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Abstract

The Derivative Nonlinear Schrödinger (DNLS) equation can be de-
rived as an amplitude equation via multiple scaling perturbation anal-
ysis for the description of the slowly varying envelope of an underlying
oscillating and traveling wave packet in dispersive wave systems. It
appears in the degenerated situation when the cubic coefficient of the
similarly derived NLS equation vanishes. It is the purpose of this pa-
per to prove that the DNLS approximation makes correct predictions
about the dynamics of the original system under rather weak assump-
tions on the original dispersive wave system if we assume that the
initial conditions of the DNLS equation are analytic in a strip of the
complex plane. The method is presented for a Klein-Gordon model
with a cubic nonlinearity.

1 Introduction

The Nonlinear Schrödinger (NLS) equation

i∂TA = ν1∂
2
XA+ ν̃2A|A|2, (1)

with coefficients ν1, ν̃2 ∈ R, can be derived for the description of small mod-
ulations in time and space of oscillatory wave packets in dispersive wave sys-
tems, such as the quadratic (f(u) = u2) or cubic (f(u) = u3) Klein-Gordon

1



equation
∂2t u = ∂2xu− u− f(u), (x, t, u(x, t) ∈ R),

the water wave problem, systems from nonlinear optics, etc. For the cubic
Klein-Gordon equation the ansatz for the derivation of the NLS equation is
given by

u(x, t) = εA(ε(x− cgt), ε2t)ei(k0x−ω0t) + c.c.,

where cg is the linear group velocity, k0 the basic spatial wave number, ω0 the
basic temporal wave number, and 0 < ε� 1 a small perturbation parameter.

Various NLS approximation results have been proven in the last decades.
Such a result can trivially be established for a dispersive wave system with
no quadratic terms by using Gronwall’s inequality, cf. [KSM92]. However,
in case of quadratic nonlinearities such a result is non-trivial since terms of
order O(ε) have to be controlled on the long O(1/ε2)-time scale. The idea
to get rid of this problem is to use so-called normal form transformations.
By a near identity change of variables the terms of order O(ε) can be elim-
inated if non-resonance conditions are satisfied, cf. [Kal88]. The last years
saw various attempts to weaken these non-resonance conditions in order to
control appearing resonances, cf. [Sch05], and to make the theory applicable
to quasilinear systems, cf. [WC17, Due17, DH18], such as the water wave
problem, cf. [TW12, DSW16, IT19, Due21].

It turned out that in case of initial conditions for the NLS equation which
are analytic in a strip of the complex plane almost no non-resonance condi-
tions are necessary, cf. [Sch98, DHSZ16]. It is the purpose of this paper to
explain that the method developed in [Sch98, DHSZ16] can be used in the
justification of the Derivative Nonlinear Schrödinger (DNLS) approximation,
too. Interestingly, it allows to get rid of a problem which is not present in
the justification of the NLS approximation, see below.

The DNLS equation

i∂TA = ν1∂
2
XA+ ν2A|A|2 + iν3|A|2∂XA+ iν4A

2∂XA+ ν5A|A|4, (2)

with T ≥ 0, X ∈ R, A(X,T ) ∈ C, and coefficients νj ∈ R for j = 1, . . . , 5,
appears when the cubic coefficient ν̃2 = ν̃2(k0) in (1) vanishes for the chosen
basic wave number k0. This situation appears for instance in the water wave
problem for certain values of surface tension and basic spatial wave number
k0, cf. [AS81]. The DNLS equation can be derived with an ansatz

u(x, t) = ε1/2A(ε(x− cgt), ε2t)ei(k0x−ω0t) + c.c.. (3)
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The justification is more difficult and from a mathematical point of view
even more interesting than that for the NLS approximation since for original
dispersive wave systems with a quadratic nonlinearity, in the equation for
the error, terms of order O(ε1/2) have to be controlled on a long O(1/ε2)-
time scale. Even for dispersive wave systems with a cubic nonlinearity, in
the equation for the error, terms of order O(ε) have to be controlled on a
long O(1/ε2)-time scale and so as a first step in establishing an approxi-
mation theory for the DNLS approximation we start with the most simple
toy problem, namely a nonlinear Klein-Gordon equation with a special cubic
nonlinearity,

∂2t u = ∂2xu− u+ %(∂x)u
3. (4)

Herein, x ∈ R, t ∈ R, u(x, t) ∈ R, and

%(ik) =
k2 − 1

k2 + 1
, resp. %(∂x) = −(1− ∂2x)−1(1 + ∂2x).

Plugging the ansatz (3) with k0 = 1 into (4) and equating the coefficients
in front of ei(k0x−ω0t) to zero gives at O(ε1/2) the linear dispersion relation
ω2
0 = k20 + 1 and at O(ε3/2) the linear group velocity cg = k0/ω0. Using the

expansion

%(i+ ε∂X) =
−(i+ ε∂X)2 − 1

−(i+ ε∂X)2 + 1
= −iε∂X +O(ε2)

gives at O(ε5/2) the DNLS equation

2iω0∂TA = (1− c2g)∂2XA− 3i∂X(A|A|2). (5)

It is the goal of this paper to prove that the DNLS equation (5) makes correct
predictions about the dynamics of the Klein-Gordon model (4). It turns out
that there are two new difficulties which have to be overcome and which were
not present in the justification analysis of other modulation equations so far,
namely the problem of a total resonance and the problem of a second order
resonance, see below and Section 3. As already said, we do so, by adapting a
method developed in [Sch98, DHSZ16] for justifying the NLS approximation
under rather weak non-resonance conditions, however, with the drawback
that the initial conditions for the NLS equation have to be chosen analytic
in a strip of the complex plane. This approach will be combined with some
energy estimates in order to get rid of some resonance structure which is
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not present for the NLS approximation. We call the following approach to
justify the DNLS approximation robust since our approximation result holds,
as already said, under rather weak non-resonance conditions.

Our analysis is based on the use of Gevrey spaces

Gs
σ = {u : R→ C : ‖u‖Gsσ := ‖eσ(|k|+1)(1 + |k|2s)1/2û(k)‖L2(dk) <∞}

which are defined for σ, s ≥ 0. We recall that due to the Paley-Wiener
theorem functions u ∈ Gs

σ can be extended to a strip {z ∈ C : |Imz| < σ} in
the complex plane, cf. [Kat04].

Remark 1.1. The Fourier transform of the DNLS approximation (3) is given
by

û(k, t) = ε1/2ε−1Â(
k − k0
ε

, ε2t)e−iω0t−ic(k−k0)t + ĉ.c. (6)

Hence, the Fourier transform is strongly concentrated at the wave numbers
±k0 = ±1 and so the evolution of Â is determined by the form of the disper-
sion relation and of the nonlinearity at the wave number k0 = 1.

Then our approximation theorem is as follows.

Theorem 1.2. Let sA ≥ 12, σ0 > 0, and A ∈ C([0, T0], G
sA
σ0

) be a solution
of the DNLS equation (5). Then there exist ε0 > 0, T1 ∈ (0, T0], and C > 0
such that for all ε ∈ (0, ε0) we have solutions u of the Klein-Gordon model
(4) such that

sup
t∈[0,T1/ε2]

sup
x∈R
|u(x, t)− (ε1/2A(ε(x− ct), ε2t)ei(k0x−ω0t) + c.c.)| ≤ Cε.

Remark 1.3. As already said, such an approximation result is non-trivial
since solutions of order O(ε1/2) of (4) have to be controlled on an O(1/ε2)-
time scale. Although we have a cubic nonlinearity a simple application of
Gronwall’s inequality would only give estimates on an O(1/ε)-time scale.

Remark 1.4. Such an approximation result should not be taken for granted.
There are counterexamples, cf. [Sch95, SSZ15, HS20], showing that there are
amplitude equations which are derived in a formally correct way, but fail to
make correct predications about the original system on the natural time scale
of the approximation.

4



Remark 1.5. The approximation result is not optimal in the sense that
error estimates can only be proven on the correct time scale, namely for
t ∈ [0, T1/ε

2], but not necessarily for all t ∈ [0, T0/ε
2]. Hence we can only

guarantee that parts of the DNLS dynamics can be seen in the original sys-
tem.

Remark 1.6. For completeness we remark that the DNLS equation is a
well studied nonlinear dispersive system. Local well-posedness of smooth
solutions in Sobolev spaces Hs with s > 3/2 was established by Tsutsumi
and Fukuda [TF80]. See also [HO92, Tak99, CKS+02, Wu15, WG17] for
further improvements. The complete integrability of the DNLS equation has
been established in [KN78]. For a recent overview see [JLPS20].

The plan of the paper is as follows. In Section 2 we write the Klein-Gordon
model (4) as a first order system in Fourier space and derive the equations for
the error made by an improved DNLS approximation. The improved DNLS
approximation is O(ε3/2)-close to the original DNLS approximation (3). In
Appendix A we construct the improved DNLS approximation and estimate
the remaining residual terms.

In Section 3 we perform some normal form transformations in order to
get rid of the terms of order O(ε) in the equations for the error. It turns
out that there are resonances present in the system and that not all terms of
order O(ε) can be eliminated. There is a total resonance, i.e., there are cubic
terms which cannot be eliminated for any wave number k ∈ R. Moreover,
there is a resonance at the wave numbers ±k0 = ±1. The denominator in the
normal from transformation vanishes of second order and so this resonance
will be called second order resonance in the following. Since the nonlinear
terms which appear in the nominator only vanish linearly at the wave num-
bers ±k0 = ±1, the associated part of the normal form transform would be
unbounded. Therefore, in Section 3 we eliminate all terms which are not as-
sociated to the total resonance or second order resonance. It turns out that
the total resonant terms can be controlled with a simple energy estimate and
so we concentrate on the handling of the terms associated to the second order
resonance.

As a preparation in Section 4 we recall the estimates from the local ex-
istence and uniqueness proof of the DNLS equation in Gevrey spaces. The
exponential localization of the solutions in Fourier space will allow us to use
the derivative in front of the nonlinear term in (5) and to come subsequently
to the correct time scale. By lowering the decay rates σ in the definition of
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the norm ‖ · ‖Gsσ with time, we obtain an artificial smoothing which allows
us to get rid of first order derivatives in the nonlinearity.

However, in order to use this idea in the original system (4) we have to get
rid of the fact that the DNLS modes are concentrated at the wave number
k0 = 1 and that the nonlinear term vanishes at this wave number, too. Hence,
in Section 5 we introduce a space where the Fourier modes are located at
integer multiples of k0 with an exponential decay proportional to |k −mk0|.
Again by lowering the decay rates with time we rebuilt the construction
from Section 4 for (4), cf. Figure 1. This allows us to to come with our error
estimates to the natural O(ε−2)-time scale of the DNLS approximation.

Figure 1: The left panel shows the mode distribution for the DNLS equation
(5) and the vanishing of the nonlinearity at K = 0. The arrows indicate that
the required decay rates are lowered in time. The right panel shows the mode
distribution for the original system (4) and the vanishing of the nonlinearity
at k = ±1. The arrows indicate that the required decay rates in between the
integers are lowered in time.

We remark that the spaces which will be introduced in Section 5 have
been used in [DHSZ16] for a completely different purpose, namely to con-
trol resonances which are bounded away from integer multiples of the basic
wave number k0. Hence, as in [DHSZ16] this allows us to weaken the non-
resonance conditions and to allow for additional resonances away from the
integer multiples of the basic wave number k0. Since, depending on the wave
numbers, then different parts of the error function are handled differently, in
Section 6 we introduce some mode filters which allow us to separate these
parts in Fourier space. Estimates for the normal form transformation in the
chosen spaces can be found in Section 7.
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The final error estimates can be found in Section 8. We use energy esti-
mates for the transformed system since we still have to get rid of the totally
resonant terms. All ideas from the previous sections can be incorporated
in these energy estimates. We close the paper in Section 9 with a discus-
sion about possible improvements, generalizations, and about the possible
transfer to more complicated systems.

Notation. The Fourier transform of a function u : R 7→ C is given by

(Fu)[k] = û(k) =
1

2π

∫
R
u(x)e−ikxdx.

The inverse Fourier transform of a function û : R 7→ C is given by

(F−1û)[x] = u(x) =

∫
R
û(k)eikxdk.

Multiplication (uv)(x) = u(x)v(x) in physical space corresponds in Fourier
space to the convolution

(û ∗ v̂)(k) =

∫
R
û(k − l)v̂(l)dl.

In the following many possibly different constants are denoted with the same
symbol C if they can be chosen independent of the small perturbation pa-
rameter 0 < ε� 1.

Acknowledgement. The work of Guido Schneider is partially supported
by the Deutsche Forschungsgemeinschaft DFG through the SFB 1173 ”Wave
phenomena” Project-ID 258734477.

2 Equations for the error

The proof of Theorem 1.2 is based on the following ideas. The Fourier trans-
formed cubic Klein-Gordon model (4) is given by

∂2t û(k, t) = −ω2(k)û(k, t)− ω(k)ρ(ik)û∗3(k, t) (7)

where ω(k) = sign(k)
√

1 + k2 and ρ(k) = −%(ik)
ω(k)

. By this choice of ω and ρ

the subsequent variables will be real-valued in physical space. We write (7)
as a first order system

∂tû1(k, t) = −iω(k)û2(k, t),

∂tû2(k, t) = −iω(k)û1(k, t)− iρ(k)û∗31 (k, t).
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This system is diagonalized with

2v̂−1 = û1 + û2, 2v̂1 = û1 − û2.

We obtain
∂tV = ΛV +N(V, V, V ),

where in Fourier space

Λ̂(k) =

(
−iω(k) 0

0 iω(k)

)
is a skew symmetric operator and

N̂(V̂ , V̂ , V̂ )(k, t) =
1

2
iρ(k)

(
−(v̂1 + v̂−1)

∗3

(v̂1 + v̂−1)
∗3

)
(k, t)

a symmetric trilinear mapping. The DNLS approximation is of the form

ε1/2ψ =

(
ε1/2a1 + ε1/2a−1 + ε3/2ψs,1

ε3/2ψs,−1

)
, (8)

with aj concentrated at the wave number k = j and higher order approxi-
mation terms ε3/2ψs,±1. See Appendix A for the detailed construction. The

error εβ̃R = V − ε1/2ψ with β̃ > 3/2 made by the DNLS approximation
satisfies

∂tR = ΛR + εLc(R) + ε2Ls(R) + εβ̃+1/2Lr(R) + ε−β̃Res(ε1/2ψ) (9)

where

L̂c(R)(k, t) =
3

2
iρ(k)

(
−(â1 + â−1)

∗2 ∗ (R̂1 + R̂−1)

(â1 + â−1)
∗2 ∗ (R̂1 + R̂−1)

)
(k, t),

L̂s(R)(k, t) = 3iρ(k)

(
−(â1 + â−1) ∗ (Ψ̂q,1 + Ψ̂q,−1) ∗ (R̂1 + R̂−1)

(â1 + â−1) ∗ (Ψ̂q,1 + Ψ̂q,−1) ∗ (R̂1 + R̂−1)

)
(k, t)

+ε
3

2
iρ(k)

(
−(Ψ̂q,1 + Ψ̂q,−1)

∗2 ∗ (R̂1 + R̂−1)

(Ψ̂q,1 + Ψ̂q,−1)
∗2 ∗ (R̂1 + R̂−1)

)
(k, t),

L̂r(R)(k, t) =
3

2
iρ(k)

(
−(Ψ̂1 + Ψ̂−1) ∗ (R̂1 + R̂−1)

∗2

(Ψ̂1 + Ψ̂−1) ∗ (R̂1 + R̂−1)
∗2

)
(k, t)

+εβ̃−1/2
1

2
iρ(k)

(
−(R̂1 + R̂−1)

∗3

(R̂1 + R̂−1)
∗3

)
(k, t).

8



and where ε−β̃Res(ε1/2ψ) are the so called residual terms. These are the
terms which do not cancel after inserting the DNLS approximation into the
nonlinear Klein-Gordon equation (4). In the following we concentrate on
estimating the error made by the DNLS approximation and postpone the
standard construction of an improved approximation and the estimates for
the residual to Appendix A. The improved approximation will be chosen in

such a way that the term ε−β̃Res(ε1/2ψ) is of order O(ε2).

In the following in our notation we keep β̃ > 3/2 in order to show that
by using improved approximations the error can be made arbitrarily small.
All terms on the the right-hand side of (9) are at least of order O(ε2) except
of the first two terms. Since Λ is skew symmetric the first term on the right-
hand side of (9) makes no problems, too. However, the second term εLc(R)
of order O(ε) makes serious problems in estimating the error on the long
O(1/ε2)-time scale.

3 Normal form transformations and the res-

onance structure

The approach to get rid of the dangerous term εLc(R) in (9) are normal form
transformations. By these near identity change of variables

R = w + εM(ψ, ψ,R),

with M a trilinear mapping, the O(ε)-terms can be transformed into O(ε2)-
terms, if a number of non-resonance conditions are satisfied. Since the âj
are strongly concentrated at the wave numbers k = j the non-resonance
condition

rjj1j2j3(k) = −jω(k)− ω(j1)− ω(j2) + j3ω(k − j1 − j2) 6= 0

has to be satisfied for all k ∈ R for the elimination of a term âj1 ∗ âj2 ∗ Rj3

from the equation for Rj, cf. [SU17]. The non-resonance conditions can be
analyzed graphically. We find no resonances except of

(TR) For (j, j1, j2, j3) = (j, j1,−j1, j) the resonance function rjj1j2j3(k) van-
ishes identically. Thus, the associated terms in εLc(R) cannot be elim-
inated by a normal form transformation.
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(SOR) For (j, j1, j2, j3) = (−1, j1, j1,−1), cf. Figure 2, there is a resonance at
k = j1, which is of second order, in detail

ω(k)− 2ω(j1)− ω(k − 2j1) = 2ω′′(j1)(k − j1)2 +O(|k − j1|3)

for k near j1. This second order resonance would appear in the denomi-
nator of the normal form transformation. It cannot be balanced by the
term ρ in the nominator of the normal form transformation which only
linearly vanishes at k = ±1. Thus, the normal form transformation
would be singular near the wave numbers k = ±1.

Figure 2: Plots of rjj1j2j3(k) for the resonances with the second order touch-
ing. The left panel shows the case (j, j1, j2, j3) = (−1, 1, 1,−1) and the right
panel shows the case (j, j1, j2, j3) = (−1,−1,−1, 1).

Thus, beside the normal form transformations which we use to get rid of
the non-resonant terms, we need an idea to get rid of the terms which cannot
be eliminated at all due to the total resonance (TR), and we need an idea
to get rid of the terms which cannot be eliminated in a small neighborhood
of the wave numbers k = ±1 due to the second order resonance (SOR).

It turned that the problem with the total resonance (TR) can be solved
rather easily by using energy estimates. For handling the second order reso-
nance (SOR) we use the fact that in lowest order the system near the wave
numbers k = ±1 is given by the DNLS equation. Our approach to solve this
problem is similar to the approach chosen for instance in [KN86, Sch96] for
the justification of the KdV approximation. By this approach we not only
get rid of the quasilinearity of the DNLS equation but also gain the missing
O(ε)-order to come to the long O(1/ε2)-time scale. In order to explain this
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approach we have a look at the the solution theory of the DNLS equation in
Gevrey spaces in Section 4 first.

Solving the NLS equation in Gevrey spaces was also the basis of the
approach which has been used in [Sch98, DHSZ16] for justifying the NLS
approximation under rather weak non-resonance conditions. This underly-
ing idea of the approach is introduced in Section 5. Interestingly, it allows
us to get rid of the second order resonances which are not present in the
justification of the NLS approximation,

And so in the end the transfer of the method developed in [Sch98, DHSZ16]
from the NLS approximation to the DNLS approximation not only gains
the missing O(ε)-order in order to come to the long O(1/ε2)-time scale but
also allows us to justify the DNLS approximation under rather weak non-
resonance conditions. Since we need to control the total resonant terms, too,
we use energy estimates instead of the variation of constant formula, and so
the L1-based spaces from [DHSZ16] are replaced here by L2-based spaces in
Fourier space.

4 The DNLS equation in Gevrey spaces

As already said we solve the DNLS equation in Gevrey spaces Gs
σ equipped

with the norm

‖u‖Gsσ := ‖eσ(|ξ|+1)(1 + |ξ|2s)1/2û(ξ)‖L2(dξ) . (10)

In our presentation of the properties of these spaces we follow [BKS20]. For
the local existence and uniqueness of solutions we use that Gs

σ is an algebra
for s > 1/2, i.e., if u, v ∈ Gs

σ then uv ∈ Gs
σ and

‖uv‖Gsσ ≤ Cs‖u‖Gsσ‖v‖Gsσ , (11)

where the constant Cs is independent of σ > 0. Since the DNLS equation is a
quasilinear system we need the following improved, so called tame, estimate

‖uv‖Gsσ ≤ Cs(‖u‖Gsσ‖v‖Gκσ + ‖u‖Gκσ‖v‖Gsσ) (12)

which holds for all κ ≥ 0. The elements of Gs
σ form a proper subset of the

space of functions which are analytic in a strip of the complex plane of width
< 2σ, symmetric around the real axis, equipped with the sup-norm due to
the Paley-Wiener theorem, cf. [Kat04].
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For the DNLS equation we have the following local existence and unique-
ness result.

Theorem 4.1. Let s > 1 and σA > 0. Then, for every R > 0, there exist
η = η(R, s, σA) such that for every A0 ∈ Gs

σA
, with ‖A0‖GsσA ≤ R, there

exists a unique local solution A(T ) ∈ Gs
σ(T ) of the DNLS equation (5) with

σ(T ) := σA − ηT , T ∈ [0, σA/η], and supT∈[0,σA/η] ‖A(T )‖Gs
σ(T )
≤ R.

Proof. By rescaling T , X, and A the DNLS equation (5) is brought in its
normal form

∂TA = i∂2XA− ∂X(A|A|2).
Next we set

A(·, T ) = S(T )B(·, T ) = e2σ(T )(1+M)B(·, T ),

where M =
√
−∂2x. Then B satisfies

∂TB = −η(1 +M)B + i∂2XB − ∂X(S−1(T )((S(T )B)|S(T )B|2)).

We denote the scalar product in Hs with (·, ·)s and obtain

∂T (B,B)s = −η((1 +M)1/2B, (1 +M)1/2B)s + g(B),

where

|g(B)| ≤ C‖B‖2Hs‖B‖2Hs+1/2 ≤ C‖B‖2Hs((1 +M)1/2B, (1 +M)1/2B)s

such that

∂T (B,B)s ≤ (−η + C‖B‖2Hs)((1 +M)1/2B, (1 +M)1/2B)s.

Hence (B,B)s decays in time if η > 0 is chosen so large that initially

(−η + C‖B|T=0‖2Hs) < 0.

With these a priori estimates the existence and uniqueness of solutions follows
by standard arguments, cf. [Kat75].

The existence of the solutions of the DNLS equation (5) which is assumed
in Theorem 1.2 is guaranteed by the following corollary.

Corollary 4.2. Let sA ≥ 12 and σA > 0. Then, for every R > 0, there
exist η = η(R, sA, σA) such that for every A0 ∈ GsA

σA
, with ‖A0‖GsAσA ≤ R and

σ0 ∈ [0, σA) there exists a T0 > 0 and unique local solution A ∈ C([0, T0], G
sA
σ0

)
of the DNLS equation (5) with supT∈[0,σA/η] ‖A(T )‖Gs

σ(T )
≤ R.

Proof. As above choose σ(T ) := σA − ηT and stop for σ(T0) = σ0.
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5 Modulational Gevrey spaces

In the last section we have seen that with an initial exponential decay in
Fourier space for |K| → ∞ we can create an artificial smoothing which
allows us to control the derivative in front of the nonlinear terms of the DNLS
equation. In the nonlinear Klein-Gordon equation (4) the DNLS equation is
the lowest order approximation for the modes located at the wave number
k = 1, in particular the derivative in front of the nonlinear terms of the
DNLS equation correspond to the vanishing of the nonlinear terms of the
nonlinear Klein-Gordon equation (4) at the wave number k = 1. For the
DNLS approximation the associated modes decay with an exponential rate
around the wave number k = 1, see the left panel of Figure 1. However, by
nonlinear interaction small peaks with width of order O(ε) are created at
odd integer multiples of the basic wave number k0 = 1. See the right panel
of Figure 1. This means that the solutions of the nonlinear Klein-Gordon
equation (4) will have a Fourier mode distribution which is bounded from

above by a multiple of
1

ϑα/ε
, where

ϑβ(k) := exp
(
β inf
m∈Zodd

|k −mk0|
)

or equivalently
1

ϑβ(k)
= sup

m∈Zodd
e−β|k−mk0|

for β ≥ 0. We define a number of spaces to combine these facts with the
ideas from Section 4 for the DNLS equation (2) in order to handle the nonlin-
ear Klein-Gordon equation (4). For estimating the solutions of the original
system we use energy estimates and so the nonlinear Klein-Gordon equation
(4) will be solved in the L2-based space

Ms
β = {u : R→ C : ‖u‖Mβ

= ‖û(k)ϑβ(k)(1 + k2)s/2‖L2(dk) <∞}.

As a consequence for u ∈ Ms
β, with β > 0, the modes bounded away from

integer multiples of the basic wave number k0 = 1 are exponentially small
w.r.t. ε, i.e., these modes are of order O(e−r/ε) for 0 < ε� 1 with an O(1)-
bound r > 0. Due to the L2-scaling properties, the DNLS approximation is of
order O(1) in theMs

β-spaces and not of the formal order O(ε1/2). Therefore,
we additionally define the spaces

Ws
β = {u : R→ C : ‖u‖Ws

β
= ‖û(k)ϑβ(k)(1 + k2)s/2‖L1(dk) <∞}
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for which the DNLS approximation is of order O(ε1/2).
For the subsequent error estimates we need that these spaces are closed

under point-wise multiplication.

Lemma 5.1. For all β ≥ 0 and s > 1/2 we have

‖uv‖Ms
β
≤ ‖u‖Ms

β
‖v‖Ms

β
.

Moreover, for all β, s ≥ 0 we have

‖uv‖Ms
β
≤ ‖u‖Ws

β
‖v‖Ms

β
. (13)

Proof. The estimates immediately follow from

‖uv‖Ms
β

= ‖(û ∗ v̂)ϑβ‖L2
s

≤ ‖ûϑβ‖L1‖v̂ϑβ‖L2
s

+ ‖ûϑβ‖L2
s
‖v̂ϑβ‖L1

≤ ‖u‖W0
β
‖v‖Ms

β
+ ‖u‖Ms

β
‖v‖W0

β

due to Young’s inequality for convolutions, Sobolev’s embedding

‖u‖Ws
β
≤ C‖v‖Ms+δ

β

for δ > 1/2, and the inequality

1

ϑβ(k − l)ϑβ(l)
= sup

m∈Zodd

(
e−β|k−l−mk0|

)
sup

m∈Zodd

(
e−β|l−mk0|

)
≤ sup

m∈Zodd

(
e−β|k−mk0|

)
=

1

ϑβ(k)
.

Remark 5.2. Subsequently, (13) will be used to estimate combinations of the
approximation with the error. The DNLS approximation will be estimated
in the space Ws

β where it is of order O(ε1/2) and the error will be estimated
in the space Ms

β.

The initial value problem for (4) for initial conditions of order O(ε1/2)
can be solved in these spaces on a time interval of length O(1/ε) using the
variation of constant formula, using the fact that we have a cubic nonlinearity
and the fact that these spaces are closed under multiplication. In order to
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bound the error not only on the short O(1/ε)-time scale but also on the
natural O(1/ε2)-time scale of the DNLS approximation we use the spaces
Ms

β, but now with time-dependent β. Similar to above we choose

β(t) = σ0/ε− ηεt, (14)

with constants σ0, η > 0, which can be chosen independently of 0 < ε � 1.
Note that (14) is the scaled version of σ(T ) = σ0 − ηT defined in Theorem

4.1 and that T1 = σ0/η. If Â is initially in a space Gs+1
σ0

, then according to
Remark 1.1 the DNLS approximation is initially in a space Ws

σ0/ε
. This is

the reason why β(t) starts with σ0/ε. The decay −ηεt allows to consider t
on the natural O(1/ε2)-time scale of the DNLS approximation. It turns out
that subsequently choosing η = O(1) is sufficient for our purposes.

In the subsequent sections we explain in detail how with this approach
all problems to come to the long O(1/ε2)-time scale, found in Section 3, can
be solved.

6 Separation of the modes

In order to obtain a bound for the error on the long O(1/ε2)-time scale,
independently of the small perturbation parameter 0 < ε � 1, we have to
get rid of the term εLc(R) in (9). Except at the resonant wave numbers this
term is oscillatory and can be removed by a near identity change of variables.
In the last sections we explained our strategy to get rid of the total resonance
(TR) and of the second order resonance (SOR).

Hence for the error estimates we separate the modes in three parts. The
first part which is denoted by Rn has a support near the odd integer multi-
ples of the basic wave number k0 = 1 excluding neighborhoods around the
basic wave numbers ±k0 = ±1. It will be handled with normal form trans-
formations and energy estimates. The second part which is denoted by Rr

has a support which is bounded away from the odd integer multiples of the
basic wave number k0 = 1 and will linearly be exponentially damped by our
choice of time-dependent weights. The third part which is denoted by Rc has
support near the basic wave numbers ±k0 = ±1 and will be handled with
the ideas which have been explained above in Section 4 and Section 5 and
with energy estimates. The index n stands for normal form, r for rest, and
c for critical.
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In detail, we define for a δr > 0 small, but independent of 0 < ε� 1, the
mode filter

Êr(k) =

{
1, for infn∈Zodd |k − n| > δr

0, else,

the mode filter

Êc(k) =

{
1, for infn∈{−1,1} |k − n| ≤ δr

0, else,

and finally the mode filter Ên = 1− Êr − Êc.

-
k

Er
En Er

En Er
Ec

−1

Er
Ec

1

Er
En Er

En Er

Figure 3: The support of the mode filters Er, En, and Ec in Fourier space.

We use these projections to separate the error R = Rr +Rn +Rc in three
parts, namely Rr = ErRr, Rc = EcRc, and Rn = EnRn. These new variables
satisfy

∂tRr = ΛRr + εErLc(R) + ε2ErG, (15)

∂tRn = ΛRn + εEnLc(R) + ε2EnG, (16)

∂tRc = ΛRc + εEcLc(R) + ε2EcG, (17)

where
ε2G = ε2Ls(R) + εβ̃+1/2Lr(R) + ε−β̃Res(ε1/2ψ).

7 The normal form transform

As already said, in order to come to the long O(1/ε2)-time scale, we have to
get rid of the terms

ε ̂EjLc(R)(k, t)

= ε
3

2
iρ(k)Êj(k)

(
−(â1 + â−1)

∗2 ∗ (R̂1 + R̂−1)

(â1 + â−1)
∗2 ∗ (R̂1 + R̂−1)

)
(k, t),

16



for j = n, r, c in (15)-(17). In a first step we simplify the εEjLc(R) for j =
n, r, c by eliminating all non-resonant terms by normal form transformations.
The εEjLc(R) for j = n, r, c are sums of trilinear mappings w.r.t. aj1 , aj2
and Rj3 , with j1, j2, j3 ∈ {−1, 1}.

Remark 7.1. In order to eliminate a trilinear term εB(aj1 , aj2 , Rj3) of the
form

̂B(aj1 , aj2 , Rj3)

=

∫ ∫
b(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2)R̂j3(k2)dk2dk1

from the equation of Rj by a near identity transformation wj = Rj +
εM(aj1 , aj2 , Rj3) we have to choose

̂M(aj1 , aj2 , Rj3)

=

∫ ∫
m(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2)R̂j3(k2)dk2dk1

with

m(k, k − k1, k1 − k2, k2) =
b(k, k − k1, k1 − k2, k2)

−jω(k)− ω(j1)− ω(j2) + j3ω(k − j1 − j2)
,

cf. [SU17, §11]. For the terms which will be eliminated the nominator b is
bounded and the denominator is bounded away from zero.

By the analysis of the denominator, made in Section 3, we can eliminate
all terms except of the total resonant terms and second order resonant terms.
See Remark 7.4 for more details. If we do so, after the transformation we
obtain a system

∂twr = Λwr + εErLc(wr) + ε2Hr, (18)

∂twn = Λwn + εB1(a1, a−1, wn) + ε2Hn, (19)

∂twc = Λwc + εB2(a1, a−1, wc) (20)

+εB3(a−1, a−1, wc) + εB4(a1, a1, wc) + ε2Hc,

where the Bj are smooth trilinear mappings in their arguments and ε2Hr,n,c =
O(ε2) with properties specified below. The properties of the normal form
transformation are summarized in the following lemma.
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Lemma 7.2. Let s > 1/2 and σ0 ≥ 0. The transformation

T ε :

{
(Ms

σ/ε)
3 → (Ms

σ/ε)
3,

(Rn, Rr, Rc) 7→ (wn, wr, wc),

is a small perturbation of identity. For all σ ∈ [0, σ0] the mapping is analytic.
For all C1 > 0 there exists an ε0 > 0 such for all ε ∈ (0, ε0) and all σ ∈ [0, σ0]
the following holds. For all (wn, wr, wc) with ‖(wn, wr, wc)‖Ms

σ/ε
≤ C1 there

exists an analytic inverse. All bounds are independent of ε ∈ (0, ε0) and
σ ∈ [0, σ0].

With this lemma we immediately have

Corollary 7.3. Let s > 1/2 and

M = ‖w‖Ms
β(t)

= ‖wr‖Ms
β(t)

+ ‖wn‖Ms
β(t)

+ ‖wc‖Ms
β(t)
,

with β(t) defined in (14). There exist constants C1, C3 > 0 independent of M
and ε ∈ (0, ε0], with ε0 > 0 from Lemma 7.2, and a monotonically increasing
function C2(M) > 0, independent of ε ∈ (0, ε0], such that

‖ε2Hj‖Ms
β(t)

≤ C1ε
2‖w‖Ms

β(t)
+ C2(M)εβ̃+1/2‖w‖2Ms

β(t)
+ C3ε

2,

for j = r, n, c.

Remark 7.4. We have transformed the term εErLc(R) in a term εErLc(wr).
The last term contains totally resonant terms, for which we know that the
denominator in the above normal form transformations would vanish iden-
tically. Hence, they couldn’t be eliminated in this way. In order to explain
subsequently a few possible improvements to our approach we handle the to-
tally resonant terms in εErLc(wr) differently than the other totally resonant
terms. The term εErLc(wr) will initially be exponentially small w.r.t ε, and
to grow to an order O(ε) it will take an O(1/ε2)-time scale. This observation
allows us for general dispersive systems to reduce the number of necessary
non-resonance conditions. The other totally resonant terms B1(a1, a−1, wn)
and B2(a1, a−1, wc), are initially not exponentially small, and so they will be
controlled by energy estimates in the following. For the second order reso-
nant terms B3(a−1, a−1, wc) and B4(a1, a1, wc) the denominator in the above
normal form transformation would vanish quadratically for k = ±1. Since
the nominator only vanishes linearly at these wave numbers the normal form
transform would be unbounded. Therefore, the second order resonant terms
will be handled with the ideas presented in Section 4 and Section 5.
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8 The final error estimates

In order to estimate the solutions of the equations (18)-(20) for the error we
use the modulational Gevrey spaces introduced in Section 5. Introducing the
new weighted variables

Ŵj(k) = ŵj(k)ϑβ(k)

for j = r, n, c allows us to work in classical Sobolev spaces. We find

∂tWr = ΛWr + ΓWr + εErL̃c(Wr) + ε2H̃r, (21)

∂tWn = ΛWn + ΓWn + εB̃1(a1, a−1,Wn) + ε2H̃n, (22)

∂tWc = ΛWc + ΓWc + εB̃2(a1, a−1,Wc) (23)

+εB̃3(a−1, a−1, wc) + εB̃4(a1, a1,Wc) + ε2H̃c,

where the operator Γ is defined in Fourier space by

Γ̂W (k) = −ηε( inf
m∈Zodd

|k −mk0|)Ŵ (k). (24)

The trilinear mappings Bj from (18)-(20) transform into the B̃j which are
again smooth trilinear mappings in their arguments. They are estimated
below in detail. The remaining terms Hj from (18)-(20) transform into the

H̃j whose properties are specified in the subsequent lemma.

Lemma 8.1. Let s > 1/2 and

M = ‖W‖Hs = ‖Wr‖Hs + ‖Wn‖Hs + ‖Wc‖Hs .

There are constants C1, C3 > 0 independent of M and ε ∈ (0, ε0], with
ε0 > 0 from Lemma 7.2, and a monotonically increasing function C2(M) > 0,
independent of ε ∈ (0, ε0], such that

‖ε2H̃j‖Hs ≤ C1ε
2‖W‖Hs + C2(M)εβ̃+1/2‖W‖2Hs + C3ε

2,

for j = r, n, c.

Proof. The lemma is mainly a reformulation of Corollary 7.3. The missing
details can be found below in the estimates for the B̃j.
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In order to estimate the solutions Wj of the equations (21)-(23) we use
energy estimates, i.e., we multiply the equation for Wj with Wj for j = r, n, c
and take the Hs-scalar product (·, ·)s. We find

∂t(Wr,Wr)s = 2Re(s1 + s2 + s3 + s4),

∂t(Wn,Wn)s = 2Re(s5 + s6 + s7 + s8),

∂t(Wc,Wc)s = 2Re(s9 + s10 + s11 + s12 + s13 + s14),

with
s1 = (Wr,ΛWr)s, s2 = (Wr,ΓWr)s,

s3 = (Wr, εErL̃c(Wr))s, s4 = (Wr, ε
2H̃r)s,

with
s5 = (Wn,ΛWn)s, s6 = (Wn,ΓWn)s,

s7 = (Wn, εB̃1(a1, a−1,Wn))s, s8 = (Wn, ε
2H̃n)s,

and

s9 = (Wc,ΛWc)s, s10 = (Wc,ΓWc)s,

s11 = (Wc, εB̃2(a1, a−1,Wc))s, s12 = (Wc, εB̃3(a−1, a−1,Wc))s,

s13 = (Wc, εB̃4(a1, a1,Wc))s, s14 = (Wc, ε
2H̃c, )s.

In between the terms s1, . . . , s14 there are terms which vanish identically
and terms which do not make any difficulties since they have an ε2 in front.
The dangerous terms are the ones which only have an ε in front, namely
s3, s7, s11, s12, s13. They will be estimated through integration by parts, such
as the totally resonant terms s7 and s11, or by the damping terms s2, s6, s10,
such as s3 or the second order resonant terms s12, s13.

We start with the terms which vanish identically, namely
s1, s5, s9: Due to the skew symmetry of Λ we immediately have

s1 = s5 = s9 = 0.

For the terms which have an ε2 in front we proceed as follows and find:
s4, s8, s14: Using Lemma 8.1, the Cauchy-Schwarz inequality, and a ≤ 1 + a2

in the last term yields

|sj| ≤ C1ε
2‖W‖2Hs + C2(M)εβ̃+1/2‖W‖3Hs + C3ε

2(1 + ‖W‖2Hs),

for j = 4, 8, 14 using the notation from Lemma 8.1.
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Next we go on with the rest of the Wr-equation.
s2: is the good term in the Wr-equation. There is a σ > 0 independent of
0 < ε2 � 1 such that

2Re(s2) = 2Re((Wr,ΓWr)s ≤ −α(η)ε(Wr,Wr)s.

We have α(η)→∞ for η →∞, cf. (24).

s3: is the dangerous term in the Wr-equation which, however, can be esti-
mated by the s2-term. For the s3-term we have

|s3| = |(Wr, εErL̃c(Wr))s| ≤ Cs3ε(Wr,Wr)s

for a contant Cs3 = Cs3(ψ) independent of 0 < ε2 � 1.

Next we go on with the rest of the Wn-equation.
s6: is the good term in the Wn-equation. However, for our purposes it is
sufficient to have 2Re(s6) ≤ 0.

s7: In Fourier space we have to control terms of the form

ε

∫
R

∫
R

∫
R
Ŵn(k)iϑ(k)ρ(k)

(
âj1(k −m)â−j1(m− l)ϑ−1(l)Ŵn(l)

)
dmdldk

+ε

∫
R

∫
R

∫
R
Ŵn(k)iϑ(k)ρ(k)

(
âj1(k −m)â−j1(m− l)ϑ−1(l)Ŵn(l)

)
dmdldk

= ε

∫
R

∫
R

∫
R
Ŵn(k)iϑ(k)ρ(k)

(
âj1(k −m)â−j1(m− l)ϑ−1(l)Ŵn(l)

)
dmdldk

−ε
∫
R

∫
R

∫
R
Ŵn(l)iϑ(l)ρ(l)

(
âj1(l −m)â−j1(m− k)ϑ−1(k)Ŵn(k)

)
dmdkdl

= ε

∫
R

∫
R
Ŵn(k)

(
Q(k, k − l, l)Ŵn(l)

)
dkdl

with

Q(k, k − l, l) =

∫
R
iϑ(k)ρ(k)âj1(k −m)â−j1(m− l)ϑ−1(l)

−iϑ(l)ρ(l)âj1(l −m)â−j1(m− k)ϑ−1(k)dm

=

∫
R
iϑ(k)ρ(k)âj1(k −m)â−j1(m− l)ϑ−1(l)

−iϑ(l)ρ(l)âj1(k −m)â−j1(m− l)ϑ−1(k)dm

= %1(k, l)

∫
R
âj1(k −m)â−j1(m− l)dm,
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with
%1(k, l) = (iϑ(k)ρ(k)ϑ−1(l)− iϑ(l)ρ(l)ϑ−1(k)),

and where we used that the product aj1a−j1 is real. We have that (k, l) 7→
%1(k, l) is smooth and satisfies %1(k, k) = 0 such that finally |%1(k, l)| ≤
C|k−l|. Since

∫
R âj1(k−m)â−j1(m−l)dm is strongly concentrated at k−l = 0

we gain another power of ε such that finally

s7 = O(ε2).

Finally we come to the remaining terms of the Wc-equation.
s11: The totally resonant terms s11 are handled line for line as the totally
resonant terms s7 and so we also have

s11 = O(ε2).

s10: is the good term which allows us to handle the second order resonant
terms. We have

2Re(s10) = 2Re(Wc,ΓWc)s ≤ −ηε(Γ1/2Wc,Γ
1/2Wc)s

where |k − 1|op is defined by the multiplier |k − 1| in Fourier space.
s12, s13: In the following Wc,1 denotes the part of Wc located at k = 1 and
Wc,−1 the part of Wc located at k = −1. Then the second order resonant
terms are estimated by

|s12|+ |s13| ≤ C|(Wc.−1, εB̃3(a−1, a−1,Wc,1))s|+ C|(Wc,1, εB̃4(a1, a1,Wc,−1))s|
≤ Cε‖ρ1/2Wc,−1‖Hs‖ρ1/2B̃3(a−1, a−1,Wc,1)‖Hs

+Cε‖ρ1/2Wc,1‖Hs‖ρ1/2B̃4(a1, a1,Wc,−1)‖Hs .

The term ‖ρ1/2B̃4(a1, a1,Wc,−1)‖2L2 is in Fourier space of the form∫ ∫ ∫
|ρ1/2(k)â1(k − l)â1(l −m)Ŵc,−1(m)|2dmdldk ≤ s15 + s16,

with

s15 =

∫ ∫ ∫
|(ρ(k)− ρ(m+ 2))||â1(k − l)â1(l −m)Ŵc,−1(m)|2dmdldk,

s16 =

∫ ∫ ∫
|â1(k − l)â1(l −m)|2|ρ(m+ 2)||Ŵc,−1(m)|2dmdldk.
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We use that

ρ(k)− ρ(m+ 2) = ρ(m+ 2 + k −m− 2)− ρ(m+ 2) = O(|k −m− 2|),

that
∫
â1(k− l)â1(l−m)dl is strongly concentrated at k−m ≈ 2 and Young’s

inequality to obtain a bound

s15 ≤ Cε‖Wc,−1‖2.

Less complicated is the bound

s16 ≤ C‖Γ1/2Wc,−1‖2

since ρ(m+ 2) = O(|m+ 1|). Then finally we obtain

|s12|+ |s13| ≤ Cε(Γ1/2Wc,Γ
1/2Wc)s + Cε3/2‖Γ1/2Wc‖Hs‖Wc‖Hs

≤ 2Cε(Γ1/2Wc,Γ
1/2Wc)s + Cε2‖Wc‖2Hs

≤ Cψε(Γ
1/2Wc,Γ

1/2Wc)s + C1ε
2‖Wc‖2Hs

where we used ε3/2ab ≤ εa2 + ε2b2. This defines the constrant Cψ and we
may increase the original constant C1.
Summary: Collecting all estimates gives for

Es = (Wr,Wr)s + (Wn,Wn)s + (Wc,Wc)s

that

∂tEs ≤ 2Re(s2) + 2|s3|+ 2|s4|+ 2Re(s7) + 2|s8|
+2Re(s10) + 2Re(s11) + 2|s12|+ 2|s13|+ 2|s14|

≤ −α(η)ε(Wr,Wr)s + Cs3ε(Wr,Wr)s

−ηε(Γ1/2Wc,Γ
1/2Wc)s + Cψε(Γ

1/2Wc,Γ
1/2Wc)s

+2C1ε
2Es + C2(M)εβ̃+1/2E3/2

s + C3ε
2(1 + Es).

The third and fourth line can be made negative by choosing η sufficiently
large, but independent of the small perturbation parameter 0 < ε� 1 such
that we finally have

∂tEs ≤ 2C1ε
2Es + C2(M)εβ̃+1/2E3/2

s + C3ε
2(1 + Es).
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Choosing C2(M)εβ̃−3/2E
1/2
s ≤ 1 yields

∂tEs ≤ (2C1 + C3 + 1)ε2Es + C3ε
2. (25)

Applying Gronwall’s inequality yields for all t ∈ [0, T1/ε
2] that

Es(t) ≤ C3T1e
(2C1+C3+1)T1 =: M

independent of ε ∈ (0, ε0) where ε0 > 0 had to be chosen so small that

C2(M)εβ̃−3/2M1/2 ≤ 1. Therefore, we are done.

9 Discussion

In this section we make a number of remarks about possible improvements
and generalizations.

Remark 9.1. For an arbitrary, but fixed, β̃ > 3/2 the improved approxima-

tion can be constructed in such a way that the residual term ε−β̃Res(ε1/2ψ)
is of order O(ε2), cf. Appendix A. Hence the error made by this improved

approximation is of order O(εβ̃) in some Sobolev norm.

Remark 9.2. It is obvious by the proof that the assumption on the solutions
of the DNLS equation (5), namely A ∈ C([0, T0], G

sA
σ0

), can be replaced by
the weaker assumption that we take a solution constructed in Theorem 4.1
with s = sA, σA = σ0, and A(T ) ∈ Gs

σ(T ) with σ(T ) = σ0 − ηT .

Remark 9.3. From (15) to (18) we have eliminated all terms of order
O(ε) except of the totally resonant ones. This is not necessary since fi-

nally εErL̃c(Wr) appears in an equation where Wr is exponentially damped.
Hence other terms can be kept and other resonances can be handled as long as
they are bounded away from odd integer multiples of the basic wave number
k0 = 1, cf. [DHSZ16].

Remark 9.4. We have demonstrated that the DNLS approximation makes
correct predictions about the dynamics of our chosen nonlinear Klein-Gordon
equation (4). The question about possible generalizations and about the pos-
sible transfer to more complicated systems occurs. First of all we would like
to mention that the problems with the total resonance and the second order
resonance occur for all non-trivial systems for which the DNLS approxima-
tion can be derived. On the one hand with this respect our system is not
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more complicated than necessary. On the other hand the chosen nonlinear
Klein-Gordon equation (4) is sufficiently complicated to contain all principle
difficulties which have to be overcome.

Remark 9.5. Other additional difficulties one could think of have been han-
dled in our situation before. For instance quadratic terms in the original sys-
tems can be eliminated completely with a normal form transform for Klein-
Gordon models. For other more complicated original systems additional
quadratic or quintic resonances can occur. It is not obvious how existing
methods to handle such resonances interplay with the presented approach of
this paper. The same is true for quasilinear systems such as the water wave
problem. This will be the topic of future research.

Remark 9.6. It is the topic of parallel research to prove a DNLS approx-
imation result for initial conditions which are not analytic in a strip of the
complex plane but only live in a Sobolev space. In this case the totally res-
onant terms have to be handled with energy estimates again. New ideas are
needed to handle the second order resonant terms. Moreover, all other terms
of order O(ε) in the error equations (9) have to be eliminated by normal form
transformations, i.e., no other resonances can be allowed. This is different to
the situation in this paper where additional resonances bounded away from
integer multiples of the basic wave number k0 = 1 can be allowed due to the
exponential smallness of these modes initially, cf. Remark 9.3.

A Higher order DNLS approximation and es-

timates for the residual

In the previous sections we concentrated on estimating the error made by a
DNLS approximation. In order to do so we used an improved approximation

introduced in (8) with the property that the residual term ε−β̃Res(ε1/2ψ) is
of order O(ε2) in the equations for the error (9). Since similar constructions
can be found in several papers, cf. [SU17], we took this part out of the line
of proof. Nevertheless, we will provide a few details in this appendix.

First we show how to construct an higher order approximation. We define
the residual

Resu(u) = −∂2t u+ ∂2xu− u+ %(∂x)u
3 (26)
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for the nonlinear Klein-Gordon equation (4). For the computation of an
higher order approximation we need a Taylor expansion of

%(ik) =
k2 − 1

k2 + 1
, resp. %(∂x) = −(1− ∂2x)−1(1 + ∂2x)

at k0 = 1 and at other odd integer multiples of k0 = 1. We find for instance

%(i+ ε∂X) = −iε∂X +
1

2
ε2∂2X +

1

4
ε4∂4X +

1

4
iε5∂5X +

1

8
ε6∂6X +O(ε7).

The improved ansatz is given

ε1/2ψ(x, t) =
∑

n∈Nodd,|n|≤N

N∑
j=0

εp(n)+jAn,j(X,T )En

= ε1/2A1,0(X,T )E + ε3/2A1,1(X,T )E + ε3/2A3,0(X,T )E3 + c.c.+ h.o.t.,

with E = ei(k0x−ω0t), X = ε(x − cgt), T = ε2t, and p(n) = (||n| − 1| + 1)/2,
with a fixed chosen N ∈ N. For expository reasons we restrict ourselves
in the following to the three terms explicitly displayed in the ansatz. They
represent the three essential types of approximation equations which occur.

Plugging the ansatz into (26) and equating the coefficients in front of E
to zero gives as before the linear dispersion relation ω2

0 = k20 + 1 at O(ε1/2)
and the linear group velocity cg = k0/ω0 at O(ε3/2). At O(ε5/2) we again
obtain the DNLS equation

2iω0∂TA1,0 = (1− c2g)∂2XA1,0 − 3i∂X(A1,0|A1,0|2). (27)

At O(ε7/2) we obtain the equation for A1,1, namely

2iω0∂TA1,1 = (1− c2g)∂2XA1,1 − 6i∂X(A1,1|A1,0|2)− 3i∂X((A1,0)
2A−1,1)

+
3

2
∂2X(A1,0|A1,0|2).

This is a linearized DNLS equation with some inhomogeneity. All A1,j for
j ≥ 2 satisfy linearized DNLS equations with inhomogeneities, too, whose
solutions exist in Gevrey spaces as long as the solutions of the DNLS equation
(27) do exist.

Equating the coefficients in front of E3 to zero gives the determining
approximation equation for A3,0 at O(ε3/2), namely

−9ω2
0A3,0 = −9k20A3,0 − A3,0 + %(3i)(A1,0)

3
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which can be solved w.r.t. A3,0 since 9ω2
0−9k20−1 6= 0. All An,j with |n| ≥ 3

satisfy algebraic equations which are linear in the An,j with a non-vanishing
coefficient in front. Again the solutions exist in Gevrey spaces as long as the
solutions of the DNLS equation (27) do exist.

The set of equations is structured in such a way that they can be solved
one after the other. Therefore, more and more terms cancel in the residual

and so the residual Resu can be made of order O(εβ̃+2). Since the residual

term ε−β̃Res(ε1/2ψ) in the equations for the error (9) arises as O(1)-bounded
transformation from Resu the same is true for Res(ε1/2ψ) in (9), i.e.,

sup
t∈[0,T1/ε2]

‖ε−β̃Res(ε1/2ψ)‖Ms
β(t)
≤ Cε2

in (9), cf. Corollary 7.3. Moreover, we have

sup
t∈[0,T1/ε2]

‖ε1/2ψ‖Ws
β(t)
≤ Cε1/2.

More details can be added following the existing literature about the validity
of the NLS approximation, cf. [SU17] for an overview.
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