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TANGENTIAL CONE CONDITION FOR THE FULL WAVEFORM
FORWARD OPERATOR IN THE ELASTIC REGIME:

THE NON-LOCAL CASE

MATTHIAS ELLER, ROLAND GRIESMAIER, AND ANDREAS RIEDER

Abstract. We generalize results of [M. Eller and A. Rieder, Inverse Problems 37 (2021)
085011] from the acoustic to the elastic wave equation. That means we show injectivity
of the Fréchet derivative of the parameter-to-state map for a semi-discrete seismic inverse
problem in the elastic regime. Here, the parameter space is spanned by functions which
have a global support in the propagation medium (the non-local case) and are locally
linearly independent. As a consequence we derive local conditional wellposedness of this
nonlinear inverse problem. Furthermore, the tangential cone condition holds, which is
an essential prerequisite in the convergence analysis of a variety of inversion algorithms
for nonlinear illposed problems.

1. Introduction

We are interested in a theoretical aspect of seismic imaging in the elastic regime. Math-
ematically speaking, in this imaging modality one aims to identify parameter functions
of the elastic wave equation (mass density, shear and pressure wave moduli) from par-
tial measurements of elastic waves. These waves are initiated by controlled explosions.
The resulting nonlinear inverse problem is called full waveform inversion (FWI), see,
e.g., [4, 14], and it is typically solved using Newton-like iterative regularization schemes.
The mathematical analysis of these schemes relies crucially on a structural assumption
on the nonlinear forward map known as the tangential cone condition (TCC, some-
times also referred to as the η-condition), which was introduced in [11]. A nonlinear
operator F : D(F ) ⊂ V → W between normed spaces V and W satisfies the TCC at
x+ ∈ int(D(F )) if there are an η ∈ (0, 1) and an open ball Br(x

+) ⊂ D(F ) such that

∥F (v)− F (w)− F ′(w)[v − w]∥W ≤ η ∥F (v)− F (w)∥W for all v, w ∈ Br(x
+).

Here, F ′ : D(F ) ⊂ V → L(V,W ) denotes the Fréchet derivative. We only refer to the
monographs [7, 13] and the recent publications [6, 10] as evidence for the importance of
TCC in the regularization theory of nonlinear illposed problems.

In our previous work [2] we established that TCC holds at x+ if V is finite-dimensional
(the semi-discrete situation) and the Fréchet derivative F ′(x+) has a trivial null space.
Using this result we validate the TCC for the FWI forward operator in the elastic regime
provided the parameters (density and relaxed S- and P-wave moduli) are restricted to
a suitable finite-dimensional space, which is spanned by locally linearly independent C2-
functions having global support in the propagation medium (the non-local case).
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We begin our presentation in the next section introducing first the elastic wave equation
as a first order hyperbolic system along with some statements on its wellposedness. Then,
we formulate the forward operator Φ of the semi-discrete version of FWI in the elastic
regime which we consider in this work. An important property is the Lipschitz continuity
of the Fréchet derivative of this forward operator which we state in Theorem 2.1. The
rather technical proof is moved to an appendix. In preparation for our main result in
Theorem 4.3 we provide a control result for the elastic wave equation in Section 3: given
two open subsets Σ and Ω of the propagation medium, we can find a source in Σ such
that the resulting velocity field at a sufficiently large time has non-trivial divergence and
non-trivial deviator in Ω (see Theorem 3.4). The proof relies on a global Holmgren-John
theorem for the homogeneous elastic wave equation across non-characteristic surfaces. As
a consequence of this controllability, the Fréchet derivative of Φ must be one-to-one at
each inner point of the propagation medium (Theorem 4.2). An application of Lemma C.1
of [2] finally yields the TCC for Φ and the Lipschitz-stability of the inverse problem. We
conclude our work with a discussion of possible future research.

2. The setting

In two subsections we introduce the mathematical background of the considered for-
ward and related inverse problem.

2.1. The forward model. We formulate the elastic wave equation as a first order system
for the stress tensor σ : [0,∞) × D → R3×3

sym and the velocity field v : [0,∞) × D → R3.

Let D ⊂ R3 be a connected bounded domain with boundary ∂D that is piecewise C1.
Then,

∂tσ(t, x) = C
(
µ(x), π(x)

)
ε(v(t, x)), (t, x) ∈ [0,∞)×D,(2.1a)

ϱ(x)∂tv(t, x) = divσ(t, x) + f(t, x), (t, x) ∈ [0,∞)×D,(2.1b)

with initial values σ(0, ·) = σ0 and v(0, ·) = v0. The boundary conditions on ∂D will
be incorporated into the solution spaces in (2.7) below. Here ϱ : D → (0,∞) denotes the
bulk density, f : [0,∞)×D → R3 is a volume force, and µ, π : D → (0,∞) are the relaxed
S- and P-wave moduli. Accordingly, the velocities of shear and pressure waves are

vsh :=
√

µ/ϱ and vpr :=
√

π/ϱ,

respectively. The linearized strain rate is given by

ε(v) :=
1

2

(
(∇xv)

⊤ +∇xv
)

and

(2.2) C(m, p)ϵ := 2m ϵ+ (p− 2m) trace(ϵ)I3, ϵ ∈ R3×3
sym, m, p ∈ R,

specifies Hooke’s law. Throughout, we assume that

(2.3) (ϱ, µ, π) ∈ P :=
{
λ ∈ L∞(D)3 : ϱmin < λ1(·) < ϱmax,

µmin < λ2(·) < µmax, πmin < λ3(·) < πmax

}
,

where 0 < ϱmin < ϱmax < ∞, 0 < µmin < µmax < ∞, and 0 < πmin < πmax < ∞ are
suitable constants with 3πmin > 4µmax. The latter condition guarantees that C(µ, π) is



TANGENTIAL CONE CONDITION IN THE ELASTIC REGIME 3

invertible with

(2.4) C(m, p)−1 = C

(
1

4m
,

p−m

m(3p− 4m)

)
, m, p ∈ R,

and as a consequence pressure waves travel faster than shear waves. More precisely, we
have that

vpr
vsh

=

√
π

ϱ

√
ϱ

µ
>

√
πmin

µmax

>

√
4

3
≈ 1.15.

Next, we write (2.1) as an abstract initial value problem

(2.5) B∂tu = −Au+ f(t), u(0) =

[
σ0

v0

]
=: u0,

in the time interval [0,∞), where u(t) := (σ(t, ·),v(t, ·))⊤, f(t) := (0,f(t, ·))⊤,

(2.6) B :=

[
C(µ, π)−1 0

0 ϱ I3

]
, and A := −

[
0 ε
div 0

]
.

We define the Hilbert space

X := L2(D,R3×3
sym)× L2(D,R3)

with inner product 〈
(σ,v), (ψ,w)

〉
X
:=

∫
D

(σ : ψ + v ·w) dx,

where the colon denotes the Frobenius inner product on R3×3. We split the boundary
of D into two disjoint parts, ∂D = ∂DD ∪̇ ∂DN , and define

(2.7) D(A) :=
{
(ψ,w) ∈ H(div)×H1

D : ψn = 0 on ∂DN

}
with

(2.8) H1
D :=

{
v ∈ H1(D,R3) : v = 0 on ∂DD

}
and

H(div) :=
{
σ ∈ L2

(
D,R3×3

sym

)
: divσ ∈ L2(D,R3)

}
.

The operator A : D(A) ⊂ X → X is maximal monotone (see, e.g., [8, Lmm. 6.1]). If
(σ0,v0) ∈ D(A) and f ∈ W 1,1

(
[0,∞), L2(D,R3)

)
, then (2.5) (or equivalently (2.1))

admits a unique classical solution u = (σ,v)⊤ ∈ C([0,∞),D(A)) ∩ C1([0,∞), X) (see,
e.g., [8]). On the other hand, if (σ0,v0)

⊤ ∈ X and f ∈ L1
loc([0,∞), L2(D,R3)), then (2.5)

(or equivalently (2.1)) admits a unique mild solution u = (σ,v)⊤ ∈ C([0,∞), X), which
satisfies

(2.9) Bu(t) = Bu0 − A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, t ∈ [0,∞),

(see, e.g., [12, Pro. 2.15]).
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2.2. The (semi-discrete) inverse problem. Let

V := span{φj ∈ C2(D) : j = 1, . . . ,M} ⊂ L∞(D),

where the functions {φj : j = 1, . . . ,M} are locally linearly independent over D. This
means that any linear combination must be trivial that vanishes on a subset O of D with
positive Lebesgue-measure:

(2.10) meas(O) > 0 and
M∑
j=1

ajφj|O = 0 =⇒ aj = 0, j = 1, . . . ,M.

We write ∥ · ∥V := ∥ · ∥L∞(D). Specific examples for spaces V with the required properties

are polynomial spaces and spaces spanned by certain classes of radial basis functions (see
[2, Sec. 3]).

In a seismic experiment, sources are fired at time zero in a non-empty open subset
Σ ⊂ D and the resulting wave fields are measured in a different non-empty open subset
Ω ⊂ D until the observation time T > 0 has been reached. Accordingly, the measurements
are in C([0, T ], XΩ) where XΩ := L2(Ω,R3×3

sym) × L2(Ω,R3). For technical reasons, which
will become clear in the proof of Theorem 2.1 below, we confine the prescribed sources
to

(2.11) W 2,1
0 (Σ) :=

{
f ∈ W 2,1

(
[0, T ], L2(Σ,R3)

)
: f(0) = f ′(0) = 0

}
.

To formulate the corresponding semi-discrete inverse problem we set V 3
+ := V 3 ∩ P and

define the FWI forward operator (parameter-to-source-to-state map) by

Φ: V 3
+ ⊂ V 3 → L

(
W 2,1

0 (Σ),C([0, T ], XΩ)
)︸ ︷︷ ︸

=: W

, (ϱ, µ, π) 7→
(
f 7→ Ψ(σ,v)

)
,

where (σ,v) is the unique classical solution of (2.1) with initial values σ0 = 0, v0 = 0, and
where Ψ: C

(
[0, T ], X

)
→ C

(
[0, T ], XΩ

)
, Ψ(σ,v) := (σ|Ω,v|Ω)⊤, models the measurement

process.
Now the semi-discrete seismic inverse problem (time-domain full waveform inversion)

in the elastic regime reads:

(2.12) Reconstruct the triple (ϱ, µ, π) ∈ V 3
+ from a measured version of Φ(ϱ, µ, π).

We will verify in Theorem 4.3 below that in contrast to its infinite-dimensional version,
which is locally illposed (see [8, Thm. 6.7]), the semidiscrete inverse problem is in fact
locally wellposed and Lipschitz stable.

It has been established in [8] that Φ is Fréchet-differentiable at any (ϱ, µ, π) ∈ V 3
+ with

derivative Φ′ : V 3
+ ⊂ V 3 → L(V 3,W) given by

Φ′(ϱ, µ, π)[h]f = (σ|Ω,v|Ω)⊤, h = (h1, h2, h3) ∈ V 3, f ∈ W 2,1
0 (Σ),

where (σ,v) ∈ C
(
[0, T ], X

)
denotes the mild solution of

∂tσ(t, x) = C(µ(x), π(x))ε(v(t, x))(2.13a)

+ C(h2(x), h3(x))ε(v(t, x)) (t, x) ∈ [0, T ]×D,

ϱ(x)∂tv(t, x) = divσ(t, x)− h1(x) ∂tv(t, x) (t, x) ∈ [0, T ]×D,(2.13b)

with initial values σ(0, ·) = 0, v(0, ·) = 0 and where v is the second component of the
classical solution to (2.1) with initial values σ0 = 0, v0 = 0.
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The following property of Φ′ will become important later. Its proof is given in Appen-
dix A.

Theorem 2.1. The map Φ′ : V 3
+ ⊂ V 3 → L(V 3,W) is Lipschitz continuous, i.e.,

∥Φ′(ϱ1, µ1, π1)− Φ′(ϱ2, µ2, π2)∥L(V 3,W) ≲ ∥(ϱ1, µ1, π1)− (ϱ2, µ2, π2)∥V 3
1

for all (ϱi, µi, πi) ∈ V 3
+, i = 1, 2. The Lipschitz constant depends only on the observation

time T and the bounds ϱmin, ϱmax, µmin, µmax, πmin, and πmax that determine the parameter
range P in (2.3).

3. A control result for the elastic wave equation

In Theorem 3.4 below we will establish the existence of a source f ∈ W 2,1
0 (Σ), which

plugged into (2.1b) initiates a velocity v(T, ·) with non-trivial divergence and non-trivial
deviator in Ω provided T is large enough.

We define the bounded linear operator

(3.1) T : L2([0, T ]× Σ,R3) → L2
ϱ(Ω,R3), f 7→ v(T, ·)|Ω,

where u = (σ,v)⊤ is the classical solution of (2.5) with initial values σ0 = 0, v0 = 0.
Note that T is well defined as v is continuous in time. The space L2

ϱ(Ω,R3) is the same

as L2(Ω,R3) but with the ϱ-weighted inner product

⟨ψ,w⟩L2
ϱ(Ω,R3) := ⟨ϱψ,w⟩L2(Ω,R3).

Both spaces share the same topology.

Lemma 3.1. The adjoint operator T∗ of T from (3.1) is given by

T∗ : L2
ϱ(Ω,R3) → L2([0, T ]× Σ,R3), r 7→ w|[0,T ]×Σ,

where g = (ψ,w)⊤ ∈ C([0, T ], X) is the mild solution of the adjoint wave equation

(3.2) B∂tg = A∗g, g(T ) =

[
0
r

]
.

Proof. Let f ∈ L2([0, T ]×Σ,R3) and r ∈ L2(Ω,R3). To work with classical solutions we
choose sequences {fk}k ⊂ W 1,1([0, T ], L2(D,R3)) and {rk}k ⊂ H1

D from (2.8) with fk →
χΣf in L2([0, T ] ×D,R3) and rk → χΩr in L2

ϱ(D,R3). Furthermore, let uk = (σk,vk)
⊤

and gk = (ψk,wk)
⊤ be the classical solutions of (2.5) with initial values uk(0) = (0,0)⊤

and of (3.2), respectively, when replacing f by fk := (0,fk)
⊤ and r by rk. We note that

gk → g in L2([0, T ], X) (see [8, Thm. 2.4]).

1The notation A ≲ B indicates the existence of a generic constant c > 0 such that A ≤ cB.
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Integration by parts yields

⟨vk(T, ·), rk⟩L2
ϱ(Ω,R3) = ⟨ϱvk(T, ·),wk(T, ·)⟩L2(Ω,R3) − ⟨ϱvk(0, ·),wk(0, ·)⟩L2(Ω,R3)

= ⟨Buk(T ), gk(T )⟩X − ⟨uk(0), Bgk(0)⟩X

=

∫ T

0

⟨B∂tuk(t), gk(t)⟩Xdt+
∫ T

0

⟨uk(t), B∂tgk(t)⟩Xdt

=

∫ T

0

⟨−Auk(t) + fk(t), gk(t)⟩Xdt+
∫ T

0

⟨uk(t), A
∗gk(t)⟩Xdt

=

∫ T

0

⟨fk(t), gk(t)⟩Xdt = ⟨fk,wk⟩L2([0,T ]×D,R3).

Passing to the limit as k → ∞ verifies the assertion. □

Lemma 3.2. Let g = (ψ,w)⊤ ∈ C([0, T ], X) be the mild solution of (3.2) in [0, T ].
Then,

g̃(t) :=

[
−I3 0
0 I3

]
g(2T − t) =

[
−ψ(2T − t)
w(2T − t)

]
, t ∈ [T, 2T ],

is the mild, forward in time propagating solution of (3.2) in [T, 2T ]. Accordingly, T∗ can
be extended from L2

ϱ(Ω,R3) to L2([0, 2T ]× Σ,R3) by

(3.3) T∗r(t, ·) =

{
w(t, ·)|Σ, t ∈ [0, T ],

w(2T − t, ·)|Σ, t ∈ (T, 2T ].

Proof. Obviously, g̃ ∈ C([T, 2T ], X). Note that g as a mild solution of (3.2) satisfies

Bg(t) = Bg(T ) + A

∫ T

t

g(s)ds, t ∈ [0, T ],

which is (2.9) adapted to (3.2) using A∗ = −A. We define D :=
( −I3 0

0 I3

)
. Observing that

DB = BD, DA = −AD, and Dg(T ) = g(T ) we find that, for t ∈ [0, T ],

Bg̃(2T − t) = BDg(t) = DBg(t) = DBg(T ) +DA

∫ T

t

g(s)ds

= BDg(T )− A

∫ T

t

Dg(s)ds = Bg(T )− A

∫ T

t

g̃(2T − s)ds

= Bg(T ) + A∗
∫ 2T−t

T

g̃(s)ds,

which, for t ∈ [T, 2T ], reduces to

Bg̃(t) = Bg(T ) + A∗
∫ t

T

g̃(s)ds.

Thus, g̃ is the forward in time propagating mild solution of (3.2). □

Theorem 3.3. Suppose that ϱ ∈ C1(D) and µ, π ∈ C2(D). Then the operator T defined
in (3.1) has a dense range, provided that

(3.4) T > dist(x,Σ) := inf
y∈Σ

dist(x, y) for all x ∈ Ω.
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Here, dist denotes the Riemannian distance function in D, which is defined by

(3.5) dist(x, y) := inf
γ

∫ b

a

√
ϱ ◦ γ(t)
µ ◦ γ(t)

|γ̇(t)| dt, x, y ∈ D ,

where the infimum ist taken over all C1-curves γ : [a, b] → D connecting x and y.

Before we will prove the theorem we discuss the physical meaning of (3.4). Since√
ϱ/µ = 1/vsh, the condition says that the allotted observation time T has to be large

enough such that the slower shear waves initiated in Σ reach all of Ω within the measure-
ment period.

Proof of Theorem 3.3. From functional analysis we know that T has a dense range if and
only if T∗ is injective. Here, we consider T∗ in its extended version (3.3).

Now, assume that T∗r = 0. Let g = (ψ,w) ∈ C([0, 2T ], X) be the corresponding
extended mild solution of the adjoint wave equation (3.2), that is

∂tψ(t, x) = C(µ(x), π(x))ε(w(t, x)), (t, x) ∈ [0, 2T ]×D,

ϱ(x)∂tw(t, x) = divψ(t, x), (t, x) ∈ [0, 2T ]×D,

and ψ(T, ·) = 0, w(T, ·) = r. This mild solution is the weak solution as well (see, e.g.,
[8, Cor. 2.5]), and by our assumption on r we immediately obtain that w = 0 everywhere
in [0, 2T ]×Σ. We will apply a global Holmgren-John theorem [3, Thm. 1.1] to infer that
r = 0.

By taking the divergence of the first equation and the time derivative of the second
equation we eliminate ψ and obtain the second-order system

(3.6) ϱ(x)∂2
tw(t, x) = div

(
C(µ(x), π(x))ε(w(t, x))

)
, (t, x) ∈ [0, 2T ]×D.

Recalling (2.2) this equation translates into

ϱ(x)∂2
tw(t, x)− µ(x)

(
∆w(t, x) +∇ divw(t, x)

)
−∇

(
(π(x)− 2µ(x)) divw(t, x)

)
− 2ε(w(t, x))∇µ(x) = 0, (t, x) ∈ [0, 2T ]×D.

We infer that the principal symbol of the associated second-order differential operator on
the left hand side is the 3× 3 matrix

p(x, τ, ξ) = (ϱ(x)τ 2 − µ(x)|ξ|2)I3 − (π(x)− µ(x))ξξ⊤, x ∈ D, (τ, ξ) ∈ R× R3,

where (τ, ξ) are the Fourier variables corresponding to (t, x). A short calculation using
the multilinearity of the determinant shows that

(3.7) det p(x, τ, ξ) = (ϱ(x)τ 2−µ(x)|ξ|2)2(ϱ(x)τ 2−π(x)|ξ|2), x ∈ D, (τ, ξ) ∈ R×R3.

Due to our smoothness assumptions on the coefficients ϱ, µ, and π, solutions w ∈
H2

loc((0, T )×D) to the homogeneous elastic wave equation (3.6) satisfy the unique contin-
uation property across non-characteristic C1-surfaces [1, Thm. 3.6, Lmm. 5.1]. More pre-
cisely, let S ⊂ (0, 2T )×D be a non-characteristic surface of class C1, that is, S = {(t, x) ∈
(0, 2T ) × D : ϕ(t, x) = 0} for some ϕ ∈ C1((0, 2T ) × D) with det p(x,∇t,xϕ(t, x)) ̸= 0
for all (t, x) ∈ S. If w ≡ 0 in S+ = {(t, x) ∈ (0, 2T ) × D : ϕ(t, x) > 0}, then w ≡ 0
in a neighborhood of S. At this point we have to discuss the regularity of w. We
will demonstrate that the local uniqueness property holds also for mild/weak solutions
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w ∈ L2((0, 2T )×D). Using a Friedrichs’s mollifier e ∈ C∞
0 (R) with supp e ⊂ [−1, 1] and∫

R e(t) dt = 1, we consider the regularizations in time

wn(t) = n

∫
R
e(nτ)w(t− τ) dτ, t ∈ [0, 2T ], n ∈ N,

which satisfy wn → w in L2((0, 2T ) × D). For convenience we extend w as a solution
to the elastic wave equation to the larger time interval (−1, 2T + 1) and denote this
extension by w as well. Then the regularizations wn and all their time derivatives are
also solutions to the homogeneous elastic wave equation (3.6) in [0, 2T ]×D because the
coefficients are time-independent. We have wn ∈ C∞([0, 2T ], L2(D)) and interpreting
(3.6) at a fixed time t ∈ [0, 2T ] as a second order elliptic system with forcing term
ϱ∂2

tw(t) we obtain wn(t) ∈ H2
loc(D) by elliptic regularity theory. Differentiating (3.6)

with respect to t we infer ∂k
twn(t) ∈ H2

loc(D) for all k ∈ N and any t ∈ [0, 2T ]. This
gives wn ∈ C∞([0, 2T ], H2

loc(D)) ⊂ H2
loc((0, T ) × D). Hence, each wn satisfies the local

uniqueness property and consequently it must hold for the limit function w as well.
This local result can be turned into a global statement using the approach developed

in [3]. Even though the focus of [3] is the uniqueness of the lateral Cauchy problem,
we can use this result to show that w must vanish in a larger set when it is zero in the
cylinder (0, 2T ) × Σ. The analysis of the lateral Cauchy problem in [3] is based on the
fact that zero Cauchy data on an open subset of the spatial boundary allow us to extend
a solution by zero across the boundary (see [3, p. 71]) so that the extended function is a
solution to the homogeneous PDE and identically zero in an open subset of the enlarged
domain for all t ∈ (0, 2T ).

With this understanding we infer that w(T, x) = r(x) = 0 for all x ∈ D satisfying
d(x,Σ) < T , where d is the Riemannian distance function from (3.5), which is determined
by the linear factor containing µ of the characteristic polynomial det p in (3.7) considered
as a polynomial in τ 2 (see [3, Thm. 1.1]). We have replaced T/2 in the reference by T
because in our case the equation is valid in (0, 2T )×D. Since π > µ everywhere in D we
have

µ(x)|ξ|2/ϱ(x) < π(x)|ξ|2/ϱ(x), x ∈ D, ξ ∈ R3,

and according to [3, Thm. 1.1] d is the metric determined by µ(x)|ξ|2/ϱ(x). □

Below we will need the deviator of a vector field. An element δ ∈ L2(Ω,R3×3
sym) is called

the (weak) deviator of w ∈ L2(Ω,R3) if∫
Ω

δ : ϕ dx = −
∫
Ω

w ·
(
divϕ− 1

3
∇trace(ϕ)

)
dx for all ϕ ∈ C∞

0 (Ω,R3×3
sym).

We write devw := δ and note that devw = ε(w) − 1
3
(divw)I3 for w ∈ H1(Ω,R3),

i.e., devw is the trace-free part of ε(w).

Theorem 3.4. Suppose that ϱ ∈ C1(D) and µ, π ∈ C2(D). Let Ω ⊂ D be open and assume
that the observation time T satisfies (3.4). Then, there exists a source f ∈ W 2,1

0 (Σ) such
that the second component of the classical solution u = (σ,v)⊤ of (2.5) with initial values
u0 = (σ0,v0)

⊤ = (0,0)⊤ has a non-trivial divergence and a non-trivial deviator in Ω at
time T , i.e., div v(T, ·)|Ω ̸≡ 0 and dev v(T, ·)|Ω ̸≡ 0.

Proof. Let u ∈ L2(Ω,R3) with non-trivial divergence and non-trivial deviator. Such
a u can be constructed by choosing u = ∇φ for some φ ∈ C∞(Ω) with ∆φ ̸= 0 and
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εij(∇φ) = ∂xi
∂xj

φ ̸≡ 0 for one pair (i, j) with 1 ≤ i ̸= j ≤ 3. For instance we can choose
φ(x) = exp(−|x|2), x ∈ Ω.
Since the spaces of (weak) divergence free and (weak) deviator free vector fields in

Ω are proper closed subspaces of L2(Ω,R3) there is a neighborhood U ⊂ L2(Ω,R3) of
u containing only vector fields with non-trivial divergence and non-trivial deviator. By
Theorem 3.3, there is an f ∈ L2([0, T ] × Σ,R3) such that Tf ∈ U, i.e., div(Tf) ̸≡ 0
and dev(Tf) ̸≡ 0. We can even choose f ∈ W 2,1

0 (Σ) because this space is dense in
L2([0, T ]× Σ,R3). □

4. Local injectivity of the FWI forward operator yields TCC

Proposition 4.1. Suppose that ϱ ∈ C1(D) and µ, π ∈ C2(D). Let h ∈ V 3\{0}, and
let Σ,Ω ⊂ D be open and disjoint. If the observation time T satisfies (3.4), then there
exists an f ∈ W 2,1

0 (Σ) such that the mild solution (σ|Ω,v|Ω)⊤ of (2.13) with initial
values σ(0, ·) = 0, v(0, ·) = 0, where v is the second component of the classical solution
u = (σ,v)⊤ of (2.5) with initial values u0 = (σ0,v0)

⊤ = (0,0)⊤, is not identically zero
in (0, T )× Ω. This f does not depend on h.

Proof. We argue by contradiction and assume that there exists an h = (h1, h2, h3) ∈
V 3\{0} such that for any f ∈ W 2,1

0 (Σ) the corresponding mild solution of (2.13) with
initial values σ(0, ·) = 0, v(0, ·) = 0, where v is the second component of the classical
solution u = (σ,v)⊤ ∈ C([0,∞),D(A)) ∩ C1([0,∞), X) of (2.5) with initial values u0 =
(σ0,v0)

⊤ = (0,0)⊤, satisfies (σ|[0,T ]×Ω,v|[0,T ]×Ω) = (0,0). According to Theorem 3.4
there is an f such that v has a non-trivial divergence and a non-trivial deviator in Ω at
time T , i.e., div v(T, ·)|Ω ̸≡ 0 and dev v(T, ·)|Ω ̸≡ 0. In particular v(T, ·)|Ω ̸≡ 0.

Now, the integrated version of (2.13), see (2.9), with zero initial values yields that

(4.1) C(h2(x), h3(x))ε(v(t, x)) = 0, h1(x) ∂tv(t, x) = 0 for a.e. (t, x) ∈ [0, T ]× Ω.

If h1 ̸≡ 0 then h1(·) ̸= 0 almost everywhere in Ω by (2.10). Hence, the equation on the
right hand side of (4.1) implies that ∂tv|[0,T ]×Ω = 0 almost everywhere. In view of the
initial values σ0 = 0, v0 = 0 we obtain from (2.5) (or equivalently (2.1)) that v|[0,T ]×Ω = 0
almost everywhere. However, this contradicts v(T, ·)|Ω ̸≡ 0. Therefore, h1 = 0.

Next we assume that h2 ̸≡ 0. Then h2(·) ̸= 0 almost everywhere in Ω by (2.10). When
C(h2(·), h3(·)) is injective almost everywhere in Ω, the equation on the left hand side of
(4.1) shows that ε(v)|[0,T ]×Ω = 0 almost everywhere. Integrating (2.5) with respect to
time, using the initial values σ0 = 0, v0 = 0, and observing that f |[0,T ]×Ω = 0 because
Σ∩Ω = ∅, we find that (σ|[0,T ]×Ω,v|[0,T ]×Ω) = (0,0) almost everywhere. This contradicts
v(T, ·)|Ω ̸≡ 0 and thus h2 = 0.
It still remains to discuss the case when h2 ̸≡ 0 and C(h2(·), h3(·)) fails to be injective

on a subset O ⊂ Ω with positive Lebesgue measure. Recalling (2.4), this can only happen
when 3h3(·) − 4h2(·) = 0 almost everywhere in O, and thus 3h3(·) − 4h2(·) = 0 almost
everywhere in Ω by (2.10). Then, the equation on the left of (4.1) reduces to

dev v|[0,T ]×Ω = 0 almost everywhere,

contradicting dev v(T, ·)|Ω ̸≡ 0. Thus, h2 = 0.
Finally, we assume that h2 = 0 and h3 ̸≡ 0. Then h3(·) ̸= 0 almost everywhere in Ω by

(2.10). The equation on the left of (4.1) reduces to

trace(ε(v|[0,T ]×Ω)) = div v|[0,T ]×Ω = 0 almost everywhere,

contradicting div v(T, ·)|Ω ̸≡ 0. Thus, h2 = h3 = 0. □
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Local uniqueness of the seismic inverse problem (2.12) follows immediately.

Theorem 4.2. Suppose that (ϱ, µ, π) ∈ V 3
+. The derivative Φ′(ϱ, µ, π) ∈ L(V 3,W) is an

injective mapping, and we have that

min
{
∥Φ′(ϱ, µ, π)[h]∥W : h ∈ V 3, ∥h∥V 3 = 1

}
> 0.

Proof. Assume the minimum to be zero. As V 3 is finite dimensional and Φ′(ϱ, µ, π) is
continuous, there exists an h ∈ V 3 with ∥h∥V 3 = 1 such that Φ′(ϱ, µ, π)[h]f = 0 for all
f ∈ W 2,1

0 (Σ). But then h = 0 by Proposition 4.1, which contradicts ∥h∥V 3 = 1. □

In Theorem 2.1 we have seen that the derivative of the FWI forward operator is Lip-
schitz continuous. Now an application of Lemma C.1 from [2] yields our main result, that
is, Lipschitz stability (4.2) of the semi-discrete seismic inverse problem and the TCC (4.3)
for the semi-discrete FWI forward operator.

Theorem 4.3. For any (ϱ+, µ+, π+) ∈ V 3
+ there exists an open ball Br(ϱ

+, µ+, π+) ⊂ V 3
+

such that

(4.2) ∥(ϱ1, µ1, π1)− (ϱ2, µ2, π2)∥V 3 ≲
∥∥Φ(ϱ1, µ1, π1)− Φ(ϱ2, µ2, π2)

∥∥
W

and

(4.3)
∥∥Φ(ϱ1, µ1, π1)− Φ(ϱ2, µ2, π2)− Φ′(ϱ2, µ2, π2)[(ϱ1, µ1, π1)− (ϱ2, µ2, π2)]

∥∥
W

≲ ∥(ϱ1, µ1, π1)− (ϱ2, µ2, π2)∥V 3 ∥Φ(ϱ1, µ1, π1)− Φ(ϱ2, µ2, π2)∥W
for all (ϱi, µi, πi) ∈ Br(ϱ

+, µ+, π+), i = 1, 2.

5. Conclusion and discussion

In this work we have extended our results from [2] for FWI in the acoustic regime
to the elastic regime: TCC holds for the corresponding forward operator and hence a
variety of Newton-like solvers for the seismic inverse problem (2.12) are locally convergent
regularization schemes. Moreover, (2.12) is locally wellposed.

There are two directions for future research. 1. Wave propagation in realistic media
exhibits attenuation and dispersion which can be accurately modeled by the visco-elastic
wave equation. We are confident that a version of Theorem 4.3 holds for this model as
well and a proof is in reach as soon as a unique continuation principle for the visco-elastic
system has been established. 2. From a practical point of view one would like to span the
parameter space V by basis functions having a compact support (the local case). The
resulting difficulties have already been discussed in Remarks 3.3 and A.3 of [2] which
apply to the present situation with straightforward modifications. To master the local
case we plan to adapt the concept of localized potentials [5].

Appendix A. Proof of Theorem 2.1

We decompose

(A.1) Φ = Ψ ◦ F ◦B,

where B : P ⊂ L∞(D)3 → L∗(X) := {J ∈ L(X) : J∗ = J} is given by

(ϱ, µ, π) 7→
([
σ
v

]
7→

[
C(µ, π)−1 0

0 ϱ I3

] [
σ
v

])
.
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Furthermore, we define F : D(F ) ⊂ L∗(X) → S := L
(
W 2,1

0 (D),C([0, T ], X)
)
by

P 7→ (f 7→ u =
(
σ,v)⊤

)
,

where u is the classical solution of (2.5) with f = (0,f)⊤, u0 = (0,0)⊤, A from (2.6),
and B is replaced by

P ∈ D(F ) :=
{
Λ ∈ L∗(X) : λ−∥x∥2X < ⟨Λx, x⟩X < λ+∥x∥2X

}
for some 0 < λ− < λ+ < ∞. Since, for any (ϱ, µ, π) ∈ P and M ∈ L2(D,R3×3

sym),

min{2µmin, 3πmin − 4µmax}M :M ≤
(
C(µ, π)M

)
:M

≤ max{2µmax, 3πmax − 4µmin}M :M a.e.,

(see, e.g., [15, Lmm. 50]), we have B(P) ⊂ D(F ) when we set

λ+ := max{2µmax, 3πmax − 4µmin, ϱmax} and λ− := min{2µmin, 3πmin − 4µmax, ϱmin}.
Then, the factorization of Φ in (A.1) is well defined and we obtain that

Φ′(p) = ΨF ′(B(p))B′(p), p = (ϱ, µ, π) ∈ P.

Now, Theorem B.2 in [2] applies to F , and

∥F ′(P1)− F ′(P2)∥L(L∗(X),S) ≲ ∥P1 − P2∥L(X), P1, P2 ∈ D(F ),

where the Lipschitz constant only depends on T , λ−, and λ+. For any pi = (ϱi, µi, πi) ∈ P,
i = 1, 2, we proceed with

∥Φ′(p1)− Φ′(p2)∥L(V 3,W) ≤ ∥F ′(B(p1))B
′(p1)− F ′(B(p2))B

′(p2)∥L(V 3,S)

≤
∥∥(F ′(B(p1))− F ′(B(p2))

)
B′(p1)

∥∥
L(V 3,S)

+
∥∥F ′(B(p2))

(
B′(p1)−B′(p2)

)∥∥
L(V 3,S)

≲ ∥B(p1)−B(p2)∥L(X)∥B′(p1)∥L(V 3,L∗(X))

+ ∥F ′(B(p2))∥L(L∗(X),S)∥B′(p1)−B′(p2)∥L(V 3,L∗(X)).

(A.2)

In the next step we show uniform boundedness of ∥B′(p)∥L(V 3,L∗(X)) and ∥F ′(B(p))∥L(L∗(X),S)

for p = (ϱ, µ, π) ∈ P. Using [8, Lmm. 6.3] we find that

(A.3) B′(p)h =

[
−C(µ, π)−1C(h1, h2)C(µ, π)−1 0

0 h3 I3

]
, h = (h1, h2, h3) ∈ V 3 .

This implies ∥B′(p)∥L(V 3,L∗(X)) ≲ 1. The estimate for ∥F ′(B(p))∥L(L∗(X),S) is more in-
volved. We will be brief, but more details can be found in [2, App. B] or [9], were the same
arguments have been used. Let u := F ′(B(p))[H]f for some H ∈ L∗(X) and f = (0,f)⊤

with f ∈ W 2,1
0 (D). Then, u is the mild solution of the abstract initial value problem

B(p)u′(t) + Au(t) = −HF (B(p))f(t), u(0) = 0,

in the time interval [0, T ]. Regularity estimates (see, e.g., [8, Thm. 2.6]) show that

∥u∥C([0,T ],X) ≲ ∥H∥L(X)∥F (B(p))f∥C1([0,T ],X) ≲ ∥H∥L(X)∥f∥W 2,1(D).

Hence, ∥F ′(B(p))∥L(L∗(X),S) ≲ 1 uniformly in p ∈ P. Substituting these estimates
into (A.2) we obtain that

∥Φ′(p1)− Φ′(p2)∥L(V 3,W) ≲ ∥B(p1)−B(p2)∥L(X) + ∥B′(p1)−B′(p2)∥L(V 3,L∗(X))

≲ ∥p1 − p2∥V 3 + ∥B′(p1)−B′(p2)∥L(V 3,L∗(X)),
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where we used the mean value theorem and the estimate ∥B′(p)∥L(V 3,L∗(X)) ≲ 1 for any
p = (ϱ, µ, π) ∈ P in the last step. The final estimate

∥B′(p1)−B′(p2)∥L(V 3,L∗(X)) ≲ ∥p1 − p2∥V 3

can be validated either directly using (A.3) or by applying again the mean value theorem
together with the estimate ∥B′′(p)[h1,h2]∥L(X) ≲ ∥h1∥V 3∥h2∥V 3 for p = (ϱ, µ, π) ∈ P

and h1,h2 ∈ V 3, where the second derivative of C−1 in B′′(p) is given by eqn. (35) in [9].
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