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1 Introduction

Linear wave equations are hyperbolic, and the formulation as first-order sym-
metric Friedrichs system provides a well established setting for analyzing and
approximating solutions. A specific feature of hyperbolic systems is the trans-
port of discontinuities along characteristics. Our goal is to provide a numerical
scheme which is efficient for smooth solutions as well as for weak solutions with
discontinuities.

For smooth solutions of linear symmetric Friedrichs systems O(hs~1/2)
convergence can be established for discontinuous Galerkin approximations in
space with respect to suitable mesh-dependent DG norm [9, Chap. 57], [5,
Chap. 7]. For acoustics, the convergence analysis of a space-time approxi-
mation in a DG semi-norm provides estimates for all discrete time steps [2,
Prop. 6.5].

Finite volume convergence O(h'/?) for hyperbolic linear symmetric Frie-
drichs systems is established in [18] combined with first-order time-stepping.
Discontinuous Galerkin methods in time are analyzed in [12] for tent-type
space-time meshes. This is adapted to space-time discontinuous Galerkin meth-
ods on general space-time meshes with upwind flux for acoustics in [2], where
the convergence is established for sufficiently smooth solutions based on es-
timates in a suitable DG semi-norm. In particular, the analysis includes the
adaptive approximation of corner singularities.

Here, we consider a DG method in space and time for linear symmetric
Friedrichs systems, and we show inf-sup stability and convergence in the DG
norm. Therefore we transfer our results for space-time Petrov—Galerkin meth-
ods in [6,7] with continuous approximations in time and for the DPG method
in [10,11], where convergence in a stronger graph norm is considered. Our
analysis includes bounds for the consistency error in the case that piecewise
discontinuous material parameters are not aligned with the mesh. Conver-
gence in the limit for piecewise discontinuous solutions of Riemann problems
is established only in Lo.

The space-time method is realized in the parallel finite element system
M++ [4]. In our numerical examples we confirm the a priori estimates for
weak as well as for smooth solutions, and we demonstrate the efficiency of the
p-adaptive scheme.

Space-time computations have a long history in practical engineering ap-
plications and in parallel time integration [26,13]. The space-time approach
allows for large-scale parallel computing and in case of point sources the reduc-
tion to the time cone within the space-time cylinder. Moreover, it allows for
dual-primal goal-oriented error control and applications to inverse and optimal
control problems where the adjoint problem is backward in time and relies on
the forward solution in the full space-time cylinder. Space-time discretizations
for the wave equation are constructed within a second-order approach in [25,
19], with isogeometric methods in [27], a very weak approach is presented in
[15], a quasi-Trefftz method is considered in [17], and a new approach to space-
time boundary integral equations for the wave equation is developed in [24].
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In comparison with these methods the first-order DG approach is numerically
expensive. On the other hand, convergence can be established with minimal
regularity assumptions, the method easily extends to more general material
laws and to more general hyperbolic conservation laws.

The paper is organized as follows. In Sect. 2 we introduce the notation
and the formulation of wave equations as first-order systems, in Sect. 3 we
introduce the DG discretization in time and in space. In Sect. 4 we consider
well-posedness and stability, in Sect. 5 we prove existence of weak solutions
and convergence estimates, in Sect. 5.3 we introduce an a posteriori error
indicator, and in Sect. 6 we present numerical results. In Sect. 7 we conclude
with a discussion of possible extensions and open problems.

2 Symmetric Friedrichs systems

We consider weak solutions of linear hyperbolic first-order systems in the form
of symmetric Friedrichs systems. Let £2 C R? be a bounded domain in space
with Lipschitz boundary 82, I = (0,T) a time interval, and we denote the
space-time cylinder by @ = (0,7T) x £2. Boundary conditions will be imposed on
I, C 02 for k=1,...,m depending on the model, where m is the dimension
of the first-order system.

For S C @Q the Ly norm and inner product are denoted by || -||s and (-, -)s.

Let L = MJ; + A be a linear differential operator in space and time,
where (Mv)(t,x) = M(x)v(t,x) defines the operator M with a uniformly
positive definite matrix-valued function M € Lo (£2;REX™), and where Av =
Zj:l A;0;v is a differential operator in space with matrices 4; € RGI™
Since M is uniformly positive definite, constants C; > cpr > 0 exists such
that

emy'y<y M(x)y<Cuy'y, yeER™andaa x€.
We observe

(LV,W)Q = (MatV,W)Q + (Av,w) = f(v, M@tW)Q — (V, Aw)

Q Q
:—(V,LW)Q, v,w € CLQ;R™),
so that L* = —L is the adjoint differential operator. This is now complemented

by initial and boundary conditions.
For the unit normal vector n € L, (0£2;RY) we define the matrix A, =

Zd,zl njA; € REE™, so that

j sym

Av,w) , + (v, Aw) , = (4,V, W =(v,A W , v,w e CL(2;R™).
Q 19 on an

Correspondingly, we get for the operator L in space and time
+ (V, LW)Q = (MV(T),W(T))Q — (MV(O),W(O))Q
+ (Anv.w) v,w e CHQ:R™),

(Lv, W)Q

(0,T)x 882



4 D. Corallo et al.

i.e., inserting L* = —L,
(v, L*W)Q = (LV,W)Q - (MV(T),W(T))Q
+ (Mv(0)7w(0))Q — (A,v,w)

oTyxan: V'WE CH(@Q;R™).

In order to define weak solutions, we include initial values for ¢ = 0 and
boundary conditions on I'; for k =1,...,m in the right-hand side. Therefore,
we use a test space V* C CH(Q;R™) such that

(V,L*W)Q = (LV,W)Q + (Mv(0),w(0)), — (A,v, W)
v e CHQ;R™), we V*

(0,T)x 082 °

with
m

(Apv,w) (0.T)x002 — Z((Anv)k’wk)(&T)XFk ’
k=1

veCHQR™), w=(w1,...,w,) €V*. (1)

The property (1) characterizes adjoint boundaries I} C 002 for k=1,...,m,
so that the test space is defined by

V' ={weC (QR™): w()=0in 2, w(t)eS* fort € [0,7)}
with 8* ={w e C'(4R™): (4,w)y =0on I}, k=1,...,m}
with homogeneous final values at t = T" and homogenous values at the adjoint

boundaries.
Our aim is to find a weak solution u € Ly(Q;R™) solving

(u, L*W)Q ={l,w), w e V* (2)
with
(&,w) = (f, W)Q + (Mu()’W(O))Q - (g7w)(O,T)><OQ’ w eV

for given volume data f € Lo(Q; R™), initial data ug € La(£2; R™), and bound-
ary data g € Ly((0,T) x 02;R™), where the boundary data g = (gx)k=1,....m
are extended to 02 by g =0on 02\ [, for k=1,...,m.

Testing the weak solution u € Lo(Q;R™) in (2) with functions in v €
CL(Q;R™) defines the weak derivative Lu = f in Ly(Q;R™). If in addition
u(O) S LQ(Q,Rm) and Anu|(07T)><['k S Lz((O,T) X Fk) for k = 1,...,m, the
weak solution is also a strong solution characterized by

Lu=finLy(Q;R™), u(0) = ug in Lo (£2;R™), (3)
(Anu)k = gk On LQ((O7T) X Fk), k= 1,...,m.

This is now specified for acoustic, elastic and electro-magnetic waves.
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Acoustic waves The second-order wave equation
00} =V - (kV¢) =b
is considered as first-order system with p = 0;¢» and q = —kV¢, i.e.,

00ip+V-q=0>b and 9;q+~xVp=0 in (0,7) x 2,
p(0) =po and q(0) =qo in2att=0,
p(t) =pp(t) on I'p and n-q(t) =gn(t) on I'y on IS for t € (0,7T)
for volume data b, boundary data gy, pp, initial data qq, pg, positive param-
eters g, K, and the disjoint decomposition of the boundary 92 = Ip U I'y

into Dirichlet and Neumann part. The corresponding Friedrichs system with
m = 1+ d components is given by

q p
_(n-q _ (b N
ao= () 0= 0) s () @
so that for smooth functions ¢, with ¢ =0 on (0,7) x I'p and n-1 = 0 on
(O,T)XFN

(An(pv q)? (L,O, w))(O)T)Xa_Q = (1’1 ' q, QD) (0,T)xI'n + (p7 n- 1/))(0,T)><FD .

In two space dimensions, this corresponds to the boundary parts It = I} = Ip
and Iy =15 =13 =13 = 1IN, and

o 0 O
M=[0r"" 0 | €Loo(ZRD),
00 k! '
010 001
A =[100]) eRyS, A, =(000| eRES.
000 100

Elastic waves Linear elastic waves are described by the first-order system
for velocity v and stress o

00v—V-o=>b and 0o —Ce(v)=0 in (0,7) x £2,
v(0) = vy and o(0) =0y in 2att=0,
v(t) =vp(t) on I'p and on =gnN(t) on I'n on 042 for t € (0,T)
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with mass density o, the symmetric gradient € = €(v) of v, and, in isotropic
media, with Ce = 2ue + Atrace(e)I3 depending on the Lamé parameters
y, A > 0. This corresponds to the Friedrichs system with

() (&) - (57). o

B —on _ (b _ —8N
Apgu= (—an — vnT) , £= (0) 1 87 (—nvg — anT> ’

Ford=3wehavem =9and I}, = I}y =Ipfork=1,2,3,and [, = I} = In
for k=4,...,9.

Electro-magnetic waves The first-order system for the electric field E and
the magnetic field intensity H

e E—VxH=-J and potH+V xE=0 in (0,7) x £2,
E(0) = E; and H(0) = H inQatt=0,
nXxE(t)=0on Iy and nx H(t) =gy on Iy on 912 for t € (0,T)

with permittivity e, permeability p, and boundary decomposition 02 = I'g U
I\ corresponds to a Friedrichs system with

() (). (20
() (@) e (8).

Ford=3wehavem =6and I}, =1} =Igfork=1,2,3,and [}, = I}, = Im
for k =4,5,6.

Remark 1 We only consider the case that the symmetric matrices 4;, j =
1,...,d, are constant in (2. In general, A; may depend on x € (2, e.g., for the
linear transport equation Lu = d;u + a - Vu with m = 1 and transport vector
a(x) € R Then, I is the inflow boundary, and for the adjoint equation
we obtain L*v = —0v —a- Vv — (V- a)v with I'f = 902\ I. For the DG
analysis of this case we refer to [5, Chap. 2] in the steady case and to [6] for
a Petrov—Galerkin space-time method.

The suitable choice of the subsets I}, C 942 for k = 1,...,m for the bound-
ary conditions in general Friedrichs systems is discussed in [5, Chap. 7.2]. Here
we consider the special case for wave systems. The property (1) characterizes
the adjoint boundaries I}, C 042 for k = 1,...,m, and we observe

((Anv)k, Wk) (0,T)x Iy = (Anva W) (0,T)x 092
k=1

= (v.4,w) 0,180 — Z (0r, (Anw)k)(o,:r)xan\rg
k=1
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for v.= (vi...,v,) € CHQ;R™) and w = (wy,...,wy,) € V* and thus,
defining

V={veC (Q;R™):v(0)=0in £,
(Agv)k =0o0n (0,T) x I, k=1,...,m}

with homogeneous initial value at ¢ = 0 and homogeneous boundary values
on I}, we obtain

(Anv,w) V,Anw) 0, vey, wevr.

(0,T)xd2 — ( (0,T)x002 —

Boundary conditions are required in order to obtain uniqueness and well-
posedness of the solution. Therefore, we require for the subsets I, C 042,
for kK = 1,...,m, that the operators L and L* are injective on }V and V*,
respectively, i.e.,

{veV:Lv=0}={0}, {weVv": L*w=0} = {0}, (8)

where the relatively open adjoint boundaries I}, C 042 for k = 1,...,m are
determined by property (1).

Now we show that both conditions in (8) are necessary. The first condition
for Iy, is required for uniqueness for strong solutions: if v € V\ {0} exists with
Lv = 0, then this is a non-trivial homogeneous strong solution, i.e., v solves
(3) with ug = 0, f = 0, and g = 0. On the other hand, if the second condition
is violated, weak solutions do not exist for all volume data: if w € V*\ {0}
and f € Lo(Q;R™) exists with L*w = 0 and (f,w)g # 0, no weak solution
of (2) with homogeneous initial and boundary data ugp = 0 and g = 0 exists.

Remark 2 The formulation of wave equations in our examples as Friedrichs

0 A, -
systems yields symmetric matrices of the form A; = <ATO J ) with A; €
R™>*m2 and m = mj + meo. For the boundary conditions we can select a
relatively open set I7 C 0f2. Then, defining I}, = I for k = 2,...,my,
Iy =002\TI for k=my+1,...,m,and I} = I}, for k =1,...,m, we
observe that property (1) and conditions (8) are satisfied.

Remark 3 For smooth domains and data, the solution is also smooth, e.g., for
acoustics ¢(t) € H*(£2) for all t € [0, 7] with s > 2. This allows for improved
approximation orders O(h?®) for ¢. On the other hand, the necessary regularity
requirements are quite restrictive [21], and the second-order formulation does
not allow for the convergence analysis of piece-wise discontinuous solutions.

Remark 4 Waves in real media are dissipative and dispersive; e.g., modeling
electro-magnetic waves in matter needs to include conductivity and impedance.
The DG analysis can be extended to this case; see, e.g., [5, Chap. 7] for the
steady case and [8] for visco-elastic waves with impedance boundary condi-
tions.

In the elastic model for Rayleigh damping or for the Kelvin—Voigt model,
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the linear operator takes the form L = Mo, + D + A with (Dv)(t,x) =
D(x)v(t,x) and D € Loo(£2;RE%Y) symmetric positive semi-definite; then,
L*=—-Mo,+ D — A.
All our subsequent results extend to this case, but for simplicity we only con-
sider the case D = 0.

3 The full-upwind discontinuous Galerkin discretization

In this section we introduce an upwind DG discretization for the first-order
system.

3.1 The DG finite element space in the space-time cylinder

For the discretization, we use tensor product space-time cells combining the
mesh in space with a decomposition in time. For 0 =tg <t; < --- <ty =T,
we define time intervals I,, j, = (t,—1,t,), time-step sizes At,, = t, —t,_1, and

I, = (to,ﬁ) U---u (thhtN) cl= (O,T)7 oI, = {to,th L. ,thl,tN} .

We set At = max At,, and we assume quasi-uniformity, i.e., At, € [CyAt, At]
with Cy, € (0,1] independent of N.

Let K, be a mesh so that (2, = UKGICh K is a decomposition in space into
open cells K C £2 C R% Then, we obtain a tensor-product decomposition into
space-time cells R =1, , x K

N

Qn=Inx2=|JQur=|J RCQ=IxQcR"™,
n=1 ReRy

Qn,h = U Inw x K C Iy x 12

KeR,

of the space-time cylinder Q). Let F' € Fg be the faces of the element K,
and we set Fp = g Fk, so that 92, = Upz, F' is the skeleton in space;

oQ, = Uﬁ;o{tn} x 0f2y is the corresponding space-time skeleton. For inner
faces F € Fp, N2 and K € Ky, let Kr be the neighboring cell such that
F = 0KNOKp. On boundary faces F € F,N0f2 we set K = K. Let ng be the
outer unit normal vector on 0K . We assume that 2 = (2, U9(2;, and that the
boundary decomposition is compatible with the mesh, i.e., I'y, = UFE}‘Kan F
fork=1,...,m.

We set hg = diam K, hyp = diam F', and h = max hg. We assume quasi-
uniform meshes and shape-regularity, i.e., hp > ¢ hi for F' € Fg with ¢, > 0
independent of hx. In the following, we use the mesh-dependent norms

N
/
REA= (Z > h%(uvhuimxl()l " aeR. (9)

n=1Keky
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In order to calibrate the accuracy in space and time, we assume, depending
on a reference velocity cpof > 0, that the mesh size in time and space are well
balanced satisfying

CrefAt S h. (10)

Since we only consider fully implicit methods, we have no restriction with
respect to stability of the time integration.

Remark 5 For simplicity we use only tensor-product space-time meshes. For
the extension to more general meshes in the space-time cylinder we refer to
[14], see also the analysis in [2]. General meshes in R'*? are considered in [22].
Then, the condition (10) can be relaxed to a local condition.

The DG discretization is defined for a finite dimensional subspace V}, C
Vi, C CY(I; Sp), where

Vi = {vh € CHQu;R™): Vi, K = V|1, ,x K extends continuously to

Vo € CO(Thn x K;R™)},
S, = {vh € Cl(Qh;Rm): Vih, Kk = Vp|k extends continuously to
vy € COKG;R™)} .

On the space-time skeleton 0Q},, we define

N 1/2
Vallag, = (30 X2 IvanslBuam) - va€Va ()

n=1KeK,

For the positive definite matrix function M € Loo(£;REN™) let M), €
Loo(Qh;R;';,,fﬂm) be a piecewise constant approximation, and for K € K, let
M hi € Rg’;gm be the continuous extension of M, |k to K in case of material
jumps this can result to different values on the left and right side of a face,
ie., My klr # My kp|F-

Let Lj, = M},0;+ A be the corresponding linear differential operator, where
the approximated operator M}, is given by (M,v)(t,x) = M, (x)v(t,x). Note
that then Lh(Vh) C V.

For our applications, we use a tensor-product construction of the finite
element space.

For every space-time cell R = I, , X K we select polynomial degrees pr =
Pnx > 0 in time and gr = ¢n,xk > 0 in space. With this we define the

discontinuous finite element spaces

Sn,h = H PqnyK(K;Rm) CS}“ Sh :Sl’h‘f'""f'SN,h, (123)
KeKy

Vi = ] Ppus @Pg  (K;R™), Vi=Vip+--+Vyn CVa, (12b)
KeKy,
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where [P, denotes the set of polynomials up to order p. For the following, we
fix p = maxpgr and ¢ = max qg, so that

Snn C Sp C P (25, R™) C Sh,
Vi CP,(I1) @ Sy C Pp(I1) @ Py(2;R™) C V.

On the space-time skeleton 9Q; = Uﬁ;o{tn} x 2 U I, x 082, the inverse
inequality and the discrete trace inequality [5, Lem. 1.44 and Lem. 1.46] yield

|B208 2 Lviall o, < Cine 0720 v (13a)
1My 24|, < Culh™2My Vil VA EVW,  (13b)

with Cipy, Cir > 0 depending on the space-time mesh regularity (and thus also
on Cref), the polynomial degrees in V4, and the material parameters.
Let IT},: Lo(Q; R™) — V}, be the space-time Lo projection defined by

(Mhﬂhv,vh) = (th,vh) v € V. (14)

Q Q7
For v, € Vi, let v, € CO([tn_l,tn];Lg(Q,h;Rm)) be the extension of
Vh|Qn7;, S LQ(Qn,hQRm) to [tn—latn}-

In every time interval I, we use the projection IT, j: Lo(§2;R™) —
Sp,n C Sp, defined by

(MpIL, W, Wi ), = (MpWi, Wi p) Wb € Snh -

2 0’

In the following, we derive the discretizations in the infinite dimensional piece-
wise continuous spaces Sp and Vjy, since several properties only rely on the
mesh. We use the finite dimensional DG spaces V}, C Vp, and S, C Sy, if we
require additional properties of the discrete space such as inverse and trace
inequalities.

3.2 A discontinuous Galerkin method in time

For vy, wj, € V), we obtain after integration by parts in all intervals I,, , C I,

(Mypoyvp, Wh Z ( (MpVop, 0wy h)QnJL + (MpVnp(tn), Wan(tn)) o

— (M (1), W (- ))Q).

Introducing the jump terms [wp], = Wpi1,p(tn)—Wpn(ty) forn=1,... , N—-1
and [wp]ny = —wn n(tn), we define the dual representation of the full upwind
DG method in time for v, wy, € V)

N
(Vi W) = —(My Vi, Owion) o = 3 (MpVan(tn), [Waln),, . (15)
n=1
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We have dual consistency by construction, i.e.,

mp(Vi, W) = —(thhﬁtw)Qh , weV*. (16)
Again integrating by parts and defining [vj]o = vi1,(0) yields the primal
representation
N
mu(Vh, Wp) = (Mhatvh,wh)Qh + Z (Mp[Viln-1,Wnn(tn-1)) - (17)
n=1

Together, we obtain

2mp(Vh, Vi) = mup(Vh, Vi) + mp(Vh, Vi)

N
= ((Mvala 1 Vunltn1)) g = (MaVas(ta), Vi) o)
n=1

= (thh(O),Vh(O))Q + (thh(T)7Vh(T))Q
1

+ ((Mh[vh]nv Vn+1,h(tn))g_ (thn,h(tn)v [Vh]n)g) )

2

3
Il

which yields

N
1
Mp(Vh, Vi) = 3 Z (Mp[Vilns [Vhln) o =0, Vi € Vh, (18)
n=0
so that
mp (Vh,Vh) =0 — mp (Vh,Wh) = 7(thh,atW)Qh (19)
= (Mhatvhaw)Qh ; Vi, Wn € V.

For mp,(vp, vi) = 0 we observe vy, € H§(0,T; Sp).
This yields with dp(t) =T — ¢t

T
(Mth,Vh)Q = A (thh(t)7vh(t))_odt
T
= — /0 (thh(t), Vh(t))Qath(t) dt

T
= 2A (Mhatvh(t), Vh(t))QdT(t) de¢

<27 ||, 0wl g, 104 v

. 1/2 —1/2
i.e., we have ||Mh/ VhHQ <2T ||Mh / 8tvh||Qh.
This extends to discontinuous functions in V), as follows.
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Lemma 1 We have
(Mth,Vh + Z dr(tn) (Ma[Vi]n, [Viln ) <2mp(Vh,drvy), Vi € V.

Proof The assertion follows from

(Mth,Vh Z thh Vh( ))Qath( )

tn—1

_ /O (My0va(t), v (1)) pdr(t) dt

N
- Z (dT(tn) (thn,h(tn)7 th,(tn)) 2
n=1

- dT(tn—l) (thn,h(tn—l)a Vn,h(tn—l)) Q)

= 2(Mydyvi,drvi), — T | My *vi4(0)]%

Qn

N-1
+ Z dr(t,) ((MhVnJrl,h(tn)a Vn+1,h(t")) 2
(M (ta) V() )

N-1

2(Mh8ch, dTVh)Qh + 2 Z dT(t'rb) (Mh [Vh]na Vin41,h (tn)) 0
n=1

1/2 2

- Z dp(tn) (Ma[Viln, [Viln) o — T 1M, “v11(0) I3

< 2mp (Vi drvs) — Z dr (tn) (Ma[Vhln, [Viln) o

using n=0

(thn+1’h(tn), Vn“’h(tn))[2 - (thn,h(tn)7 vn,h(tn))_o
= (M (Vag1,n(tn) = V() Vi 1,n (En) + Vin(t0))
= (Mu[Vi]n, Vig1,n(tn)) o + (Ma[Valn, Vin(tn))
= 2(Mh[vh]n,vn+17h(tn))9 - (Mh[vh]n7 [vh]n)Q .

3.3 A discontinuous Galerkin method in space

For v, wj, € S, we observe, integrating by parts for all elements K € Kp,

(AVmWh)Qh = Z <(Vh,KaAWh,K)K+ Z (AnKVh,KaWh,K)F> .

KeKy FeFk
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For conforming functions v, we have for the flux 4, v = —A,, v on in-
ner faces F' C {2, and for discontinuous functions we define the jump term
[Wrlk,F = Wh i — Wi k. On boundary faces F' C 9f2 this depends on the
boundary conditions, and we set (A,[vy])r = —2(A,Vr)r on Iy C 92 and
(Au[vi)e=00n 02\ I}, for k=1,...,m.

We use the discontinuous Galerkin with full upwind discretization in space
which is of the form

an(Vh, Wp) = —(VmAWh)Qh + Z Z (Vi ARL [WhlK ) o s
KeK, FEFk

where the upwind flux AP € R™*™ is obtained by solving local Riemann
problems.

For the DG method we require dual consistency for the bilinear form and the
right hand side for the boundary values for vy € S, w € §*

ap (vh,w) = —(vh,Aw)Qh and <€a(37h(t),w> = (g(t),w)(,m, (20)

and for the inconsistency complement we require that C; > ¢; > 0 exists such
that

Cl||An[Vh]||;Qh < ah(vhvvh) < Cl”An[vh]Hth ) Vi € Shy (21)
so that for vy, wj, € Sy,
an (vh,vh) =0 = ay (vh,wh) = _<vh’AWh)Qh = (Avh7wh)_rzh . (22)

We assume that C7 > 0 only depends on the material parameters, and that

< Cuf|ar, "

|an (Vi wa) + (Va, Awh)nh Vh”arzh }An[whmanh o (239)
]HanhHMiﬂWhHanhv (23b)

|<1€3_Q’h(t),Wh> - (g(t),Wh)39| < Cng(t)Hagh M;/ZWhHBQh (23C)

lan (Vi, wh) + (AVh,Wh)Qh| < Ci||4p[va

for vy, wp, € Sh.

For acoustic, elastic and electro-magnetic waves the upwind flux is explic-
itly evaluated, e.g., in [16, Sect. 4.3]. Here, we only consider the dual repre-
sentation; integration by parts yields the primal representation.

Acoustic waves The full upwind DG approximation for the acoustic wave
equation (5) is given by

an((pr, qn), (n, ¥n)) = Z (- (anx, Von ) o — (o, V- ¥ni) . (24)

KeKy,

1
Z m(pi(,h + Zg MK - drh, [PhlkF+ Zrng - ["ph]K,F)F)
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for (pn,dn), (¢n,¥n) € Sp with impedance Zx = /K k0nx depending on
the piecewise constant approximations for the material parameters k, 0 > 0.
On inner boundaries material discontinuities can result in Zx # Zg,, on
boundary faces we define Z;, = Zi on 02N 0K . On Dirichlet boundary faces
F e Fi, N Ip, we set [pplrr = —2p, and n - [qy]x,r = 0. On Neumann
boundary faces F' € Fj, N I'n, we set [pplr,r =0 and n- [qplx,r = —2n- qp.
The right-hand side is complemented by the stabilization, so that

<€3Q,h(t)7 (Cph, 'l,bh)> = 7(pD(t)7 n-: ¢h)FD - (gN(t)7 @h)FN (25)

+ (pp(¢), Z}:1<Ph)FD + (9n(t), Zpm - ¢h)FN ~

Integration by parts gives

an((pn, dn), (pr,an)) =

1 1
32 2 M(Hﬂph]K,FHzpﬂLZKZKFHnK'hﬂlﬂFHi)-
F

KeKy, FeFk

Elastic waves The full upwind DG approximation for the elastic wave equa-
tion (6) is given by

an((Vh, on), (Wh,mn)) = Z ((o'h.Kys(Wh,K))K“" (i, Vi) (26)
KeKn

(nK (onxnk = Zg, Vi), 0k - (0] K, rnx — Z}J([Wh]KF))F

Zy + Zx,

>

FeFk

(HK x (Uh,KnK - Z?(th,K)mK x ([nh]K,FnK - Z?([Wh]K,F))F>

A A
FeFk Kk T4k,

for (vi, o), (Wh, 1) € Sp. The coefficients Z, = \/(2/%71( + Ank)on, ik and
ZY; = \/Ivh, Kk On, i are the impedance of compressional waves and shear waves,

respectively. On Dirichlet boundary faces F' € F, NI, we set [vp] K,F = —2V},
and [o]k, Fng = 0, and on Neumann faces F' € Fj, NIy we set [vy]xr =0
and [o]k, Fng = —2opngk. The right-hand side is given by

(Lo, (t), (Wh,mn)) = (vD(t),nan) T (gN(t)aWh)FN
+ (n-vp(t),(Z)) 'n- Wh)FD + (n-gn(t), Zin- nhn)FN
+ (nx vp(t),(Z;) 'n x Wh)FD + (n x gn(t), Zin x nhn)FN
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with Z) = Z%, and Z}, = Z5; on 0K N 012. Integrating by parts yields

ah((Vh,Uh) (Vi o)) = (27)
3D (HHK (fonlicrni) | + 2528, [ - tonluer [
KEICh FeFk Zp + Z?(

s x Qondiernio) [ + ZicZic oo < vl )
Ly + 2,

Electro-magnetic waves The full upwind DG approximation for the electro-
magnetic wave equation (7) is given by

an((En, Hy), (n,¥n)) = Z ((Eh,K,V X n k) — (Hig,V X @nK),

KeKp,

1
+ Z m ((ZKEh,K —ng X Hp g,ng x W’h]K,F)F (28)

— (Zxkng x Ep g + Hy ik, Zgong X [‘P}L]K,F)F>>

for (Ep, Hy,), (¢, Y1) € S, with coeflicient Zx = /e /i . On the boundary
faces, we set ng X [Elx p = —2ng X Ej, g and ng x [Hplg p =0o0n F € F,N
I's, and on impedance boundary faces F' € Fp N [\, we set ng X [E]KF =0
and ng x [H]g p = —2ng x Hj, k. The right-hand side is given by

(Loan(t), (n¥n)) = (8m(t),on — Zy X 4py) 1

with Zy, = Zx on 0K N [y. Again, integration by parts yields
an((En, Hy), (Eh,Hh)) =

- (ZKZK HnK X [Eh]K,FH2 + [ng x [Hh]KFHZ) :
th FGX]; ZK + Z ' ' ’

3.4 A discontinuous Galerkin method in time and space

Combining the two semi-discretizations, we obtain the full DG discretization

T
b}L(Vh, Wh) = mh(vh, Wh) + / ap (V}L(t), Wh(t)) dt, Vi, Wp €V (29)
0

with right-hand side in the space-time cylinder for v;, € V}

T
<£h,wh> = (f,Wh)Q + (MhUO;Wh(O))Q —‘r/o <€8()7h(t),Wh(t)> dt. (30)



16 D. Corallo et al.

For the space-time DG method we have by construction dual consistency for
the bilinear form and the right hand side

bh(vh,w) = (vh,L;‘Lw)Qh , Vi €EVy, wE VT, (31)
and
(n,w) = (£, W)Q + (MhuOvW(O))aQ + (g, w) (0,T)x 982" wev,

and positivity for the inconsistency complement

N
1 2 2
bn (Vi vi) > 5;} 1ML 2 vl +allAuvalll} woo, 0 VREVR (32)

by combining (18) and (21). Together with (19) and (22) we obtain

bh(Vh,Vh) =0 = by (Vh,Wh) = (Vh,LZWh)Q = (thh,wh)Q (33)

h h

for vy, wp, € Vp,, and (23) yields with C; > 0

|bn (Vi W) — (Vh,LZWh)Qh| (34a)
< 10>l VI 259 3, 0 + CalAnlwnll o -

|bn (Vi W) — (thh,Wh)Qh| (34b)
< \/HM;/z[Vh]H;Ith + ClHAn[Vh]Hixth ||Mi1/2wh||th

{6 wi) = (b wi)| (34c)

< 1M, %o 1382wl + Crllell, ool M Wil 1, n0

For sufficiently smooth functions v € Lo(Q;R™) with Lv € Lo(Q;R™),
v(0) € Lo(2;R™), [v], =0forn=1,...,N — 1, Ay[v] =0 on I}, x F for
inner faces F' € Fp, \ 042, and A,[v] € La(I x 0£2;R™), we obtain consistency
of the form

|bh(V,Wh) — <€}L,Wh> — (L}LV — f,Wh)Q — (Mh(V(O) — UO),Wh)Q|

=G Z H(A“V)k - ngIthk HwhkaIhka : (35)
k=1

Lemma 2 We have, depending on c¢; > 0 in (21),

N-1 T
||M;/2vh|]; + Z dT(t")||]\4;/2[v,,,]n||rj2 + ch/o dT(t)||An[vh(t)H|§Qh dt

n=0

< 2by(Vh,drvy), v € Vp.
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Proof By inserting v (¢) into (21) and integrating over time we find

c / dr(8)]|Anlva(®)]]|5,, dt < / dr(Oan(va(t), vy (L)) dt,
0 0

and thus with Lem. 1 we get for all vj, € V},

N-1
(Mth,Vh)Q + Z dr(tn) (Mu[Viln, [Valn) , < 2mn(Va, dovi)
n=0
< th(v;“ dTVh) + 2/ dT(t) ap (Vh(t), Vh(t)) de
0

T
e, /O ar(t) | Anlva (]|, dt

T
= 2bh(Vh7dTVh) — 201 / dT(t)HAn[Vh(t)]H;Qh dt.
0

4 Well-posedness and stability

We show that the discrete problem has a unique solution and is stable with
respect to different norms.

4.1 Well-posedness of the space-time DG discretization

The well-posedness of the discrete equation is now established as in [2, Prop. 5.1].
Lemma 3 A unique discrete approximation uy € V}, exists solving
bh(uh,vh) = <€h,vh> s vy € Vy. (36)

Proof Since dimV}, < oo, it is sufficient to show that u;, = 0 is the unique
solution of the homogeneous problem

bh(uh,vh) =0, vy € V. (37)
Since (37) implies by(up,up) = 0, we obtain by (32) for the jump terms
1/2
||Mh/ [uh]HthxQ,L = ||An[uh]||1h><aoh = 0, so that b, (up, vi) = (Lhuh’vh)Qh =

0. Since Mj, is piecewise constant in K € Kj,, we observe Lpuy, € V}, so that

we can test with v, = Lpuy; thus, also (Lhuh,Lhuh)Q} =0, i.e., Lpu, = 0.

Now the assertion follows from Lem. 2 and (33) by
2
HMiﬂuhHQ = (Mhuh,uh)Q < 2bh(uh7dTU-h) =2 (Lhuh, dTuh)Q =0.
Remark 6 The previous lemma shows that the discrete graph norm defined by

br(Vh, Wh)

sup Y vip €V ) 38
wh eV {0} HM;/ZWhHQ h h ( )

Ivallvi, =
is well defined and a norm in V.
Since the discrete graph norm is only a semi-norm in V},, we have to use
stronger norms for the convergence analysis.
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4.2 Stability in space and time

Let 0 = cpo < cp1 < -+ < ¢pp < 1 be the Radau Ia collocation points, so
that

1 P
/0 p(s)ds = pr7k¢(cp,k) ) ¢ € Py
k=0

(with quadrature weights w, > 0 for k =0,...,p), and let A, € P, be the
corresponding Lagrange polynomials

P
§—Cp,j
Mals) = JT =2 sefo),
j=0, j£k Pk P,

This defines A\, . €P n(I7L7h) by /\n,h,k(tn—l + sAty,) = )\pmk(s) for s € [O, 1]
and tn,k =tp_1+ Cp,,,,kAtn-

Together this is combined to the corresponding interpolation Z, : V), — V3,
by

Pn

(ZnnVn,n)(t,x) ZZ)\n,h,k(t)Vn,h(tn,k,X), (t,x) € Iy X On,
k=0
Vi € CO[tn—1,tn); Sh), n=1,...,N.

For the interpolation we will use in the following the estimate

N  pn

||J\4,1/21h(dTVh)||rj2 = SN wp k| MY Th(drvn) () |
n=1 k=0
N pn

=33 drltas) wp il M Pt I, (39)
n=1k=0
N  pn

< T30 wp [ MY Vi) |5 = T | M2
n=1 k=0

Lemma 4 If p,x = pp for all K € Ky, and n = 1,..., N, we have for
vy €V

N
162 valle, + X (dr )M wda [
n=1

Pn
+ 201 Z Ay (tn k) wp, k|| An [V (k)] H;Qh) < 2bp (Vi Zn(drvp)) -
k=0
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Proof We observe

WE

(Mp0evn, drvi) g, = ) (MpOevan, dTVn,h)InyhXQ

3
Il
-

Wp,, .k (Mh(atvn h)( ) dT( nk)vn h(tn k))ﬂ

3
I
-

I I
[]= il+]=
N

Wpp ke (M (0pV,1) (tnk)s Zoh (A v 1) (Bn))
1k—=0

n
= (MuOyvi, I (drvs))

w

on "

Using Zp, (drvy) (tn—1) = dr(tn—1)Vnn(tn-1) for n=1,..., N, we have

N
ma(Va, drva) = (MnOpvi, drvn) Z (Mp[Vi]n, dr(tn—1)Van(ta-1))
n=1
N
= (Mhatvhazh(dTVh))Qh + Z (M[Vi]n, Zn(drvn)(tn-1)),
n=1

= mp (v, Zu(drvn))

and together with Lem. 1 we obtain

N

13432l dr(tun) M, vl [

n=1

< 2mp(vp,drvy) = 2my, (vh,Ih(dth)) .
For the upwind DG discretization in space we obtain by (21)

N pn

0<er Y dr(tus)wp, || Anlvi(tni)|5,
n=1k=0

N pn
< Z Z dr (tne)wp, k an (Vi (tng), Va(tnk))
N

Nt
- Z/ an (Vi(t), Tnn(dpvn,y)(t)) dt

n=1"tn-1

T
:/0 an (Va(t), Zn(drvy)(t)) dt,
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so that together we obtain the assertion by

N
a2 v+ X (o) 3520
n=1

p’ﬂ
200 dr(tn ), i | AVt )
k=0

T
S 2mh (Vh,Ih(dTVh)) +/0 ap (Vh(t),Ih(dTVh)(t)) dt

=2 bh (Vh,Ih(dTVh)) .

Remark 7 Together with (38) and (39) we obtain Ly stability with respect to
the discrete graph norm by

b (Vi, Tn(drvi)) HM “Tn(drv HQ
M2 Tudrva)l g (1M, vl

1M, 2|, < 2 <27 |,

for vi, € Vi, \ {0}, i.e., | My *villo < 2T |vallv,.

Corollary 1 Let uy, € V}, be the discrete solution (36), and assume homoge-
neous boundary data g = 0.
If pn.k = pn for all K € Ky, andn=1,..., N, the solution is bounded by

N
1M, a1+ 7 dr(ta-s) (1M *fanlos [, + 21| Aafnl 7, o,)
n=1

< 4|ldrdgy e[ g + 4T || M uo |,
Proof We have forn=1,..., N

Pn
dT(tnﬂ)HAn[uh]Hi‘hxanh pr kHA up (i Hanh

< Z A (tn,k)wp,, k|| An [ (k)] Hznh ;
k=0

so that together with Lem. 4 and Z, (drup)(0) = Tup(0) we get the assertion
by

1 1Y
L8 2+ 3 ) (1M Rl + 260 Auln I, o)
n=1

< by (un, Zn(druan)) = (€n, In(drup))

= (f, dTuh)Q + (Mhuo,TUh(O))Q

_ 1
< [l dt 28] + 100 w1,

T
S T PR T ] P
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Remark 8 The estimate in Lem. 2 directly implies that the Petrov—Galerkin
method with test space V; = drV}, is well-defined and Ly stable: the Petrov—-
Galerkin solution uhG €V}, given by

bh(u£G7 dTVh) = <£h7 dTVh> s vy €V (40)

is bounded by
1/2 1/2

SIS+ S PE O, < b (S druf®) = (6 druf©)

and thus, in case of homogeneous boundary data g = 0 we obtain
1/2_ PG||2 1/2 PG —1/2 1/2 2

30,20} ¢ + T[22 *u S O) [, < 4 [dr by 28 g+ 47 || 3, o[,
This is proposed and analyzed in [1] in the semi-discrete case for the advection-
diffusion problem. Our numerical tests indicate, that the Petrov—Galerkin
modification does not improve the approximation quality, and in the next
section we show, that stability and convergence in the DG norm can be estab-

lished also for the Galerkin method with ansatz and test space V}, and with
adaptively chosen p,, .

4.3 Inf-sup stability in the DG norm

Suitable mesh-dependent DG semi-norms and norms can be defined for all
Vi € Vi by

‘Vh’h,DG = V(v Vi),

N
[Valy par = <Z (132 ) [, + 1 v 8, )

n=1

1/2

S nM;/thHiXaK) |
KeKy,

Vallnog = VIvalpe + 1872 4, P Loval (41)

Villpner = VIvalhpae + 112002 2.

see [5, Chap. 2 and 7]. Analogously to the proof of Lem. 3 we observe that
||VhHh pg = 0 implies v, = 0, so that || . indeed is a norm. Using (34),
we obtain for vy, wy € Vp

Hh,DG

|bh(VhaWh) + (thLhWh)Qh‘ < ’Vh|h,DG+|Wh{h,DG’

|bn (Vi wh) — (Lth;Wh)Qh‘ < ’Vh|h,DG|Wh|h,DG+ . (42)
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We have
2 |Vh|i’DG = 2bp(Vh, Vi) + (Lth,Vh)Qh - (vhathh)Qh
<2 ’vh|h,DG+‘Vh‘h,DG’

ie., |Vh}h,DG < |Vh|h,DG+’ and continuity of the bilinear form by, (v, wp) <

thHh,DGHWhHh,DG+ and by (v, wp) < th||h,DG+HwhHh,DG'
The inf-sup stability for the advection equation [5, Lem. 2.35] can be trans-
ferred to our setting.

Theorem 1 A constant cint.sup > 0 exists such that

b
sup M > Cinf—supHVhHh’DGa v € ‘/h .

wi€Vi\{0} HwhHh,DG

Proof For given v, € V;,\ {0} we define z;, = th_thvh € V,,, and we obtain
by the discrete trace inequality (13b)

< Ol 20 |, = Col DM P L],
S Ctr

|Zh|h,DG+
allo
and together with the inverse inequality (13a) this yields
s o6 = 2[5 o + 192200 Loz, (43)
< [l e + CRIB200 20, < (G2 4+ C2) vl -
We observe, using (42),

(thh’zh)Qh —bn(Va,zn) < ’Vh|h,DG|Zh|h,DG+

C? 2 1 2

< 2tr ‘Vh|h,DG + ﬂ‘zhhpcﬁ
C? 2 1 2

< Qtr |Vh|h,DG + §||VhHh,DG :

This yields, inserting ||h1/2M,:1/2thhHéh = (thh,zh)Q

h’
2 2
thHh,DG = ‘Vh’h,DG + (thh’zh)Qh
2 C2 2 1 2
< }Vh|h,DG + 7|Vh|h,DG + §th||h,DG +0n(Vh, 21) ,

so that with Cy =2+ C2

HVhHi,DG < CQ|Vh|i’DG + 200 (Vh,21) = bp(Vh, Cavi + 22p) . (44)
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Using (43), we obtain the assertion with cingsup = (C2 + 21/C2 + Cfnv)_l

bh(Vh, Covy, + 2Zh)
HCQVh + 2zh”h,DG

2
thHh,DG < HCQV’L + 2ZhHh,DG

b
sup h(Vh, Wh)

-1
< Cinf—supthHh,DG wheVir{0} HWhHhDG :

5 Convergence of the DG space-time approximation
In the first step, we show that stability in Ly implies convergence in the limit

of the DG approximation. Then, by assuming some regularity of the solution,
qualitative convergence results are obtained in the DG norm.

5.1 Convergence in the limit

Let (Qh) hen be a shape-regular family of space-time meshes with mesh sizes
H= {ho,hl,hg,"'} - (0,00) and 0 Gg.

Let (Vh)he?-t be corresponding DG finite element spaces, so that
li inf — =0, eV, 45
heH Vi eV Iv vhHQ v (45)

For h € H, let uj, € V}, be the solution of the discrete problem (36).

The proof of existence of a unique discrete solution in Lem. 3 only relies on
the properties (32) and (33) of the DG bilinear form and thus only implicitly
on the boundary parts I, C 9f2. In order to obtain a unique weak solution
of (2) in the limit, constraints for the selection of I, C 92, k =1,...,m, are
necessary, cf. (8). This is used in the following,.

Theorem 2 Assume that pp, x = pn > 1 and g,k > 1. In case of homoge-
neous boundary data g = 0 and convergent approzimations of the material pa-
rameters My — M, ]\/[h_1 — M 1in Loo (2, R N™), the discrete solutions
(uh)hG’H are converging to a weak solution u € Ly(Q;R™) of (2). Moreover,

u is a strong solution satisfying (3), and the strong solution is unique.

Proof By the assumption p,, x = p, we can apply Lem. 4 with the construction
of the interpolation Z;, and Cor. 1, so that (up)pep is uniformly bounded by

023 2y + 7 (|0 2w ()7, < a7 (a2 282, + a0 w7, )
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By (32) and the definition of ¢, (with g = 0), this also implies that
m

‘@ ZH(Anuh)kH?U,T)ka = c1|Aq[un] H?U,T)XBQ;L
k=1

< b(up,up) = (y,up) = (f, uh)Q + (Mpug, us(0)),

IN

1 _ 1 1 T
L ag P 4 M+ | ol + A )

IN

1 —1/2¢2 1 /2.2
(§ + 2T) HMh fHQ + <ﬁ + 2T) HMh UOHQ
is uniformly bounded for i € H, so that together with the asymptotic consis-
tency of the material parameters My, — M, M, " — M~ in Lo (£2; REA™)
we obtain with a constant C¢ ., > 0 depending on the data

1/2 2 1/2 2 - 2
HM / uhHQ +T HM / uh(O)HQ +a Z H(Anuh)kH(O,T)ka <Cruy, heH.
k=1
The uniform stability in Lg(Q;R™) implies, that a subsequence Ho C H
with 0 € Hy and a weak limit u € Ly(@Q;R™) with u(0) € L2(2;R™) and
(ApWilomyxr, € L2((0,T) x I) for k=1,...,m exists, i.e.,

(Mu, V)Q = hlgr{lo (Mhuh,v)Q , v € Ly(Q;R™)
(Mu(0),vo),, = hlé% (Mpup(0),vo),, » vo € Lo(2;R™)
(Apu)i,v) OT)xr = hlér?r_[lo ((Anuh)’f’v)(o,T)ka , v € La((0,T) x I),Vk.

Then we obtain for all v € V),

(u,L*v) = lim (uh,L*v) = lim (uh,LZv)Qh :hlgr_tlo bn(up, v)

Q heHo Qn heHo
using dual consistency (31) for the last step. This extends to Hj(Q; R™), and
by the assumption py, i, gn x > 1, for all v € H{(Q;R™) a sequence (vp)new,
exists with v, € V, N H}(Q; R™) and hliI;[l v, = Vv, so that by (31)

€Ho

(u, L*v) = lim by(up,v) = hlém bp(up,vpy) = hlérqr{lO (f7vh)Q = (f, V)Q7

@ heHo Ho

i.e., for the limit u the weak derivative Lu = f in La(Q;R™) exists. This
extends to initial and boundary data. Therefore, let V° c H'(Q;R™) be the
closure of V* in H'(Q;R™); then, for all v € V* a sequence (vj)nep, with
v €VanV and hlim vj, = v exists, and we get again by (31)

EHo
(u,L*v)Q = hlég{lo by (up, v) = hlér?I-Llo by (ap, vi) = hlé%lo {ln,vh)

= (f.v)o + (Mug,v(0)), -
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Thus, using v(T) =0 for v = (vy...,v,,) € V* yields
0= (u7 L*V)Q — (f, V)Q — (Muo,v(O))Q

= (u7 L*V)Q — (Lu,v)Q — (MU(),V(O )

= (Mu(0),v(0))

o
— (4nu, V)(o T)x892 (Muo,v(0))

0
= (M(u(0) — ug),v Q+Z (Apu)i, vg) (0.T)x I ?
k=1
so that u(0) = ug in 2 and (A, u)y =0on (0,7) x [}, for k =1,...,m, and
thus u is indeed a strong solution with homogeneous boundary condltlons at

(0,T7) x 012.

Next, we show that the weak limit is unique. Therefore, select another
subsequence H; C H with 0 € H; and with a weak limit @1 € Lo (Q; R™) with
fl(O) € LQ(Q;RHL) and (Anﬁ)kl(O,T)X['k S Lg((O,T) X Fk) for k = 1,....m
Then, we also obtain a(0) = ug and (A, 4), =0 for k =1,...,m. A sequence
(en)nen with ey, € V), exists such that limpey € = u — @1, and we get

L 1/2 2
HQ 5 ,}LIEI% HM ehHQ
AIGII?}[ bh (eh,Ih(dTeh))
= hlég[ilo by, (uh,Ih(dTeh)) - hlér?{lll by, (ﬁ,Ih(dTeh))
lim <£h,Ih(dTeh)> — hm <€h,Ih(dTeh)>

:<£dT > <£dTufu)>:0,

1 -
07 -

IN

so that u = u. This shows that the weak limit is unique, so that the full
sequence is converging, i.e., limpcy up = u.

The same argument applies to all strong solutions, i.e., u is the unique strong
solution of (3).

Remark 9 The result extends to inhomogeneous boundary data g # 0, if ug €
Lo(Q; R™) exists with Lug € Lo(Q;R™) and (Apug)i € Lo(I x I}) satisfying
(Anug)r = gk, k =1,...,m. In particular, the regularity result that the limit
of the DG approximations is a strong solution requires sufficient regularity of
the boundary data.

5.2 Convergence in the DG norm

We adapt the convergence result for the DG norm (41) in [5, Thm. 2.37] to
our setting.
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Theorem 3 Assume that the strong solution of (3) is sufficiently smooth sat-
isfying u € H*(Q; R™) with s > 1 and s < min,, x{pn i, qn,x} + 1. Then, the
error for the discrete solution uy, € Vi, of (36) is bounded by

[u < Ch*=Y2||D%ul|, + CThY2|| M, 2 (M), — M)D,

- uhHh,DG

with C' > 0 depending on the mesh regularity, the polynomial degrees in Vp,
and the material parameters.

Proof Since we assume for the solution u € H(Q;R™), we have Lu, Lyu €
Lo(Q;R™), for all traces ulag, € L2(0Qn;R™), [u]l, =0forn=1,...,N—1,
and Ap[v] = 0 on I), x F for inner faces F' € F, \ 992, and (4,u)r = gi on
I x Iy for k=1,...,m, so that by(u, vy) is well defined with

T
bh(u,wh) = (Lhu, Wh)Q+ (Mhu(O),wh)Q +/O <f@g7h(t),wh> dt

= (lp,wp) + (M), — M)opu, wy,) wp €V, (46)

Q )
Thus we obtain for the discrete solution u, € V; Galerkin orthogonality up
to data error

by (ap, wp) = bp(u, Wh) + ((M — Mh)atu,wh) wp € V.

Q’
By the trace estimate (13) we obtain HwhHi pa+ < (C2 + l)h*IHM;/QWhHQQ’
so that by Lem. 2 7

HM;/QW;LHZ < 2bp(wh, drwp) <2 HwhHh,DGHdTWhHh,DG+

< QTHWh

’h,DG Hwh Hh,DG+

B 1
< 2T*(CZ + 1)h 1Hwh||}2;,DG + mh ||Wh||;2L,DG+

1
< 2O+ D Wl e + 51wl [,
so that the consistency term can by bounded by

(M = My)dpu, wy) , < || (M, V2 (M, = M)dpul| || M, wi]|

< QTWWWH (M2 (M, — M)deul| o [[wrl],, pe -

For all v}, € V}, this yields the estimate, using Thm. 1 and continuity of the
bilinear form by(+,-) in the DG norms

Cinf—supHuh — vhHh DG < sup M
7 wn€Va\{0} HWhHh,DG

bh(u — Vh,Wh) + ((M — Mh)atuawh)Q

= sup
w, €V, \{0} HwhHh,DG

= Hu - VhHh,DG+

+ 217/ CZ + 12| (M, 2 (M), — M)Dyul -
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Now select an H!-stable quasi-interpolation vy, = IT ,(Elu of Clement-type [3,
Sect. 4.4.2] with

M2 (u H}?Iu)HQ < Cy4h ||Du||Q ,
|M~2Ly(u — H,?lu)||Q < C’5||DuHQ
and constants Cy, C5 depending on the mesh regularity and the polynomial
degrees in V. Using s < min{p, q} + 1,
M2 — ) |, + B2 MY 2w — 1)
+ RV MY2 Ly (u— H,?lu)HQ < C6h5_1/2||Dsu||Q .
Then, the result follows from interpolation estimates using [5, Lem. 1.59] and
Hu - uhHh,DG < Hu - Hf?lu“h,DG + Huh - H}?IU‘Hh,DG

< flu- H}(leuHh,DG + Ci}—snp““ - Hf?luHh,DG+

+ 2T\ C2 + Lephaph™ /2| M, 2 (M), = M)yl
< Csh*~2||Drul| , + C7Th™Y2|| M, V2 (M), — M)dpul, -

This recovers the convergence result [2, Prop. 6.5] for the DG semi-norm (41).

Corollary 2 Assume that the strong solution of (3) is sufficiently smooth
satisfying u € H*(Q; R™) with s > 1.

Then, the error for the discrete solution up, € Vi, of (36) is bounded in every
time step by

HM;/Q (u(tn) - unvh(tn))HQ < Ch'/? ||Dsu||(0,tn)><.0

+ CTh™Y2|| M, 2 (M, = M),

with C > 0 depending on the mesh regularity, the polynomial degree, and the
material parameters.

For the proof Thm. 3 is applied with T" = t,; then, the assertion directly
follows from %HM;/QV;L(T)HQ < thHh,DG‘

Remark 10 If M € Loo(£2;REN™) is smooth, the consistency term can be
estimated by

20— Moy, < 2420 = M2 200,

If M is discontinuous and if the jumps of the material parameters are not
resolved by the mesh, the consistency error can be estimated in case of higher
regularity of the solution: if 9yu € L2(0,T; Ly (£2; R™)) with g > 2, we obtain

L P L e

: ||Ml/zatuHLQ(O,T;Lq(Q;Rm)) :
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Remark 11 For the continuous solution the energy is conserved, i.e.,

(Mu(t,),u(t,)), = (Mu(0),u(0)), + /0 n(é(t),u(t)) dt.

From Cor. 2 we obtain energy conservation in the limit (Mu(t,), u(tn))Q =
(Mpap(tn), up(tn)), + O(h**~1) in case of consistent data M = Mj.

Remark 12 The constants in Thm. 1 and 3 depend on the mesh and polyno-
mial degrees p. For triangulations and a quasi-uniform distribution of p it is
known that Ci,y ~ p?, Cir ~ p [23, Thm. 4.7]. Estimates of quasi-interpolations
are considered in [20, Thm. 3.1] where it is shown that the classical Clément
interpolation estimate holds with h replaced by h/p.

5.3 Error control

For the error u — uy, in the DG semi-norm we obtain from (19) and (21)

N—-1
1
= wnl} e < 5 (1042 (0) = wo) [, + 3= (134 funlu

n=1

1M (1) —a(@)]7,) (47)

+ 3wk = a7, o + CrllAnlnlll}, om0
k=1

and in the DG norm

Y A e R [ e TCE [

< Ju = wifj g + 2|02 L - )],

+ 2| B2 (M - My, - (48)

Up to the error uy —u at final time T in (47) and the parameter approximation
error M — My, in (48), this can be evaluated explicitly by the residual error

1/2
indicator Myes,n = ( Z nfes’ R) given by the local contributions
ReRy,

W = Wosm i + 20 | My, P Ly, = B[,

m

+ Z | (Anup)x — gi|

k=1

+C1HAn[uh]|

2 2
(tn—1,tn)X(IkNOK) (tn—1,tn) X (2NOK)
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for R = (tn—1,tn) x K, n=1,..., N, with

1
nl?es,l,K = §HM}1/2(uh(O) - uO)HK 7HM1/2 uh HK’ R= (Ovtl) X K7
nfes,n,K = §}|M}1/2[uh]n—l||i 7||M1/2 uh ”HK’ R = (tn 17 ) x K
l1<n<N,
1
nrzes,N,K = iHMi/Q[uh]N—lHi(, R=(tn-1,T) x K.

Lemma 5 Let u € Lo(Q;R™) be the weak solution of (2) and uy, € Vj, the
discrete solution of (36).
Then, if u is a strong solution, the error in the DG norm is bounded by

[[u— uh”h,DG < (nrQes,h + HMé/z(uh@) - u(T))Hiz

/2
+2|[nM2M P (v~ Mh)atuH;h)l :

6 Numerical experiments

The convergence estimates in the DG norm are illustrated by numerical ex-
periments for acoustics (5) for cases where the exact solution is know which is
then used for Dirichlet boundary conditions. The results for uniform refinement
are compared with a simple adaptive strategy by increasing the polynomial
degree for nwes p > 61 H}gx Mres, 7 and decreasing the polynomial degree for

Mres,R < B0 rr}%a/x Tlres, R/ S€€ [6] for details. In addition, we consider an example

motivated from the application to seismic imaging where the exact solution is
not known, and the convergence is demonstrated with respect to the residual
error indicator.

Experiment 1 We test the convergence of the solution in Q = (0,1) x (0, 1)?
and f = 0 with smooth initial value and piecewise constant material

1 .m <
Q(X){ =T ix) =1/0(x), y€(0,1), meR?, m-m =1,
2 x-m>vy,

so that the impedance is constant across the interface. We start with

sin(3rx)? «x
up(x — tm) x-m< 7,

Then, the solution is given by u(t,x) =
8 y ult,x) {u()(QX—(t+2/3)m) X-m>7y.
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Case a) If the material interface is resolved by the mesh (M = M},), we ob-
serve for linear approximations in space and time on uniformly refined meshes
the expected convergence rate in the DG norm (Fig. 1). For this configuration
also the dual problem is smooth which results in better convergence rates for
the Ly error, in particular in the adaptive case.

100

102

103 !

=@ 7)rcs, 1, uniform refinement

- |u-— u;,,”DG’h uniform refinement

—-— H[\J;/z (u(T) = up(T))|le2 uniform refinement
HMz/2 (u—up)|lo uniform refinement

- |u- u;,,”DG’h adaptive refinement

H]\,I;/z (u — uh) ”Q adaptive refinement

T T T T
3 4 5 6 7

mesh level ¢ with mesh size h = 2~ ‘hg

N L R O
3 0.744239 0.244213
4 0.569868 0.135738
5 0.328281 0.047846
6 0.143545 0.011040
7 0.054274 0.002494
8 0.019645 0.000615

Fig. 1: Convergence test for the first experiment with v = 0.5 and m = (0,1)"

Case b) If the material interface cannot be resolved by the mesh (M # M;,),
the consistency error gets relevant, which is observed by the results in Fig. 2.

10°

=@~ ":cs,n, uniform refinement
- Hu - uh”DG,h uniform refinement

¢ HM;/Q (u(T) = up(T))|l2 uniform refinement

HIVI}IL/Z (u—uy)|lq uniform refinement
- Hu — uh”DG h adaptive refinement

HM;/2 (u — uh) “Q adaptive refinement

10-1 4
l A
1072 5
1 k
) 1
1073 5
E T T T T T T
3 4 5 6 7 8
mesh level ¢ with mesh size h = 2= ¢hg
Fig. 2:
(0.8,0.6)".

¢ ‘ Hu_uhHDG,h ||M}11/2(“_“h)“Q
3 0.803100 0.222789
4 0.566667 0.111046
5 0.298943 0.035623
6 0.126032 0.012112
7 0.051102 0.006775
8 0.022482 0.004264

Convergence test for the first experiment with v = 4/7 and m =

Although the material interface cannot be resolved by the mesh, the solu-
tion is sufficiently smooth so that the approximation error of the material data
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M}, — M can be estimated by Rem. 10. We observe nearly optimal convergence
in the DG norm, but now the Ly convergence gets worse in comparison with
the first case.

In both cases, the convergence of u(T) — u,(T) in Ly is faster than the
convergence in the DG norm, and the residual error indicator yields results
close to the error in the DG norm; this confirms the estimate in Lem. 5. We
observe that adaptivity provides better solutions with a substantial reduction
of the required problem size dim V}, to achieve a certain accuracy. Therefore
a single adaptive step is sufficient, where the polynomial degree in space and
time is increased for nyes p > U1 MaxXp/cR,, Mres,r7 and decreased for Mpes g <
Yo MaxX g/ R, Nres, k', depending on ¥ > ¥y > 0. Note that this results in a
different refinement pattern in every time interval, and a simple refinement
in space is not sufficient for a strong reduction of the required degrees of
unknowns. Here, we select 97 = 0.3 and ¥y = 0.02, and in the figures for the
adaptive results the mesh size is logarithmically interpolated depending on the
degrees of freedom.

Experiment 2 At next, we test the convergence of a Riemann problem in
Q=(0,1/2) x (—1,1) x (0,1) with f = 0, where the solution is given by

y
x-m< —t,
0
1
m .
1
t<x-m,
O>

Then, Lu = 0, so that u is a strong solution, and since the condition in Rem. 9
applies, we obtain convergence in the limit by Thm. 2. On the other hand,
the solution is piecewise discontinuous, so that the smoothness assumption in
Thm. 3 is not satisfied.

We also observe convergence, cf. Fig. 3, but with a reduced rate O(h'/3).
In particular, the rate is not improved for the Lo error, and simple adaptivity
is not sufficient to increase the efficiency.

Here, the solution is not smooth, and the results do not improve if the
material parameters are aligned with the mesh. Moreover, further tests show
that the convergence order of approximately O(h%%) in the DG norm cannot
be improved by adaptivity, which indicates that without sufficient regularity
and jumps along the characteristics the DG norm is not appropriate for a
qualitative convergence analysis, as it is possible for point singularities, see [2].
Then, the convergence analysis requires high regularity in weighted Sobolev
spaces.
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=@ "res,n, uniform refinement

- Hu — u;,,”DG , uniform refinement
—-— H]W;/z (u(T) — up(T))|le2 uniform refinement

HM,t/2 (u—up)|lo uniform refinement

- Hu — uh,”DG’h adaptive refinement

HM;/2 (u — uh) ”Q adaptive refinement

Cl = wnllpe s 1M (= un)lle
107" 3 3 0.965539 0.201996
104 4 0.769326 0.152608
1 1 5 0.605518 0.116801
h ‘ ‘ ‘ ‘ 76 0.474996 0.089880
3 4 5 6 7 8 7 0.371885 0.069248
mesh level ¢ with mesh size h = 2= ¢hg 8 0.290613 0.053403

Fig. 3: Convergence test for the Riemann Problem.

Experiment 3 In our final example we test the space-time method for the
forward problem in seismic imaging. Here, we only consider 2d acoustics in
2 = (0,10) x (0,3) and I = (0,4) with homogeneous initial and Neumann
boundary conditions. For this test we use a piecewise constant right-hand side
b(t,x) =1 for (¢,x) € (0,0.5) x (0.25,0.75) x (0,0.5) and b = 0 else.

=@~ 7rcs,n uniform refinement
= Tres,h ONe refinement step
—9— "hes,n two refinement steps

1071

10~2 T T T
87 88 89
degrees of freedom

Fig. 4: Convergence test for a forward problem in seismic imaging in a trun-
cated space-time domain.

The configuration, the distribution of the the piecewise constant param-
eters o and k, and the parallel solution framework in M++ are described in
detail in [8]. Since in this application only the evaluation in a small measure-
ment region (4.75,7.25) x (0,0.4) C {2 is of interest, the space-time domain can
be truncated, see [10, Lem. 2]. Here the convergence is only tested by evaluat-
ing the residual error indicator on uniformly refined meshes and for one and
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two p-adaptive steps with 8y = 0.01 and #; = 0.1. Since all data are aligned
with the mesh but discontinuous, the regularity of the solution is limited. We
observe approximately linear convergence with respect to the estimate of the
DG norm, and again we observe improved convergence by space-time adap-
tivity, cf. Fig. 4.

7 Conclusion and Outlook

The convergence analysis in the DG norm only assumes regularity of the space-
time solution u in H'(Q;R™); this implies regularity of the solution u(t,)
at all time steps in H'/ 2(£2;R™). This clearyly extends convergence results
with respect to the graph norm, where the analysis requires higher regularity.
Moreover, the simple residual error indicator yields estimates very close to the
error in the DG norm. On the other hand, for discontinuous Riemann problems
we can prove only convergence in the limit, and the numerical experiments
demonstrate that we obtain convergence in Ly but with a reduced rate, which
can be improved by adaptivity in Lo but not in the DG norm.

All our estimates rely on a Hilbert space setting. This may be not appro-
priate for hyperbolic systems, and numerical tests demonstrate better con-
vergence rates in L;(Q;R™), but a corresponding analysis remains an open
problem.
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