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1 Introduction

Linear wave equations are hyperbolic, and the formulation as first-order sym-
metric Friedrichs system provides a well established setting for analyzing and
approximating solutions. A specific feature of hyperbolic systems is the trans-
port of discontinuities along characteristics. Our goal is to provide a numerical
scheme which is efficient for smooth solutions as well as for weak solutions with
discontinuities.

For smooth solutions of linear symmetric Friedrichs systems O(hs−1/2)
convergence can be established for discontinuous Galerkin approximations in
space with respect to suitable mesh-dependent DG norm [9, Chap. 57], [5,
Chap. 7]. For acoustics, the convergence analysis of a space-time approxi-
mation in a DG semi-norm provides estimates for all discrete time steps [2,
Prop. 6.5].

Finite volume convergence O(h1/2) for hyperbolic linear symmetric Frie-
drichs systems is established in [18] combined with first-order time-stepping.
Discontinuous Galerkin methods in time are analyzed in [12] for tent-type
space-time meshes. This is adapted to space-time discontinuous Galerkin meth-
ods on general space-time meshes with upwind flux for acoustics in [2], where
the convergence is established for sufficiently smooth solutions based on es-
timates in a suitable DG semi-norm. In particular, the analysis includes the
adaptive approximation of corner singularities.

Here, we consider a DG method in space and time for linear symmetric
Friedrichs systems, and we show inf-sup stability and convergence in the DG
norm. Therefore we transfer our results for space-time Petrov–Galerkin meth-
ods in [6,7] with continuous approximations in time and for the DPG method
in [10,11], where convergence in a stronger graph norm is considered. Our
analysis includes bounds for the consistency error in the case that piecewise
discontinuous material parameters are not aligned with the mesh. Conver-
gence in the limit for piecewise discontinuous solutions of Riemann problems
is established only in L2.

The space-time method is realized in the parallel finite element system
M++ [4]. In our numerical examples we confirm the a priori estimates for
weak as well as for smooth solutions, and we demonstrate the efficiency of the
p-adaptive scheme.

Space-time computations have a long history in practical engineering ap-
plications and in parallel time integration [26,13]. The space-time approach
allows for large-scale parallel computing and in case of point sources the reduc-
tion to the time cone within the space-time cylinder. Moreover, it allows for
dual-primal goal-oriented error control and applications to inverse and optimal
control problems where the adjoint problem is backward in time and relies on
the forward solution in the full space-time cylinder. Space-time discretizations
for the wave equation are constructed within a second-order approach in [25,
19], with isogeometric methods in [27], a very weak approach is presented in
[15], a quasi-Trefftz method is considered in [17], and a new approach to space-
time boundary integral equations for the wave equation is developed in [24].
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In comparison with these methods the first-order DG approach is numerically
expensive. On the other hand, convergence can be established with minimal
regularity assumptions, the method easily extends to more general material
laws and to more general hyperbolic conservation laws.

The paper is organized as follows. In Sect. 2 we introduce the notation
and the formulation of wave equations as first-order systems, in Sect. 3 we
introduce the DG discretization in time and in space. In Sect. 4 we consider
well-posedness and stability, in Sect. 5 we prove existence of weak solutions
and convergence estimates, in Sect. 5.3 we introduce an a posteriori error
indicator, and in Sect. 6 we present numerical results. In Sect. 7 we conclude
with a discussion of possible extensions and open problems.

2 Symmetric Friedrichs systems

We consider weak solutions of linear hyperbolic first-order systems in the form
of symmetric Friedrichs systems. Let Ω ⊂ Rd be a bounded domain in space
with Lipschitz boundary ∂Ω, I = (0, T ) a time interval, and we denote the
space-time cylinder by Q = (0, T )×Ω. Boundary conditions will be imposed on
Γk ⊂ ∂Ω for k = 1, . . . ,m depending on the model, where m is the dimension
of the first-order system.

For S ⊂ Q the L2 norm and inner product are denoted by ‖ · ‖S and (·, ·)S .
Let L = M∂t + A be a linear differential operator in space and time,

where (Mv)(t,x) = M(x)v(t,x) defines the operator M with a uniformly
positive definite matrix-valued function M ∈ L∞(Ω;Rm×msym ), and where Av =∑d
j=1Aj∂jv is a differential operator in space with matrices Aj ∈ Rm×msym .

Since M is uniformly positive definite, constants CM ≥ cM > 0 exists such
that

cM y>y ≤ y>M(x)y ≤ CM y>y , y ∈ Rm and a.a. x ∈ Ω .

We observe(
Lv,w

)
Q

=
(
M∂tv,w

)
Q

+
(
Av,w

)
Q

= −
(
v,M∂tw

)
Q
−
(
v, Aw

)
Q

= −
(
v, Lw

)
Q
, v,w ∈ C1

c(Q;Rm) ,

so that L∗ = −L is the adjoint differential operator. This is now complemented
by initial and boundary conditions.

For the unit normal vector n ∈ L∞(∂Ω;Rd) we define the matrix An =∑d
j=1 njAj ∈ Rm×msym , so that(
Av,w

)
Ω

+
(
v, Aw

)
Ω

=
(
Anv,w

)
∂Ω

=
(
v, Anw

)
∂Ω

, v,w ∈ C1(Ω;Rm) .

Correspondingly, we get for the operator L in space and time(
Lv,w

)
Q

+
(
v, Lw

)
Q

=
(
Mv(T ),w(T )

)
Ω
−
(
Mv(0),w(0)

)
Ω

+
(
Anv,w

)
(0,T )×∂Ω , v,w ∈ C1(Q;Rm) ,
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i.e., inserting L∗ = −L,(
v, L∗w

)
Q

=
(
Lv,w

)
Q
−
(
Mv(T ),w(T )

)
Ω

+
(
Mv(0),w(0)

)
Ω
−
(
Anv,w

)
(0,T )×∂Ω , v,w ∈ C1(Q;Rm) .

In order to define weak solutions, we include initial values for t = 0 and
boundary conditions on Γk for k = 1, . . . ,m in the right-hand side. Therefore,
we use a test space V∗ ⊂ C1(Q;Rm) such that(

v, L∗w
)
Q

=
(
Lv,w

)
Q

+
(
Mv(0),w(0)

)
Ω
−
(
Anv,w

)
(0,T )×∂Ω ,

v ∈ C1(Q;Rm) , w ∈ V∗

with

(
Anv,w

)
(0,T )×∂Ω =

m∑
k=1

(
(Anv)k, wk

)
(0,T )×Γk

,

v ∈ C1(Q;Rm) , w = (w1, . . . , wm) ∈ V∗ . (1)

The property (1) characterizes adjoint boundaries Γ ∗k ⊂ ∂Ω for k = 1, . . . ,m,
so that the test space is defined by

V∗ =
{
w ∈ C1(Q;Rm) : w(T ) = 0 in Ω , w(t) ∈ S∗ for t ∈ [0, T )

}
with S∗ =

{
w ∈ C1(Ω;Rm) : (Anw)k = 0 on Γ ∗k , k = 1, . . . ,m

}
with homogeneous final values at t = T and homogenous values at the adjoint
boundaries.

Our aim is to find a weak solution u ∈ L2(Q;Rm) solving(
u, L∗w

)
Q

=
〈
`,w

〉
, w ∈ V∗ (2)

with 〈
`,w

〉
=
(
f ,w

)
Q

+
(
Mu0,w(0)

)
Ω
−
(
g,w

)
(0,T )×∂Ω , w ∈ V∗

for given volume data f ∈ L2(Q;Rm), initial data u0 ∈ L2(Ω;Rm), and bound-
ary data g ∈ L2((0, T )× ∂Ω;Rm), where the boundary data g = (gk)k=1,...,m

are extended to ∂Ω by gk = 0 on ∂Ω \ Γk for k = 1, . . . ,m.
Testing the weak solution u ∈ L2(Q;Rm) in (2) with functions in v ∈

C1
c(Q;Rm) defines the weak derivative Lu = f in L2(Q;Rm). If in addition

u(0) ∈ L2(Ω;Rm) and Anu|(0,T )×Γk
∈ L2((0, T ) × Γk) for k = 1, . . . ,m, the

weak solution is also a strong solution characterized by

Lu = f in L2(Q;Rm) , u(0) = u0 in L2(Ω;Rm) , (3)

(Anu)k = gk on L2((0, T )× Γk) , k = 1, . . . ,m .

This is now specified for acoustic, elastic and electro-magnetic waves.
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Acoustic waves The second-order wave equation

%∂2t φ−∇ · (κ∇φ) = b

is considered as first-order system with p = ∂tφ and q = −κ∇φ, i.e.,

%∂tp+∇ · q = b and ∂tq + κ∇p = 0 in (0, T )×Ω ,

p(0) = p0 and q(0) = q0 in Ω at t = 0 ,

p(t) = pD(t) on ΓD and n · q(t) = gN(t) on ΓN on ∂Ω for t ∈ (0, T )

for volume data b, boundary data gN, pD, initial data q0, p0, positive param-
eters %, κ, and the disjoint decomposition of the boundary ∂Ω = ΓD ∪ ΓN

into Dirichlet and Neumann part. The corresponding Friedrichs system with
m = 1 + d components is given by

u =

(
p
q

)
, Mu =

(
%p
κ−1q

)
, Au =

(
∇ · q
∇p

)
,

Anu =

(
n · q
pn

)
, f =

(
b
0

)
, g =

(
gN
pDn

)
, (5)

so that for smooth functions ϕ,ψ with ϕ = 0 on (0, T )× ΓD and n ·ψ = 0 on
(0, T )× ΓN(

An(p,q), (ϕ,ψ)
)
(0,T )×∂Ω =

(
n · q, ϕ

)
(0,T )×ΓN

+
(
p,n ·ψ

)
(0,T )×ΓD

.

In two space dimensions, this corresponds to the boundary parts Γ1 = Γ ∗1 = ΓD

and Γ2 = Γ ∗2 = Γ3 = Γ ∗3 = ΓN, and

M =

% 0 0
0 κ−1 0
0 0 κ−1

 ∈ L∞(Ω;R3×3
sym) ,

A1 =

0 1 0
1 0 0
0 0 0

 ∈ R3×3
sym , A2 =

0 0 1
0 0 0
1 0 0

 ∈ R3×3
sym .

Elastic waves Linear elastic waves are described by the first-order system
for velocity v and stress σ

%∂tv −∇ · σ = b and ∂tσ −Cε(v) = 0 in (0, T )×Ω ,

v(0) = v0 and σ(0) = σ0 in Ω at t = 0 ,

v(t) = vD(t) on ΓD and σn = gN(t) on ΓN on ∂Ω for t ∈ (0, T )
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with mass density %, the symmetric gradient ε = ε(v) of v, and, in isotropic
media, with Cε = 2µε + λ trace(ε)I3 depending on the Lamé parameters
µ, λ > 0. This corresponds to the Friedrichs system with

u =

(
v
σ

)
, Mu =

(
%v

C−1σ

)
, Au =

(
−∇ · σ
−ε(v)

)
, (6)

Anu =

(
−σn

−nv> − vn>

)
, f =

(
b
0

)
, g =

(
−gN

−nv>D − vDn>

)
.

For d = 3 we have m = 9 and Γk = Γ ∗k = ΓD for k = 1, 2, 3, and Γk = Γ ∗k = ΓN

for k = 4, . . . , 9.

Electro-magnetic waves The first-order system for the electric field E and
the magnetic field intensity H

ε∂tE−∇×H = −J and µ∂tH +∇×E = 0 in (0, T )×Ω ,

E(0) = E0 and H(0) = H0 in Ω at t = 0 ,

n×E(t) = 0 on ΓE and n×H(t) = gM on ΓM on ∂Ω for t ∈ (0, T )

with permittivity ε, permeability µ, and boundary decomposition ∂Ω = ΓE ∪
ΓM corresponds to a Friedrichs system with

u =

(
E
H

)
, Mu =

(
εE
µH

)
, Au =

(
−∇×H
∇×E

)
,

Anu =

(
−n×H
n×E

)
, f =

(
−J
0

)
, g =

(
−gM

0

)
. (7)

For d = 3 we have m = 6 and Γk = Γ ∗k = ΓE for k = 1, 2, 3, and Γk = Γ ∗k = ΓM

for k = 4, 5, 6.

Remark 1 We only consider the case that the symmetric matrices Aj , j =
1, . . . , d, are constant in Ω. In general, Aj may depend on x ∈ Ω, e.g., for the
linear transport equation Lu = ∂tu+ a · ∇u with m = 1 and transport vector
a(x) ∈ Rd. Then, Γ1 is the inflow boundary, and for the adjoint equation
we obtain L∗v = −∂tv − a · ∇v − (∇ · a)v with Γ ∗1 = ∂Ω \ Γ1. For the DG
analysis of this case we refer to [5, Chap. 2] in the steady case and to [6] for
a Petrov–Galerkin space-time method.

The suitable choice of the subsets Γk ⊂ ∂Ω for k = 1, . . . ,m for the bound-
ary conditions in general Friedrichs systems is discussed in [5, Chap. 7.2]. Here
we consider the special case for wave systems. The property (1) characterizes
the adjoint boundaries Γ ∗k ⊂ ∂Ω for k = 1, . . . ,m, and we observe

m∑
k=1

(
(Anv)k, wk

)
(0,T )×Γk

=
(
Anv,w

)
(0,T )×∂Ω

=
(
v, Anw

)
(0,T )×∂Ω =

m∑
k=1

(
vk, (Anw)k

)
(0,T )×∂Ω\Γ∗k
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for v = (v1 . . . , vm) ∈ C1(Q;Rm) and w = (w1, . . . , wm) ∈ V∗ and thus,
defining

V =
{
v ∈ C1(Q;Rm) : v(0) = 0 in Ω ,

(Anv)k = 0 on (0, T ]× Γk , k = 1, . . . ,m
}

with homogeneous initial value at t = 0 and homogeneous boundary values
on Γk, we obtain(

Anv,w
)
(0,T )×∂Ω =

(
v, Anw

)
(0,T )×∂Ω = 0 , v ∈ V , w ∈ V∗ .

Boundary conditions are required in order to obtain uniqueness and well-
posedness of the solution. Therefore, we require for the subsets Γk ⊂ ∂Ω,
for k = 1, . . . ,m, that the operators L and L∗ are injective on V and V∗,
respectively, i.e.,{

v ∈ V : Lv = 0
}

= {0} ,
{
w ∈ V∗ : L∗w = 0

}
= {0} , (8)

where the relatively open adjoint boundaries Γ ∗k ⊂ ∂Ω for k = 1, . . . ,m are
determined by property (1).

Now we show that both conditions in (8) are necessary. The first condition
for Γk is required for uniqueness for strong solutions: if v ∈ V \{0} exists with
Lv = 0, then this is a non-trivial homogeneous strong solution, i.e., v solves
(3) with u0 = 0, f = 0, and g = 0. On the other hand, if the second condition
is violated, weak solutions do not exist for all volume data: if w ∈ V∗ \ {0}
and f ∈ L2(Q;Rm) exists with L∗w = 0 and (f ,w)Q 6= 0, no weak solution
of (2) with homogeneous initial and boundary data u0 = 0 and g = 0 exists.

Remark 2 The formulation of wave equations in our examples as Friedrichs

systems yields symmetric matrices of the form Aj =

(
0 Ãj

Ã
>
j 0

)
with Ãj ∈

Rm1×m2 and m = m1 + m2. For the boundary conditions we can select a
relatively open set Γ1 ⊂ ∂Ω. Then, defining Γk = Γ1 for k = 2, . . . ,m1,
Γk = ∂Ω \ Γ 1 for k = m1 + 1, . . . ,m, and Γ ∗k = Γk for k = 1, . . . ,m, we
observe that property (1) and conditions (8) are satisfied.

Remark 3 For smooth domains and data, the solution is also smooth, e.g., for
acoustics φ(t) ∈ Hs(Ω) for all t ∈ [0, T ] with s ≥ 2. This allows for improved
approximation orders O(hs) for φ. On the other hand, the necessary regularity
requirements are quite restrictive [21], and the second-order formulation does
not allow for the convergence analysis of piece-wise discontinuous solutions.

Remark 4 Waves in real media are dissipative and dispersive; e.g., modeling
electro-magnetic waves in matter needs to include conductivity and impedance.
The DG analysis can be extended to this case; see, e.g., [5, Chap. 7] for the
steady case and [8] for visco-elastic waves with impedance boundary condi-
tions.
In the elastic model for Rayleigh damping or for the Kelvin–Voigt model,
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the linear operator takes the form L = M∂t + D + A with (Dv)(t,x) =
D(x)v(t,x) and D ∈ L∞(Ω;Rd×dsym) symmetric positive semi-definite; then,
L∗ = −M∂t +D −A.
All our subsequent results extend to this case, but for simplicity we only con-
sider the case D = 0.

3 The full-upwind discontinuous Galerkin discretization

In this section we introduce an upwind DG discretization for the first-order
system.

3.1 The DG finite element space in the space-time cylinder

For the discretization, we use tensor product space-time cells combining the
mesh in space with a decomposition in time. For 0 = t0 < t1 < · · · < tN = T ,
we define time intervals In,h = (tn−1, tn), time-step sizes Mtn = tn− tn−1, and

Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) , ∂Ih = {t0, t1, . . . , tN−1, tN} .

We set Mt = maxMtn, and we assume quasi-uniformity, i.e., Mtn ∈ [CsrMt,Mt]
with Csr ∈ (0, 1] independent of N .

Let Kh be a mesh so that Ωh =
⋃
K∈Kh

K is a decomposition in space into

open cells K ⊂ Ω ⊂ Rd. Then, we obtain a tensor-product decomposition into
space-time cells R = In,h ×K

Qh = Ih ×Ωh =

N⋃
n=1

Qn,h =
⋃

R∈Rh

R ⊂ Q = I ×Ω ⊂ R1+d ,

Qn,h =
⋃

K∈Kh

In,h ×K ⊂ In,h ×Ω

of the space-time cylinder Q. Let F ∈ FK be the faces of the element K,
and we set Fh =

⋃
K FK , so that ∂Ωh =

⋃
F∈Fh

F is the skeleton in space;

∂Qh =
⋃N
n=0{tn} × ∂Ωh is the corresponding space-time skeleton. For inner

faces F ∈ Fh ∩ Ω and K ∈ Kh, let KF be the neighboring cell such that
F = ∂K∩∂KF . On boundary faces F ∈ Fh∩∂Ω we setKF = K. Let nK be the
outer unit normal vector on ∂K. We assume that Ω = Ωh ∪ ∂Ωh and that the
boundary decomposition is compatible with the mesh, i.e., Γ k =

⋃
F∈FK∩Γk

F
for k = 1, . . . ,m.

We set hK = diamK, hF = diamF , and h = maxhK . We assume quasi-
uniform meshes and shape-regularity, i.e., hF ≥ csrhK for F ∈ FK with csr > 0
independent of hK . In the following, we use the mesh-dependent norms

∥∥hα/2vh∥∥Q =
( N∑
n=1

∑
K∈Kh

hαK‖vh‖2In,h×K

)1/2
, α ∈ R . (9)
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In order to calibrate the accuracy in space and time, we assume, depending
on a reference velocity cref > 0, that the mesh size in time and space are well
balanced satisfying

crefMt ≤ h . (10)

Since we only consider fully implicit methods, we have no restriction with
respect to stability of the time integration.

Remark 5 For simplicity we use only tensor-product space-time meshes. For
the extension to more general meshes in the space-time cylinder we refer to
[14], see also the analysis in [2]. General meshes in R1+d are considered in [22].
Then, the condition (10) can be relaxed to a local condition.

The DG discretization is defined for a finite dimensional subspace Vh ⊂
Vh ⊂ C1(Ih;Sh), where

Vh =
{
vh ∈ C1(Qh;Rm) : vn,h,K = vh|In,h×K extends continuously to

vn,h,K ∈ C0(In,h ×K;Rm)
}
,

Sh =
{
vh ∈ C1(Ωh;Rm) : vh,K = vh|K extends continuously to

vh,K ∈ C0(K;Rm)
}
.

On the space-time skeleton ∂Qh, we define

∥∥vh∥∥∂Qh
=
( N∑
n=1

∑
K∈Kh

‖vn,h,K‖2∂(In,h×K)

)1/2
, vh ∈ Vh . (11)

For the positive definite matrix function M ∈ L∞(Ω;Rm×msym ) let Mh ∈
L∞(Ωh;Rm×msym ) be a piecewise constant approximation, and for K ∈ Kh let

Mh,K ∈ Rm×msym be the continuous extension of Mh|K to K; in case of material
jumps this can result to different values on the left and right side of a face,
i.e., Mh,K |F 6= Mh,KF

|F .
Let Lh = Mh∂t+A be the corresponding linear differential operator, where

the approximated operator Mh is given by (Mhv)(t,x) = Mh(x)v(t,x). Note
that then Lh(Vh) ⊂ Vh.

For our applications, we use a tensor-product construction of the finite
element space.

For every space-time cell R = In,h ×K we select polynomial degrees pR =
pn,K ≥ 0 in time and qR = qn,K ≥ 0 in space. With this we define the
discontinuous finite element spaces

Sn,h =
∏
K∈Kh

Pqn,K
(K;Rm) ⊂ Sh , Sh = S1,h + · · ·+ SN,h , (12a)

Vn,h =
∏
K∈Kh

Ppn,K
⊗ Pqn,K

(K;Rm) , Vh = V1,h + · · ·+ VN,h ⊂ Vh , (12b)
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where Pp denotes the set of polynomials up to order p. For the following, we
fix p = max pR and q = max qR, so that

Sn,h ⊂ Sh ⊂ Pq(Ωh;Rm) ⊂ Sh ,
Vh ⊂ Pp(Ih)⊗ Sh ⊂ Pp(Ih)⊗ Pq(Ωh;Rm) ⊂ Vh .

On the space-time skeleton ∂Qh =
⋃N
n=0{tn} × Ω ∪ Ih × ∂Ωh, the inverse

inequality and the discrete trace inequality [5, Lem. 1.44 and Lem. 1.46] yield

∥∥h1/2M−1/2h Lhvh
∥∥
Qh
≤ Cinv

∥∥h−1/2M1/2
h vh

∥∥
Q
, (13a)∥∥M1/2

h vh
∥∥
∂Qh
≤ Ctr

∥∥h−1/2M1/2
h vh

∥∥
Q
, vh ∈ Vh , (13b)

with Cinv, Ctr > 0 depending on the space-time mesh regularity (and thus also
on cref), the polynomial degrees in Vh, and the material parameters.

Let Πh : L2(Q;Rm) −→ Vh be the space-time L2 projection defined by(
MhΠhv,vh

)
Q

=
(
Mhv,vh

)
Q
, vh ∈ Vh . (14)

For vh ∈ Vh, let vn,h ∈ C0
(
[tn−1, tn]; L2(Ω, h;Rm)

)
be the extension of

vh|Qn,h
∈ L2(Qn,h;Rm) to [tn−1, tn].

In every time interval In,h we use the projection Πn,h : L2(Ω;Rm) −→
Sn,h ⊂ Sh defined by(

MhΠn,hw,wn,h

)
Ω

=
(
Mhwn,wn,h

)
Ω
, wn,h ∈ Sn,h .

In the following, we derive the discretizations in the infinite dimensional piece-
wise continuous spaces Sh and Vh, since several properties only rely on the
mesh. We use the finite dimensional DG spaces Vh ⊂ Vh and Sh ⊂ Sh if we
require additional properties of the discrete space such as inverse and trace
inequalities.

3.2 A discontinuous Galerkin method in time

For vh,wh ∈ Vh we obtain after integration by parts in all intervals In,h ⊂ Ih

(
Mh∂tvh,wh

)
Qh

=
N∑
n=1

(
−
(
Mhvn,h, ∂twn,h

)
Qn,h

+
(
Mhvn,h(tn),wn,h(tn)

)
Ω

−
(
Mhvn,h(tn−1),wn,h(tn−1)

)
Ω

)
.

Introducing the jump terms [wh]n = wn+1,h(tn)−wn,h(tn) for n = 1, . . . , N−1
and [wh]N = −wN,h(tN ), we define the dual representation of the full upwind
DG method in time for vh,wh ∈ Vh

mh(vh,wh) = −
(
Mhvn,h, ∂twn,h

)
Qh
−

N∑
n=1

(
Mhvn,h(tn), [wh]n

)
Ω
. (15)
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We have dual consistency by construction, i.e.,

mh(vh,w) = −
(
Mhvh, ∂tw

)
Qh

, w ∈ V∗ . (16)

Again integrating by parts and defining [vh]0 = v1,h(0) yields the primal
representation

mh(vh,wh) =
(
Mh∂tvh,wh

)
Qh

+

N∑
n=1

(
Mh[vh]n−1,wn,h(tn−1)

)
Ω
. (17)

Together, we obtain

2mh(vh,vh) = mh(vh,vh) +mh(vh,vh)

=

N∑
n=1

((
Mh[vh]n−1,vn,h(tn−1)

)
Ω
−
(
Mhvn,h(tn), [vh]n

)
Ω

)
=
(
Mhvh(0),vh(0)

)
Ω

+
(
Mhvh(T ),vh(T )

)
Ω

+

N−1∑
n=1

((
Mh[vh]n,vn+1,h(tn)

)
Ω
−
(
Mhvn,h(tn), [vh]n

)
Ω

)
,

which yields

mh(vh,vh) =
1

2

N∑
n=0

(
Mh[vh]n, [vh]n

)
Ω
≥ 0 , vh ∈ Vh , (18)

so that

mh

(
vh,vh

)
= 0 =⇒ mh

(
vh,wh

)
= −

(
Mhvh, ∂tw

)
Qh

(19)

=
(
Mh∂tvh,w

)
Qh

, vh,wh ∈ Vh .

For mh(vh,vh) = 0 we observe vh ∈ H1
0(0, T ;Sh).

This yields with dT (t) = T − t

(
Mhvh,vh

)
Q

=

∫ T

0

(
Mhvh(t),vh(t)

)
Ω

dt

= −
∫ T

0

(
Mhvh(t),vh(t)

)
Ω
∂tdT (t) dt

= 2

∫ T

0

(
Mh∂tvh(t),vh(t)

)
Ω
dT (t) dt

≤ 2T
∥∥M−1/2h ∂tvh

∥∥
Qh

∥∥M1/2
h vh

∥∥
Q
,

i.e., we have
∥∥M1/2

h vh
∥∥
Q
≤ 2T

∥∥M−1/2h ∂tvh
∥∥
Qh

.

This extends to discontinuous functions in Vh as follows.
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Lemma 1 We have

(
Mhvh,vh

)
Q

+

N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
≤ 2mh(vh, dTvh) , vh ∈ Vh .

Proof The assertion follows from

(
Mhvh,vh

)
Q

= −
N∑
n=1

∫ tn

tn−1

(
Mhvh(t),vh(t)

)
Ω
∂tdT (t) dt

= 2

∫ T

0

(
Mh∂tvh(t),vh(t)

)
Ω
dT (t) dt

−
N∑
n=1

(
dT (tn)

(
Mhvn,h(tn),vn,h(tn)

)
Ω

− dT (tn−1)
(
Mhvn,h(tn−1),vn,h(tn−1)

)
Ω

)
= 2
(
Mh∂tvh, dTvh

)
Qh
− T ‖M1/2

h v1,h(0)‖2Ω

+

N−1∑
n=1

dT (tn)
((
Mhvn+1,h(tn),vn+1,h(tn)

)
Ω

−
(
Mhvn,h(tn),vn,h(tn)

)
Ω

)
≤ 2
(
Mh∂tvh, dTvh

)
Qh

+ 2

N−1∑
n=1

dT (tn)
(
Mh[vh]n,vn+1,h(tn)

)
Ω

−
N−1∑
n=1

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
− T ‖M1/2

h v1,h(0)‖2Ω

≤ 2mh

(
vh, dTvh

)
−
N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω

using (
Mhvn+1,h(tn),vn+1,h(tn)

)
Ω
−
(
Mhvn,h(tn),vn,h(tn)

)
Ω

=
(
Mh(vn+1,h(tn)− vn,h(tn)),vn+1,h(tn) + vn,h(tn)

)
Ω

=
(
Mh[vh]n,vn+1,h(tn)

)
Ω

+
(
Mh[vh]n,vn,h(tn)

)
Ω

= 2
(
Mh[vh]n,vn+1,h(tn)

)
Ω
−
(
Mh[vh]n, [vh]n

)
Ω
.

3.3 A discontinuous Galerkin method in space

For vh,wh ∈ Sh we observe, integrating by parts for all elements K ∈ Kh,

(
Avh,wh

)
Ωh

=
∑
K∈Kh

(
−
(
vh,K , Awh,K

)
K

+
∑
F∈FK

(
AnK

vh,K ,wh,K

)
F

)
.
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For conforming functions v, we have for the flux AnK
v = −AnKF

v on in-

ner faces F ⊂ Ω, and for discontinuous functions we define the jump term
[wh]K,F = wh,KF

− wh,K . On boundary faces F ⊂ ∂Ω this depends on the
boundary conditions, and we set (An[vh])k = −2(Anvh)k on Γk ⊂ ∂Ω and
(An[vh])k = 0 on ∂Ω \ Γk for k = 1, . . . ,m.
We use the discontinuous Galerkin with full upwind discretization in space
which is of the form

ah(vh,wh) = −
(
vh, Awh

)
Ωh

+
∑
K∈Kh

∑
F∈FK

(
vh,K , A

up
nK

[wh]K,F
)
F
,

where the upwind flux Aup
nK
∈ Rm×m is obtained by solving local Riemann

problems.
For the DG method we require dual consistency for the bilinear form and the
right hand side for the boundary values for vh ∈ Sh, w ∈ S∗

ah
(
vh,w

)
= −

(
vh, Aw

)
Ωh

and
〈
`∂Ω,h(t),w

〉
=
(
g(t),w

)
∂Ω

, (20)

and for the inconsistency complement we require that C1 ≥ c1 > 0 exists such
that

c1
∥∥An[vh]

∥∥2
∂Ωh
≤ ah

(
vh,vh

)
≤ C1

∥∥An[vh]
∥∥2
∂Ωh

, vh ∈ Sh , (21)

so that for vh,wh ∈ Sh

ah
(
vh,vh

)
= 0 =⇒ ah

(
vh,wh

)
= −

(
vh, Awh

)
Ωh

=
(
Avh,wh

)
Ωh
. (22)

We assume that C1 > 0 only depends on the material parameters, and that∣∣ah(vh,wh

)
+
(
vh, Awh

)
Ωh

∣∣ ≤ C1

∥∥M1/2
h vh

∥∥
∂Ωh

∥∥An[wh]
∥∥
∂Ωh

, (23a)∣∣ah(vh,wh

)
+
(
Avh,wh

)
Ωh

∣∣ ≤ C1

∥∥An[vh]
∥∥
∂Ωh

∥∥M1/2
h wh

∥∥
∂Ωh

, (23b)∣∣〈`∂Ω,h(t),wh

〉
−
(
g(t),wh

)
∂Ω

∣∣ ≤ C1

∥∥g(t)
∥∥
∂Ωh

∥∥M1/2
h wh

∥∥
∂Ωh

(23c)

for vh,wh ∈ Sh.
For acoustic, elastic and electro-magnetic waves the upwind flux is explic-

itly evaluated, e.g., in [16, Sect. 4.3]. Here, we only consider the dual repre-
sentation; integration by parts yields the primal representation.

Acoustic waves The full upwind DG approximation for the acoustic wave
equation (5) is given by

ah
(
(ph,qh), (ϕh,ψh)

)
=
∑
K∈Kh

(
−
(
qh,K ,∇ϕh,K

)
K
−
(
ph,K ,∇ ·ψh,K

)
K

(24)

−
∑
F∈FK

1

ZK + ZKF

(
pK,h + ZKF

nK · qK,h, [ϕh]K,F + ZKnK · [ψh]K,F
)
F

)
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for (ph,qh), (ϕh,ψh) ∈ Sh with impedance ZK =
√
κh,K%h,K depending on

the piecewise constant approximations for the material parameters κ, % > 0.
On inner boundaries material discontinuities can result in ZK 6= ZKF

, on
boundary faces we define Zh = ZK on ∂Ω ∩ ∂K. On Dirichlet boundary faces
F ∈ Fh ∩ ΓD, we set [ph]K,F = −2ph and n · [qh]K,F = 0. On Neumann
boundary faces F ∈ Fh ∩ ΓN, we set [ph]K,F = 0 and n · [qh]K,F = −2 n · qh.
The right-hand side is complemented by the stabilization, so that〈

`∂Ω,h(t), (ϕh,ψh)
〉

= −
(
pD(t),n ·ψh

)
ΓD
−
(
gN(t), ϕh

)
ΓN

(25)

+
(
pD(t), Z−1h ϕh

)
ΓD

+
(
gN(t), Zhn ·ψh

)
ΓN
.

Integration by parts gives

ah
(
(ph,qh), (ph,qh)

)
=

1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(∥∥[ph]K,F
∥∥2
F

+ ZKZKF

∥∥nK · [qh]K,F
∥∥2
F

)
.

Elastic waves The full upwind DG approximation for the elastic wave equa-
tion (6) is given by

ah
(
(vh,σh), (wh,ηh)

)
=
∑
K∈Kh

((
σh.K , ε(wh,K)

)
K

+
(
vh,K ,∇ · ηh,K

)
K

(26)

−
∑
F∈FK

(
nK ·

(
σh,KnK − Zp

KF
vh,K

)
,nK ·

(
[ηh]K,FnK − Zp

K [wh]K,F
))
F

Zp
K + Zp

KF

−
∑
F∈FK

(
nK ×

(
σh,KnK − Zs

KF
vh,K

)
,nK ×

(
[ηh]K,FnK − Zs

K [wh]K,F
))
F

Zs
K + Zs

KF

)

for (vh,σh), (wh,ηh) ∈ Sh. The coefficients Zp
K =

√
(2µh,K + λh,K)%h,K and

Zs
K =

√
µh,K%h,K are the impedance of compressional waves and shear waves,

respectively. On Dirichlet boundary faces F ∈ Fh∩ΓD, we set [vh]K,F = −2vh
and [σh]K,FnK = 0, and on Neumann faces F ∈ Fh ∩ ΓN we set [vh]K,F = 0
and [σh]K,FnK = −2σhnK . The right-hand side is given by〈

`∂Ω,h(t), (wh,ηh)
〉

=
(
vD(t),ηhn

)
ΓD

+
(
gN(t),wh

)
ΓN

+
(
n · vD(t), (Zp

h)−1n ·wh

)
ΓD

+
(
n · gN(t), Zp

hn · ηhn
)
ΓN

+
(
n× vD(t), (Zs

h)−1n×wh

)
ΓD

+
(
n× gN(t), Zs

hn× ηhn
)
ΓN
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with Zp
h = Zp

K and Zs
h = Zs

K on ∂K ∩ ∂Ω. Integrating by parts yields

ah
(
(vh,σh), (vh,σh)

)
= (27)

1

2

∑
K∈Kh

∑
F∈FK

(∥∥nK · ([σh]K,FnK
)∥∥2
F

+ Zp
KZ

p
KF

∥∥nK · [vh]K,F
∥∥2
F

Zp
K + Zp

KF

+

∥∥nK × ([σh]K,FnK
)∥∥2
F

+ Zs
KZ

s
KF

∥∥nK × [vh]K,F
∥∥2
F

Zs
K + Zs

KF

)
.

Electro-magnetic waves The full upwind DG approximation for the electro-
magnetic wave equation (7) is given by

ah
(
(Eh,Hh), (ϕh,ψh)

)
=
∑
K∈Kh

((
Eh,K ,∇×ψh,K

)
K
−
(
Hh,K ,∇×ϕh,K

)
K

+
∑
F∈FK

1

ZK + ZKF

((
ZKEh,K − nK ×Hh,K ,nK × [ψh]K,F

)
F

(28)

−
(
ZKnK ×Eh,K + Hh,K , ZKF

nK × [ϕh]K,F
)
F

))

for (Eh,Hh), (ϕh,ψh) ∈ Sh with coefficient ZK =
√
εK/µK . On the boundary

faces, we set nK× [E]K,F = −2nK×Eh,K and nK× [Hh]K,F = 0 on F ∈ Fh∩
ΓE, and on impedance boundary faces F ∈ Fh ∩ ΓM, we set nK × [E]K,F = 0
and nK × [H]K,F = −2nK ×Hh,K . The right-hand side is given by〈

`∂Ω,h(t), (ϕh,ψh)
〉

=
(
gM(t),ϕh − Z−1h n×ψh

)
ΓM

with Zh = ZK on ∂K ∩ ΓM. Again, integration by parts yields

ah
(
(Eh,Hh), (Eh,Hh)

)
=

1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(
ZKZKF

∥∥nK × [Eh]K,F
∥∥2
F

+ ‖nK × [Hh]K,F
∥∥2
F

)
.

3.4 A discontinuous Galerkin method in time and space

Combining the two semi-discretizations, we obtain the full DG discretization

bh(vh,wh) = mh(vh,wh) +

∫ T

0

ah
(
vh(t),wh(t)

)
dt , vh , wh ∈ Vh (29)

with right-hand side in the space-time cylinder for vh ∈ Vh〈
`h,wh

〉
=
(
f ,wh

)
Q

+
(
Mhu0,wh(0)

)
Ω

+

∫ T

0

〈
`∂Ω,h(t),wh(t)

〉
dt . (30)
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For the space-time DG method we have by construction dual consistency for
the bilinear form and the right hand side

bh
(
vh,w

)
=
(
vh, L

∗
hw
)
Qh

, vh ∈ Vh , w ∈ V∗ , (31)

and 〈
`h,w

〉
=
(
f ,w

)
Q

+
(
Mhu0,w(0)

)
∂Ω

+
(
g,w

)
(0,T )×∂Ω , w ∈ V∗ ,

and positivity for the inconsistency complement

bh
(
vh,vh

)
≥ 1

2

N∑
n=0

∥∥M1/2
h [vh]n

∥∥2
Ω

+ c1
∥∥An[vh]

∥∥2
Ih×∂Ωh

, vh ∈ Vh (32)

by combining (18) and (21). Together with (19) and (22) we obtain

bh
(
vh,vh

)
= 0 =⇒ bh

(
vh,wh

)
=
(
vh, L

∗
hwh

)
Qh

=
(
Lhvh,wh

)
Qh

(33)

for vh,wh ∈ Vh, and (23) yields with C1 > 0∣∣bh(vh,wh

)
−
(
vh, L

∗
hwh

)
Ωh

∣∣ (34a)

≤
∥∥M1/2

h vh
∥∥
∂Qh

√∥∥M1/2
h [wh]

∥∥2
∂Ih×Ω

+ C1

∥∥An[wh]
∥∥2
Ih×∂Ωh

,∣∣bh(vh,wh

)
−
(
Lhvh,wh

)
Ωh

∣∣ (34b)

≤
√∥∥M1/2

h [vh]
∥∥2
∂Ih×Ω

+ C1

∥∥An[vh]
∥∥2
Ih×∂Ωh

∥∥M1/2
h wh

∥∥
∂Qh∣∣〈`,wh

〉
−
〈
`h,wh

〉∣∣ (34c)

≤
∥∥M1/2

h u0

∥∥
Ω

∥∥M1/2
h wh

∥∥
Ω

+ C1

∥∥g∥∥
Ih×∂Ω

∥∥M1/2
h wh

∥∥
Ih×∂Ω

.

For sufficiently smooth functions v ∈ L2(Q;Rm) with Lhv ∈ L2(Q;Rm),
v(0) ∈ L2(Ω;Rm), [v]n = 0 for n = 1, . . . , N − 1, An[v] = 0 on Ih × F for
inner faces F ∈ Fh \ ∂Ω, and An[v] ∈ L2(I × ∂Ω;Rm), we obtain consistency
of the form∣∣bh(v,wh

)
−
〈
`h,wh

〉
−
(
Lhv − f ,wh

)
Q
−
(
Mh(v(0)− u0),wh

)
Ω

∣∣
≤ C1

m∑
k=1

∥∥(Anv)k − gk
∥∥
Ih×Γk

∥∥wh,k∥∥Ih×Γk
. (35)

Lemma 2 We have, depending on c1 > 0 in (21),

∥∥M1/2
h vh

∥∥2
Q

+

N−1∑
n=0

dT (tn)
∥∥M1/2

h [vh]n
∥∥2
Ω

+ 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2
∂Ωh

dt

≤ 2 bh(vh, dTvh) , vh ∈ Vh .
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Proof By inserting vh(t) into (21) and integrating over time we find

c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2
∂Ωh

dt ≤
∫ T

0

dT (t)ah(vh(t),vh(t)) dt ,

and thus with Lem. 1 we get for all vh ∈ Vh(
Mhvh,vh

)
Q

+

N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
≤ 2mh(vh, dTvh)

≤ 2mh(vh, dTvh) + 2

∫ T

0

dT (t) ah
(
vh(t),vh(t)

)
dt

− 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2
∂Ωh

dt

= 2 bh(vh, dTvh)− 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2
∂Ωh

dt .

4 Well-posedness and stability

We show that the discrete problem has a unique solution and is stable with
respect to different norms.

4.1 Well-posedness of the space-time DG discretization

The well-posedness of the discrete equation is now established as in [2, Prop. 5.1].

Lemma 3 A unique discrete approximation uh ∈ Vh exists solving

bh(uh,vh) =
〈
`h,vh

〉
, vh ∈ Vh . (36)

Proof Since dimVh < ∞, it is sufficient to show that uh = 0 is the unique
solution of the homogeneous problem

bh(uh,vh) = 0 , vh ∈ Vh . (37)

Since (37) implies bh(uh,uh) = 0, we obtain by (32) for the jump terms∥∥M1/2
h [uh]

∥∥
∂Ih×Ωh

=
∥∥An[uh]

∥∥
Ih×∂Ωh

= 0, so that bh(uh,vh) =
(
Lhuh,vh

)
Qh

=

0. Since Mh is piecewise constant in K ∈ Kh, we observe Lhuh ∈ Vh, so that
we can test with vh = Lhuh; thus, also

(
Lhuh, Lhuh

)
Qh

= 0, i.e., Lhuh = 0.

Now the assertion follows from Lem. 2 and (33) by∥∥M1/2
h uh

∥∥2
Q

=
(
Mhuh,uh

)
Q
≤ 2 bh(uh, dTuh) = 2

(
Lhuh, dTuh

)
Q

= 0 .

Remark 6 The previous lemma shows that the discrete graph norm defined by

‖vh‖Vh
= sup

wh∈Vh\{0}

bh(vh,wh)∥∥M1/2
h wh

∥∥
Q

, vh ∈ Vh , (38)

is well defined and a norm in Vh.
Since the discrete graph norm is only a semi-norm in Vh, we have to use
stronger norms for the convergence analysis.
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4.2 Stability in space and time

Let 0 = cp,0 < cp,1 < · · · < cp,p < 1 be the Radau Ia collocation points, so
that

∫ 1

0

φ(s) ds =

p∑
k=0

ωp,kφ(cp,k) , φ ∈ P2p

(with quadrature weights ωp,k > 0 for k = 0, . . . , p), and let λp,k ∈ Pp be the
corresponding Lagrange polynomials

λp,k(s) =

p∏
j=0, j 6=k

s− cp,j
cp,k − cp,j

, s ∈ [0, 1] .

This defines λn,h,k ∈ Ppn(In,h) by λn,h,k(tn−1 + sMtn) = λpn,k(s) for s ∈ [0, 1]
and tn,k = tn−1 + cpn,kMtn.

Together this is combined to the corresponding interpolation Ih : Vh −→ Vh
by

(In,hvn,h)(t,x) =

pn∑
k=0

λn,h,k(t)vn,h(tn,k,x) , (t,x) ∈ In,h ×Ωh,

vn,h ∈ C0([tn−1, tn];Sh), n = 1, . . . , N .

For the interpolation we will use in the following the estimate

∥∥M1/2
h Ih(dTvh)

∥∥2
Q

=

N∑
n=1

pn∑
k=0

ωpn,k
∥∥M1/2

h Ih(dTvh)(tn,k)
∥∥2
Ω

=

N∑
n=1

pn∑
k=0

dT (tn,k)2ωpn,k
∥∥M1/2

h vh(tn,k)
∥∥2
Ω

(39)

≤ T 2
N∑
n=1

pn∑
k=0

ωpn,k
∥∥M1/2

h vh(tn,k)
∥∥2
Ω

= T 2
∥∥M1/2

h vh
∥∥2
Q
.

Lemma 4 If pn,K = pn for all K ∈ Kh and n = 1, . . . , N , we have for
vh ∈ Vh

∥∥M1/2
h vh

∥∥2
Q

+

N∑
n=1

(
dT (tn−1)

∥∥M1/2
h [vh]n−1

∥∥2
Ω

+ 2c1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2
∂Ωh

)
≤ 2 bh

(
vh, Ih(dTvh)

)
.
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Proof We observe

(
Mh∂tvh, dTvh

)
Qh

=

N∑
n=1

(
Mh∂tvn,h, dTvn,h

)
In,h×Ω

=

N∑
n=1

pn∑
k=0

ωpn,k
(
Mh(∂tvn,h)(tn,k), dT (tn,k)vn,h(tn,k)

)
Ω

=

N∑
n=1

pn∑
k=0

ωpn,k
(
Mh(∂tvn,h)(tn,k), In,h(dTvn,h)(tn,k)

)
Ω

=
(
Mh∂tvh, Ih(dTvh)

)
Qh

.

Using Ih(dTvh)(tn−1) = dT (tn−1)vn,h(tn−1) for n = 1, . . . , N , we have

mh(vh, dTvh) =
(
Mh∂tvh, dTvh

)
Qh

+

N∑
n=1

(
Mh[vh]n, dT (tn−1)vn,h(tn−1)

)
Ω

=
(
Mh∂tvh, Ih(dTvh)

)
Qh

+

N∑
n=1

(
Mh[vh]n, Ih(dTvh)(tn−1)

)
Ω

= mh

(
vh, Ih(dTvh)

)
,

and together with Lem. 1 we obtain

∥∥M1/2
h vh

∥∥2
Q

+

N∑
n=1

dT (tn−1)
∥∥M1/2

h [vh]n−1
∥∥2
Ω

≤ 2mh(vh, dTvh) = 2mh

(
vh, Ih(dTvh)

)
.

For the upwind DG discretization in space we obtain by (21)

0 ≤ c1
N∑
n=1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2
∂Ωh

≤
N∑
n=1

pn∑
k=0

dT (tn,k)ωpn,k ah
(
vh(tn,k),vh(tn,k)

)
=

N∑
n=1

pn∑
k=0

ωpn,k ah
(
vh(tn,k), In,h(dTvn,h)(tn,k)

)
=

N∑
n=1

∫ tn

tn−1

ah
(
vh(t), In,h(dTvn,h)(t)

)
dt

=

∫ T

0

ah
(
vh(t), Ih(dTvh)(t)

)
dt ,
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so that together we obtain the assertion by

∥∥M1/2
h vh

∥∥2
Q

+

N∑
n=1

(
dT (tn−1)

∥∥M1/2
h [vh]n−1

∥∥2
Ω

+ 2c1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2
∂Ωh

)
≤ 2mh

(
vh, Ih(dTvh)

)
+

∫ T

0

ah
(
vh(t), Ih(dTvh)(t)

)
dt

= 2 bh
(
vh, Ih(dTvh)

)
.

Remark 7 Together with (38) and (39) we obtain L2 stability with respect to
the discrete graph norm by

∥∥M1/2
h vh

∥∥
Q
≤ 2

bh
(
vh, Ih(dTvh)

)∥∥M1/2
h Ih(dTvh)

∥∥
Q

∥∥M1/2
h Ih(dTvh)

∥∥
Q∥∥M1/2

h vh
∥∥
Q

≤ 2T ‖vh‖Vh

for vh ∈ Vh \ {0}, i.e., ‖M1/2
h vh‖Q ≤ 2T ‖vh‖Vh

.

Corollary 1 Let uh ∈ Vh be the discrete solution (36), and assume homoge-
neous boundary data g = 0.
If pn,K = pn for all K ∈ Kh and n = 1, . . . , N , the solution is bounded by

∥∥M1/2
h uh

∥∥2
Q

+

N∑
n=1

dT (tn−1)
(∥∥M1/2

h [uh]n−1
∥∥2
Ω

+ 2c1
∥∥An[uh]

∥∥2
In,h×∂Ωh

)
≤ 4

∥∥dTM−1/2h f
∥∥2
Q

+ 4T
∥∥M1/2

h u0

∥∥2
Ω
.

Proof We have for n = 1, . . . , N

dT (tn−1)
∥∥An[uh]

∥∥2
In,h×∂Ωh

= dT (tn−1)

pn∑
k=0

ωpn,k
∥∥An[uh(tn,k)]

∥∥2
∂Ωh

≤
pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[uh(tn,k)]

∥∥2
∂Ωh

,

so that together with Lem. 4 and Ih(dTuh)(0) = Tuh(0) we get the assertion
by

1

2

∥∥M1/2
h uh

∥∥2
Q

+
1

2

N∑
n=1

dT (tn−1)
(∥∥M1/2

h [uh]n−1
∥∥2
Ω

+ 2c1
∥∥An[uh]

∥∥2
In,h×∂Ωh

)
≤ bh

(
uh, Ih(dTuh)

)
= 〈`h, Ih(dTuh)〉

=
(
f , dTuh

)
Q

+
(
Mhu0, Tuh(0)

)
Ω

≤
∥∥dTM−1/2h f

∥∥2
Q

+
1

4

∥∥M1/2
h uh

∥∥2
Q

+ T
∥∥M1/2

h u0

∥∥2
Ω

+
T

4

∥∥M1/2
h uh(0)

∥∥2
Ω
.
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Remark 8 The estimate in Lem. 2 directly implies that the Petrov–Galerkin
method with test space V ∗h = dTVh is well-defined and L2 stable: the Petrov–
Galerkin solution uPG

h ∈ Vh given by

bh(uPG
h , dTvh) = 〈`h, dTvh〉 , vh ∈ Vh (40)

is bounded by

1

2

∥∥M1/2
h uPG

h

∥∥2
Q

+
T

2

∥∥M1/2
h uPG

h (0)
∥∥2
Ω
≤ bh(uPG

h , dTuPG
h ) = 〈`h, dTuPG

h 〉 ,

and thus, in case of homogeneous boundary data g = 0 we obtain∥∥M1/2
h uPG

h

∥∥2
Q

+ T
∥∥M1/2

h uPG
h (0)

∥∥2
Ω
≤ 4

∥∥dTM−1/2h f
∥∥2
Q

+ 4T
∥∥M1/2

h u0

∥∥2
Ω
.

This is proposed and analyzed in [1] in the semi-discrete case for the advection-
diffusion problem. Our numerical tests indicate, that the Petrov–Galerkin
modification does not improve the approximation quality, and in the next
section we show, that stability and convergence in the DG norm can be estab-
lished also for the Galerkin method with ansatz and test space Vh and with
adaptively chosen pn,K .

4.3 Inf-sup stability in the DG norm

Suitable mesh-dependent DG semi-norms and norms can be defined for all
vh ∈ Vh by∣∣vh∣∣h,DG

=
√
bh(vh,vh) ,

∣∣vh∣∣h,DG+ =

(
N∑
n=1

(∥∥M1/2
h vn,h(tn−1)

∥∥2
Ω

+
∥∥M1/2

h vn,h(tn)
∥∥2
Ω

)

+ C1

∑
K∈Kh

∥∥M1/2
h vh

∥∥2
Ih×∂K

)1/2

,

∥∥vh∥∥h,DG
=
√∣∣vh∣∣2h,DG

+
∥∥h1/2M−1/2h Lhvh

∥∥2
Qh

, (41)∥∥vh∥∥h,DG+ =
√∣∣vh∣∣2h,DG+ +

∥∥h−1/2M1/2
h vh

∥∥2
Q
,

see [5, Chap. 2 and 7]. Analogously to the proof of Lem. 3 we observe that∥∥vh∥∥h,DG
= 0 implies vh = 0, so that

∥∥ · ∥∥
h,DG

indeed is a norm. Using (34),

we obtain for vh,wh ∈ Vh∣∣bh(vh,wh) +
(
vh, Lhwh

)
Qh

∣∣ ≤ ∣∣vh∣∣h,DG+

∣∣wh

∣∣
h,DG

,∣∣bh(vh,wh)−
(
Lhvh,wh

)
Qh

∣∣ ≤ ∣∣vh∣∣h,DG

∣∣wh

∣∣
h,DG+ . (42)
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We have

2
∣∣vh∣∣2h,DG

= 2 bh(vh,vh) +
(
Lhvh,vh

)
Qh
−
(
vh, Lhvh

)
Qh

≤ 2
∣∣vh∣∣h,DG+

∣∣vh∣∣h,DG
,

i.e.,
∣∣vh∣∣h,DG

≤
∣∣vh∣∣h,DG+ , and continuity of the bilinear form bh(vh,wh) ≤∥∥vh∥∥h,DG

∥∥wh

∥∥
h,DG+ and bh(vh,wh) ≤

∥∥vh∥∥h,DG+

∥∥wh

∥∥
h,DG

.

The inf-sup stability for the advection equation [5, Lem. 2.35] can be trans-
ferred to our setting.

Theorem 1 A constant cinf-sup > 0 exists such that

sup
wh∈Vh\{0}

bh(vh,wh)∥∥wh

∥∥
h,DG

≥ cinf-sup
∥∥vh∥∥h,DG

, vh ∈ Vh .

Proof For given vh ∈ Vh \{0} we define zh = hM−1h Lhvh ∈ Vh, and we obtain
by the discrete trace inequality (13b)∣∣zh∣∣h,DG+ ≤ Ctr

∥∥h−1/2M1/2
h zh

∥∥
Qh

= Ctr

∥∥h1/2M−1/2h Lhvh
∥∥
Qh

≤ Ctr

∥∥vh∥∥h,DG
,

and together with the inverse inequality (13a) this yields∥∥zh∥∥2h,DG
=
∣∣zh∣∣2h,DG

+
∥∥h1/2M−1/2h Lhzh

∥∥2
Qh

(43)

≤
∣∣zh∣∣2h,DG+ + C2

inv

∥∥h−1/2M1/2
h zh

∥∥2
Qh
≤
(
C2

tr + C2
inv

)∥∥vh∥∥2h,DG
.

We observe, using (42),(
Lhvh, zh

)
Qh
− bh(vh, zh) ≤

∣∣vh∣∣h,DG

∣∣zh∣∣h,DG+

≤ C2
tr

2

∣∣vh∣∣2h,DG
+

1

2C2
tr

∣∣zh∣∣2h,DG+

≤ C2
tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2h,DG
.

This yields, inserting
∥∥h1/2M−1/2h Lhvh

∥∥2
Qh

=
(
Lhvh, zh

)
Qh

,∥∥vh∥∥2h,DG
=
∣∣vh∣∣2h,DG

+
(
Lhvh, zh

)
Qh

≤
∣∣vh∣∣2h,DG

+
C2

tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2h,DG
+ bh(vh, zh) ,

so that with C2 = 2 + C2
tr∥∥vh∥∥2h,DG

≤ C2

∣∣vh∣∣2h,DG
+ 2 bh(vh, zh) = bh(vh, C2vh + 2zh) . (44)
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Using (43), we obtain the assertion with cinf-sup =
(
C2 + 2

√
C2

tr + C2
inv

)−1
by

∥∥vh∥∥2h,DG
≤
∥∥C2vh + 2zh

∥∥
h,DG

bh(vh, C2vh + 2zh)∥∥C2vh + 2zh
∥∥
h,DG

≤ c−1inf-sup

∥∥vh∥∥h,DG
sup

wh∈Vh\{0}

bh(vh,wh)∥∥wh

∥∥
h,DG

.

5 Convergence of the DG space-time approximation

In the first step, we show that stability in L2 implies convergence in the limit
of the DG approximation. Then, by assuming some regularity of the solution,
qualitative convergence results are obtained in the DG norm.

5.1 Convergence in the limit

Let
(
Qh
)
h∈H be a shape-regular family of space-time meshes with mesh sizes

H = {h0, h1, h2, · · · } ⊂ (0,∞) and 0 ∈ H.

Let
(
Vh
)
h∈H be corresponding DG finite element spaces, so that

lim
h∈H

inf
vh∈Vh

∥∥v − vh
∥∥
Q

= 0 , v ∈ V∗ . (45)

For h ∈ H, let uh ∈ Vh be the solution of the discrete problem (36).

The proof of existence of a unique discrete solution in Lem. 3 only relies on
the properties (32) and (33) of the DG bilinear form and thus only implicitly
on the boundary parts Γk ⊂ ∂Ω. In order to obtain a unique weak solution
of (2) in the limit, constraints for the selection of Γk ⊂ ∂Ω, k = 1, . . . ,m, are
necessary, cf. (8). This is used in the following.

Theorem 2 Assume that pn,K = pn ≥ 1 and qn,K ≥ 1. In case of homoge-
neous boundary data g = 0 and convergent approximations of the material pa-
rameters Mh −→M , M−1h −→M−1 in L∞(Ω;Rm×msym ), the discrete solutions(
uh
)
h∈H are converging to a weak solution u ∈ L2(Q;Rm) of (2). Moreover,

u is a strong solution satisfying (3), and the strong solution is unique.

Proof By the assumption pn,K = pn we can apply Lem. 4 with the construction
of the interpolation Ih and Cor. 1, so that (uh)h∈H is uniformly bounded by

∥∥M1/2
h uh

∥∥2
Q

+ T
∥∥M1/2

h uh(0)
∥∥2
Ω
≤ 4T

(∥∥M−1/2h f
∥∥2
Q

+
∥∥M1/2

h u0

∥∥2
Ω

)
.
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By (32) and the definition of `h (with g = 0), this also implies that

c1

m∑
k=1

∥∥(Anuh)k
∥∥2
(0,T )×Γk

= c1
∥∥An[uh]

∥∥2
(0,T )×∂Ωh

≤ b(uh,uh) =
〈
`h,uh

〉
=
(
f ,uh

)
Q

+
(
Mhu0,uh(0)

)
Ω

≤ 1

2

∥∥M−1/2h f
∥∥2
Q

+
1

2

∥∥M1/2
h uh

∥∥2
Q

+
1

2T

∥∥M1/2
h u0

∥∥2
Ω

+
T

2

∥∥M1/2
h uh(0)

∥∥2
Ω

≤
(1

2
+ 2T

)∥∥M−1/2h f
∥∥2
Q

+
( 1

2T
+ 2T

)∥∥M1/2
h u0

∥∥2
Ω

is uniformly bounded for h ∈ H, so that together with the asymptotic consis-
tency of the material parameters Mh −→M , M−1h −→M−1 in L∞(Ω;Rm×msym )
we obtain with a constant Cf ,u0 > 0 depending on the data

∥∥M1/2uh
∥∥2
Q

+ T
∥∥M1/2uh(0)

∥∥2
Ω

+ c1

m∑
k=1

∥∥(Anuh)k
∥∥2
(0,T )×Γk

≤ Cf ,u0
, h ∈ H .

The uniform stability in L2(Q;Rm) implies, that a subsequence H0 ⊂ H
with 0 ∈ H0 and a weak limit u ∈ L2(Q;Rm) with u(0) ∈ L2(Ω;Rm) and
(Anu)k|(0,T )×Γk

∈ L2((0, T )× Γk) for k = 1, . . . ,m exists, i.e.,(
Mu,v

)
Q

= lim
h∈H0

(
Mhuh,v

)
Q
, v ∈ L2(Q;Rm)(

Mu(0),v0

)
Ω

= lim
h∈H0

(
Mhuh(0),v0

)
Ω
, v0 ∈ L2(Ω;Rm)(

(Anu)k, v
)
(0,T )×Γk

= lim
h∈H0

(
(Anuh)k, v

)
(0,T )×Γk

, v ∈ L2((0, T )× Γk),∀k .

Then we obtain for all v ∈ Vh

(
u, L∗v

)
Q

= lim
h∈H0

(
uh, L

∗v
)
Qh

= lim
h∈H0

(
uh, L

∗
hv
)
Qh

= lim
h∈H0

bh(uh,v)

using dual consistency (31) for the last step. This extends to H1
0(Q;Rm), and

by the assumption pn,K , qn,K ≥ 1, for all v ∈ H1
0(Q;Rm) a sequence (vh)h∈H0

exists with vh ∈ Vh ∩H1
0(Q;Rm) and lim

h∈H0

vh = v, so that by (31)(
u, L∗v

)
Q

= lim
h∈H0

bh(uh,v) = lim
h∈H0

bh(uh,vh) = lim
h∈H0

(
f ,vh

)
Q

=
(
f ,v
)
Q
,

i.e., for the limit u the weak derivative Lu = f in L2(Q;Rm) exists. This

extends to initial and boundary data. Therefore, let V∗ ⊂ H1(Q;Rm) be the
closure of V∗ in H1(Q;Rm); then, for all v ∈ V∗ a sequence (vh)h∈H0

with

vh ∈ Vh ∩ V
∗

and lim
h∈H0

vh = v exists, and we get again by (31)(
u, L∗v

)
Q

= lim
h∈H0

bh(uh,v) = lim
h∈H0

bh(uh,vh) = lim
h∈H0

〈
`h,vh

〉
=
(
f ,v
)
Q

+
(
Mu0,v(0)

)
Ω
.
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Thus, using v(T ) = 0 for v = (v1 . . . , vm) ∈ V∗ yields

0 =
(
u, L∗v

)
Q
−
(
f ,v
)
Q
−
(
Mu0,v(0)

)
Ω

=
(
u, L∗v

)
Q
−
(
Lu,v

)
Q
−
(
Mu0,v(0)

)
Ω

=
(
Mu(0),v(0)

)
Ω
−
(
Anu,v

)
(0,T )×∂Ω −

(
Mu0,v(0)

)
Ω

=
(
M(u(0)− u0),v(0)

)
Ω

+

m∑
k=1

(
(Anu)k, vk

)
(0,T )×Γk

,

so that u(0) = u0 in Ω and (Anu)k = 0 on (0, T )× Γk for k = 1, . . . ,m, and
thus u is indeed a strong solution with homogeneous boundary conditions at
(0, T )× ∂Ω.

Next, we show that the weak limit is unique. Therefore, select another
subsequence H1 ⊂ H with 0 ∈ H1 and with a weak limit ũ ∈ L2(Q;Rm) with
ũ(0) ∈ L2(Ω;Rm) and (Anũ)k|(0,T )×Γk

∈ L2((0, T ) × Γk) for k = 1, . . . ,m.
Then, we also obtain ũ(0) = u0 and (Anũ)k = 0 for k = 1, . . . ,m. A sequence
(eh)h∈H with eh ∈ Vh exists such that limh∈H eh = u− ũ, and we get

1

2

∥∥M1/2(u− ũ)
∥∥2
Q

=
1

2
lim
h∈H

∥∥M1/2eh
∥∥2
Q

≤ lim
h∈H

bh
(
eh, Ih(dTeh)

)
= lim
h∈H0

bh
(
uh, Ih(dTeh)

)
− lim
h∈H1

bh
(
ũ, Ih(dTeh)

)
= lim
h∈H0

〈
`h, Ih(dTeh)

〉
− lim
h∈H1

〈
`h, Ih(dTeh)

〉
=
〈
`, dT (u− ũ)

〉
−
〈
`, dT (u− ũ)

〉
= 0 ,

so that u = ũ. This shows that the weak limit is unique, so that the full
sequence is converging, i.e., limh∈H uh = u.
The same argument applies to all strong solutions, i.e., u is the unique strong
solution of (3).

Remark 9 The result extends to inhomogeneous boundary data g 6= 0, if ug ∈
L2(Q;Rm) exists with Lug ∈ L2(Q;Rm) and (Anug)k ∈ L2(I × Γk) satisfying
(Anug)k = gk, k = 1, . . . ,m. In particular, the regularity result that the limit
of the DG approximations is a strong solution requires sufficient regularity of
the boundary data.

5.2 Convergence in the DG norm

We adapt the convergence result for the DG norm (41) in [5, Thm. 2.37] to
our setting.
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Theorem 3 Assume that the strong solution of (3) is sufficiently smooth sat-
isfying u ∈ Hs(Q;Rm) with s ≥ 1 and s ≤ minn,K{pn,K , qn,K}+ 1. Then, the
error for the discrete solution uh ∈ Vh of (36) is bounded by∥∥u− uh

∥∥
h,DG

≤ Chs−1/2
∥∥Dsu

∥∥
Q

+ CTh−1/2
∥∥M−1/2h (Mh −M)∂tu

∥∥
Q

with C > 0 depending on the mesh regularity, the polynomial degrees in Vh,
and the material parameters.

Proof Since we assume for the solution u ∈ H1(Q;Rm), we have Lu, Lhu ∈
L2(Q;Rm), for all traces u|∂Qh

∈ L2(∂Qh;Rm), [u]n = 0 for n = 1, . . . , N − 1,
and An[v] = 0 on Ih × F for inner faces F ∈ Fh \ ∂Ω, and (Anu)k = gk on
I × Γk for k = 1, . . . ,m, so that bh(u,vh) is well defined with

bh(u,wh) =
(
Lhu,wh

)
Q

+ (Mhu(0),wh)Q +

∫ T

0

〈
`∂Ω,h(t),wh

〉
dt

=
〈
`h,wh

〉
+
(
(Mh −M)∂tu,wh

)
Q
, wh ∈ Vh . (46)

Thus we obtain for the discrete solution uh ∈ Vh Galerkin orthogonality up
to data error

bh(uh,wh) = bh(u,wh) +
(
(M −Mh)∂tu,wh

)
Q
, wh ∈ Vh .

By the trace estimate (13) we obtain
∥∥wh

∥∥2
h,DG+ ≤ (C2

tr + 1)h−1
∥∥M1/2

h wh

∥∥2
Q

,

so that by Lem. 2∥∥M1/2
h wh

∥∥2
Q
≤ 2 bh(wh, dTwh) ≤ 2

∥∥wh

∥∥
h,DG

∥∥dTwh

∥∥
h,DG+

≤ 2T
∥∥wh

∥∥
h,DG

∥∥wh

∥∥
h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥∥wh

∥∥2
h,DG

+
1

2(C2
tr + 1)

h
∥∥wh

∥∥2
h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥∥wh

∥∥2
h,DG

+
1

2

∥∥M1/2
h wh

∥∥2
Q
,

so that the consistency term can by bounded by(
(M −Mh)∂tu,wh

)
Q
≤ ‖
(
M
−1/2
h (Mh −M)∂tu

∥∥
Q

∥∥M1/2
h wh

∥∥
Q

≤ 2T
√
C2

tr + 1h−1/2‖
(
M
−1/2
h (Mh −M)∂tu

∥∥
Q

∥∥wh

∥∥
h,DG

.

For all vh ∈ Vh this yields the estimate, using Thm. 1 and continuity of the
bilinear form bh(·, ·) in the DG norms

cinf-sup
∥∥uh − vh

∥∥
h,DG

≤ sup
wh∈Vh\{0}

bh(uh − vh,wh)∥∥wh

∥∥
h,DG

= sup
wh∈Vh\{0}

bh(u− vh,wh) +
(
(M −Mh)∂tu,wh

)
Q∥∥wh

∥∥
h,DG

≤
∥∥u− vh

∥∥
h,DG+

+ 2T
√
C2

tr + 1h−1/2‖
(
M
−1/2
h (Mh −M)∂tu

∥∥
Q
.
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Now select an H1-stable quasi-interpolation vh = ΠCl
h u of Clement-type [3,

Sect. 4.4.2] with ∥∥M1/2(u−ΠCl
h u)

∥∥
Q
≤ C4h

∥∥Du
∥∥
Q
,∥∥M−1/2Lh(u−ΠCl

h u)
∥∥
Q
≤ C5

∥∥Du
∥∥
Q

and constants C4, C5 depending on the mesh regularity and the polynomial
degrees in Vh. Using s ≤ min{p, q}+ 1,∥∥M1/2(u−ΠCl

h u)
∥∥
∂Qh

+ h−1/2
∥∥M1/2(u−ΠCl

h u)
∥∥
Q

+ h1/2
∥∥M−1/2Lh(u−ΠCl

h u)
∥∥
Q
≤ C6h

s−1/2∥∥Dsu
∥∥
Q
.

Then, the result follows from interpolation estimates using [5, Lem. 1.59] and∥∥u− uh
∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+
∥∥uh −ΠCl

h u
∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+ c−1inf-sup

∥∥u−ΠCl
h u
∥∥
h,DG+

+ 2T
√
C2

tr + 1 c−1inf-suph
−1/2∥∥M−1/2h (Mh −M)∂tu

∥∥
Q

≤ C6h
s−1/2∥∥Dsu

∥∥
Q

+ C7Th
−1/2∥∥M−1/2h (Mh −M)∂tu

∥∥
Q
.

This recovers the convergence result [2, Prop. 6.5] for the DG semi-norm (41).

Corollary 2 Assume that the strong solution of (3) is sufficiently smooth
satisfying u ∈ Hs(Q;Rm) with s ≥ 1.
Then, the error for the discrete solution uh ∈ Vh of (36) is bounded in every
time step by∥∥M1/2

h

(
u(tn)− un,h(tn)

)∥∥
Ω
≤ Chs−1/2

∥∥Dsu
∥∥
(0,tn)×Ω

+ CTh−1/2
∥∥M−1/2h (Mh −M)∂tu

∥∥
(0,tn)×Ω

with C > 0 depending on the mesh regularity, the polynomial degree, and the
material parameters.

For the proof Thm. 3 is applied with T = tn; then, the assertion directly

follows from 1
2

∥∥M1/2
h vh(T )

∥∥
Ω
≤
∥∥vh∥∥h,DG

.

Remark 10 If M ∈ L∞(Ω;Rm×msym ) is smooth, the consistency term can be
estimated by∥∥(M−1/2h (Mh −M)∂tu

∥∥
Q
≤
∥∥M−1/2h (M −Mh)M−1/2

∥∥
∞

∥∥M1/2∂tu
∥∥
Q
.

If M is discontinuous and if the jumps of the material parameters are not
resolved by the mesh, the consistency error can be estimated in case of higher
regularity of the solution: if ∂tu ∈ L2(0, T ; Lq(Ω;Rm)) with q > 2, we obtain∥∥M−1/2h (Mh −M)∂tu

∥∥
Q
≤
∥∥M−1/2h (M −Mh)M−1/2

∥∥
L2q/(2−q)(Ω;Rm×m

sym )

·
∥∥M1/2∂tu

∥∥
L2(0,T ;Lq(Ω;Rm))

.
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Remark 11 For the continuous solution the energy is conserved, i.e.,

(
Mu(tn),u(tn)

)
Ω

=
(
Mu(0),u(0)

)
Ω

+

∫ tn

0

〈`(t),u(t)〉dt .

From Cor. 2 we obtain energy conservation in the limit
(
Mu(tn),u(tn)

)
Ω

=(
Mhuh(tn),uh(tn)

)
Ω

+O(h2s−1) in case of consistent data M = Mh.

Remark 12 The constants in Thm. 1 and 3 depend on the mesh and polyno-
mial degrees p. For triangulations and a quasi-uniform distribution of p it is
known that Cinv ∼ p2, Ctr ∼ p [23, Thm. 4.7]. Estimates of quasi-interpolations
are considered in [20, Thm. 3.1] where it is shown that the classical Clément
interpolation estimate holds with h replaced by h/p.

5.3 Error control

For the error u− uh in the DG semi-norm we obtain from (19) and (21)

∣∣u− uh
∣∣2
h,DG

≤ 1

2

(∥∥M1/2
h (uh(0)− u0)

∥∥2
Ω

+

N−1∑
n=1

∥∥M1/2
h [uh]n

∥∥2
Ω

+
∥∥M1/2

h (uh(T )− u(T ))
∥∥2
Ω

)
(47)

+

m∑
k=1

∥∥(Anuh)k − gk
∥∥2
Ih×Γk

+ C1

∥∥An[uh]
∥∥2
Ih×(∂Ωh∩Ω)

and in the DG norm∥∥u− uh
∥∥2
h,DG

=
∣∣u− uh

∣∣2
h,DG

+
∥∥h1/2M−1/2h Lh(u− uh)

∥∥2
Qh

≤
∣∣u− uh

∣∣2
h,DG

+ 2
∥∥h1/2M−1/2h (Lhuh − f)

∥∥2
Qh

+ 2
∥∥h1/2M−1/2h (M −Mh)∂tu

∥∥2
Qh

. (48)

Up to the error uh−u at final time T in (47) and the parameter approximation
error M −Mh in (48), this can be evaluated explicitly by the residual error

indicator ηres,h =
( ∑
R∈Rh

η2res,R

)1/2
given by the local contributions

η2res,R = η2res,n,K + 2hK
∥∥M−1/2h (Lhuh − f)

∥∥2
R

+

m∑
k=1

∥∥(Anuh)k − gk
∥∥2
(tn−1,tn)×(Γk∩∂K)

+ C1

∥∥An[uh]
∥∥2
(tn−1,tn)×(Ω∩∂K)
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for R = (tn−1, tn)×K, n = 1, . . . , N , with

η2res,1,K =
1

2

∥∥M1/2
h (uh(0)− u0)

∥∥2
K

+
1

2

∥∥M1/2
h [uh]1

∥∥2
K
, R = (0, t1)×K ,

η2res,n,K =
1

2

∥∥M1/2
h [uh]n−1

∥∥2
K

+
1

2

∥∥M1/2
h [uh]n

∥∥2
K
, R = (tn−1, tn)×K

1 < n < N ,

η2res,N,K =
1

2

∥∥M1/2
h [uh]N−1

∥∥2
K
, R = (tN−1, T )×K .

Lemma 5 Let u ∈ L2(Q;Rm) be the weak solution of (2) and uh ∈ Vh the
discrete solution of (36).
Then, if u is a strong solution, the error in the DG norm is bounded by∥∥u− uh

∥∥
h,DG

≤
(
η2res,h +

∥∥M1/2
h (uh(T )− u(T ))

∥∥2
Ω

+ 2
∥∥h1/2M−1/2h (M −Mh)∂tu

∥∥2
Qh

)1/2
.

6 Numerical experiments

The convergence estimates in the DG norm are illustrated by numerical ex-
periments for acoustics (5) for cases where the exact solution is know which is
then used for Dirichlet boundary conditions. The results for uniform refinement
are compared with a simple adaptive strategy by increasing the polynomial
degree for ηres,R ≥ θ1 max

R′
ηres,R′ and decreasing the polynomial degree for

ηres,R ≤ θ0 max
R′

ηres,R′ , see [6] for details. In addition, we consider an example

motivated from the application to seismic imaging where the exact solution is
not known, and the convergence is demonstrated with respect to the residual
error indicator.

Experiment 1 We test the convergence of the solution in Q = (0, 1)× (0, 1)2

and f = 0 with smooth initial value and piecewise constant material

%(x) =

{
1 x ·m ≤ γ ,
2 x ·m > γ ,

κ(x) = 1/%(x) , γ ∈ (0, 1) , m ∈ R2 , m ·m = 1 ,

so that the impedance is constant across the interface. We start with

u0(x) = a0(x ·m)

(
1
m

)
with a0(x) =

{
sin(3πx)2 x ∈ [0, 1/3]

0 else.

Then, the solution is given by u(t,x) =

{
u0(x− tm) x ·m ≤ γ ,
u0(2x− (t+ 2/3)m) x ·m > γ .
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Case a) If the material interface is resolved by the mesh (M = Mh), we ob-
serve for linear approximations in space and time on uniformly refined meshes
the expected convergence rate in the DG norm (Fig. 1). For this configuration
also the dual problem is smooth which results in better convergence rates for
the L2 error, in particular in the adaptive case.

3 4 5 6 7 8

10−3

10−2

10−1

100

1

1.5

1

2

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h

uniform refinement∥∥M1/2
h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h

adaptive refinement∥∥M1/2
h

(
u− uh

)∥∥
Q

adaptive refinement

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.744239 0.244213
4 0.569868 0.135738
5 0.328281 0.047846
6 0.143545 0.011040
7 0.054274 0.002494
8 0.019645 0.000615

Fig. 1: Convergence test for the first experiment with γ = 0.5 and m = (0, 1)t

Case b) If the material interface cannot be resolved by the mesh (M 6= Mh),
the consistency error gets relevant, which is observed by the results in Fig. 2.

3 4 5 6 7 8

10−3

10−2

10−1

100

1

1

1

1.6

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h

uniform refinement∥∥M1/2
h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h

adaptive refinement∥∥M1/2
h

(
u− uh

)∥∥
Q

adaptive refinement

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.803100 0.222789
4 0.566667 0.111046
5 0.298943 0.035623
6 0.126032 0.012112
7 0.051102 0.006775
8 0.022482 0.004264

Fig. 2: Convergence test for the first experiment with γ = 4/7 and m =
(0.8, 0.6)t.

Although the material interface cannot be resolved by the mesh, the solu-
tion is sufficiently smooth so that the approximation error of the material data
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Mh−M can be estimated by Rem. 10. We observe nearly optimal convergence
in the DG norm, but now the L2 convergence gets worse in comparison with
the first case.

In both cases, the convergence of u(T ) − uh(T ) in L2 is faster than the
convergence in the DG norm, and the residual error indicator yields results
close to the error in the DG norm; this confirms the estimate in Lem. 5. We
observe that adaptivity provides better solutions with a substantial reduction
of the required problem size dimVh to achieve a certain accuracy. Therefore
a single adaptive step is sufficient, where the polynomial degree in space and
time is increased for ηres,R ≥ ϑ1 maxR′∈Rh

ηres,R′ and decreased for ηres,R ≤
ϑ0 maxR′∈Rh

ηres,R′ , depending on ϑ1 > ϑ0 > 0. Note that this results in a
different refinement pattern in every time interval, and a simple refinement
in space is not sufficient for a strong reduction of the required degrees of
unknowns. Here, we select ϑ1 = 0.3 and ϑ0 = 0.02, and in the figures for the
adaptive results the mesh size is logarithmically interpolated depending on the
degrees of freedom.

Experiment 2 At next, we test the convergence of a Riemann problem in
Q = (0, 1/2)× (−1, 1)× (0, 1) with f = 0, where the solution is given by

u(t,x) =



(
0

0

)
x ·m < −t ,(

1

m

)
−t < x ·m < t ,(

1

0

)
t < x ·m ,

m =

(
0.8
0.6

)
, κ = 1 , % = 1 .

Then, Lu = 0, so that u is a strong solution, and since the condition in Rem. 9
applies, we obtain convergence in the limit by Thm. 2. On the other hand,
the solution is piecewise discontinuous, so that the smoothness assumption in
Thm. 3 is not satisfied.

We also observe convergence, cf. Fig. 3, but with a reduced rate O(h1/3).
In particular, the rate is not improved for the L2 error, and simple adaptivity
is not sufficient to increase the efficiency.

Here, the solution is not smooth, and the results do not improve if the
material parameters are aligned with the mesh. Moreover, further tests show
that the convergence order of approximately O(h0.4) in the DG norm cannot
be improved by adaptivity, which indicates that without sufficient regularity
and jumps along the characteristics the DG norm is not appropriate for a
qualitative convergence analysis, as it is possible for point singularities, see [2].
Then, the convergence analysis requires high regularity in weighted Sobolev
spaces.
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3 4 5 6 7 8

10−1

100

1

0.4

1

0.4

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h

uniform refinement∥∥M1/2
h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h

adaptive refinement∥∥M1/2
h

(
u− uh

)∥∥
Q

adaptive refinement

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.965539 0.201996
4 0.769326 0.152608
5 0.605518 0.116801
6 0.474996 0.089880
7 0.371885 0.069248
8 0.290613 0.053403

Fig. 3: Convergence test for the Riemann Problem.
.

Experiment 3 In our final example we test the space-time method for the
forward problem in seismic imaging. Here, we only consider 2d acoustics in
Ω = (0, 10) × (0, 3) and I = (0, 4) with homogeneous initial and Neumann
boundary conditions. For this test we use a piecewise constant right-hand side
b(t,x) = 1 for (t,x) ∈ (0, 0.5)× (0.25, 0.75)× (0, 0.5) and b = 0 else.

87 88 89
10−2

10−1

1

1

degrees of freedom

ηres,h uniform refinement

ηres,h one refinement step

ηres,h two refinement steps

Fig. 4: Convergence test for a forward problem in seismic imaging in a trun-
cated space-time domain.

The configuration, the distribution of the the piecewise constant param-
eters % and κ, and the parallel solution framework in M++ are described in
detail in [8]. Since in this application only the evaluation in a small measure-
ment region (4.75, 7.25)×(0, 0.4) ⊂ Ω is of interest, the space-time domain can
be truncated, see [10, Lem. 2]. Here the convergence is only tested by evaluat-
ing the residual error indicator on uniformly refined meshes and for one and
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two p-adaptive steps with θ0 = 0.01 and θ1 = 0.1. Since all data are aligned
with the mesh but discontinuous, the regularity of the solution is limited. We
observe approximately linear convergence with respect to the estimate of the
DG norm, and again we observe improved convergence by space-time adap-
tivity, cf. Fig. 4.

7 Conclusion and Outlook

The convergence analysis in the DG norm only assumes regularity of the space-
time solution u in H1(Q;Rm); this implies regularity of the solution u(tn)
at all time steps in H1/2(Ω;Rm). This clearyly extends convergence results
with respect to the graph norm, where the analysis requires higher regularity.
Moreover, the simple residual error indicator yields estimates very close to the
error in the DG norm. On the other hand, for discontinuous Riemann problems
we can prove only convergence in the limit, and the numerical experiments
demonstrate that we obtain convergence in L2 but with a reduced rate, which
can be improved by adaptivity in L2 but not in the DG norm.

All our estimates rely on a Hilbert space setting. This may be not appro-
priate for hyperbolic systems, and numerical tests demonstrate better con-
vergence rates in L1(Q;Rm), but a corresponding analysis remains an open
problem.
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