or its inverse

has to be applied quite a number of times, and in spite of the efficiency of the FFT, this

causes the dominating part of the numerical work.

3.2 Explicit exponential midpoint rule

We will now propose and analyze a new exponential integrator which converges with or-
der two under the same regularity assumptions as the benchmark method, but which is
conceptually simpler, easier to implement and significantly faster. The new integrator is
time-symmetric, in contrast to the benchmark method. For time-dependent potentials, the
new method does not require evaluations of @tW , which is convenient in situations where
no explicit formula for W (t, x) is available.

3.2.1 Construction

To construct a simple two-step method, we again use variation of constants to express the
solution '

± of the semi-nonrelativistic limit system at time tn + ⌧ , but now over a time
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interval of length 2⌧ . This yields

'
±(tn + ⌧) = e

⌥2i⌧D
'
±(tn � ⌧)� iI±1 ('+

,'
�
, tn)� i�I±2 ('+

,'
�
, tn) (3.12)

with I
±
1 = I

±
1 ('+

,'
�
, tn), I±2 = I

±
2 ('+

,'
�
, tn) given by2

I
±
1 =

Z
⌧

�⌧

e
⌥i(⌧�s)D⇧± ⇥

W (tn + s)'±(tn + s)
⇤
ds,

I
±
2 =

Z
⌧

�⌧

e
⌥i(⌧�s)D⇧±

h⇣��'+(tn + s)
��2 +

��'�(tn + s)
��2
⌘
'
±(tn + s)

i
ds.

Under the assumptions (A)–(C), we know that '±
2 S

m

T
with uniformly bounded (w.r.t.

") derivatives according to Theorem 2.3. If additionally assumption (D) is fulfilled, then
according to the bilinear estimates (2.2) and (2.3) the same holds for the functions

⇧± ⇥
W'

±⇤ and �⇧±
h⇣��'+

��2 +
��'���2

⌘
'
±
i

which appear in the integrands of I±1 and I
±
2 . The following lemma confirms that for a

function v 2 S
m

T
, a third-order approximation to integrals of the form

R
⌧

�⌧
e
⌥i(⌧�s)D

v(tn +
s) ds is obtained by fixing v at the midpoint tn.

Lemma 3.3. Let v 2 S
m

T
and ⌧ 2 (0, T ). Then

����
Z

⌧

�⌧

e
⌥i(⌧�s)D

v(tn + s) ds�

Z
⌧

�⌧

e
⌥i(⌧�s)D

v(tn) ds

����
Hm

 C⌧
3

for some constant C that only depends on k@tvkHm+2 and k@ttvkHm .

Proof. Since v is twice continuously differentiable, Taylor’s theorem yields

v(tn + s) = v(tn) + s@tv(tn) +

Z
s

0
(s� r)@ttv(tn + r) dr, s 2 R.

Thus,
Z

⌧

�⌧

e
⌥i(⌧�s)D

v(tn + s) ds =

Z
⌧

�⌧

e
⌥i(⌧�s)D

v(tn) ds+R1(v, tn, ⌧) +R2(v, tn, ⌧)

with the remainders

R1(v, tn, ⌧) =

Z
⌧

�⌧

se
⌥i(⌧�s)D

@tv(tn) ds,

R2(v, tn, ⌧) =

Z
⌧

�⌧

e
⌥i(⌧�s)D

Z
s

0
(s� r)@ttv(tn + r) dr ds.

2
Note that I±1 and I±2 are different from the integral terms which were denoted with I±1 and I±2 in the

previous section. Many other objects which appeared in the previous section such as, e.g., bI±1 , bI±2 , �±
⌧ , �⌧

etc., will be re-defined in a different way in this section.
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For R2, we can derive the bound

kR2(v, tn, ⌧)kHm 

Z
⌧

�⌧

����
Z

s

0
s� r dr

���� ds max
r2[�⌧,⌧ ]

k@ttv(tn + r)k
Hm

=
⌧
3

3
max

r2[�⌧,⌧ ]
k@ttv(tn + r)k

Hm  C⌧
3
. (3.13)

We analyze the norm of R1 in Fourier space. Recall that application of D corresponds to
multiplication with �"(⇠) in Fourier space, cf. (2.8). This yields

kR1(v, tn, ⌧)k
2
Hm =

Z

R3
(1 + |⇠|

2)m
����
Z

⌧

�⌧

se
⌥i(⌧�s)�"(⇠) ds

����
2 ��� \(@tv(tn))(⇠)

���
2
d⇠

=

Z

R3
(1 + |⇠|

2)m
����
Z

⌧

�⌧

se
±is�"(⇠) ds

����
2 ��� \(@tv(tn))(⇠)

���
2
d⇠.

Using e
±is�"(⇠) = 1± is�"(⇠) p1(±is�"(⇠)) and |p1(ix)|  1 8x 2 R, we have

����
Z

⌧

�⌧

se
±is�"(⇠) ds

���� 
����
Z

⌧

�⌧

s ds

����+
����
Z

⌧

�⌧

s
2
�"(⇠)p1(±is�"(⇠)) ds

����

 0 +
2⌧3

3
|�"(⇠)| 

⌧
3

3
|⇠|

2
,

where we used the bound (2.8) on �"(⇠) in the last step. Overall, we have

kR1(v, tn, ⌧)k
2
Hm 

Z

R3
(1 + |⇠|

2)m
✓
⌧
3

3
|⇠|

2

◆2 ��� \(@tv(tn))(⇠)
���
2
d⇠



✓
⌧
3

3

◆2

k@tv(tn)k
2
Hm+2 . (3.14)

Since v 2 S
m

T
, the assertion follows from (3.13) and (3.14).

After fixing v at the midpoint as in the previous lemma the remaining integral can be
computed as

Z
⌧

�⌧

e
⌥i(⌧�s)D

v(tn) ds = 2⌧ p1(⌥2i⌧D)v(tn)

with p1 from (3.7). Applying the lemma to the integrals I
±
1 and I

±
2 in (3.12) thus yields

'
±(tn + ⌧) = e

⌥2i⌧D
'
±(tn � ⌧)� ibI±1 � i�bI±2 +O

�
⌧
3
�

with bI±1 = bI±1 ('+(tn),'�(tn), tn) and bI±2 = bI±2 ('+(tn),'�(tn)) given by

bI±1 ('+(tn),'
�(tn), tn) = 2⌧p1(⌥2i⌧D)⇧± ⇥

W (tn)'
±(tn)

⇤
, (3.15)

bI±2 ('+(tn),'
�(tn)) = 2⌧p1(⌥2i⌧D)⇧±

h⇣��'+(tn)
��2 +

��'�(tn)
��2
⌘
'
±(tn)

i
. (3.16)
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Omitting the O
�
⌧
3
�
-terms and replacing exact solutions with approximations '±

n ⇡ '
±(tn)

leads to the integrator

'
±
n+1 = �±

⌧

�
'
+
n ,'

�
n ,'

+
n�1,'

�
n�1, tn

�
, n 2 N (3.17)

with the numerical flow

�±
⌧

�
'
+
n ,'

�
n ,'

+
n�1,'

�
n�1, tn

�
= e

⌥2i⌧D
'
±
n�1 � ibI±1 ('+

n ,'
�
n , tn)� i�bI±2 ('+

n ,'
�
n ). (3.18)

For an efficient implementation, we can again combine the two integrals bI±1 and �bI±2 to

bI±('+
n ,'

�
n , tn) = bI±1 ('+

n ,'
�
n , tn) + �bI±2 ('+

n ,'
�
n )

= 2⌧p1 (⌥2i⌧D)⇧±
h
W (tn)'

±
n + �

⇣��'+
n

��2 +
��'�

n

��2
⌘
'
±
n

i
.

When using a Fourier pseudospectral method for space discretization on the torus, only
one FFT per timestep is required in the computation of bI± before being able to apply
the operators p1 (⌥2i⌧D)⇧±. If the approximations obtained in the two previous steps
are saved in physical as well as in Fourier space, only one inverse FFT is necessary for
retransforming the result of (3.17)-(3.18) into physical space.

We call this method the explicit exponential midpoint rule (EEMR), because it can be
regarded as the exponential counterpart of the classical explicit midpoint rule. Since (3.17)-
(3.18) is a two-step method, the first approximation '±

1 ⇡ '
±(t1) has to be computed with

a starting step. Only an accuracy of O
�
⌧
2
�

is required for '±
1 , and this can be achieved

easily by using variation of constants over a time span of length ⌧ as in the benchmark
method and then approximating the integrals via the rectangle rule. After omitting the
O
�
⌧
2
�
-terms and replacing '±(t1) with '±

1 we obtain

'
±
1 = e

⌥i⌧D
'
±
0 � i⌧e⌥i⌧D⇧±

h⇣
W + �

⇣��'±
0

��2 +
��'±

0

��2
⌘⌘

'
±
0

i
. (3.19)

To improve the accuracy of '±
1 , one can replace (3.19) by ⌘ 2 N such steps with step size

⌧/⌘.

Remark 3.4. The idea to construct exponential multistep methods by applying variation

of constants over the time-interval [(n� `)⌧, (n+1)⌧ ] for some ` � 1 has already been used

in [9, 14, 15], but the PDEs and the methods considered in these references are completely

different. The exponential multistep methods reviewed in [12, Section 2.5] are of Adams

type, which is different from what we propose here.

3.2.2 Error analysis

Our goal is to prove that the EEMR (3.17)-(3.19) is indeed second-order convergent under
the regularity assumptions (A)–(D), which are also required for the benchmark method.
For this purpose we reformulate the EEMR as a one-step method by introducing the vectors

u(t) =

0

BB@

'
+(t)

'
�(t)

'
+(t� ⌧)

'
�(t� ⌧)

1

CCA , un =

0

BB@

'
+
n

'
�
n

'
+
n�1

'
�
n�1

1

CCA , n 2 N.
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We then have un+1 = �⌧ (un, tn) for n 2 N with the numerical flow

�⌧ (un, tn) =

0

BB@

�+
⌧ ('

+
n ,'

�
n ,'

+
n�1,'

�
n�1, tn)

��
⌧ ('

+
n ,'

�
n ,'

+
n�1,'

�
n�1, tn)

'
+
n

'
�
n

1

CCA (3.20)

with �±
⌧ defined by (3.18). For vectors of the form v = (v1, ..., v4)T with four functions

v1, ..., v4 2 (Hm(R3))4, we define the norm

|||v|||
m

=
4X

j=1

kvjkHm .

The following bounds for the local error and the starting step are an immediate consequence
of the construction of the EEMR.

Lemma 3.5. (a) Local error: Under Assumptions (A)–(D) there is a constant CE1 such

that the inequality

|||u(tn + ⌧)� �⌧ (u(tn), tn)|||m  CE1⌧
3 (3.21)

holds for all ⌧ > 0 and all n = 1, 2 . . . , bT/⌧c.

(b) Starting step: Let '
±
0 = '

±(0) and let '
±
1 be computed with the starting step (3.19).

Under Assumptions (A)–(D) there is a constant CE2 such that the inequality

|||u(t1)� u1|||m  CE2⌧
2 (3.22)

holds for some constant CE2 .

Proof. By definition of u, �⌧ and |||·|||
m

we have

|||u(tn + ⌧)� �⌧ (u(tn), tn)|||m
=
��'+(tn + ⌧)� �+

⌧

�
'
+(tn),'

�(tn),'
+(tn � ⌧),'�(tn � ⌧), tn

���
Hm

+
��'�(tn + ⌧)� ��

⌧

�
'
+(tn),'

�(tn),'
+(tn � ⌧),'�(tn � ⌧), tn

���
Hm .

Since all approximations made during the construction of the method are O
�
⌧
3
�
, the bound

(3.21) follows. In a similar way, the bound for

|||u(t1)� u1|||m =
��'+(t1)� '

+
1

��
Hm +

��'�(t1)� '
�
1

��
Hm (3.23)

can be shown with standard arguments.

Next, we discuss stability. In order to simplify presentation, we will henceforth assume
that the electromagnetic potential W does not depend on time. In this case, the semi-non-
relativistic limit system (2.11) is autonomous, and as a consequence the numerical flows
�±
⌧ defined in (3.18) and �⌧ defined in (3.20) do not depend on t, either. This allows

us to omit the last variable in �±
⌧ and �⌧ , which makes the following equations easier to

read. We stress, however, that under Assumption (A)–(D) the following proofs could be
extended to a time-dependent W at the cost of a more involved notation.
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Lemma 3.6. Let W (t) = W be constant in time. Let v
±
`

2 (Hm(R3))4 and w
±
`

2

(Hm(R3))4 for ` 2 {0, 1} and set v = (v+1 , v
�
1 , v

+
0 , v

�
0 )

T
and w = (w+

1 , w
�
1 , w

+
0 , w

�
0 )

T
.

Under Assumptions (A)–(B) there is a constant CS such that the stability estimate

|||�⌧ (v)� �⌧ (w)|||m  (1 + CS⌧) |||v � w|||
m

(3.24)

holds for all ⌧ > 0. The constant CS depends on kWk
Hm ,

��v±1
��
Hm ,

��w±
1

��
Hm , but not on

⌧ .

Proof. It follows from (3.20) and (3.18) that

|||�⌧ (v)� �⌧ (w)|||m



��������

��������

��������

0

BB@

e
�2i⌧D �

v
+
0 � w

+
0

�

e
+2i⌧D �

v
�
0 � w

�
0

�

v
+
1 � w

+
1

v
�
1 � w

�
1

1

CCA

��������

��������

��������
m

+

��������

��������

��������

0

BB@

bI+1 (v+1 , v
�
1 )�

bI+1 (w+
1 , w

�
1 )

bI�1 (v+1 , v
�
1 )�

bI�1 (w+
1 , w

�
1 )

0
0

1

CCA

��������

��������

��������
m

+

��������

��������

��������

0

BB@

bI+2 (v+1 , v
�
1 )�

bI+2 (w+
1 , w

�
1 )

bI�2 (v+1 , v
�
1 )�

bI�2 (w+
1 , w

�
1 )

0
0

1

CCA

��������

��������

��������
m

. (3.25)

Since e
⌥2i⌧D is an isometry in H

m, the first term on the right-hand side equals |||v � w|||
m

.
Now we insert the definition (3.15) of bI±1 and use that p1(⌥2i⌧D) and the projectors ⇧±

are bounded operators in H
m. Applying the bilinear estimate (2.2) for the product with

the potential W yields the inequality
���bI±1 (v+1 , v

�
1 )�

bI±1 (w+
1 , w

�
1 )
���
Hm

 C⌧
��v±1 � w

±
1

��
Hm (3.26)

for some constant C which depends on kWk
Hm , but not on ⌧ .

Now we will prove such a bound for the term bI±2 containing the nonlinearity. The
bilinear estimates (2.2) and (2.3) imply the inequality

���
⇣��v+1

��2 +
��v�1
��2
⌘
v
±
1 �

⇣��w+
1

��2 +
��w�

1

��2
⌘
w

±
1

���
Hm

 C
���v+1 � w

+
1

��
Hm +

��v�1 � w
�
1

��
Hm

�
. (3.27)

with a constant C which depends on
��v±1

��
Hm and

��w±
1

��
Hm . Together with the arguments

mentioned above, we obtain
���bI±2 (v+1 , v

�
1 )�

bI±2 (w+
1 , w

�
1 )
���
Hm

 C⌧
���v+1 � w

+
1

��
Hm +

��v�1 � w
�
1

��
Hm

�
(3.28)

for some constant C which depends on
��v±1

��
Hm and

��w±
1

��
Hm . Combining (3.25), (3.26)

and (3.28) proves the assertion.

We are now in a position to prove second-order convergence for the EEMR.
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Theorem 3.7 (Global error of the EEMR).
Assume that assumptions (A) and (B) hold for some m � 2, and that W does not depend

on t. Let ⌧ > 0 be the step size and let '
±
n be the approximations obtained by (3.17) and

(3.19) with step size ⌧ and initial data '
±
0 = '

±(0) = ⇧± [ 0]. Then, there are constants

C and ⌧0 > 0 such that the global error bound

��'±
n � '

±(tn)
��
Hm  C⌧

2
, n = 1, 2, ..., bT/⌧c

holds for all ⌧ 2 (0, ⌧0].

Remark 3.8. Under the assumptions (A)–(D) the theorem remains true for a time-

dependent potential W = W (t).

Proof. Set �0
⌧ (v) = v and define �n

⌧ (v) = �⌧ (�n�1
⌧ (v)) recursively for 1 < n 2 N, such

that �n
⌧ (v) denotes the result of n steps of the EEMR in the one-step formulation with

initial data v.
In order to prove the global error bound, we combine the local error bounds (3.21)

and (3.22) with the stability estimate (3.24) in the classical construction known as Lady
Windermere’s fan. Using a telescopic sum, we have for n = 1, 2, ..., bT/⌧c

|||u(tn)� un|||m =
�������0

⌧ (u(tn))� �n�1
⌧ (u1)

������
m



n�2X

k=0

���
���
����k

⌧ (u(tn�k))� �k+1
⌧ (u(tn�k�1))

���
���
���
m

+
�������n�1

⌧ (u(t1))� �n�1
⌧ (u1)

������
m
.

At this point, we would like to control the term
���
���
����k

⌧ (u(tn�k))� �k+1
⌧ (u(tn�k�1))

���
���
���
m

=
���
���
����k

⌧ (u(tn�k))� �k

⌧

�
�⌧ (u(tn�k�1))

����
���
���
m

(3.29)

by applying the stability estimate (3.24) k times. A minor technical difficulty is the
fact that the constant CS in (3.24) depends on the H

m-norms of the two functions in-
volved, which in our situation are �j

⌧ (u(tn�k)) and �j+1
⌧ (u(tn�k�1)), respectively, with

j = 0, . . . , k�1. In order to obtain a corresponding bound for (3.29) with a constant which
does not depend on n, k or ⌧ , we need that there are constants ⌧0 and C such that

max
j,`=0,...,bT/⌧c
j+`bT/⌧c

�������j

⌧ (u(t`))
������

m
 C for all ⌧ 2 (0, ⌧0]. (3.30)

This estimate states, roughly speaking, that for a sufficiently small step size the numerical
approximations, starting from the exact solution at time t`, remain uniformly bounded
in H

m on the time interval [0, T ]. Such a bound can be shown by induction. Since the
procedure is essentially the same as, e.g., in [19], [25, Proof of Theorem 3.2] or [16, Section
8], we omit this part. Combining (3.30) with the stability estimate (3.24) yields under the
condition ⌧  ⌧0 that

ku(tn)� unkm 

n�2X

k=0

(1 + C?⌧)
k
ku(tn�k)� �⌧ (u(tn�k�1))km

+ (1 + C?⌧)
n�1

ku(t1)� u1km
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with a constant which only depends on kWk
Hm and on C from (3.30). Applying the

local error bound (3.21) as well as the bound (3.22) for the starting step and using that
(n� 1)⌧ = tn�1  T shows that

ku(tn)� unkm 

n�2X

k=0

✓
1 +

C?tn

n

◆
k

CE1⌧
3 +

✓
1 +

C?tn

n

◆
n�1

CE2⌧
2



n�2X

k=0

e
C?tnCE1⌧

3 + e
C?tnCE2⌧

2
 e

C?tn
�
tnCE1⌧

2 + CE2⌧
2
�

(T + 1)eC?TCE⌧
2

with CE = max{CE1 , CE2}. This implies that ku(tn)� unkm = O
�
⌧
2
�

for all n � 1 and
thus k'

±(tn)� '
±
n kHm = O

�
⌧
2
�
.

The EEMR for the semi-nonrelativistic limit system is thus indeed second-order accu-
rate. Both the solution and the numerical approximation still depend on " (see the remark
at the beginning of this section), but all bounds are uniform in ".

4 Numerical experiments

In this section, we present numerical results to illustrate our error analysis, and to compare
the efficiency of the EEMR and the benchmark method. For simplicity, we conduct our
experiments in one space dimension, x 2 R, where the NLDE can be reduced to the system

@t 
"(t, x) = �

i

"2
eT  "(t, x)� ifW (t, x) "(t, x)� i� eF ( ") "(t, x),

t > 0, x 2 R, for a two-component solution  
"(t, x) 2 C2 with initial data  

"(0, x) =
e 0(x) 2 C2 (see e.g. [2]). Here, the differential operator eT , the potential fW and the
nonlinearity eF are given by

eT = �i"�1@x + �3,
fW (t, x) = V (t, x)I2 �A1(t, x)�1, eF (v) = |v|

2
I2.

For simplicity, we omit the ˜ in the following, and we chose � = 1. The properties of
the semi-nonrelativistic limit system, the construction of the numerical methods presented
above as well as the obtained error results can be formulated for this reduced system
in exactly the same manner, with the sole difference being that m � 1 is sufficient in
Assumption 2.1.

As common practice [1, 2, 3, 13], we truncate the whole space problem to a bounded
interval ⌦ = [a, b] which is large enough such that the truncation error is negligible. We
impose periodic boundary conditions and thus replace all Sobolev spaces by

H
m

per(⌦) =

⇢
v =

X

k2Z
bvkei(

2⇡
b�a )x

���� kvkHm < 1

�
with kvk

2
Hm =

X

k2Z

 
1 +

����
2⇡

b� a
k

����
2
!

m

|bvk|2
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for the respective m 2 N. We discretize ⌦ through the grid points xj = (a + b)/2 + jh,
j = �M, ...,M �1 with mesh size h = (b�a)/2M for some M 2 N. All spatial derivatives
are then computed by Fourier pseudospectral techniques. For our experiments, we utilize
2M = 256 grid points in space. We use the data from [2, 8], i.e. we choose the interval
⌦ = [�16, 16], the initial data

 
0
1(x) = e

�x
2
/2
,  

0
2(x) = e

�(x�1)2/2
, x 2 ⌦

and the (time-independent) potential functions

V (t, x) =
1� x

1 + x2
, A1(t, x) =

(x+ 1)2

1 + x2
, x 2 ⌦, t � 0.

For all following error plots, we compute approximations to solutions at time tend = 1 using
the presented methods, and compare them to reference solutions computed via Matlab’s
ode45 routine using the same spatial grid and very small tolerances. The error is always
computed in the H

1-norm, approximated by

kvk
2
H1 ⇡

M�1X

k=�M

 
1 +

����
2⇡

b� a
k

����
2
!
|bvk|2 ,

for a function v 2 (H1
per(⌦))

2 and kvk
H1 =

q
kv+k

2
H1 + kv�k2

H1 for a vector v = (v+, v�)T

of two functions v
±
2 (H1

per(⌦))
2.

Performing various numerical experiments, we have observed that an even number of
time steps gives slightly better results for the two-step method. Therefore, in all following
plots, the step sizes are chosen such that the number of time steps tend/⌧ is even. The
quality of approximations after many time steps can be further improved by a very good
approximation to the solution at time t1. In the experiments below, we always use ⌘ = 3
substeps in the starting step (3.19) to obtain an approximation at time t1. Increasing ⌘
further did not improve the results significantly.

Accuracy. Figure 1 shows the global error of both methods in dependency of the step
size ⌧ in logarithmic axes. On the left-hand side, the approximations obtained by both
methods are compared to a reference solution '

± of the semi-nonrelativistic limit system
(3.1). The solid lines represent the benchmark method, the coloured dashed lines the
EEMR. Different values of " are depicted through different colours, but the six lines coincide
almost. The results confirm that both methods are second-order accurate in the step size
⌧ , and that the error constants do not depend on ". For a fixed step size ⌧ , both methods
yield approximations of nearly the same accuracy in this example. On the right-hand
side of Figure 1, the approximations are compared to a reference solution of the Dirac
equation (2.1). Here the numerical approximations '±

n are interpreted as approximations
to a solution �

± of the transformed Dirac equation (2.6). Then, according to (2.7) the
function

 
n := e

�itn/"2'
+
n + e

itn/"2'
�
n , n � 1,
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Figure 1: Global error of the numerical methods presented in section 3 at time tend = 1.
Left: In comparison to a reference solution '

± of the semi-nonrelativistic limit system
(3.1). Right: In comparison to a reference solution  " of the Dirac equation (2.1).

approximates a solution of the original Dirac equation (2.1). Since

k 
n
�  (tn)kH1 =

���e�itn/"2
�
'
+
n � �

+(tn)
�
+ e

itn/"2
�
'
�
n � �

�(tn)
����

H1


��'+

n � �
+(tn)

��
H1 +

��'�
n � �

�(tn)
��
H1 ,

the overall error is composed of two parts:

• the approximation error of the numerical methods in comparison to the exact solution
of the semi-nonrelativistic limit system, which is of order O(⌧2),

• the difference between solutions of the semi-nonrelativistic limit system and the trans-
formed NLDE, which, for a fixed time tend, is of order O("2).

The overall approximation error is thus of order O(⌧2) +O("2). Consequently, the O(⌧2)-
terms are dominating for large step sizes ⌧ > ", and we observe second-order convergence
w.r.t. ⌧ until ⌧ = " (this value is indicated by the vertical dashed-dotted lines). For ⌧ < "

however, the O("2)-terms are dominating and no further convergence is achieved when
the step size ⌧ is reduced. Thus, applying the two methods to the semi-nonrelativistic
limit system allows us to compute very accurate approximations to the highly oscillatory
solution of the original NLDE in the non-relativistic regime, where " is very small.

Efficiency. Whilst the experiments above suggest that both methods perform equally
well, they do not take into account the computational effort required for one time step in
each method. In the EEMR, we have symmetry of the integration interval of the integrals
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Figure 2: Global error of the numerical methods presented in section 3 at time tend = 1
for " = 0.01. Left: Error over computation time. Right: Error over number of required
Fourier and inverse Fourier transforms.

I
±
1 and I

±
2 in the variation of constants formula. This is why the required accuracy was

achieved by essentially only keeping the constant term of the Taylor expansions of the
integrands. In contrast to that, in the benchmark method, the linear terms of such Taylor
expansions had to be taken into account as well. Those terms include several pointwise
multiplications of space-dependent functions (with the potential W or with the functions
'
± itself) as well as applications of the projectors ⇧±. Whilst the former has to be done in

physical space, the latter can only be done in Fourier space. Consequently, computing those
linear terms requires additional (inverse) Fourier transforms, which are the dominating
operations in computational costs; cf. Remark 3.2. One time step of the benchmark method
is thus significantly more expensive than of the EEMR. In an efficient implementation, one
time step of the EEMR can be done using one Fourier and one inverse Fourier transform
(where we count one transformation of a function v = (v+, v�)T , v± 2 (H1

p (⌦))
2, into or

out of Fourier space as one transform). One time step of the benchmark method, however,
requires three Fourier and two inverse Fourier transforms. Hence, the computational costs
of the benchmark method is about 5

2 times larger than one time step of the EEMR.
Figure 2 shows the results of numerical experiments comparing the efficiency of both

methods. For the plot on the left hand side, both methods have been applied using dif-
ferent step sizes and their computation time has been measured. To lower the impact of
background processes, the average of multiple runs is taken and the different step sizes are
used in random order. For each method, a reference line has been added that fits best to
the measurement points. Comparing the constants of those lines, one can see that for a
given computation time, the error of the benchmark method is about six times larger than
the error of the EEMR. On the right hand side, the number of Fourier and inverse Fourier
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transforms is counted. Again, for a fixed number of Fourier transforms, the error of the
benchmark method is about six times larger than the error of the EEMR.

The reason for the factor six is the following. Let wj(Nj) be the numerical work
(measured in runtime or in number of FFTs) required for Nj steps with the benchmark
method (j = 1) or the EEMR (j = 2), respectively. For a given N we have w1(N) ⇡ 5

2cN

and w2(N) ⇡ cN with some constant c > 0. If we fix the numerical work w > 0 we can
thus perform N1 ⇡

2w
5c steps with the benchmark method and N2 ⇡

w

c
with the EEMR.

According to Figure 1 the error errj(Nj) of both methods is errj(Nj) ⇡ CN
�2
j

with the
same constant C for both methods. Hence, the errors for a fixed numerical work w are

err1(N1) ⇡ C

✓
5c

2w

◆2

and err2(N2) ⇡ C

⇣
c

w

⌘2
.

This implies that err1(N1) ⇡
25
4 err2(N2) ⇡ 6err2(N2).
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