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Abstract

The (generalized) Derivative Nonlinear Schrödinger (DNLS) equa-
tion can be derived as an envelope equation via multiple scaling per-
turbation analysis from dispersive wave systems. It occurs when the
cubic coefficient for the associated NLS equation vanishes for the spa-
tial wave number of the underlying slowly modulated wave packet. It
is the purpose of this paper to prove that the DNLS equation makes
correct predictions about the dynamics of a Klein-Gordon model with
a cubic nonlinearity. The proof is based on energy estimates and
normal form transformations. New difficulties occur due to a total
resonance and due to a second order resonance.

1 Introduction

The (generalized) Derivative Nonlinear Schrödinger (DNLS) equation

i∂TA = ν1∂
2
XA+ ν2A|A|2 + iν3|A|2∂XA+ iν4A

2∂XA+ ν5A|A|4, (1)

with T ≥ 0, X ∈ R, A(X,T ) ∈ C, and coefficients νj ∈ R for j = 1, . . . , 5, is
a canonical dispersive equation that can be obtained in a number of weakly
nonlinear scaling regimes. It has been derived for instance as a long wave
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limit equation from the 1D compressible MHD equations in the presence
of the Hall effect, cf. [Mj76, CLPS99, JLPS20]. Here, we are interested
in its appearance as envelope equation describing slow modulations in time
and space of an oscillating wave packet ei(k0x−ω0t). It takes the role of the
NLS equation if the cubic coefficient of the NLS equation vanishes for the
chosen wave number k0 of the underlying slowly modulated wave packet, cf.
Remark 1.3. Hence the DNLS equation describes a degenerated situation.
This situation appears for instance in the water wave problem, cf. [AS81],
for a curve in the two-dimensional parameter plane of surface tension and
basic wave number k0.

It is the purpose of this paper to answer the question whether the DNLS
approximation makes correct predictions about the dynamics of the origi-
nal dispersive system for which the DNLS equation has been derived as an
envelope equation in this sense. To our knowledge no such approximation re-
sult is documented in the existing literature for initial conditions in Sobolev
spaces. As a first step in this direction we consider a simple model equation
as original system, namely a nonlinear Klein Gordon equation with a cubic
nonlinearity

∂2t u = ∂2xu− u+ ϱ(∂x)u
3, (2)

where x ∈ R, t ∈ R, u(x, t) ∈ R, and

ϱ(ik) =
k2 − 1

k2 + 1
, resp. ϱ(∂x) = −(1− ∂2x)

−1(1 + ∂2x). (3)

In order to derive the DNLS equation we make the ansatz

u(x, t) ≈ ε1/2ψA(x, t) = ε1/2A(ε(x− cgt), ε
2t)ei(k0x−ω0t) + c.c., (4)

where c.c. denotes the complex conjugate, cg the linear group velocity, k0 = 1
the basic spatial wave number, and ω0 the basic temporal wave number.
Moreover, 0 < ε≪ 1 is a small perturbation parameter. See Figure 1.

Substitution of this ansatz into (2) and equating the coefficients in front of
ei(k0x−ω0t) to zero gives the linear dispersion relation ω2

0 = k20 + 1 at O(ε1/2)
and the linear group velocity cg = ω′(k0) = k0/ω0 at O(ε3/2). Using the
expansion

ϱ(ik) = ϱ(i+ iεK) =
(1 + εK)2 − 1

(1 + εK)2 + 1
= εK +O(ε2)
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Figure 1: The envelope (advancing with the linear group velocity cg) of the
oscillating wave packet (advancing with the phase velocity cp = ω0/k0) is
described by the amplitude A which solves the DNLS equation (1).

yields

ϱ(∂x)(3ε
3/2A|A|2ei(x−ω0t)) = −3iε5/2(∂X(A|A|2))ei(x−ω0t) +O(ε7/2),

and so at O(ε5/2) we find the DNLS equation

2iω0∂TA = (1− c2g)∂
2
XA− 3i∂X(A|A|2) (5)

which is a special case of the (generalized) DNLS equation (1). In particular,
there is no A|A|4 term in the DNLS equation due to our special choice of
nonlinearity in (2). It is the goal of this paper to prove that the DNLS
equation (5) makes correct predictions about the dynamics of our Klein-
Gordon model (2), i.e., to prove that the following approximation property
holds.

Theorem 1.1. Let sA ≥ 12 and A ∈ C([0, T0], H
sA) be a solution of the

DNLS equation (5). Then there exist ε0 > 0 and C > 0 such that for all
ε ∈ (0, ε0) we have solutions u of the Klein-Gordon model (2) such that

sup
t∈[0,T0/ε2]

sup
x∈R

∣∣∣u(x, t)− (ε1/2A(ε(x− cgt), ε
2t)ei(k0x−ω0t) + c.c.

)∣∣∣ ≤ Cε3/2.

Remark 1.2. The proof of Theorem 1.1 is a nontrivial task since solutions
of order O(ε1/2) have to be estimated on an O(ε−2)-time scale. Since we have
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a cubic nonlinearity a simple application of Gronwall’s inequality would only
give estimates on an O(ε−1)-time scale. In fact, such approximation results
should not be taken for granted. There are a number of counter examples
where formally derived envelope equations make wrong predictions about the
dynamics of the original systems, cf. [Sch95, SSZ15, HS20].

Remark 1.3. The classical Nonlinear Schrödinger (NLS) equation

i∂T Ã = ν1∂
2
XÃ+ ν̃2Ã|Ã|2, (6)

with coefficients ν1, ν̃2 ∈ R, can be derived for the description of dispersive
wave systems, such as the cubic Klein-Gordon equation

∂2t u = ∂2xu− u− u3,

with x, t, u(x, t) ∈ R, the water wave problem, or systems from nonlinear
optics. The ansatz for the derivation of the NLS equation is of the form

u(x, t) = εÃ(ε(x− cgt), ε
2t)ei(k0x−ω0t) + c.c.,

where cg is the linear group velocity, k0 the basic spatial wave number, ω0 the
basic temporal wave number, and where again 0 < ε ≪ 1 is a small pertur-
bation parameter. Various NLS approximation results have been established
in the last decades, cf. [Kal88, KSM92, TW12, Due21]. The DNLS equation
(1) appears if the cubic coefficient ν̃2 = ν̃2(k0) in (6) vanishes for the chosen
wave number k0.

Remark 1.4. The DNLS equation (5) is completely integrable and can be
solved through the inverse scattering method, cf. [KN78, JLPS20]. Local
existence and uniqueness of smooth solutions in Sobolev spaces Hs with
s > 3/2 was established in [TF80]. For extensions of this result to solu-
tions of lower regularity and global existence results see for instance [HO92,
Tak99, CKS+02, Wu15, WG17]. For u0 ∈ Hs, s < 1/2, the Cauchy problem
is ill-posed in the sense that uniform continuity with respect to the initial
conditions fails [Tak99].

Remark 1.5. The basic idea to close the gap between the trivial O(ε−1)-
and the natural O(ε−2)-time scale is to use normal form transformations.
By these near identity change of variables a number of cubic terms in the
nonlinearity can be transformed in O(u5)-terms. However, for our problem,
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resonances prevent the elimination of all cubic terms. In the equations for the
error R there is a total resonance, see below, but the terms which cannot be
eliminated due to this resonance (proportional to ε|A|2R) can be estimated
with simple energy estimates. The more serious difficulty comes from a
resonance at the wave numbers k = ±k0 = ±1. This resonance is not linear,
but of second order, and so the linear vanishing of the nonlinearity at these
wave numbers is not sufficient for the elimination of these terms (proportional
to εϱ(∂x)(A

2e2i(k0x−ω0t)R)). At the end of Section 2 it is outlined how to get
rid of this problem.

Remark 1.6. Recently, the validity of the NLS approximation for quasilinear
dispersive wave systems has attracted a lot of interest, cf. [WC17, DH18,
Due17, Due21, Hes22]. The most simple quasilinear example where a DNLS
equation can be derived is a quasilinear Klein Gordon model, given by

∂2t u = (∂2x − 1)u+ (∂2x + 1)u3 . (7)

The difficulty in handling quasilinear dispersive wave systems lies in the fact
that normal form transformations lose regularity. However, by a suitably
constructed energy these difficulties can be avoided. Therefore, we strongly
expect that the analysis made in [Hes22] about the validity of the NLS ap-
proximation transfers to (7) and the validity of the DNLS approximation.
This will be the topic of future research.

Remark 1.7. Why is (2) a good model for starting a validity theory for
the DNLS approximation? The problems with the total resonance and the
second order resonance occur for all non-trivial systems for which the DNLS
approximation can be derived. Quadratic terms which are not present in our
model can be completely eliminated by normal form transformations in Klein-
Gordon models. Therefore, we do not expect new difficulties coming from
these terms. We expect that the transfer of the present result to the water
wave problem, cf. [AS81], will be a combination of the approach presented
in this paper with the ones about the NLS approximation for the water
wave problem, cf. [TW12, DSW16, Due21]. New difficulties will be a more
complicated resonance structure and the quasilinearity of the water wave
problem.

Remark 1.8. Recently, in [HS22] we established a DNLS approximation
result for initial conditions of the DNLS equation in Gevrey spaces with a
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completely different method. The proof of [HS22] is based on a Cauchy-
Kowalevskaya like approach in so called modulational Sobolev spaces. This
approach allows us to weaken the non-resonance condition but has the disad-
vantages that analytic initial conditions are necessary and that the approxi-
mation time is T1/ε

2 with T1 possibly smaller than T0.

Notation. The Fourier transform of a function u ∈ L2(R,K), with
K = R or K = C is denoted by F(u)(k) = û(k) = 1

2π

∫
R u(x)e

−ikxdx.
Hs(R,K) is the space of functions from R into K, for which the norm
∥u∥Hs(R,K) = (

∫
R |û(k)|2(1 + |k|2)sdk)1/2 is finite. The space Lp

s(R,K) is

defined by u ∈ Lp
s(R,K) ⇔ uσs ∈ Lp(R,K), where σ(x) = (1+x2)1/2. Many,

possibly different, constants are denoted by the same symbol C if they can
be independently chosen of the small perturbation parameter 0 < ε≪ 1.

Acknowledgement. The work of Guido Schneider is partially supported
by the Deutsche Forschungsgemeinschaft DFG through the SFB 1173 ”Wave
phenomena” Project-ID 258734477.

2 Outline of the proof

It is the purpose of this section to present the underlying ideas of the proof
of Theorem 1.1. Our model problem is of the form

∂2t u = −ω2
opu− ωopρopu

3 , (8)

with pseudo differential operators ωop and ρop which are defined below. We
write (8) as a first order system

∂tu =− iωopv , (9)

∂tv =− iωopu− iρopu
3 .

Via the invertible transformation

V =

(
v−1

v1

)
=

1

2

(
1 1
1 −1

)(
u
v

)
(10)

one obtains the first order system

∂tV = ΛV +N(V, V, V ), (11)
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where ΛV stands for the linear terms for which the associated linear operator
Λ̂ is now in diagonal form in Fourier space. Moreover, N(V, V, V ) stands for
the nonlinear terms which can be written as a symmetric trilinear mapping.
In Fourier space this system is written as

∂tV̂ = Λ̂V̂ + N̂(V̂ , V̂ , V̂ ), (12)

where

Λ̂(k) =

(
−iω(k) 0

0 iω(k)

)
,

N̂(V̂ , V̂ , V̂ )(k, t) =
1

2
iρ(k)

(
−(v̂1 + v̂−1)

∗3

(v̂1 + v̂−1)
∗3

)
(k, t),

with

ω(k) = sign(k)
√
k2 + 1 and ρ(k) = −ϱ(ik)

ω(k)
,

where ϱ has been defined in (3) and where ·∗3 stands for the two times
convolution. By this definition of ω and ρ the components of the vector V
will be real-valued in physical space.

In order to estimate the error εβR that is made by a DNLS-approximation
ε1/2Ψ we write a solution V of (11) as sum of the approximation and the error,
i.e.,

V = ε1/2Ψ+ εβR (13)

for a β > 3/2. If R can be uniformly bounded independently of ε, our
theorem would follow. We find that the error function R satisfies

∂tR = ΛR + 3εN(Ψ,Ψ, R) +O(ε2). (14)

Hence, since Λ is a skew-symmetric operator, it remains to get rid of the
3εN(Ψ,Ψ, R)-term in order to uniformly bound the error function R on the
long O(ε−2)-time scale. We follow the existing literature about the justifica-
tion of envelope equations and try to eliminate this term by a near identity
change of variables, i.e.,

W = R + εM(Ψ,Ψ, R),

with M a suitably chosen trilinear mapping. An elimination is only possible
if a non-resonance condition is satisfied. In order to see which terms can be
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eliminated and which not, we split the approximation into a part ε1/2a1 which
is concentrated at the wave number k = k0 = 1 and into a part ε1/2a−1 which
is concentrated at the wave number k = −k0 = −1. Due to our definition of
ω the DNLS approximation is of the form

ε1/2Ψ =

(
ε1/2a1 + ε1/2a−1

0

)
+O(ε3/2),

cf. Section 3 for more details. For the subsequent explanations we concen-
trate on the first coordinate R̂−1 of the error function. We obtain a subsystem
of the form

∂tR̂−1(k, t) = −iωR̂−1(k, t) + ε
∑

j1,j2=±1

ρj1,j2,−1 · (âj1 ∗ âj2 ∗ R̂−1)(k, t) + . . . ,

where ∗ denotes convolution, and where the ρj1,j2,j3 = ρj1,j2,j3(k) are smooth
functions vanishing linearly at k = ±1. The non-resonance condition to
eliminate the lowest order part of a term ερj1,j2,j3 · (âj1 ∗ âj2 ∗ R̂j3)(k, t) can
be reduced to

ω(k)− ω(j1)− ω(j2) + j3ω(k − j1 − j2) ̸= 0,

using the fact that âj is strongly concentrated in an O(ε)-neighborhood of
the wave number k = j. See below or [SU17, §11.5]. The left-hand side of
this non-resonance condition appears in the denominator of the normal form
transformation.

Like for the Hopf bifurcation cubic terms cannot be eliminated if j1 = −j2
(and here j3 = −1 since j3 = 1 is not resonant). For this choice the left-hand
side of the non-resonance condition vanishes identically. Hence a term of the
form

ερ1,−1.−1 · (â1 ∗ â−1 ∗ R̂−1)(k, t)

cannot be eliminated at all. See also the fifth picture of Figure 2 and the
third picture of Figure 3. Fortunately, these remaining totally resonant terms
can be estimated by energy estimates.

There is another resonance at the wave numbers k = ±k0 = ±1 which
makes more trouble. For j1 = j2 =: j = ±1 and j3 = 1 we have

ω(j)− ω(j)− ω(j) + ω(−j) = 0.

The fact that the nonlinear terms vanish at this wave number, too, leads
to a zero in the nominator of the normal form transformation. One could
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have the hope that the two zeroes cancel but in fact the left-hand side of the
non-resonance condition vanishes quadratically. We have

ω(k)− 2ω(j)− ω(k − 2j) = 2ω′′(j)(k − j)2 +O(|k − j|3).

See also the second and sixth picture of Figure 2. Therefore, an elimination
of

ερj,j,−1 · (âj ∗ âj ∗ R̂−1)(k, t)

near the wave number k = j is not possible with an O(ε)-perturbation of the
identity.

However, by adding and subtracting irrelevant terms of order κO(ε2)
to and from the equations for the error, the quadratic singularity in the
denominator of the normal form transformation can be shifted away from
zero which turns out be sufficient for an elimination of these terms. In the
end we have a kernel in the normal form transformation proportional to
εik/(κε2 + k2) which, however, is only O(1) and not O(ε). Nevertheless, by
choosing κ = O(1) sufficiently large this normal form transformation is still
invertible. The drawback of the fact that this perturbation of identity is of
order O(1) is that in the equations for the error new terms of order O(ε)
are created. However, in the energy estimates these new terms have a kernel
proportional to (εik)2/(κε2 + k2) which is of order O(ε2). And so finally in
the equations for the error all terms can be controlled by energy estimates
or can be brought to order O(ε2) by a normal form transformation.

In addition to this plan, we construct a higher order DNLS approximation
and estimate the remaining residual terms in Section 3. This is necessary
for choosing β > 3/2. In Section 4, after analyzing the occurring resonances
we perform the normal form transformation for eliminating the non-resonant
terms. In Section 5 the final energy estimates will be provided.

3 The higher order DNLS approximation

The residual

Resu(u) = −∂2t u+ ∂2xu− u− (1− ∂2x)
−1(1 + ∂2x)u

3

contains all terms which do not cancel after inserting a DNLS approxima-
tion u = ε1/2Ψ into the equation (2). Hence, the smaller the residual, the
better the approximation ε1/2Ψ can be. In order to have a residual which is
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sufficiently small for our purposes, we construct an improved approximation
ε1/2Ψ which differs from our original DNLS approximation

ε1/2ψA(x, t) = ε1/2A(ε(x− cgt), ε
2t)ei(k0x−ω0t) + c.c.,

by a number of higher order terms. With E = ei(k0x−ω0t) we find that

Resu(ε
1/2ψA) = ε1/2(ω2

0 − k20 − 1)AE+ c.c.

+ε3/2(2iω0 − 2ick0)(∂XA)E+ c.c.

+ε5/2(−2iω0∂TA+ (1− c2g)∂
2
XA− 3i∂X(A|A|2))E+ c.c.

+ε3/2ϱ(3i)A3E3 + c.c.− ε5/2(∂2TA)E+ c.c.+O(ε7/2),

where the O(ε7/2)-terms come from a further expansion of ϱ. The first line
in the residual cancels due to the dispersion relation. The second line in the
residual cancels due to our choice of the linear group velocity cg. The third
line cancels since A is chosen to be a solution of the DNLS equation (5).

For the subsequent proof we can allow for residual terms of orderO(ε7/2+δ1)
for a δ1 > 0 in some Hs-space. In order to achieve such an estimate we have
to get rid of the lower order terms in the fourth line of the above residual.
In detail, by adding higher order terms to the original DNLS approximation
ε1/2ψA we construct an improved DNLS approximation ε1/2Ψ for (11), such
that the residual is of formal order O(ε5). Due to the scaling of the L2-norm
with respect to the scaling X = εx we lose an order ε−1/2 from the formal
order such that O(ε5) is the first integer order larger than the formal order
O(ε4+δ1).

i) Before we do so, we modify the original DNLS approximation ε1/2ψA

by replacing A in the definition of ε1/2ψA by

Ac

(
ε(· − cgt), ε

2t
)
= F−1

[
χ[−δ,δ](·)F

[
A
(
ε(· − cgt), ε

2t
)]
(·)
]
,

where χ[−δ,δ] is the characteristic function on the interval [−δ, δ] and δ ∈
(0, k0/20) is a fixed chosen constant that is independent of 0 < ε ≪ 1. Due
to the estimate

∥χ[−δ,δ]ε
−1f̂(ε−1·)− ε−1f̂(ε−1·)∥L2

m
≤ C(δ) εm+M−1/2∥f∥Hm+M , (15)

cf. [SU17, §11.5], and the fact that A ∈ C([0, T0], H
sA(R,C)) solves the

DNLS equation (5), we have that the error made by replacing A by Ac,
remains small, i.e.,

ε5/2
∥∥− 2iω0∂TAc + (1− c2g)∂

2
XAc − 3i∂X(Ac|Ac|2)

∥∥
L2 = O(ε5).

10



Since Ac only has a bounded support in Fourier space, the use of Ac in-
stead of A subsequently allows us to control the terms in the normal form
transformations more efficiently.

ii) The higher order DNLS approximation that we use for (11) is given
by

ε1/2Ψ = ε1/2(a1 + a−1)

(
1
0

)
+ ε3/2Ψq , (16)

where

a1(x, t) = Ac(ε(x− cgt), ε
2t)E , a−1(x, t) = Ac(ε(x− cgt), ε2t)E

−1 ,

and

ε3/2Ψq(x, t) =
∑

n=1,2,3,4

ε1/2+n

(
A1,n(ε(x− cgt), ε

2t)E+ c.c.
B1,n(ε(x− cgt), ε

2t)E+ c.c.

)
+
∑

n=0,1,2

ε5/2+n

(
A3,n(ε(x− cgt), ε

2t)E3 + c.c.
B3,n(ε(x− cgt), ε

2t)E3 + c.c.

)
+ ε9/2

(
A5,0(ε(x− cgt), ε

2t)E5 + c.c.
B5,0(ε(x− cgt), ε

2t)E5 + c.c.

)
,

with E, ω0 and cg as before. Since AcE has a small support in Fourier space
near the wave number k0 and since we have a polynomial nonlinearity, the
An

l and Bn
l in the end can be chosen such that the support of An

l E
l and Bn

l E
l

in Fourier space lies in a small neighborhood of the wave number lk0.
Equating the coefficients at ε5/2E in the first component of the residual

Resu(ε
1/2Ψ) to zero gives the DNLS equation for Ac, respectively A.

Equating the coefficients at ε5/2+nE or ε5/2+nE−1 in the first component
to zero gives that the A1,n and A−1,n are determined by solving linear, but
inhomogeneous, Schrödinger equations, in which the inhomogeneous terms
in the end only depend on Ac.

Equating the coefficients at ε1/2+nE or ε1/2+nE−1 in the second component
to zero gives that the B1,n and B−1,n are determined by solving linear, but
inhomogeneous, algebraic equations, in which the inhomogeneous terms in
the end only depend on Ac.

Equating the coefficients in front of ε3/2+n at the other Ej with j ̸∈
{−1, 1} to zero gives again linear algebraic equations for the Aj,n and Bj,n
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which can be explicitly solved with respect to Aj,n and Bj,n since the coeffi-
cients in front of the Aj,n and Bj,n do not vanish, i.e., because of

jω(k0)± ω(jk0) ̸= 0 for j ∈ {±3,±5} .

For more details we refer to literature about the classical NLS approximation.
iii) The properties of ε1/2Ψ which we need for the proof of the error

estimates are summarized in the the following lemma.

Lemma 3.1. Let sA ≥ 12 and A ∈ C([0, T0], H
sA(R,C)) be a solution of the

DNLS equation (5) with

sup
T∈[0,T0]

∥A∥HsA ≤ CA.

Then for all s ≥ 0 there exist CRes, CΨ, ε0 > 0 depending on CA such that for
all ε ∈ (0, ε0) the approximation ε1/2Ψ defined in (16) satisfies

sup
t∈[0,T0/ε2]

∥Resu(ε1/2Ψ)∥Hs ≤ CRes ε
5, (17)

sup
t∈[0,T0/ε2]

∥∥ε1/2Ψ− ε1/2ψA

(
1
0

)∥∥
C0

b

≤ CΨ ε
3/2, (18)

sup
t∈[0,T0/ε2]

(∥â1∥L1
s+1(R,C) + ∥â−1∥L1

s+1(R,C) + ∥Ψ̂q∥L1
s+1(R,C)) ≤ CΨ . (19)

Proof. Since the proofs of such estimates are documented in the existing
literature about the NLS approximation, cf. [SU17, §11], a number of times,
we refer to these papers and refrain from recalling the proof.

Remark 3.2. a) The bound (19) allows us to estimate

∥a1f∥Hs ≤ C∥a1∥Cs
b
∥f∥Hs ≤ C∥â1∥L1

s
∥f∥Hs ,

without loss of powers in ε as it would be the case if in this estimate ∥a1∥Cs
b

would be replaced by ∥a1∥Hs = ∥â1∥L2
s
, due to the scaling properties of the

L2-norm, namely ∥A(ε·)∥L2 = ε−1/2∥A(·)∥L2 .
b) Our construction of εΨ with a bounded support in Fourier space has

the additional consequence that the estimates (17) and (19) are true for all
s ≥ 0. First all estimates are shown in L2. Since all appearing terms have a
bounded support in Fourier space, we have the equivalence of the L2-norm
and each Hs-norm for these finitely many terms.

12



c) The necessary regularity sA ≥ 12 comes the fact that the equation
for A1,4 is solved in L2 with an inhomogeneity containing ∂3XA1,3, that the
equation for A1,3 is solved in H3 with an inhomogeneity containing ∂3XA1,2,
etc. This can be reduced to sA ≥ 6 since for our purposes only A1, A1,1,
and A1,2 are necessary. The regularity can be reduced further by arguments
which can be found in [SU17, §11]. However, since this is not the main goal
of this paper we refrain from optimizing the value of sA.

iv) In the following we prove that the improved approximation εΨ makes
correct predictions about the dynamics of the original system, i.e., error
estimates are established for the improved approximation εΨ. The bound
(18) and the triangle inequality then imply that these error estimates hold
for the original DNLS approximation εψA, too. Hence, Theorem 1.1 is a
direct consequence of the subsequent approximation result.

Theorem 3.3. Let β ∈ (3/2, 5/2). For sA ≥ 12 and all C1, T0 > 0 there
exist ε0, C2 > 0 such that for all solutions A ∈ C([0, T0], H

sA(R,C)) of the
DNLS equation (5) with

sup
T∈[0,T0]

∥A(·, T )∥HsA (R,C) ≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions

V ∈ C
(
[0, T0/ε

2],
(
H1(R,R)

)2)
of the diagonalized first order system (11) which satisfy

sup
t∈[0,T0/ε2]

∥V (·, t)− ε1/2Ψ(·, t)∥H1 ≤ C2ε
β.

Remark 3.4. The parameter β could be chosen arbitrarily large by adding
more and more higher order terms to the improved approximation ε1/2Ψ and
by choosing then sA sufficiently large.

Proof of Theorem 1.1: Sobolev’s embedding theorem H1 ⊂ C0
b and esti-
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mate (18) yield

sup
t∈[0,T0/ε2]

sup
x∈R

∣∣∣u− (ε1/2A(ε(x− cgt), ε
2t)ei(k0x−ω0t) + c.c.

)∣∣∣
≤ sup

t∈[0,T0/ε2]

∥∥∥V − ε1/2
(
ψA

0

)∥∥∥
C0

b

≤ sup
t∈[0,T0/ε2]

∥∥∥V − ε1/2Ψ
∥∥∥
C0

b

+ sup
t∈[0,T0/ε2]

∥ε1/2Ψ− ε1/2
(
ψA

0

)∥∥∥
C0

b

≤ O(ε3/2).

Thus, Theorem 1.1 is a direct consequence of Theorem 3.3.

4 The normal form transformations

In this section we compute the normal form transformations which would be
necessary to eliminate various cubic terms. Since the totally resonant terms
will be estimated with energy estimates, in the end we will not apply the
normal form transformations but include them subsequently in our energy.

In order to prove Theorem 3.3, we follow the outline presented in Section
2. The error

εβR = V − ε1/2Ψ , (20)

satisfies

∂tR = ΛR + εLc(R) + ε2Ls(R) + εβ+1/2Lr(R) + ε−βRes(ε1/2Ψ) (21)
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where

L̂c(R)(k, t) =
3

2
iρ(k)

(
−(â1 + â−1)

∗2 ∗ (R̂1 + R̂−1)

(â1 + â−1)
∗2 ∗ (R̂1 + R̂−1)

)
(k, t),

L̂s(R)(k, t) = 3iρ(k)

(
−(â1 + â−1) ∗ (Ψ̂q,1 + Ψ̂q,−1) ∗ (R̂1 + R̂−1)

(â1 + â−1) ∗ (Ψ̂q,1 + Ψ̂q,−1) ∗ (R̂1 + R̂−1)

)
(k, t)

+ε
3

2
iρ(k)

(
−(Ψ̂q,1 + Ψ̂q,−1)

∗2 ∗ (R̂1 + R̂−1)

(Ψ̂q,1 + Ψ̂q,−1)
∗2 ∗ (R̂1 + R̂−1)

)
(k, t),

L̂r(R)(k, t) =
3

2
iρ(k)

(
−(Ψ̂1 + Ψ̂−1) ∗ (R̂1 + R̂−1)

∗2

(Ψ̂1 + Ψ̂−1) ∗ (R̂1 + R̂−1)
∗2

)
(k, t)

+εβ−1/21

2
iρ(k)

(
−(R̂1 + R̂−1)

∗3

(R̂1 + R̂−1)
∗3

)
(k, t).

Herein, R̂ = (R̂−1, R̂1), and

ε1/2

(
Ψ̂−1

Ψ̂1

)
= ε1/2(â1 + â−1)

(
1
0

)
+ ε3/2

(
Ψ̂q,−1

Ψ̂q,1

)
.

Notation. We remind that the index j in Rj, Ψj, and Ψq,j denotes the
j-th coordinate, where in aj the index j denotes the wave number where this
part of the approximation is concentrated.

For β > 3/2 except of the first two terms all terms on the the right-hand
side of (21) are at least of order O(ε2). Since Λ is skew symmetric, the first
term ΛR makes no problem in estimating the error on the long O(ε−2)-time
scale. However, handling the second term εLc(R) is non-trivial. A simple
application of Gronwall’s inequality would only give estimates on an O(ε−1)-
time scale. The idea to close the gap between the trivial O(ε−1)- and the
natural O(ε−2)-time scale is to use so called normal form transformations.
As already said, by these near identity change of variables a number of cubic
terms in the nonlinearity can be transformed in terms of higher order.

4.1 Analysis of the non-resonance condition

It is well known that for the elimination of a term âj1 ∗ âj2 ∗Rj3 by a normal
form transformation from the equation for Rj the non-resonance condition

−jω(k)− ω(j1)− ω(j2) + j3ω(k − j1 − j2) ̸= 0 (22)
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has to be satisfied for all k ∈ R.

Remark 4.1. The non-resonance condition (22) with j1, j2 ∈ {−1, 1} is
obtained from an expression

−jω(k)− ω(k1)− ω(k2) + j3ω(k − k1 − k2) ̸= 0 (23)

for wave numbers k, k1, k2 ∈ R. Since a1 is concentrated in an O(ε)-neighbor-
hood of k = 1 and a−1 in an O(ε)-neighborhood of k = −1, in the end the
non-resonance condition (23) can be replaced by the non-resonance condition
(22). The error made by this replacement is of order O(ε)R such that finally
only additional O(ε2)R-terms occur in the equations for the error when going
from (23) to (22). This could be made rigorous for instance by applying the
subsequent Lemma 4.3. See also Section 5.

The graphical analysis of the non-resonance condition (22) can be found
in Figure 2 and Figure 3. Resonances correspond to zeroes in these figures.
So two kind of resonances occur.

i) For (j, j1, j2, j3) = (j, j1,−j1, j), we have a total resonance, i.e., the
left-hand side of (22) vanishes identically, and a normal form transfor-
mation is not possible. See the fifth picture of Figure 2 and the third
picture of Figure 3.

ii) For (j, j1, j2, j3) = (−1, j1, j1,−1) there is a resonance in k = j1, which
is not linear but of second order. Indeed, a Taylor expansion of the
non-resonance condition (22) for k near j1 shows

ω(k)− 2ω(j1)− ω(k − 2j1) = 2ω′′(j1)(k − j1)
2 +O(|k − j1|3).

See the second and sixth picture of Figure 2 and the explanations made
in Section 2.

4.2 The total resonance

We start with the total resonance and write (21) as

∂tRj = jiωRj + j
3

2
ε iρ
( ∑

j1,j2,j3∈{±1}

aj1aj2Rj3

)
+O(ε2) . (24)
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Figure 2: Plots of the left-hand sides of (22) depending on (−1, j1, j2, j3).
No resonances are present in the first, third, and fourth picture. Picture
five shows the total resonance. The second and the sixth picture show the
resonance at k = 1 and k = −1 with the second order touching.

It turns out that the totally resonant terms can be controlled by energy
estimates. For the evolution of the L2-energy of the error we find

∂t∥Rj∥2L2 = 2

∫
R
Rj∂tRj dx (25)

= 2j

∫
R
RjiωRj dx+ 3jε

∑
j1,j2,j3∈{±1}

∫
R
Rj iρ

(
aj1aj2Rj3

)
dx+O(ε2)

= 3jε
∑

j1,j2,j3∈{±1}

∫
R
Rj iρ

(
aj1aj2Rj3

)
dx+O(ε2) ,

using the skew symmetry of iω and the fact that Rj(x, t) ∈ R for j = ±1. By
taking a closer look at the last integrals, it turns out that they are of order
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y

Figure 3: Plots of the left-hand sides of (22) depending on (1, j1, j2, j3). The
third picture shows the total resonance. In all other pictures there is no
resonance.

O(ε2) for the totally resonant terms, i.e., for (j, j1, j2, j3) = (j, j1,−j1, j).
Hence, an elimination of the nonlinear terms corresponding to (j, j1, j2, j3) =
(j, j1,−j1, j) by a normal form transformation is not necessary.

Lemma 4.2. We have

|ε
∫
R
Rj iρ

(
aj1a−j1Rj

)
dx| ≤ Cε2∥Rj∥2L2 . (26)

Proof. The key ingredients of the proof are that iρ is a skew symmetric
operator and that ∂x(a1a−1) = ∂x(|Ac(ε·)|2) = O(ε). In detail, we get with
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Plancherel’s identity and the fact that aj1a−j1 is real-valued that

ε

∫
R
Rj iρ

(
aj1a−j1Rj

)
dx

=
ε

2

∫
R
Rj iρ

(
aj1a−j1Rj

)
dx− ε

2

∫
R
(iρRj)aj1a−j1Rj dx

=
ε

2

∫
R
Rj iρ

(
aj1a−j1Rj

)
dx− ε

2

∫
R
Rjaj1a−j1(iρRj) dx

= π
ε

2

∫
R

∫
R
i(ρ(k)− ρ(m)) R̂j(k)|̂Ac|2(

k −m

ε
)R̂j(m) dm dk .

Since ρ is Lipschitz-continuous we have |ρ(k)−ρ(m)| ≤ C|k−m| such that the
assertion follows by applying the subsequent Lemma 4.3 and using estimate
(19).

Lemma 4.3. Fix p ∈ R and n ∈ N. Assume that g ∈ Cn+1(R,C) has a
Fourier transform with a bounded support and that f ∈ Hs(R,C) for s ≥ 0.
Then ∥∥∥∫ (· − l − p)n ĝ

( · − ℓ− p

ε

)
f̂(ℓ) dℓ

∥∥∥
L2
s

≤ Cεn∥f∥Hs . (27)

Proof. See the calculations below [SU17, Lemma 11.5.4].

Remark 4.4. With the same argument we also have for all ℓ ∈ N0 that

ε

∫
R
(∂ℓxRj) ∂

ℓ
x(iρ

(
aj1a−j1Rj)

)
dx = O(ε2)∥Rj∥2Hℓ . (28)

4.3 The non-resonent terms

In order to get rid of the remaining terms of O(ε) in (21) which are not close
to the second order resonances, we use the normal form transform

Rj 7→ Wj := Rj + ε
∑

j1,j2,j3∈{±1}

Mj,j1,j2,j3(aj1 , aj2 , Rj3). (29)

In Section 4.2 we have already seen that we cannot eliminate the totally
resonant terms and so we set

Mj,j1,−j1,j = 0.
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Hence, in the following assume (j, j1, j2, j3) ̸= (j, j1,−j1, j). Since no further
resonances occur for (j, j1, j2, j3) ̸= (−1, j1, j1,−1), for these indices we set

M̂j,j1,j2,j3(aj1 , aj2 , Rj3)(k) (30)

=

∫
R
m̂j,j1,j2,j3(k)âj1(k −m)âj2(m− n)R̂j3(n) dn dm,

with

m̂j,j1,j2,j3(k) = −j 3
2

ρ(k)

−jω(k)− ω(j1)− ω(j2) + j3ω(k − j1 − j2)
. (31)

4.4 At the second order resonance

Hence it remains to get rid of the indices (j, j1, j2, j3) = (−1, j1, j1,−1), i.e.,
of the second order resonance terms. As already explained above the normal
form transformation would become singular when approaching the second
order resonance at the wave numbers j1 = ±1. Since ρ(k) = O(|k − j1|) for
k close to the wave numbers j1 = ±1 the normal form transformation would
possess a first order singularity at the wave numbers j1 = ±1.

We get rid of this problem by adding and subtracting both

κε2a1a1R−1 and κε2a−1a−1R−1

to the equation of R−1 with κ = O(1) for ε → 0 chosen subsequently suffi-
ciently large. In the second picture of Figure 2 by adding κε2a1a1R−1 we can
shift the second order resonance O(ε2)-away from the k-axis. The subtracted
counterpart −κε2a1a1R−1 is of order O(ε2) and therefore can be easily esti-
mated by Gronwall’s inequality. Hence, we set

M̂−1,1,1,−1(a1, a1, R−1)(k) (32)

=

∫
R
m̂−1,1,1,−1(k)â1(k −m)â1(m− n)R̂−1(n) dn dm,

with

m̂−1,1,1,−1(k) =
3

2

ρ(k)

ω(k)− ω(1)− ω(1)− ω(k − 2) + κε2
. (33)

We have

|εm̂−1,1,1,−1(k)| ≈ ε+ | ε(k − 1)

(k − 1)2 + κε2
| = O(1)
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for ε → 0, but O(ε + κ−1) for κ → ∞. Therefore, although the part
εM−1,1,1,−1 is O(1) in the transformation (29), this transformation is still
invertible for κ > 0 sufficiently large and ε > 0 sufficiently small.

We do exactly the same with −κε2a−1a−1R−1 which allows us to shift the
second order resonance O(ε2)-away from the k-axis in the sixth picture of
Figure 2.

5 Energy estimates

This section contains a Proof of Theorem 3.3: Since the totally resonant
terms have been estimated with energy estimates we proceed as in the exist-
ing literature, cf. [Sch05], and include the normal form transformations in our
energy. Therefore, the subsequent energy estimates for the totally resonant
terms and the non-resonant terms will be straightforward. The interesting
aspect of this section is the handling of the second order resonance.

5.1 Equivalence of the energy and the Hℓ-norm

We control the Hℓ-norm of the error by estimating the L2-norm of the error
and of its ℓ-th derivative. But instead of using the L2-norm of the transformed
error W , we use an energy based on it. We set

Eℓ = E0 + Eℓ , (34)

where

Eℓ =
∑

j∈{±1}

∥∥∂ℓxRj

∥∥2
L2 (35)

+ ε
( ∑

j,j1,j2,j3∈{±1}

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 , Rj3) dx+ c.c.

)
+ ε2

∑
j1∈{±1}

∥∥∂ℓxM−1,j1,j1,−1(aj1 , aj1 , R−1)
∥∥2
L2 ,

and where c.c. denotes the complex conjugate. In comparison to the squared
L2-norm of the transformed error W and of its ℓ-th derivative, we have
dropped all unnecessary O(ε2)-terms due to he fact that O(ε2)-terms in the
energy cannot produce or eliminate O(ε)-terms in the evolution equations
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for the energy. Dropping these unnecessary O(ε2)-terms already here, makes
subsequent calculations simpler.

The next lemma guarantees that the square root of the energy Eℓ is equiv-
alent to the Hℓ-norm for sufficiently small ε > 0.

Lemma 5.1. There exist ε0 > 0, C1 > 0, and C2 > 0 such that for all
ε ∈ (0, ε0) we have(

∥R−1∥Hℓ + ∥R1∥Hℓ

)2 ≤ C1 Eℓ ≤ C2

(
∥R−1∥Hℓ + ∥R1∥Hℓ

)2
.

Proof. Although εM−1,1,1,−1 is O(1) we made this part small by choosing
κ > 0 sufficiently large but independent of 0 < ε≪ 1. Hence the second and
third line of the right-hand side of (35) are a small perturbation of the first
line of the right-hand side of (35).

5.2 The time derivative of the energy

We have

∂tEℓ =
∑

j∈{±1}

12∑
n=1

sn,j + c.c. (36)
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where

s1,j = j

∫
R
∂ℓxRjiω∂

ℓ
xRj dx,

s2,j = j
3

2
ε

∑
j1,j2,j3∈{±1}

∫
R
∂ℓxRj iρ∂

ℓ
x

(
aj1aj2Rj3

)
dx

s3,j = ε2
∫
R
∂ℓxRj ∂

ℓ
xLj(R) dx,

s4,j = ε
∑

j1,j2,j3∈{±1}

j

∫
R
∂ℓxiωRj∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 , Rj3) dx

s5,j = j
3

2
ε2

∑
j1,j2,j3,j4,j5,j6∈{±1}

∫
R
iρ∂ℓx

(
aj4aj5Rj6

)
∂ℓxMj,j1,j2,j3(aj1 , aj2 , Rj3) dx

s6,j = ε3
∑

j1,j2,j3∈{±1}

∫
R
∂ℓxLj(R)∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 , Rj3) dx

s7,j = ε
∑

j1,j2,j3∈{±1}

j3

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 , iωRj3) dx

s8,j = j3
3

2
ε2

∑
j1,j2,j3,j4,j5,j6∈{±1}

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3

(
aj1 , aj2 , iρ(aj4aj5Rj6)

)
dx

s9,j = ε3
∑

j1,j2,j3∈{±1}

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 ,Lj3(R)) dx

s10,j = ε
∑

j1,j2,j3∈{±1}

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(∂taj1 , aj2 , Rj3) dx

s11,j = ε
∑

j1,j2,j3∈{±1}

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(aj1 , ∂taj2 , Rj3) dx,

s12,j = ε2
∑

j1∈{±1}

∫
R
∂ℓxM−1,j1,j1,−1(aj1 , aj1 , R−1) ∂t∂

ℓ
xM−1,j1,j1,−1(aj1 , aj1 , R−1) dx

with

Lj(R) := Ls,j(R) + εβ−3/2Lr,j(R) + ε−β−2Resj(ε
1/2ψ) ,

and Ls(R) =:
(
Ls,−1(R), Ls,1(R)

)T
, Lr(R) =:

(
Lr,−1(R), Lr,1(R)

)T
and Res(ε1/2ψ) =:(

Res−1(ε
1/2ψ),Res1(ε

1/2ψ)
)T

, cf. (21). Note that here we could sometimes
refrain from writing the complex conjungates since Rj is real-valued.
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5.3 Bounds on s1, . . . , s12

In the end we have to estimate s1, . . . , s12 by an O(ε2)-bound in order to get
estimates for the error on the long O(ε−2)-time scale. Since Mj,j1,j2,j3 can
be of order O(ε−1), getting the estimates is more than a pure counting of
powers of ε.

5.3.1 Some trivial bounds

i) We have
s1,j + c.c. = 0

due to the skew-symmetry of iωj.

ii) Although Mj,j1,j2,j3 can be of order O(ε−1) there are three terms which
can be handled by a pure counting of powers of ε and so we get

|s3,j + s6,j + s9,j + c.c.| ≤ Cε2(Eℓ + 1))

since β > 3/2 and since the residual is small enough, see (17). Due to
Corollary 5.1, we can estimate these terms against Eℓ.

5.3.2 Separating the resonant terms

We recall that the complete analysis with the resonances and normalform
transformations was done to control O(ε)-terms in the equations of the error.
They are contained in s2,j. Since we handle different parts differently we
split them in totally resonant terms, second order resonant terms, and non-
resonant terms

s2,j = sTR,j + sSOR,j + sNON,j

where

sTR,j = j
3

2
ε
∑

j1∈{±1}

∫
R
∂ℓxRj iρ∂

ℓ
x

(
aj1a−j1Rj

)
dx,

sSOR,−1 = −3

2
ε
∑

j1∈{±1}

∫
R
∂ℓxR−1 iρ∂

ℓ
x

(
aj1aj1R−1

)
dx,

sSOR,1 = 0,

sNON,j = j
3

2
ε
∑
rest

∫
R
∂ℓxRj iρ∂

ℓ
x

(
aj1aj2Rj3

)
dx.
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5.3.3 Bounds for the totally resonant terms

The totally resonant terms are collected in sTR,j. The O(ε2)-bound has been
established in Section 4.2.

5.3.4 Recovering the normal form transform

The terms s4,j, s7,j, s10,j, and s11,j will be used to get rid of the non-resonant
terms collected in sSOR,j and sNON,j by recovering the normal form transfor-
mation from the previous section.

i) We first split s4,j into

s4,−1,SOR = ε
∑

j1∈{±1}

−
∫
R
∂ℓxiωR−1∂

ℓ
xM−1,j1,j1,−1(aj1 , aj1 , R−1) dx,

s4,j,NON = ε
∑
rest

j

∫
R
∂ℓxiωRj∂

ℓ
xMj,j1,j2,j3(aj1 , aj2 , Rj3) dx

ii) Next we split s7,j by writing

iω(n)R̂j3 = iω(k − j1 − j2)R̂j3 + (iω(n)− iω(k − j1 − j2))R̂j3

into
s7,j = t7,j,SOR + r7,j,SOR + t7,j,NON + r7,j,NON ,

with

t7,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xKj,j1,j2,j3(aj1 , aj2 , Rj3) dx,

r7,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xQj,j1,j2,j3

(
aj1 , aj2 , Rj3

)
dx.

where

K̂j,j1,j2,j3(aj1 , aj2 , Rj3)(k) =

∫
R
j3iω(k − j1 − j2)

× m̂j,j1,j2,j3(k)âj1(k −m)âj2(m− n)R̂j3(n) dn dm,

Q̂j,j1,j2,j3(aj1 , aj2 , Rj3)(k) =

∫
R
j3(iω(n)− iω(k − j1 − j2))

× m̂j,j1,j2,j3(k)âj1(k −m)âj2(m− n)R̂j3(n) dn dm,
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and similarly for t7,j,SOR and r7,j,SOR.
iii) Finally, we split s10,j and s11,j by writing

∂taj = −jiω0aj + (∂taj + jiω0aj) (37)

into

s10,j = t10,j,SOR + r10,j,SOR + t10,j,NON + r10,j,NON ,

s11,j = t11,j,SOR + r11,j,SOR + t11,j,NON + r11,j,NON

with

t10,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(−j1iω0aj1 , aj2 , Rj3) dx,

r10,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3

(
(∂taj1 + j1iω0aj1), aj2 , Rj3

)
dx,

t11,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3(aj1 ,−j2iω0aj2 , Rj3) dx,

r11,j,NON = ε
∑
rest

∫
R
∂ℓxRj∂

ℓ
xMj,j1,j2,j3

(
aj1 , (∂taj2 + j2iω0aj2), Rj3

)
dx.,

and similarly for t10,j,SOR, r10,j,SOR, t11,j,SOR, and r11,j,SOR.

5.3.5 The normal form transformation for the non-resonant terms

The terms s4,j,NON , t7,j,NON , t10,j,NON and t11,j,NON are the ones which we
used in Section 4.3 for the elimination of sNON,j and where we needed the
validity of the non-resonance condition (22). Therefore, by construction we
have

sNON,j + s4,j,NON + t7,j,NON + t10,j,NON + t11,j,NON = 0. (38)

5.3.6 Estimates for the remaining terms in the non-resonant case

Next we need to show

r7,j,NON + r10,j,NON + r11,j,NON = O(ε2)(Eℓ + 1) . (39)

Since

∂taj + jiω0aj = −εcg(∂XAc)(ε(x− cgt), ε
2t) eji(k0x−ω0t) (40)

+ε2(∂TAc)(ε(x− cgt), ε
2t) eji(k0x−ω0t) ,
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Estimate (39) follows for r10,j,NON + r11,j,NON by are pure counting of powers

of ε. For estimating r7,j,NON respectively Q̂j,j1,j2,j3(aj1 , aj2 , Rj3) we use

i(ω(n)− ω(k − j1 − j2)) = iω′(k − j1 − j2)(n− k + j1 + j2)

+r1(n− k + j1 + j2),

with r(n− k + j1 + j2) = O
(
(n− k + j1 + j2)

2
)
. Since

n− k + j1 + j2 = −
(
(k −m)− j1

)
−
(
(m− n)− j2

)
,

and

((k −m)− j1)âj1(k −m) = O(ε) , ((m− n)− j2)âj2(m− n) = O(ε)

we found the missing power of ε also for r7,j,NON .

5.3.7 The normal form transformation for the SOR terms

We proceed as explained in Section 4.4. We add and subtract

s13,j =

∫
R
∂ℓxRj∂

ℓ
x(κε

2a1a1R−1) dx,

s14,j =

∫
R
∂ℓxRj∂

ℓ
x(κε

2a−1a−1R−1) dx,

with the obvious estimate

−s13,j + s14,j = O(ε2)Eℓ.
From the construction in Section 4.4 we have

sSOR,j + s4,j,SOR + t7,j,SOR + t10,j,SOR + t11,j,SOR + s13,j − s14,j = 0. (41)

5.3.8 Estimates for the remaining terms in the SOR case

It remains to show

r7,j,SOR + r10,j,SOR + r11,j,SOR = O(ε2)(Eℓ + 1) . (42)

Due to the second order resonance this estimate is more complicated than
for the non-resonant terms. We start with r7,j,SOR, respectively

Q̂−1,j1,j1,−1(aj1 , aj1 , R−1)(k) = −
∫
R
(iω(n)− iω(k − j1 − j1))

× m̂−1,j1,j1,−1(k)âj1(k −m)âj1(m− n)R̂−1(n) dn dm,
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Since εm̂−1,j1,j1,−1(k) = O(1) we obtain from the estimates for the non-
resonant terms r7,j,NON + r10,j,NON + r11,j,NON only O(ε). For the second
power w.r.t. ε additional work is necessary. We are left with

r7,j,SOR + r10,j,SOR + r11,j,SOR

= ε2
∑

j1∈{±1}

∫
R
∂ℓxR−1∂

ℓ
xP−1,j1,j1,−1

(
ãj1 , aj1 , R−1

)
dx

+O(ε2)(Eℓ + 1) ,

where
ãj1(x, t) = (∂XAc)(ε(x− cgt), ε

2t) ej1i(k0x−ω0t) ,

and

P̂−1,j1,j1,−1

(
ãj1 , aj1 , R−1

)
(k)

=

∫
R
p̂−1,j1,j1,−1(k)̂̃aj1(k −m)âj1(m− n)R̂−1(n)dndm,

with

p̂−1,j1,j1,−1(k) = 2(ω′(k − 2j1)− cg)m̂−1,j1,j1,−1(k) .

Due to

2
(
ω′(k − 2j1)− cg

)
= 2
(
ω′(k − 2j1)− ω′(1)

)
= 2
(
ω′(k − 2j1)− ω′(−j1)

)
= O(k − j1) ,

we now obtain

p̂−1,j1,j1,−1(k) = 2(ω′(k − 2j1)− cg)m̂−1,j1,j1,−1(k) = O(1) (43)

and can conclude

r7,j,SOR + r10,j,SOR + r11,j,SOR = O(ε2)(Eℓ + 1) . (44)

5.3.9 Estimates for s5,j

In the integrals s5,j and s8,j the presence of the operator ρ prevents a loss of
ε-powers near the resonances. Let us consider the integral in s5,j first. With
Plancherel’s identity we can write

s5,j = −j3π ε2
∑

j1,j2,j3,j4,j5,j6∈{±1}

s5,j,j1,j2,j3,j4,j5,j6
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where

s5,j,j1,j2,j3,j4,j5,j6 =

∫
R
iρ(k)m̂j,j1,j2,j3(k)(ik)

ℓâj4(k − k1)âj5(k1 − k2)Rj6(k2)

× (ik)ℓaj1(k − k3)aj2(k3 − k4)Rj3(k4) dk1dk2dk3dk4dk .

Since ρ(j1) = 0 we have for the kernel in Fourier space

mj,j1,j2,j3(k)ρ(k) = O(1) ,

even in the second order resonance case, where

m−1,j1,j1,−1(k)ρ(k) ≈ C
(k ± 1)2

(k ± 1)2 + κε2
.

Therefore,
s5,j = ε2O(Eℓ + 1).

5.3.10 Estimates for s8,j

For estimating the integral in s8,j we use the Cauchy-Schwarz inequality. We
use Plancherel’s identity and Lemma 4.3 to estimate

ε2
∥∥∂ℓxMj,j1,j2,j3

(
aj1 , aj2 , iρ(aj4aj5Rj6)

)∥∥
L2 . (45)

Using the fact that the aj are concentrated at the wave number j, as above,
this can be written as a term with a kernel

mj,j1,j2,j3(k)ρ(k − j1 − j2)

plus a term which can be estimated by ε2O(Eℓ+1). In the non-resonant case
we have mj,j1,j2,j3(k) = O(1) and so the estimate follows. In the second order
resonant case we use

m−1,j1,j1,−1(k)ρ(k − 2j1) ≈
i(k − j1)

(k − j1)2 + κε2
(k − j1)× . . . = O(1).

Therefore,
s8,j = ε2O(Eℓ + 1).
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5.3.11 Estimates for s12,j

Now consider the term s12,j. As above we get

∂tM̂−1,j1,j1,−1(aj1 , aj2 , Rj3)(k)

=
(
− iω(j1)− iω(j1)− iω(k − 2j1)

)
M̂−1,j1,j1,−1(aj1 , aj1 , R−1)(k) +O(ε) .

By construction of the normal form transformation we have(
− 2iω(j1)− iω(k − 2j1)

)
m−1,j1,j1,−1(k)

= −iω(k)m−1,j1,j1,−1(k) +
3

2
iρ(k).

We split the integral according to the two terms on the right-hand side.
Exploiting the skew symmetry of the operator iω the integral belonging to
the first right-hand side term vanishes. The second right-hand side term can
be estimated exactly as s5,j. Therefore,

s8,j = ε2O(Eℓ + 1).

5.4 Gronwall’s inequality

Summarizing all results, we obtain

∂tEℓ ≤ ε2O(Eℓ + 1), (46)

or more detailed, there exist constants C1, C3 > 0 independent of Eℓ and
ε ∈ (0, 1] and a monotonically increasing function C2(Eℓ) > 0 independent of
ε ∈ (0, 1] such that

∂tEℓ ≤ C1ε
2Eℓ + C2(Eℓ)εβ+1/2Eℓ + C3ε

2,

A standard application of Gronwall’s inequality gives the O(1)-boundedness
of Eℓ for all t ∈ [0, T0/ε

2] as long as ε0 > 0 is chosen sufficiently small.
Thus, for sufficiently small ε0 > 0 there is some constant CR such that

sup
[0,T0/ε2]

∥∥∥( R−1

R1

)∥∥∥
Hℓ

≤ CR

and so Theorem 3.3 follows.
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