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KP-II APPROXIMATION FOR A SCALAR FPU SYSTEM
ON A 2D SQUARE LATTICE

DMITRY E.PELINOVSKY AND GUIDO SCHNEIDER

Abstract. We consider a scalar Fermi–Pasta–Ulam (FPU) system on a square 2D lattice.
The Kadomtsev–Petviashvili (KP-II) equation can be derived by means of multiple scale
expansions to describe unidirectional long waves of small amplitude with slowly varying
transverse modulations. We show that the KP-II approximation makes correct predictions
about the dynamics of the original scalar FPU system. An existing approximation result is
extended to an arbitrary direction of wave propagation. The main novelty of this work is
the use of Fourier transform in the analysis of the FPU system in strain variables.

1. Introduction

We consider a scalar Fermi–Pasta–Ulam (FPU) system on a square 2D lattice. The equa-
tions of motion are given by

∂2
t qm,n = W ′(qm+1,n − qm,n)−W ′(qm,n − qm−1,n)

+W ′(qm,n+1 − qm,n)−W ′(qm,n − qm,n−1), (m,n) ∈ Z2, (1)

where the scalar variable qm,n(t) describes a vertical displacement in z-direction of a particle
with unit mass located at the (m,n)-th site in the (x, y) plane. The interaction potential
between a particle and its four neighborhs is described by W . Figure 1 shows the mass–spring
system on a square 2D lattice.

m−1,n−1 m,n−1 m+1,n−1

m−1,n m,n m+1,n

m−1,n+1 m,n+1 m+1,n+1

Figure 1. A mass–spring system arranged in a 2D square lattice. The masses
are fixed at the (m,n) sites with the vertical displacements given by qm,n(t).
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The total conserved energy of the FPU system (1) is given by

H(q) =
∑

(m,n)∈Z2

1

2
(∂tqm,n)2 +W (qm+1,n − qm,n) +W (qm,n+1 − qm,n). (2)

For notational simplicity, we assume W (u) = 1
2
u2 − 1

3
u3 so that W ′(u) = u− u2.

It is well-known [8] that small-amplitude long-scale waves of the FPU system in one spatial
dimension are described by the Korteweg–de Vries (KdV) equation. The KdV equation was
first justified with bounds on the approximation error on the unbounded domain in [22] and
on the periodic domain in [1, 17]. Applications of these methods for other generalized KdV
equations can be found in [5, 11, 13, 15]. Properties of solitary waves in the FPU system in
one spatial dimension were recently reviewed in [25].

We are interested to justify the Kadomtsev–Petviashvili (KP-II) approximation which
describes unidirectional long waves of small amplitude with slowly varying transverse mod-
ulations. The formal derivation of the KP-II equation was reported in [6] but the rigorous
justification was considered to be an open problem for some time. Two rigorous results
were obtained only very recently. The KP-II equation was justified in the periodic domain
among other integrable normal forms [10]. By using a more general setting of the vector
FPU systems with particles moving in the (x, y) directions, the KP-II equation was justified
in the unbounded 2D square lattice for the propagation along the axes (as well as for the
diagonal propagation in the (x, y)-plane under additional constraints on the parameters of
the lattice) [14].

The KP-II approximation is different from the KdV equation derived in the vector FPU
systems with geometric nonlinearities, where small-amplitude supersonic longitudinal soli-
tary waves may propagate along the horizontal direction [7] and along arbitrary directions
[4]. Similarly, the liinearized KdV equation was derived for the linear propagation of rings
in two-dimensional lattices [23], where the diffraction properties were neglected.

The purpose of this paper is to improve the justification result obtained in [14] so that
it could apply to all directions of propagation in the (x, y) plane and without additional
restrictions on parameters of the lattice. We take the normalized potential W and consider
the scalar FPU lattice for simplicity, although extensions to the vector case with more
complicated potentials W are relatively straightforward. The main novelty of our approach
compared to [14] is working in Fourier space. Additionally, we have to construct a higher-
order approximation involving the linearized KP-II equation in order to handle arbitrary
directions of the wave propagation.

The paper is organized as follows. In Section 2 we introduce the strain variables for which
the KP-II equations can be derived. By introducing the strain variables the original system
is doubled and an additional compatibility condition has to be satisfied by the two strain
variables. The new variables are transformed in Fourier space.

In Section 3 we derive the KP-II equation for the wave propagation along the x-direction.
This simple case was considered in [14] and is used here to highlight analysis from the more
complicated case of propagation along an arbitrary direction. We use smooth solutions of
the KP-II equation to construct a suitable approximation of the FPU system satisfying the
compatibility condition. The residual terms from the FPU system with the leading-order
approximation are estimated, after which the main approximation result is formulated.
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We prove the approximation result in Section 4, where we derive equations for the error
terms produced by the leading-order approximation and handle these terms by using en-
ergy estimates and Gronwall’s inequality. Many terms are miraculously given by the time
derivative of the energy quantity due to the energy conservation (2).

Section 5 extends the approximation result for the wave propagation along an arbitrary
direction. To keep the residual terms at the same small order, we have to use a higher order
approximation leading to the system of the KP-II equation and the linearized KP-II equa-
tion as approximation equations. The requirements on smooth solutions of the KP-II and
linearized KP-II equations in Sobolev spaces of higher regularity are stated as assumptions
for the approximation result.

Section 6 discusses the spatial configurations for which these requirements can be satis-
fied, e.g. for transversely independent solutions and for periodic solutions, and formulates
an open problem for existence of smooth decaying solutions in the unbounded domain.

Acknowledgement. The work of D. E. Pelinovsky is partially supported by the Alexan-
der von Humboldt Foundation as Humboldt Reseach Award. The work of G. Schneider is
partially supported by the Deutsche Forschungsgemeinschaft DFG through the SFB 1173
”Wave phenomena” Project-ID 258734477.

2. Strain variables and the compatibility condition

For further work we introduce the following strain variables

um,n = qm+1,n − qm,n, vm,n = qm,n+1 − qm,n, wm,n = ∂tqm,n. (3)

The scalar FPU system (1) can be rewritten in the strain variables as the following system ∂tum,n = wm+1,n − wm,n,
∂tvm,n = wm,n+1 − wm,n,
∂twm,n = W ′(um,n)−W ′(um−1,n) +W ′(vm,n)−W ′(vm,n−1).

(4)

Alternatively, the component wm,n can be eliminated and the FPU system (4) can be closed
as two scalar equations

∂2
t um,n = W ′(um+1,n)− 2W ′(um,n) +W ′(um−1,n)

+W ′(vm+1,n)−W ′(vm+1,n−1)−W ′(vm,n) +W ′(vm,n−1),
∂2
t vm,n = W ′(vm,n+1)− 2W ′(vm,n) +W ′(vm,n−1)

+W ′(um,n+1)−W ′(um−1,n+1)−W ′(um,n) +W ′(um−1,n),

(5)

where the u- and v-variables satisfy a certain compatibility condition due to their relation
(3) to the q-variable.

In order to specify the compatibility condition and to develop the justification analysis of
the KP-II approximation, we will work in Fourier space, similar to analysis in [19] of the
FPU system on 1D lattice. Therefore, we define

û(k, l, t) =
1

2π

∑
(m,n)∈Z2

um,ne
ikm+iln, um,n =

1

2π

∫∫
T2

û(k, l, t)e−ikm−ilndkdl,

and similarly for vm,n and wm,n, where T := [−π, π) equipped with periodic boundary con-
ditions. The first two equations of the system (4) shows that

∂tû = (e−ik − 1)ŵ, ∂tv̂ = (e−il − 1)ŵ,



4 D. E. PELINOVSKY AND G. SCHNEIDER

which implies that the following compatibility condition is invariant with respect to the time
evolution of the FPU system (4):

(e−ik − 1)v̂(k, l, t) = (e−il − 1)û(k, l, t), t ≥ 0. (6)

Remark 2.1. In general, an arbitrary constant can be added to (6). We set this constant
to 0 for the class of solutions we are interested in.

Next we rewrite system (5) with W ′(u) = u − u2 in the convenient Fourier form. To do
so, let us first inspect the linearized system{

∂2
t um,n = um+1,n − 2um,n + um−1,n + vm+1,n − vm+1,n−1 − vm,n + vm,n−1,
∂2
t vm,n = vm,n+1 − 2vm,n + vm,n−1 + um,n+1 − um−1,n+1 − um,n + um−1,n,

which is written in Fourier space as{
∂2
t û = (e−ik − 2 + eik)û+ (e−ik − 1)(1− eil)v̂,
∂2
t v̂ = (e−il − 2 + eil)v̂ + (e−il − 1)(1− eik)û,

where we have used

e−ik − e−ikeil − 1 + eil = e−ik(1− eil)− (1− eil) = (e−ik − 1)(1− eil).

To simplify notation, we define

ω2
k := 2− e−ik − eik, ω2

l := 2− e−il − eil.

Eliminating v̂ in the first equation of the linearized system yields the following linear equation

∂2
t û+ (ω2

k + ω2
l )û = 0. (7)

Extending exactly the same calculations as for the linearized system for W ′(u) = u− u2, we
obtain the following nonlinear system in Fourier space given by{

∂2
t û = −ω2

k(û− û ∗ û) + (e−ik − 1)(1− eil)(v̂ − v̂ ∗ v̂),
∂2
t v̂ = −ω2

l (v̂ − v̂ ∗ v̂) + (e−il − 1)(1− eik)(û− û ∗ û).

By using the compatibility condition (6), we rewrite this system in the form:{
∂2
t û = −(ω2

k + ω2
l )û+ ω2

k(û ∗ û)− (e−ik − 1)(1− eil)(v̂ ∗ v̂),
∂2
t v̂ = −(ω2

k + ω2
l )v̂ + ω2

l (v̂ ∗ v̂)− (e−il − 1)(1− eik)(û ∗ û).
(8)

This system in combination with the compatibility condition (6) is the starting point for the
derivation and justification of the KP-II equation.

Remark 2.2. By using the compatibility condition (6), the two equations in system (8) can
be reduced to a single equation. However, this single equation contains multipliers which
are singular with respect to k and l. Since we have to expand these multipliers with respect
to k and l in the long wave limit (k, l)→ (0, 0), it is advantageous to work with system (8)
where the multipliers are smooth with respect to k and l.

3. Propagation along the x-direction

Here we first derive the KP-II equation for the long modulated waves moving along the
x-axis. After deriving the KP-II equation, we discuss how to handle the leading-order ap-
proximation in Fourier space and the residual terms of the FPU system. We end this section
by formulating the approximation theorem, which will be proven in Section 4.
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3.1. The formal long-wave limit. The long wave limit in physical space corresponds in
Fourier space to an expansion of system (8) at the wave vector (k, l) = (0, 0). Expansions

ω2
k = k2 − 1

12
k4 +O(k6), 1− eil = −il +O(l2),

allows us to rewrite system (8) in physical space formally as

∂2
t u = ∂2

xu+ ∂2
yu+

1

12
∂4
xu+

1

12
∂4
yu− ∂2

x(u
2)− ∂x∂y(v2) + h.o.t., (9)

where h.o.t. stands for the higher-order terms. The compatibility condition (6) corresponds
in physical space to

∂xv + h.o.t. = ∂yu+ h.o.t.. (10)

The leading-order approximation is given in physical space by

um,n(t) = ε2A(X, Y, T ), vm,n(t) = ε3∂−1
X ∂YA(X, Y, T ), (11)

with
X = ε(m− t), Y = ε2n, T = ε3t,

where A is a suitable solution to the KP-II equation (12) below for which derivatives of A and
∂−1
X ∂YA are controlled in Sobolev spaces of sufficiently high regularity. The compatibility

condition (10) rewritten in variables (X, Y, T ) is satisfied at the order of O(ε4). Substitution
of (11) into (9) rewritten in variables (X, Y, T ) results in the following KP-II equation at the
order of O(ε6):

2∂X∂TA+ ∂2
YA+

1

12
∂4
XA− ∂2

X(A2) = 0. (12)

In what follows, we replace the formal approximation in physical space by the precise ap-
proximation in Fourier space.

3.2. The leading-order approximation in Fourier space. Our goal is to prove a state-
ment of the following form. Let A be a suitable solution of the KP-II equation (12). Then
for ε > 0 sufficiently small, there are solutions of system (5) which remain close to the
leading-order approximation (11).

In order to establish such an approximation theorem, we have to estimate the residual
terms first, i.e., we have to control the terms which do not cancel after inserting the ap-
proximation (11) into system (9) and (10). In general, these estimates can be obtained
by expanding the multipliers in Fourier space and by assuming a certain regularity of the
solutions of the KP-II equation (12). However, additional difficulties occur as we explain
below.

(S1) A fundamental difficulty is the fact that the surface of wave frequencies ω :=
√
ω2
k + ω2

l

of the linearized problem (7) forms a cone at the wave vector (k, l) = (0, 0). Hence,
a Taylor series expansion of the surface is not possible at the tip of the cone. A con-
sequence of non-smoothness is the occurrence of the term ∂−1

X ∂2
YA in the evolution

problem

∂TA = −1

2

(
∂−1
X ∂2

YA+
1

12
∂3
XA− 2A∂XA

)
, (13)

which follows from the KP-II equation (12).
(S2) We partially get rid of the first difficulty (S1) by working with the extended system

(8). However, the leading-order approximation for the extended system (8) has to
satisfy the compatibility condition (6) from which the term ∂−1

X ∂YA appear in the
approximation (11).
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(S3) By looking at the evolution equation (13), it cannot be expected that the solutions
of the KP-II equation are arbitrarily smooth. However, a certain smoothness of
solutions is needed for estimating the residual terms.

(S4) Finally, solutions of the FPU system (5) live on Z2, whereas solutions of the KP-II
equation (12) live on R2. In Fourier space, solutions of system (8) live on T2, whereas
solutions of the Fourier-transformed KP-II equation live on R2,

Â(ξ, η, T ) =
1

2π

∫∫
R2

A(X, Y, T )eiξX+iηY dXdY

and

A(X, Y, T ) =
1

2π

∫∫
R2

Â(ξ, η, T )e−iξX−iηY dξdη.

To deal with the difficulties in (S1)–(S3), we use the following well-posedness result ob-
tained in [14, Lemma 1] based on earlier work [9, 24].

Lemma 3.1. For any A0 ∈ Hs+9(R2) such that ∂−2
X ∂2

YA0 ∈ Hs+9(R2) and

∂−1
X ∂2

Y (∂−2
X ∂2

YA0 − A2
0) ∈ Hs+3(R2)

with fixed s ≥ 0, there exists τ0 > 0 such that the Cauchy problem (13) admits a unique
solution

A ∈ C0([−τ0, τ0], Hs+9) ∩ C1([−τ0, τ0], Hs+6) ∩ C2([−τ0, τ0], Hs+3)

such that

∂−1
X ∂YA ∈ C0([−τ0, τ0], Hs+8) ∩ C1([−τ0, τ0], Hs+5) ∩ C2([−τ0, τ0], Hs+2)

and
∂−2
X ∂2

YA ∈ C0([−τ0, τ0], Hs+6) ∩ C1([−τ0, τ0], Hs+3).

To deal with the difficulty in (S4), we can use the following approximation result from [14,
Lemma 2], which was obtained based on previous estimates in one dimension in [22, Lemma
3.9] and [5, Lemma 5.1].

Lemma 3.2. Let A ∈ C0([−τ0, τ0], Hs(R2)) with s > 1 and am,n(t) := A(ε(m− t), ε2n, ε3t)
for (m,n) ∈ Z2. Then there exists a constant Cs > 0 such that for all ε ∈ (0, 1] we have

‖a(t)‖`2(Z2) ≤ Csε
− 3

2‖A(·, ·, ε3t)‖Hs(R2), ∀t ∈ [−ε−3τ0, ε
−3τ0].

Consequently, in Fourier space, we have

‖â(·, ·, t)‖L2(T2) ≤ Csε
− 3

2‖Â(·, ·, ε3t)‖L2,s(R2), ∀t ∈ [−ε−3τ0, ε
−3τ0],

where ‖Â‖L2,s(R2) := ‖ < · >s Â‖L2(R2) with < x >:=
√

1 + |x|2.

Remark 3.3. The proof of Lemma 3.2 is well-known in the existing literature, cf. the book
[21]. In Fourier space we lose ε−3 due to the Fourier transform of the scaled variables and
gain ε3/2 due to the scaling of the L2-norm. This coincides with the estimates in physical
space, where we lose a factor ε−3/2 due to scaling. The bounds in Fourier and physical space
agree to each other since Fourier transform is an isomorphism in L2 spaces.

Finally, we make precise the leading-order approximation in Fourier space, which we denote

as (û, v̂) = ε2(ψ̂u, ψ̂v). Let Â be the Fourier transform of a smooth solution A of the KP-
II equation (12) in Lemma 3.1. Let χT2 be the characterstic function on R2 such that

χT2(k, l) = 0 for (k, l) /∈ T2. Then, ψ̂u is defined by

ψ̂u(k, l, t) = ε−3eiktχT2(k, l)Â(ε−1k, ε−2l, T ), (14)
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whereas ψ̂v is obtained from the compatibility relation

(e−ik − 1)ψ̂v(k, l, t) = (e−il − 1)ψ̂u(k, l, t). (15)

Expanding as (k, l)→ (0, 0) yields

ψ̂v(k, l, t) = k−1l [1 +O(|k|+ |l|)] ψ̂u(k, l, t). (16)

It is clear that the inverse Fourier transform of (14) and (16) does not recover the approx-
imation (11) in physical space because of the approximation errors. However, the following
lemma controls the difference between the approximations in Fourier and physical spaces.
The lemma is based on [22, Lemma 3.8] in one dimension and can be proven similarly to
Lemma 3.2 proven in [14].

Lemma 3.4. Let A ∈ C0([−τ0, τ0], Hs(R2)) with s > 1, am,n(t) := A(ε(m− t), ε2n, ε3t) and

ψ̂u be given by (14). Then, there exists a constant Cs > 0 such that for all ε ∈ (0, 1] we have

‖ψu(t)− a(t)‖`2(Z2) ≤ Csε
s− 3

2‖A(·, ·, ε3t)‖Hs(R2), ∀t ∈ [−ε−3τ0, ε
−3τ0].

Remark 3.5. In view of Lemma 3.2, the difference between the approximation (11) in
physical space and (ε2ψu, ε

2ψv) with ψu and ψv given by the inverse Fourier transform of the
approximation (14) and (16) is small.

3.3. Estimates for the residual. The residuals contain the terms which do not cancel
after inserting the leading-order approximation (14) and (16) into system (8):

R̂esu(u, v) := −∂2
t û(`, t)− (ω2

k(k) + ω2
l (l))û(`, t) + ω2

k(k)(û ∗ û)(`, t)
−(e−ik − 1)(1− eil)(v̂ ∗ v̂)(`, t),

R̂esv(u, v) := −∂2
t v̂(`, t)− (ω2

k(k) + ω2
l (l))v̂(`, t) + ω2

l (l)(v̂ ∗ v̂)(`, t)
−(e−il − 1)(1− eik)(û ∗ û)(`, t).

Remark 3.6. The application of Lemmas 3.2 and 3.4 transfers the pure counting of powers
of ε into rigorous estimates. Since this is well documented in the existing literature, cf. [21],
we refrain from many details.

In physical space, it follows formally from (9) and (11) that

Resu(ε
2ψu, ε

2ψv) = O(ε8∂2
TA, ε

8∂6
XA, ε

10∂4
YA, ε

8∂4
X(A2), ε9∂X∂Y (∂−1

X ∂YA)2)

and similarly

Resv(ε
2ψu, ε

2ψv) = O(ε9∂−1
X ∂Y ∂

2
TA, ε

9∂5
X∂YA, ε

11∂−1
X ∂5

YA, ε
9∂3
X∂Y (A2), ε10∂2

Y (∂−1
X ∂YA)2)

Remark 3.7. The notations are to be understood in the following sense. The termO(ε8∂6
XA)

means that in Fourier space the scaled Â is multiplied by a function f = f(k, l) satifying
|f(k, l)| ≤ Cε8|k|6, where possibly different constants are denoted with the same symbol C
if they can be chosen independent of the small perturbation parameter 0 < ε � 1. This
estimate is only relevant for small k and l since our equations in Fourier space are posed on
the bounded domain T2.

The residual terms are controlled by the local well-posedness theory of Lemma 3.1 and by
the error bounds of Lemma 3.2 when A is a smooth solution of the KP-II equation (13) for

any s ≥ 0. Since we apply ω−1
k to R̂esu(ε

2ψu, ε
2ψv) and ω−1

l to R̂esv(ε
2ψu, ε

2ψv), both terms
in the physical space yield

O(ε7∂−1
X ∂2

TA, ε
7∂5
XA, ε

9∂−1
X ∂4

YA, ε
7∂3
X(A2), ε8∂Y (∂−1

X ∂YA)2)
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Hence, we lose a factor ε−1 due to the long wave character of ψu and ψv. By taking the
L2-norm we lose another factor ε−3/2 due to the involved scalings and the scaling properties
of the L2-norm. Therefore, it follows from the formal order O(ε8) of truncation that we have
in the end

‖ω−1
k R̂esu(ε

2ψu, ε
2ψv)‖L2 + ‖ω−1

l R̂esv(ε
2ψu, ε

2ψv)‖L2 = O(ε
11
2 ). (17)

This means that on the long O(1/ε3)-time scale we can choose the error to scale with a
factor εβ with β = 5

2
. The precise count of the residual terms with the same bound (17) was

obtained in [14, Lemma 3].

Remark 3.8. The formal order O(ε8) is sufficient in the subsequent energy estimates of
Section 4 since many terms can be written as time-derivatives which allows us to include
these terms in the chosen energy and allow for β = 5

2
. If the corresponding terms could not

have been written as time-derivatives, then it would be necessary to obtain residual terms of
formal order of O(ε9), for which we would have to construct a higher order approximation
to the leading-order approximation (u, v) = (ε2ψu, ε

2ψv).

Additional residual terms arise from the KP-II equation (12) rewritten in Fourier space
and truncated on T. The approximation error obtained from this truncation only appears
for the nonlinear (quadratic) term of the KP-II equation. Since T2 is compact, it suffices to
control this error by considering the convolution term for A2 in Fourier space:

χT2(Â ∗ Â)− χT2(χT2Â ∗ χT2Â)

= χT2((Â− χT2Â) ∗ (Â− χT2Â)) + 2χT2(χT2Â ∗ (Â− χT2Â)).

Each term in the right-hand side is controlled by the application of Lemma 3.4 and the
residual error in Fourier space is smaller than the bound (17) for any s > 1.

3.4. The approximation result. By using the energy estimates for the approximation
error, we will prove in Section 4 the following main result for the horizontal propagation in
the two-dimensional square lattice.

Theorem 3.9. There exist C0 and ε0 > 0 such that for all ε ∈ (0, ε0) the following holds.
Let A ∈ C([0, τ0], Hs+9) be a solution of the KP-II equation (12) given by Lemma 3.1 with
fixed s ≥ 0. Then there exist solutions (u, v) of system (5) with

sup
t∈[0,ε−3τ0]

‖u(t)− ε2ψu(t)‖`2(Z2) + ‖v(t)− ε2ψv(t)‖`2(Z2) ≤ C0ε
5
2 ,

where (ψu, ψv) are given by the inverse Fourier transform of (14) and (16).

Remark 3.10. The proof of the approximation result of Theorem 3.9 is a nontrivial task.
The KP-II approximation and the associated solution are of order O(ε2) for ε→ 0. There-
fore, a simple application of Gronwall’s inequality would only provide the boundedness of
the solutions on an O(ε−2)-time scale, but not on the natural O(ε−3)-time scale of the KP
approximation. There exist many counterexamples where formally derived amplitude equa-
tions make wrong predictions about the dynamics of original systems on the natural time
scale of the amplitude equations, cf. [18] and recent results in [2, 12, 20].
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4. Energy estimates for the approximation error

The approximation error is defined by

εβ(R̂u, R̂v) := (û, v̂)− (ε2ψ̂u, ε
2ψ̂v) (18)

with β being suitably chosen as β = 5
2
, the approximation (ε2ψ̂u, ε

2ψ̂v) satisfying the com-

patibility condition (15), and the error terms (R̂u, R̂v) satisfying the compatibility condition

(e−ik − 1)R̂v(k, l, t) = (e−il − 1)R̂u(k, l, t). (19)

The error terms satisfy equations of motion given by

∂2
t R̂u = −(ω2

k + ω2
l )R̂u + 2ε2ω2

k(ψ̂u ∗ R̂u) + εβω2
k(R̂u ∗ R̂u)

− 2ε2(e−ik − 1)(1− eil)(ψ̂v ∗ R̂v)− εβ(e−ik − 1)(1− eil)(R̂v ∗ R̂v)

+ ε−βR̂esu(ε
2ψu, ε

2ψv), (20)

∂2
t R̂v = −(ω2

k + ω2
l )R̂v + 2ε2ω2

l (ψ̂v ∗ R̂v) + εβω2
l (R̂v ∗ R̂v)

− 2ε2(e−il − 1)(1− eik)(ψ̂u ∗ R̂u)− εβ(e−il − 1)(1− eik)(R̂u ∗ R̂u)

+ ε−βR̂esv(ε
2ψu, ε

2ψv). (21)

To progress further, we recall the conserved energy (2) of the FPU system (1), which
suggests that the energy for the error terms in physical space can be defined in the form

E = E0 + ε2E1 + εβE2

with

E0 = ‖Rw‖2
`2 + ‖Ru‖2

`2 + ‖Rv‖2
`2 , (22)

E1 = −2
∑

(m,n)∈Z2

(ψu)m,n(R2
u)m,n + (ψv)m,n(R2

v)m,n, (23)

and

E2 = −2

3

∑
(m,n)∈Z2

(R3
u)m,n + (R3

v)m,n, (24)

where Rw is the error term for the third strain variable in (3) and the total energy (2) is is
multiplied by a factor of 2 for convenience. We define the L2-scalar product (·, ·) by

(f̂ , ĝ) =

∫
T2

f̂(`)ĝ(`)d`,

where ` := (k, l). By using Parseval’s equality, we have
∑

(m,n)∈Z2

fm,ngm,n = (f̂ , ĝ). By using

Fourier transform, the first two linear equations in system (4), and the compatibility relation
(19), we can rewrite the leading-order energy in the equivalent form

E0 =
1

2
‖ω−1

k ∂tR̂u‖2
L2 +

1

2
‖ω−1

l ∂tR̂v‖2
L2 +

1

2
‖ω−1

k ωR̂u‖2
L2 +

1

2
‖ω−1

l ωR̂v‖2
L2 , (25)

where ω :=
√
ω2
k + ω2

l . Indeed, the first term in (22) after the Fourier transform is split
symmetrically by using the first two linear equations in system (4) as

‖R̂w‖2
L2 =

1

2
‖ω−1

k ∂tR̂u‖2
L2 +

1

2
‖ω−1

l ∂tR̂v‖2
L2 ,
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whereas the second and third terms in (22) after the Fourier transform are rewritten as

‖R̂u‖2
L2 + ‖R̂v‖2

L2 =
1

2
‖ω−1

k ωR̂u‖2
L2 +

1

2
‖ω−1

l ωR̂v‖2
L2 ,

since the compatibility relation (19) suggests that

ω2(ω2
l |R̂u|2 + ω2

k|R̂v|2) = 2ω2
kω

2
l (R̂u|2 + |R̂v|2).

Similarly, we rewrite E1 and E2 after Fourier transform as

E1 := −2

∫
R̂u(`)ψ̂u(`− `1)R̂u(`1)d`1d`− 2

∫
R̂v(`)ψ̂v(`− `1)R̂v(`1)d`1d` (26)

and

E2 = −2

3

∫
R̂u(`)R̂u(`− `1)R̂u(`1)d`1d`−

2

3

∫
R̂v(`)R̂v(`− `1)R̂v(`1)d`1d`. (27)

The leading-order energy E0 in (25) suggests that the energy estimates for the system
(20) and (21) are obtained by multiplying the first equation by the weighted time derivative

ω−2
k ∂tR̂u and the second equation by the weighted time derivative ω−2

l ∂tR̂v, after which we
add the two equations and integrate in ` = (k, l). This procedure gives us the following
energy balance equation

1

2
∂t‖ω−1

k ∂tR̂u‖2
L2 +

1

2
∂t‖ω−1

l ∂tR̂v‖2
L2 = Re(s1 + s2 + . . .+ s12), (28)

with

s1 = −
∫
∂tR̂u(`)ω

−2
k ω2R̂u(`)d`,

s2 = 2ε2

∫
∂tR̂u(`)ψ̂u(`− `1)R̂u(`1)d`1d`,

s3 = εβ
∫
∂tR̂u(`)R̂u(`− `1)R̂u(`1)d`1d`,

s4 = −2ε2

∫
∂tR̂u(`)(e

−ik − 1)(1− eil)ω−2
k ψ̂v(`− `1)R̂v(`1)d`1d`,

s5 = −εβ
∫
∂tR̂u(`)(e

−ik − 1)(1− eil)ω−2
k R̂v(`− `1)R̂v(`1)d`1d`,

s6 = ε−β
∫
∂tR̂u(`)ω

−2
k R̂esu(ε

2ψu, ε
2ψv)(`)d`,

s7 = −
∫
∂tR̂v(`)ω

−2
l ω2R̂v(`)d`,

s8 = 2ε2

∫
∂tR̂v(`)ψ̂v(`− `1)R̂v(`1)d`1d`,

s9 = εβ
∫
∂tR̂v(`)R̂v(`− `1)R̂v(`1)d`1d`,

s10 = −2ε2

∫
∂tR̂v(`)(e

−il − 1)(1− eik)ω−2
l ψ̂u(`− `1)R̂u(`1)d`1d`,
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s11 = −εβ
∫
∂tR̂v(`)(e

−il − 1)(1− eik)ω−2
l R̂u(`− `1)R̂u(`1)d`1d`,

s12 = ε−β
∫
∂tR̂v(`)ω

−2
l R̂esv(ε

2ψu, ε
2ψv)(`)d`.

We can now deal with different terms of the energy balance equation (28) as follows.

i) We rewrite s1 and s7 as

s1 = −1

2
∂t

∫
R̂u(`)ω

−2
k (k)ω2(`)R̂u(`)d` = −1

2
∂t‖ω−1

k ωR̂u‖2
L2

and

s7 = −1

2
∂t

∫
R̂v(`)ω

−2
l (l)ω2(`)R̂v(`)d`−

1

2
∂t‖ω−1

l ωR̂v‖2
L2 .

These terms give the time derivative of the third and fourth terms in the leading-order en-
ergy E0 in (25).

ii) We rewrite s2 and s8 as

s2 = ε2∂t

∫
R̂u(`)ψ̂u(`− `1)R̂u(`1)d`1d`− ε2

∫
R̂u(`)∂tψ̂u(`− `1)R̂u(`1)d`1d`,

and

s8 = ε2∂t

∫
R̂v(`)ψ̂v(`− `1)R̂v(`1)d`1d`− ε2

∫
R̂v(`)∂tψ̂v(`− `1)R̂v(`1)d`1d`,

The first terms in s2 and s8 define one half of the ε2 correction E1 to the leading-order energy
E0 given by (26). The other half will come from the terms s4 and s10. The second term in
s2 is estimated as follows:

ε2

∣∣∣∣∫ R̂u(`)∂tψ̂u(`− `1)R̂u(`1)d`1d`

∣∣∣∣ ≤ ‖R̂u‖L2‖∂tψ̂u ∗ R̂u‖L2

≤ ‖∂tψ̂u‖L1‖R̂u‖2
L2 ,

due to the Cauchy-Schwarz and Young’s inequality. Since

∂tψ̂u(k, l, t) = ikε−3eiktχT2(k, l)Â(ε−1k, ε−2l, T ) + eiktχT2(k, l)∂T Â(ε−1k, ε−2l, T ),

we obtain

‖∂tψ̂u‖L1 ≤ ε‖| · |Â(·, ·, T )‖L1 + ε3‖∂T Â(·, ·, T )‖L1 .

If A is controlled in Sobolev spaces of high regularity with the help of Lemma 3.1, then

ε2

∣∣∣∣∫ R̂u(`)∂tψ̂u(`− `1)R̂u(`1)d`1d`

∣∣∣∣ ≤ Cε3‖R̂u‖2
L2 .

Similarly, we obtain from (16) that

ε2

∣∣∣∣∫ R̂v(`)∂tψ̂v(`− `1)R̂v(`1)d`1d`

∣∣∣∣ ≤ Cε4‖R̂v‖2
L2 ,

where the additional power in ε4 compared to ε3 is explained by additional power of ε be-
tween ψv and ψu, cf. (11).
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iii) We rewrite s4 as

s4 = 2ε2

∫
(e−il − 1)ω−1

k ∂tR̂u(`)(e
−ik − 1)ω−1

k ψ̂v(`− `1)R̂v(`1)d`1d`

= 2ε2

∫
(e−ik − 1)ω−1

k ∂tR̂v(`)(e
−ik − 1)ω−1

k ψ̂v(`− `1)R̂v(`1)d`1d`

= 2ε2

∫
∂tR̂v(`)ψ̂v(`− `1)R̂v(`1)d`1d`

= ε2∂t

∫
R̂v(`)ψ̂v(`− `1)R̂v(`1)d`1d`− ε2

∫
R̂v(`)∂tψ̂v(`− `1)R̂v(`1)d`1d`,

and similarly s10 as

s10 = ε2∂t

∫
R̂u(`)ψ̂u(`− `1)R̂u(`1)d`1d`− ε2

∫
R̂u(`)∂tψ̂u(`− `1)R̂u(`1)d`1d`.

Since s4 + s10 = s2 + s8, the first terms in s4 and s10 define the other half of ε2E1, where E1

is given by (26), where the second terms in s4 and s10 have been estimated in (ii).

iv) We rewrite s3 and s9 as

s3 =
1

3
εβ∂t

∫
R̂u(`)R̂u(`− `1)R̂u(`1)d`1d`

and

s9 =
1

3
εβ∂t

∫
R̂v(`)R̂v(`− `1)R̂v(`1)d`1d`.

These terms define one half of the εβ correction E2 to the leading-order energy E0 given by
(27). The other half will come from the terms s5 and s11.

v) We rewrite s5 as

s5 = 2εβ
∫

(e−il − 1)ω−1
k ∂tR̂u(`)(e

−ik − 1)ω−1
k R̂v(`− `1)R̂v(`1)d`1d`

= 2εβ
∫

(e−ik − 1)ω−1
k ∂tR̂v(`)(e

−ik − 1)ω−1
k R̂v(`− `1)R̂v(`1)d`1d`

= 2εβ
∫
∂tR̂v(`)R̂v(`− `1)R̂v(`1)d`1d`

=
2

3
εβ∂t

∫
R̂v(`)R̂v(`− `1)R̂v(`1)d`1d`,

and similarly s11 as

s11 =
2

3
εβ∂t

∫
R̂u(`)R̂u(`− `1)R̂u(`1)d`1d`.

Since s5 + s11 = s3 + s9, the corresponding terms define the other half of εβE2, where E2 is
given by (27).
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vi) The residual terms s6 and s12 are estimated with the Cauchy-Schwarz and Young in-
equalities as

|s6| = ε−β
∣∣∣∣∫ ω−1

k ∂tR̂u(`)ω
−1
k R̂esu(ε

2ψu, ε
2ψv)(`)d`

∣∣∣∣
≤ ε−β‖ω−1

k ∂tR̂u‖L2‖ω−1
k R̂esu(ε

2ψu, ε
2ψv)‖L2

≤ ε3‖ω−1
k ∂tR̂u‖2

L2 + (ε−β−
3
2‖ω−1

k R̂esu(ε
2ψu, ε

2ψv)‖L2)2,

and similarly,

|s12| ≤ ε3‖ω−1
l ∂tR̂v‖2

L2 + (ε−β−
3
2‖ω−1

l R̂esv(ε
2ψu, ε

2ψv).‖L2)2

By using the estimate (17) and setting β = 5
2
, we finally obtain

|s6|+ |s12| ≤ ε3
(
‖ω−1

k ∂tR̂u‖2
L2 + ‖ω−1

l ∂tR̂v‖2
L2 + Cres

)
,

for some constant Cres > 0 that depends on the solution A of the KP-II equation (12).

Combining all estimates together, we have derived the energy balance equation in the form

d

dt
E ≤ C0ε

3E0 + Cresε
3,

for some constant C0 > 0 that also depends on the solution A of the KP-II equation (12),
where E = E0 + ε2E1 + εβE2 and β = 5

2
. The corrections of the leading-order energy E0 are

controlled by

|E1| ≤ 2(‖ψ̂u‖L1 + ‖ψ̂v‖L1)E0,

|E2| ≤
2

3
(‖R̂u‖L1 + ‖R̂v‖L1)E0,

where

‖ψ̂u‖L1 + ‖ψ̂v‖L1 ≤
√

2π
(
‖ψ̂u‖L2 + ‖ψ̂v‖L2

)
≤ CA,

‖R̂u‖L1 + ‖R̂v‖L1 ≤
√

2π
(
‖R̂u‖L2 + ‖R̂v‖L2

)
≤ 2
√

2πE0,

with CA > 0 that depends on the solution A of the KP-II equation (12). As long as there
exists M <∞ such that E0 ≤M , there exists ε0 > 0 such that for all ε ∈ (0, ε0) the energy
E = E0 + ε2E1 + εβE2 is equivalent to the leading-order energy E0, e.g.,

E0 ≤ 2E ≤ 4E0. (29)

Hence, the energy balance equation can be written as

d

dt
E ≤ Cε3E + Cresε

3,

which yields by using Gronwall’s inequality for all t ∈ [0, ε−3τ0] that

E(t) ≤ Cresε
3teCε

3t ≤ Cresτ0e
Cτ0 =:

M

2
.

In view of the equivalence (29), this verifies that E0(t) ≤M for all t ∈ [0, ε−3τ0]. Due to the
scaling (18) with β = 5

2
, this bound completes the proof of Theorem 3.9.
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5. Propagation along an arbitrary direction

Here we consider an arbitrary angle of propagation with respect to the square lattice Z2

and derive the extended KP-II equation as the leading-order approximation. This extended
KP-II equation is needed to reduce the size of the residual terms and it can be split into
the sum of the KP-II equation for the main term and the linearized KP-II equation for the
correction term. The approximation theorem is formulated for the smooth solutions to the
KP-II and linearized KP-II equations. Classes of such smooth solutions are discussed in
Section 6.

5.1. The formal long-wave limit. We take the advantage that the Laplacian is invariant
under the rotation in the plane R2 and define the leading-order approximation in physical
space by

um,n(t) = ε2A(X, Y, T ), vm,n(t) = ε2B(X, Y, T ), (30)

where

X = ε((cosφ)m+ (sinφ)n− t), Y = ε2(−(sinφ)m+ (cosφ)n), T = ε3t,

and the angle of propagation φ ∈ (0, π
2
) determines the direction of propagation (cosφ, sinφ)

with respect to the square lattice Z2. The long wave limit can be written in the extended
form compared to system (9) and (10):

∂2
t u = ∂2

xu+ ∂2
yu+

1

12
∂4
xu+

1

12
∂4
yu− ∂2

x(u
2)− ∂x∂y(v2)− 1

2
(∂x − ∂y)∂x∂y(v2) + h.o.t. (31)

and

∂xv +
1

2
∂2
xv + h.o.t. = ∂yu+

1

2
∂2
yu+ h.o.t.. (32)

We find by the chain rule

∂2
t = ε2∂2

X − 2ε4∂X∂T + ε6∂2
T ,

∂2
x = ε2(cosφ)2∂2

X − 2ε3(cosφ)(sinφ)∂X∂Y + ε4(sinφ)2∂2
Y ,

∂2
y = ε2(sinφ)2∂2

X + 2ε3(cosφ)(sinφ)∂X∂Y + ε4(cosφ)2∂2
Y ,

∂x∂y = ε2(cosφ)(sinφ)∂2
X + 2ε3((cosφ)2 − (sinφ)2)∂X∂Y − ε4(cosφ)(sinφ)∂2

Y .

All terms up to the formal order of O(ε5) cancel out, whereas the KP-II equation appears at
the formal order of O(ε6). For the propagation in the x-direction, there are no terms of the
formal order of O(ε7). If A satisfies the KP-II equation, the residual terms have the formal
order of O(ε8). This is no longer the case for the propagation along an arbitrary direction
with φ ∈ (0, π

2
).

Substituting (30) into (31) and (32) and removing the terms of the formal order of O(ε6)
and O(ε7) yield the extended KP-II equation

−2∂X∂TA =
1

12
[(cosφ)4 + (sinφ)4]∂4

XA+ ∂2
YA

− (cosφ)2∂2
X(A2)− (sinφ)(cosφ))∂2

X(B2)

− 1

3
ε[(cosφ)2 − (sinφ)2](cosφ)(sinφ)∂3

X∂YA+ 2ε(cosφ)(sinφ)∂X∂Y (A2)

− ε[(cosφ)2 − (sinφ)2]∂X∂Y (B2)

− 1

2
ε[cosφ− sinφ](cosφ)(sinφ)∂3

X(B2). (33)
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and the relation between the amplitudes A and B:

(cosφ)∂XB − ε(sinφ)∂YB +
1

2
ε(cosφ)2∂2

XB = (sinφ)∂XA+ ε(cosφ)∂YA+
1

2
ε(sinφ)2∂2

XA.

Writing

A = A1 + εA2,

B = B1 + εB2,

we obtain

B1 = (tanφ)A1,

B2 = (tanφ)A2 +
1

(cosφ)2
∂−1
X ∂YA1 +

1

2
(tanφ)[sinφ− cosφ]∂XA1,

after which the extended KP-II equation (33) can be split into the KP-II equation for A1

and the linearized KP-II equation for A2, which are given by

−2∂X∂TA1 =
1

12
[(cosφ)4 + (sinφ)4]∂4

XA1 + ∂2
YA1

− [(cosφ)2 + (sinφ)2(tanφ)]∂2
X(A2

1) (34)

and

−2∂X∂TA2 =
1

12
[(cosφ)4 + (sinφ)4]∂4

XA2 + ∂2
YA2

− 2[(cosφ)2 + (sinφ)2(tanφ)]∂2
X(A1A2)

− 1

3
[(cosφ)2 − (sinφ)2](cosφ)(sinφ)∂3

X∂YA1

− 2(tanφ)2∂2
X(A1∂

−1
X ∂YA1)

+ [(sinφ)2(tanφ)2 − (sinφ)2 + 2(sinφ)(cosφ)]∂X∂Y (A2
1). (35)

5.2. Estimates for the residual. The leading-order approximation in Fourier space is

denoted as before by (û, v̂) = (ε2ψ̂u, ε
2ψ̂v) with

ψ̂u(k, l, t) = ε−3eiκtχT2(k, l)Â(ε−1κ, ε−2ϑ, T ), (36)

and

ψ̂v(k, l, t) = ε−3eiκtχT2(k, l)B̂(ε−1κ, ε−2ϑ, T ), (37)

where

κ = (cosφ)k + (sinφ)l, ϑ = −(sinφ)k + (cosφ)l,

and

Â = Â1 + εÂ2, B̂ = B̂1 + εB̂2.

For φ ∈ (0, π
2
), the residual terms are formally given in physical space by

Resu(ε
2ψu, ε

2ψv) = O(ε8∂2
TA1, ε

8∂6
XA1, ε

8∂2
X∂

2
YA1, ε

8∂4
X(A2

1), ε8∂2
Y (A2

1), ε8∂2
Y (B2

1),

ε9∂2
TA2, ε

9∂6
XA2, ε

9∂2
X∂

2
YA2, ε

8∂2
X(A2

2), ε8∂X∂Y (A1A2),

ε8∂2
X(B2

2), ε8∂X∂Y (B1B2), ε8∂3
X(B2

1))
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and

Resv(ε
2ψu, ε

2ψv) = O(ε8∂2
TB1, ε

8∂6
XB1, ε

8∂2
X∂

2
YB1, ε

8∂4
X(B2

1), ε8∂2
Y (B2

1), ε8∂2
Y (A2

1),

ε9∂2
TB2, ε

9∂6
XB2, ε

9∂2
X∂

2
YB2, ε

8∂2
X(B2

2), ε8∂X∂Y (B1B2),

ε8∂2
X(A2

2), ε8∂X∂Y (A1A2), ε8∂3
X(A2

1)).

The residual terms containing A1 are controlled by the local well-posedness theory of
Lemma 3.1 with A1 being a smooth solution of the KP-II equation (34). If A2 enjoys the
same properties, the bound (17) is justified, from which the proof of the approximation
theorem stated below is analogous to the proof of Theorem 3.9.

Theorem 5.1. There exist C0 and ε0 > 0 such that for all ε ∈ (0, ε0) the following holds. Let
A1 ∈ C([0, τ0], Hs+9) be a solution of the KP-II equation (34) given by Lemma 3.1 with fixed
s ≥ 0 and assume that A2 ∈ C([0, τ0], Hs+9) is a solution of the linearized KP-II equation
(35) with the same properties as for A1. Then there exist solutions (u, v) of system (5) with

sup
t∈[0,ε−3τ0]

‖u(t)− ε2ψu(t)‖`2(Z2) + ‖v(t)− ε2ψv(t)‖`2(Z2) ≤ C0ε
5
2 ,

where (ψu, ψv) are given by the inverse Fourier transform of (36) and (37).

6. Discussion

Here we discuss classes of solutions to the KP-II equation (34) and the linearized KP-II
equation (35) for which the approximation result of Theorem 5.1 can be obtained. This
includes transversely independent solutions, periodic solutions, and decaying solutions in
the unbounded domain.

6.1. Transversely independent solutions. Let A1,2 = A1,2(X,T ) be Y -independent.
Then, A1 is a solution of the KdV equation

−2∂TA1 =
1

12
[(cosφ)4 + (sinφ)4]∂3

XA1 − [(cosφ)2 + (sinφ)2(tanφ)]∂X(A2
1) (38)

and A2 is a solution of the linearized KdV equation

−2∂TA2 =
1

12
[(cosφ)4 + (sinφ)4]∂3

XA2 − 2[(cosφ)2 + (sinφ)2(tanφ)]∂X(A1A2). (39)

Clearly, if A2|T=0 = 0, then A2(X,T ) ≡ 0. Smooth solutions for A1 to the KdV equation
(38) exist in one-dimensional Sobolev spaces without any additional constraints on the initial
data A1|T=0 ∈ Hs(R). As a result, the approximation result of Theorem 5.1 holds in one-
dimensional Sobolev spaces Hs(R) for every s ≥ 6.

6.2. Periodic solutions. Let A1,2 be spatially periodic in X and Y . Without loss of gen-
erality, we assume that the solutions are 1-periodic in X and Y . Such solutions can be
expressed in the Fourier form, e.g.

A(X, Y, T ) =
∑
j1∈Z

∑
j2∈Z

Âj1,j2(T )e2iπ(j1X+j2Y ),

with Âj1,j2(T ) ∈ C. The Fourier transformed KP equation (34) vanishes identically for

j1 = j2 = 0 and so there is no governing equation for Â0,0(T ). Therefore, we are free to set
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Â0,0(T ) ≡ 0. Global well-posedness of the KP-II equation (34) was established in Hs(T2)
for any s ≥ 0 in [3], provided that the initial data satisfies∮

A(X, Y, 0)dX = 0, for every Y, (40)

that is, Â0,j2 = 0 for every j2 ∈ Z.
The evolution problem for the inhomogeneous linearized KP equation (35) is also well-

defined in Sobolev spaces Hs(T2) with the same constraint (40). Thus, antiderivatives in X
presents no problem on existence of smooth solutions in Sobolev spaces Hs(T2) both for the
KP-II equation (34) and the linearized KP-II equation (35).

However, the choice of periodic boundary conditions in the KP equation (34) leads to the
problem of having to choose corresponding boundary conditions in the original FPU system
(5). The resulting difficulties are illustrated in Figure 2. An irrational propagation direction
(cosφ, sinφ) leads to a quasi-periodic lattice in Fourier space which lies densely in the torus.
The treatment of this problem leads to functional analytical difficulties whose solution is
outside the scopes of this work. Therefore, in the following we restrict ourselves to the case
of rational propagation directions (cosφ, sinφ).

k

l

k

l

k

l

Figure 2. The left panel shows the distribution of Fourier modes in the
case of periodic boundary conditions for the KP equation (34). The dots
are located at integer multiples of 2π. The middle panel shows the resulting
distribution of Fourier modes in the original system (5) in the case of wave
propagation along the x-axis. The distance of the dots in k-direction is O(ε)
and in l-direction O(ε2). The right panel shows the corresponding distribution
of Fourier modes in the original system (5) in case of wave propagation along
an arbitrary direction. For a rational propagation direction (cosφ, sinφ), we
obtain a periodic lattice in Fourier space with finitely many modes on the
torus. For an irrational propagation direction (cosφ, sinφ), we obtain a quasi-
periodic lattice that lies densely in the torus due to non-linear interactions.

In case of a propagation along the x-axis spatially periodic solutions for the KP equation
(12) of period 1 in X and Y correspond in the original FPU system (5) to

um,n = um+1/ε,n = um,n+1/ε2 ,

and so we should restrict to values of ε > 0 such that 1/ε ∈ N for which 1/ε2 ∈ N. Such
solutions can be represented by the finite Fourier polynomial

um,n =

1/ε−1∑
j1=−1/ε

1/ε2−1∑
j2=−1/ε2

ûj1,j2e
2πi(j1εm)e2πi(j2ε2n)
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In case of a rational direction of propagation (cosφ, sinφ) with respect to the square lattice
Z2 the finite Fourier polynomial is given by

um,n =

1/ε−1∑
j1=−1/ε

1/ε2−1∑
j2=−1/ε2

ûj1,j2e
2πi(j1ε((cosφ)m+(sinφ)n))e2πi(j2ε2(−(sinφ)m+(cosφ)n))

=

1/ε−1∑
j1=−1/ε

1/ε2−1∑
j1=−1/ε2

ûj1,j2e
2πi(j1ε(cosφ)−j2ε2(sinφ))me2πi(j1ε(sinφ)+j2ε2(cosφ))n.

Since the indices do not reflect the position in Fourier space we introduce

û(2π(j1ε(cosφ)− j2ε
2(sinφ)), 2π(j1ε(sinφ) + j2ε

2(cosφ))) = ûj1,j2

and introduce the lattice

Σ2 = {(2π(j1ε(cosφ)− j2ε
2(sinφ)), 2π(j1ε(sinφ) + j2ε

2(cosφ))) ∈ [0, 2π)2 : j1, j2 ∈ Z}

The essential difference to the above calculations is that the space L2(T2) has to be replaced
by a sequence space, i.e., instead of L2(T2) for solving the FPU system in Fourier space we
consider the space `2(Σ2) which is equipped with the norm

‖û‖`2(Σ2) = ε3/2

 1/ε−1∑
j1=−1/ε

1/ε2−1∑
j2=−1/ε2

|ûj1,j2|2
1/2

= ε3/2

(∑
`∈Σ2

|û(`)|2
)1/2

in order to have the same scaling as above. For estimating the leading-order approximation

(û, v̂) = (ε2ψ̂u, ε
2ψ̂v) in the equations for the error we need similar to above a space `1(Σ2)

which is equipped with the norm ‖û‖`1(Σ2) = ε3
∑

`∈Σ2
|û(`)|. By Cauchy–Schwarz inequality,

we obtain

‖û‖`1(Σ2) = ε3
∑
`∈Σ2

1 · |û(`)| ≤ ε3(
∑
`∈Σ2

12)1/2(
∑
`∈Σ2

|û(`)|2)1/2 ≤ C‖û‖`2(Σ2)

where we used
∑

`∈Σ2
12 = O(ε−3) due to the O(ε−3) many summands. As a result, we

have ‖ψ̂u‖`1(Σ2) = O(1) and ‖ψ̂v‖`1(Σ2) = O(1). With these norms and notations the ap-
proximation result of Theorem 5.1 transfers to the periodic Sobolev spaces Hs(T2) for every
s ≥ 9.

6.3. Unbounded domain. One needs to be careful in analyzing smooth solutions of the
KP-II equation (34) and the linearized KP-II equation (35) in Sobolev spaces Hs(R2). As
was pointed out in [16], if A belongs to Hs(R2), then ∂−1

X ∂YA
2 may not be in Hs(R2) as

the integral of the positive function cannot decay to zero both as X → −∞ and X → +∞.
This was also observed in the proof of Lemma 1 in [14], where a constraint was added on
the combined quantity ∂−1

X ∂2
Y (∂−2

X ∂2
YA0 − A2

0) rather than on ∂−3
X ∂3

YA or ∂−1
X ∂YA

2.
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Rewriting the linearized KP-II equation (35) in the evolution form yields

−2∂TA2 =
1

12
[(cosφ)4 + (sinφ)4]∂3

XA2 + ∂−1
X ∂2

YA2

− 2[(cosφ)2 + (sinφ)2(tanφ)]∂X(A1A2)

− 1

3
[(cosφ)2 − (sinφ)2](cosφ)(sinφ)∂2

X∂YA1

− 2(tanφ)2∂X(A1∂
−1
X ∂YA1)

+ [(sinφ)2(tanφ)2 − (sinφ)2 + 2(sinφ)(cosφ)]∂Y (A2
1). (41)

In the evolution form, the right-hand side of the linearized KP-II equation contains terms
O(∂2

X∂YA1, ∂X(A1∂
−1
X ∂YA1), ∂Y (A2

1)), which are controlled by Lemma 3.1 in Sobolev norms.
Therefore, by Duhamel’s principle, we have A2 ∈ C([0, τ0], Hs+6)∩C1([0, τ0], Hs+3). However,
for the justification analysis, we need to estimate ∂−1

X ∂2
TA2 in Sobolev norms.

For D2 := ∂−1
X ∂YA2, we can obtain from (41)

−2∂TD2 =
1

12
[(cosφ)4 + (sinφ)4]∂3

XD2 + ∂−1
X ∂2

YD2

− 2[(cosφ)2 + (sinφ)2(tanφ)]∂Y (A1A2)

− 1

3
[(cosφ)2 − (sinφ)2](cosφ)(sinφ)∂X∂

2
YA1

− 2(tanφ)2∂Y (A1∂
−1
X ∂YA1)

+ [(sinφ)2(tanφ)2 − (sinφ)2 + 2(sinφ)(cosφ)]∂−1
X ∂2

Y (A2
1).

By Duhamel’s principle, we obtain ∂−1
X ∂YA2 ∈ C0([0, τ0], Hs+6) ∩ C1([0, τ0], Hs+3) if the

initial data satisfy the constraint

∂−1
X ∂2

Y

[
∂−1
X ∂YA2|T=0 + [(sinφ)2(tanφ)2 − (sinφ)2 + 2(sinφ)(cosφ)]A2

1|T=0

]
∈ Hs+6.

Since we need to control ∂−1
X ∂2

TA2, we need to extend this method to ∂−1
X ∂YA2 ∈ C2([0, τ0], Hs)

or equivalently to ∂−2
X ∂2

YA2 ∈ C0([0, τ0], Hs+3)∩C1([0, τ0], Hs). However, this is out of reach
at the present time because of overdetermined set of constraints on the initial data A1|T=0

and A2|T=0. Further work on extending the well-posedness results for the KP-II equation
(35) is needed to satisfy the requirements of Theorem 5.1 in Hs(R2) for every s ≥ 9.
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