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APPROXIMATE INVERSION OF A CLASS OF
GENERALIZED RADON TRANSFORMS

KEVIN GANSTER AND ANDREAS RIEDER

Abstract. Generalized Radon transforms (GRT) serve, for instance, as linear models
for seismic imaging in the acoustic regime. They occur when the corresponding inverse
problem is linearized about a known background compression wave speed (Born approx-
imation). The resulting GRT is completely determined by this background velocity. In
this work, we present an implementation of approximate inversion formulas for this class
of GRTs proposed and analyzed in [Inverse Problems, 34 (2018), 014002, 114001], where
we restrict ourselves to layered background velocities in 2D. In a series of numerical ex-
periments, we intensively test our implementation, reproducing theoretical predictions.
Further, we drive the validity of the linearization to its limits.

1. Introduction

Generalized Radon transforms (GRT) emerge, for instance, when linearizing the seismic
inverse problem of recovering physical properties of the medium from reflected wave fields.
These transforms integrate the sought quantity n over reflection isochrones connecting
points of equal travel time to the source that triggers the wave and to the receiver that
records the reflected parts of the wave. More specifically, in the acoustic regime with
constant density, let F denote the GRT and g the processed data, then Fn = g. Here, n
represents the high frequency component of the true speed of sound νpr by means of the
ansatz

(1.1)
1

ν2pr(x)
=

1 + n(x)

c2(x)

with the known background velocity c. Hence, the concrete expression of F depends on c.
For the solution of Fn = g one relies on approximate inversion formulas of filtered

backprojection type like Kirchhoff migration, see, e.g., [3]. This traditional inversion
scheme in geophysics can be expressed as F †Kg where K is a convolution filter and F †
denotes a dual transform (generalized backprojection). Beylkin [2], relying on his general
results of [1], showed that the corresponding imaging operator F †KF = Idpar + S is the
sum of a low-pass filter Idpar (partial identity) and a smoothing operator S. Hence, the
result F †Kg of Kirchhoff migration is a low frequency version of n superimposed with a
smooth artifact.

Another approach consists of applying F ∗, the formal (possibly weighted) L2-adjoint
(backprojection), yielding the normal operator F ∗ψF as imaging operator where ψ is a
smooth cutoff function, see, e.g., [5, 7, 20, 26]. Recently, this approach was extended
in [12, 13, 15]. The authors propose the imaging operator Λ = KF ∗ψF where K is a
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properly supported pseudodifferential operator of positive order to emphasize singularities
since these carry most of the information content. Using microlocal analysis, the authors
have constructed K so that Λ has improved imaging properties compared to the previous
used imaging operators, see Section 2.1 for more details. They have also developed
a corresponding regularization scheme based on the approximate inverse [16]: Let ep
denote a smooth approximation to the Dirac distribution located at p and define the
reconstruction kernel υp := FK∗ep. Then,

〈ψg, υp〉 = 〈ψFn, υp〉 = 〈Λn, ep〉 ≈ Λn(p),

that is, the L2-inner product of the kernel with the data approximates the desired quan-
tity. In [11] this inversion scheme was realized and demonstrated for the special case when
linearization is done about a constant background wave speed, say, c(·) = 1. Then, the
GRT reduces to the elliptical Radon transform which integrates over ellipses (ellipsoids
in 3D) with source and receiver positions as foci.

In the present work we extend the approximate inverse to GRTs arising from lineariza-
tion about layered background wave speeds and the common offset data acquisition ge-
ometry. Considering exclusively this scanning geometry is not a principle restriction. For
instance, data from the common midpoint or common source geometries can be processed
as demonstrated in [11, Section 4.1].

We have organized the presentation of our material as follows. In the next section we
shortly recall how the GRT arises from a linearization of the nonlinear inverse problem of
recovering the compression sound speed in the acoustic regime from reflected wave fields.
This linearization is done with respect to a smooth background velocity which satisfies
the geometric optics assumption. We will see that the concrete application of the GRT
to a function demands the solution of two partial differential equations, the eikonal and a
transport equation, both of which depend on the background velocity. Section 3 is then
devoted in more detail to the concept of approximate inverse. In particular, we explain
all the steps that must be executed to obtain a reconstruction kernel, which essentially
requires the application of the GRT to a compactly supported function. So we need to
solve the eikonal and transport equations numerically, using the Fast Marching scheme
for the former (Section 4.1) and a Fast Sweeping method for the latter (Section 4.2).
In the third and last part of Section 4 we explain the evaluation of the kernel and the
implementation of the approximate inverse for the GRT in case of a layered background
velocity. Finally, we use our implementation to investigate numerically in Section 5 how
different background velocities affect the reconstructions. Here we consider velocities
which satisfy and which violate the geometric optics assumption. In order to reproduce
theoretical predictions about the imaging operators we first rely on consistent data, which
are in the image of the GRT and which are therefore free of any model error. Then, we
generate the data by solving the underlying acoustic wave equation, which allows us to
study the influence of the linearization error.

2. The setting

If the medium does not support shear stress, the underlying model for wave propagation
is the acoustic wave equation

(2.1)
1

ν2pr
∂2t u−∆xu = δ(x− xs)δ(t), u|t=0 = ∂tu|t=0 = 0,
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for the pressure wave u = u(t;x,xs), x ∈ Rd, d ∈ {2, 3}, at time t ≥ 0. Here, the wave is
initiated by a source fired at time t = 0 and location xs (δ denotes the Dirac distribution
of appropriate dimension). The corresponding nonlinear inverse problem is to recover the
speed of sound νpr = νpr(x) from measurements of u(·;xr,xs) at pairs (xs,xr) where xr

indicates receiver positions.
We restrict ourselves to d = 2 for the remainder of this work and linearize the inverse

problem about a known smooth background velocity c = c(x) by the ansatz (1.1), where
n is compactly supported in

(2.2) X = R2
+,

which is the lower half space, that is, x2 > 0 (the positive direction of the x2-axis is
the depth-coordinate and points downwards to the interior of the earth). Sources and
receivers are positioned on the line x2 = 0.

We require c to satisfy the geometric optics assumption, that is, any two points in X
are connected by a unique ray (see Appendix B for the definition of a ray). Then, the
reference solution ũ, which solves (2.1) with c in place of νpr, is a progressing wave in 2D:

(2.3) ũ(t;x,xs) ≈ a(x,xs) Ψ
(
t− τ(x,xs)

)
,

where

Ψ(t) =
1

2π

{
t−1/2 : t > 0,

0 : t ≤ 0,

and where the travel time τ and the amplitude a can be computed from the eikonal
equation

(2.4) |∇xτ(·,xs)|2 =
1

c(·)2 , τ(xs,xs) = 0,

and from the transport equation

(2.5) 2∇xa(·,xs) · ∇xτ(·,xs) + a(·,xs)∆xτ(·,xs) = 0,

respectively, see, e.g., [32, Section 5].
In the sequel we assume that pairs of source and receiver points can be smoothly

parametrized by a variable s, that is, xr = xr(s) and xs = xs(s). Starting from (2.3) we
can derive the following linear integral equation for n,

(2.6) Fn(t, s) = 4π

∫ t

0

(ũ− u)(r;xr(s),xs(s))dr,

with operator

(2.7) Fw(t, s) =

∫
X

w(x)A(s,x) δ (t− ϕ(s,x)) dx, t > tfirst,

where

(2.8) ϕ(s,x) := τ(x,xs(s)) + τ(x,xr(s)) and A(s,x) :=
a(x,xs(s))a(x,xr(s))

c2(x)
,

see, e.g., [32, Section 6] or [12] and also [3, Appendix E]. In (2.7), tfirst = tfirst(s) is the first
arrival time, that is, the minimal time a wave needs to travel from source to receiver. The
operator F is a GRT as Fn(t, s) is the integrated value of n along reflection isochrones
{x ∈ X : ϕ(s,x) = t} connecting points of equal travel time t to source xs(s) and to
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receiver xr(s). From this point of view, F generalizes the classical 2D Radon transform
which integrates along straight lines.

Remark 2.1. We emphasize that F in (2.7) is not a generalized Radon transform in
the sense of [1] since ϕ is not a phase function in general. This operator rather fits
into the category of generalized Radon transforms by defining measures as introduced by
Quinto [24], see also [10].

In [22, 29], Radon transforms are studied and approximately inverted which are also
closely related to the acoustic wave equation. However, these transforms differ from F
by integrating along geodesics (rays), whereas F integrates along isochrones that are the
intersection points of rays coming from source and receiver. Further, we invert reflection
data in contrast to the transmission data relied on in [22, 29].

We define the data space

(2.9) Y = {(s, t) : s ∈ S0, t ≥ tfirst(s)} ,
where S0 ⊂ R is the bounded open set containing the parameters for the source/receiver
pairs.

The imaging operators we consider are of the form

(2.10) Λ := KF ∗ψF,

where ψ : Y → [0,∞[ is a smooth compactly supported cutoff function andK is a properly
supported pseudodifferential operator on X of nonnegative order κ. Further, F ∗ is the
formal L2-adjoint

F ∗u(x) =

∫∫
Y

A(s,x)u(s, t)δ(t− ϕ(s,x))dt ds =

∫
S0

A(s,x)u(s, ϕ(s,x))ds.

The cutoff ψ in (2.10) is needed in general so that F ∗ and ψF can be composed.1 It
further helps to reduce limited data artifacts.

2.1. Common offset data acquisition geometry. In this scanning geometry, sources
and receivers are parameterized by

(2.11) xs(s) = (s− α, 0)> and xr(s) = (s+ α, 0)>

with a common offset α ≥ 0.
In case c(·) = 1, we have tfirst = 2α and tfirst = 2 asinh(αm/b)/m for c(x) = mx2 + b,

m, b > 0, see [15, Section 3]. In both cases, F : E′(X) → D′(Y ) is a Fourier integral
operator and Λ: E′(X0) → D′(X) is a pseudodifferential operator of order κ − 1 for a
suitable open subset X0 of X (for c(·) = 1: X0 = X). A microlocal study of Λ reveals
which singularities (wave fronts) of n are visible in Λn as well. Further, the choice

(2.12) K = ∆(M q + β Id)

with the Laplacian ∆, suitable constants β, q ≥ 0, andM being the multiplication opera-
tor by the depth-coordinate x2, yields a useful imaging operator of order 1: Λn enhances
features (singularities) of n relatively independent of location and offset, see [12, 15]. For
some results under a different acquisition geometry we refer to [7].

1 If F is a Fourier integral operator (this depends on properties of ϕ, see, e.g., [14, 34, 35]) then
F : E′(X) → D′(Y ) and F ∗ : E′(Y ) → D′(X). Hence, the cutoff function ψ renders the composition of
F ∗ with ψF well-defined.
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3. Approximate inverse

The concept of approximate inverse fits the structure of Λ perfectly. In fact, let {eγ}γ>0

be a family of mollifiers, that is,
∫
eγ(x)dx = 1, eγ → δ as γ → 0 where δ denotes the

Dirac distribution. Further, let eγ be compactly supported in the ball about the origin
with radius γ. Then, for p = (p1, p2)

> ∈ X and 0 < γ < p2, we have that

(3.1) Λγn(p) := Λn ∗ eγ(p) = 〈ψg, υp,γ〉L2(Y ) for g = Fn,

where the reconstruction kernel

(3.2) υp,γ = FK∗eγ(· − p)

has to be calculated in advance or during inversion. Observe that the smoothed (regu-
larized) version Λn ∗ eγ of Λn can now be computed from the data g via inner products
with the kernel. Note that γ serves as a regularization parameter, see e.g., [16, 27] for an
interpretation of the approximate inverse as regularization scheme.

We will use admissible and proven mollifiers

(3.3) eγ(x) = Ck,γ

{
(γ2 − |x|2)k : |x| < γ,

0 : |x| ≥ γ,

with a design parameter k > 0, which determines the smoothness of eγ, and

Ck,γ =
k + 1

π γ2(k+1)
.

To evaluate the kernel we have to solve numerically the eikonal (2.4) and transport
equations (2.5). The former equation, for instance, can be tackled by fast marching
methods [30, 31], fast sweeping methods [8] or a hybrid of both methods [33]. For the
latter equation we may use fast and highly accurate finite difference schemes [17, 23]. In
either case we consider τ and a to be known at grid points in what follows.

The following tasks have to be performed. Assume that ẽp,γ := K∗eγ(· − p) can be
calculated analytically and has the same compact support as eγ(· − p); an assumption
which holds true for K as in (2.12). So, it remains to evaluate the GRT (2.7) applied to
ẽp,γ numerically.

Next we refine the arguments from [11, Appendix A] and, thus, clarify how the integral

F̃ ρ(s, t) :=

∫
X

ρ(s,x)δ (t− ϕ(s,x)) dx

has to be evaluated. Here δ is the one-dimensional Dirac distribution and X is as in (2.2).
Note that

(3.4) υp,γ(s, t) = F̃ (A(s, ·) ẽp,γ(·)) (s, t),

see (2.7). We will validate below that F̃ ρ(s, t) has to be understood as

(3.5)

F̃ ρ(s, t) =

∫
L(s,t)

ρ(s,x) ds(x)

|∇xϕ(s,x)|

=
1√
2

∫
L(s,t)

c(x) ρ(s,x) ds(x)√
1 + c2(x)∇xτ (x,xs(s)) · ∇xτ (x,xr(s))

,

where

(3.6) L(s,t) = {x ∈ X : ϕ(s,x) = t}
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is the reflection isochrone relative to (s, t) ∈ Y (2.9). The denominator of the integrand
is positive if no forward scattering occurs, that is, if ∇xτ(x,xs) 6= −∇xτ(x,xr) for
x ∈ L(s,t), an assumption which we already made tacitly to derive (2.6) from the acoustic
wave equation. A more detailed discussion of this topic can be found in Remark 4.5
of [15].

Finally, F̃ ρ(s, t) can be approximated, for instance, by the trapezoidal sum based on
knots in L(s,t).

The proof of (3.5) starts with the limit representation of the one-dimensional Dirac
distribution, applies then the coarea formula and finally determines the limit by the
Lebesgue differentiation theorem:

F̃ ρ(s, t) = lim
h↘0

1

h

∫
⋃{L(s,r) : t≤r≤t+h}

ρ(s,x)dx = lim
h↘0

1

h

∫ t+h

t

∫
L(s,r)

ρ(s,x)

|∇xϕ(s,x)| ds(x)dr.

From here on we restrict our considerations to a layered medium, that is, the background
sound speed c depends solely on the depth-coordinate: c(x) = c(x2). This assumption
results in translation invariances for both, the travel time and the amplitude,

(3.7) τ
(
x, (y1, 0)>

)
= τ

(
x− (y1, 0)>,0

)
, a

(
x, (y1, 0)>

)
= a

(
x− (y1, 0)>,0

)
.

The above relation for τ follows directly from the eikonal equation (2.4) which then
implies the invariance for a by (2.5).

In the following we summarize and explain in some details the steps that need to be
done to compute the kernel. They will be explained in full detail in the following section.

(1) Solve the eikonal (2.4) and transport equations (2.5) by one of the methods men-
tioned above. Since (3.7) applies, τ and a have to be determined only with respect
to the origin.

(2) Using well-established algorithms (marching squares/cubes) we find efficiently the
reflection isochrones L(s,t) for the recorded travel times t > tfirst(s).

(3) Finally evaluate F̃ (A(s, ·) ẽp,γ(·)) (s, t) by a quadrature rule. Here we will benefit
to some extent from simplifications we used before in [11, Section 3] and which
come from the fact that the kernel resembles the seismogram of a point reflector.
In fact, the kernel is sparse in Y .

Under the common offset scanning geometry we have further simplifications which greatly
reduce the numerical effort: as a direct consequence from (3.7), the reconstruction kernels
and the reflection isochrones exhibit translation invariances as well:

(3.8) υp,γ(s, t) = υ(r,p2),γ(s− p1 + r, t), r ∈ R, and L(s,t) = L(0,t) + (s, 0)>.

4. Implementation

We now state how we solve the eikonal (2.4) and transport equations (2.5) on a discrete
square grid Xh := {xi,j := z + (ih1, jh2) : i, j ∈ N0, i < n1, j < n2} with grid-spacing
h = (h1, h2) ∈ R2

>0, suitable z ∈ R2 and n1, n2 ∈ N. The neighborhood of a grid-point
xi,j will then be Ni,j = N(xi,j) := {xi−1,j,xi+1,j,xi,j−1,xi,j+1} ∩Xh.

4.1. Solving the eikonal equation. We solve the eikonal equation (2.4) by the Fast
Marching scheme which we outline briefly and refer to [31] for a comprehensive presenta-
tion. The general idea is to construct τ off the source xs by using an upwind discretization
of the gradient. This is feasible since the information propagates in one direction, namely
from small to large values of τ .
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With τi,j = τ(xi,j,xs) we define the (one-sided) backward and forward finite differences
for each coordinate direction as

D−x1i,j τ :=
τi,j − τi−1,j

h1
, D+x1

i,j τ :=
τi+1,j − τi,j

h1
,

D−x2i,j τ :=
τi,j − τi,j−1

h2
, D+x2

i,j τ :=
τi,j+1 − τi,j

h2
.

Now the Godunov upwind discretization of the partial derivatives, see, e.g., [28], yields

∂xkτi,j ≈ max
{
D−xki,j τ,−D+xk

i,j τ, 0
}
, k = 1, 2,

and

|∇τi,j|2 =
2∑

k=1

(∂xkτi,j)
2 ≈

2∑
k=1

max
{
D−xki,j τ,−D+xk

i,j , 0
}2
.

Thus, we need to solve the quadratic equation

(4.1)
2∑

k=1

max
{
D−xki,j τ,−D+xk

i,j τ, 0
}2

=
1

c2i,j

for τi,j where ci,j = c(xi,j). Of course, the use of higher order (one-sided) finite differences
is also permitted.

The Fast Marching Algorithm operates as follows. The grid Xh is split into three
disjoint sets: points xi,j are labeled known when the value of τi,j has been accepted and
will not be recalculated, unknown when τi,j has not been updated yet, and front when
τi,j received at least one update, but has not been labeled known. Then, the algorithm
iterates over the grid points by picking a point in front with smallest travel time, which
becomes then known, that is, the points in front ‘march’ outwards. In this way the
correct flow of information is guaranteed. Further details are given in Algorithm 1, where
the function solve_quadratic solves (4.1). For the implementation of solve_quadratic the
Godunov terms are rewritten as

max
{
D−xki,j τ,−D+xk

i,j τ, 0
}2

= max {(τi,j − βk)/hk, 0}2 , k = 1, 2,

with β1 = min {τi−1,j, τi+1,j} and β2 = min {τi,j−1, τi,j+1}. Assuming τi,j−βk > 0, k = 1, 2,
we get

η τ 2i,j + β̃ τi,j + γ = 0,

where

η =
2∑

k=1

h−2k , β̃ = −2
2∑

k=1

h−2k βk, γ = − 1

c2i,j
+

2∑
k=1

h−2k β2
k .

If our assumption is violated, i.e., either τi,j−β1 ≤ 0 or τi,j−β2 ≤ 0 (one of the differences
must be positive) then we drop the corresponding terms in the above sums defining η, β̃,
and γ.
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Algorithm 1: fast_marching

τi,j ←
{

0, xi,j = xs,

∞, otherwise.
# initialize

known ← ∅
front ← {xs}
while front 6= ∅ do
xl,m ← arg min {τi,j : xi,j ∈ front} # find the minimal entry in front
known ← known ∪ {xl,m} # add xl,m to known and take it out of front
front ← front \ {xl,m}
N← Xh ∩Nl,m\known # determine unknown neighborhood of xl,m

front ← front ∪N # update front
foreach xi,j ∈ N do

τi,j ← solve_quadratic(xi,j) # update τi,j by solving the quadratic equation
end

end
return τ

Actually, we implemented the Factored Fast Marching scheme [33] to solve a factored
version of the eikonal equation

|τ0∇τ1 + τ1∇τ0|2 =
1

c2
, τ0(x,xs) = |x− xs| ,

so that τ = τ0τ1. The factor τ0 is introduced to mitigate the singularity of τ at the
source. Further, τ1 can be calculated by Algorithm 1 with a few adjustments to the finite
difference operators.2

4.2. Solving the transport equation. Continuing with the transport equation (2.5),
we first introduce a broader class of so-called (static) Hamilton-Jacobi equations. We
consider static (2D) Hamilton-Jacobi equations of the form

H(x, u(x), ∂x1u(x), ∂x2u(x)) = f(x), x ∈ X,
where H is a continuous scalar function on X × R × R × R called Hamiltonian. For a
compact notation, we will write H(u, p, q) instead of H(x, u(x), ∂x1u(x), ∂x2u(x)).

We set ui,j = u(xi,j) and use the Lax-Friedrichs numerical Hamiltonian [21, eq. (2.3)]

(4.2)
HLF (ui,j, uNi,j) = H

(
ui,j,

ui+1,j − ui−1,j
2h1

,
ui,j+1 − ui,j−1

2h2

)
− α1

ui+1,j − 2ui,j + ui−1,j
2h1

− α2
ui,j+1 − 2ui,j + ui,j−1

2h2
,

where the artificial viscosities αk are chosen such that the flux HLF is monotone, consis-
tent and has differenced form to ensure convergence of the scheme, see [4] and [21].

As recommended in [19], we set in our implementation

α1 = max
A≤u≤B, C≤p≤D, E≤q≤F

{|∂pH(u, p, q)|+ |∂uH(u, p, q)|} ,

α2 = max
A≤u≤B, C≤p≤D, E≤q≤F

{|∂qH(u, p, q)|+ |∂uH(u, p, q)|} ,

2Our implementation is available at https://github.com/kevinganster/eikonalfm.

https://github.com/kevinganster/eikonalfm
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where [A,B], [C,D] and [E,F ] are the ranges of the expressions ui,j,
ui+1,j−ui−1,j

2h1
and

ui,j+1−ui,j−1

2h2
, respectively.

Reformulating HLF = f as a fixed point equation for ui,j and employing a nonlinear
Gauss-Seidel iteration gives the update rule for the Lax-Friedrichs sweeping scheme de-
pending on the sweeping cycle. For instance, if we sweep from lower left (i, j = 0) to
upper right (i = n1, j = n2), we have

unewi,j =
1

α1

h1
+ α2

h2

[
fi,j −H

(
uoldi,j ,

uoldi+1,j − unewi−1,j

2h1
,
uoldi,j+1 − unewi,j−1

2h2

)

+α1

uoldi+1,j + unewi−1,j

2h1
+ α2

uoldi,j+1 + unewi,j−1

2h2

]
.

To obtain a higher order scheme we replace uNi,j in (4.2) by the WENO approximations
(uk)

±
i,j, see [36]:

ui−1,j = ui,j − h1(u1)−i,j, ui+1,j = ui,j + h1(u1)
+
i,j,

ui,j−1 = ui,j − h2(u2)−i,j, ui,j+1 = ui,j + h2(u2)
+
i,j.

For example, (u1)
−
i,j is given by

(u1)
−
i,j = (1− ω−)

(
ui+1,j − ui−1,j

2h1

)
+ ω−

(
3ui,j − 4ui−1,j + ui−2,j

2h1

)

with

ω− =
1

1 + 2γ2−
, γ− =

ε+ (ui,j − 2ui+1,j + ui−2,j)
2

ε+ (ui+1,j − 2ui,j + ui−1,j)2
,

where ε is a small positive number to prevent division by zero. Thus, the update formula
we actually implemented is

(4.3)

unewi,j =
1

α1

h1
+ α2

h2

[
fi,j −H

(
uoldi,j ,

(u1)
+
i,j + (u1)

−
ij

2
,
(u2)

+
i,j + (u2)

−
i,j

2

)

+α1

(u1)
+
i,j − (u1)

−
i,j

2
+ α2

(u2)
+
i,j − (u2)

−
i,j

2

]
+ uoldi,j .

See Agorithm 2 for a basic outline of the Lax-Friedrich sweeping method according to [19]
with 4 sweeping cycles/directions.
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Algorithm 2: Lax-Friedrich Sweeping

ui,j ← initialize with suitable starting values
fixed ← {xs + (ih1, jh2), i, j ∈ {−1, 0, 1}} ∩Xh

# define the list of sweeping directions
directions ← [

i = 1 : n1, j = 1 : n2 (from lower left to upper right),
i = n1 : 1, j = 1 : n2 (from lower right to upper left),
i = 1 : n1, j = n2 : 1 (from upper left to lower right),
i = n1 : 1, j = n2 : 1 (from upper right to lower left)

]

idir = 0 # index for the current sweeping direction

while
∥∥unew − uold∥∥∞ > δ do #stop criterion for given tolerance δ > 0

for i, j in directions[idir] do
if xi,j 6∈ fixed then

ui,j ← update by (4.3), extrapolating values at points off Xh (ghost points)
end

end
idir = (idir + 1) mod 4 # cycle to the next sweeping direction

end

In the concrete situation of the transport equation (2.5) the Hamiltonian reads

H(u, p, q) = 2

(
p
q

)
· ∇τ + u∆τ.

We factorize the amplitude a = a0 a1 with a0(x) = 1

2
√
2π
√
|x−xs|

to handle the source

singularity [18, eq. (8)] and solve for a1. Now,

H(u, p, q) = 2

(
a0

(
p
q

)
+ u∇a0

)
· ∇τ + a0u∆τ

= 2a0 p ∂x1τ + 2a0 q ∂x2τ + (2∇a0 · ∇τ + a0∆τ)u

and the artificial viscosities are

αk = max
x∈Xh

{|2∇a0 · ∇τ + a0∆τ |+ |2a0 ∂xkτ |} , k = 1, 2.

To obtain reasonable initial values (first instruction in Agorithm 2), we consider the
constant velocity case c(·) = c0, in which

a(x) =

√
c0

2
√

2π
√
|x− xs|

= a0(x)
√
c0.

In the general situation we accordingly initialize by a1(·) =
√
c(·).

4.3. Computing the kernels and implementing the approximate inverse. In this
section we explain first how to evaluate the reconstruction kernels (3.2) for a layered c
via (3.4) and (3.5). Then, we implement the approximate inverse, that is, we compute
Λγn(p) efficiently for p = (p1, p2) in a certain mesh Mp ⊂ X.
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We restrict ourselves to the common offset scanning geometry (2.11). Recall the in-
variances (3.7) and (3.8). By τα we denote the α-shifted version of τ(·,0), that is,

τα(x) = τ(x, (α, 0)>) = τ((x1 − α, x2)>,0)

and we use the same definition for aα. So, if we know τ and a with respect to the
origin we know them everywhere, in principle. However, the involved translations call
for a respective enlargement of our computational domain. For example, if we want to
evaluate τ+α on [−5, 5] × [0, 5], we need to compute τ(·,0) on [−5 − α, 5 − α] × [0, 5].
Analogously for τ−α. Hence, we compute τ(·,0) on [−5− α, 5 + α]× [0, 5] to get τ±α on
the requested rectangle.

In the discrete case, the described restriction is a slicing operation on the computed
arrays to cut out specific parts. For an array arr, the notation arr[ind] defines a sub-array,
where ind denotes a range i : j with i, j ∈ {0, . . . , len(arr)}, i < j, or a set of indices.
Here, len(arr) is the number of elements in arr. For a range, the starting index is inclusive,
while the end index is exclusive. Note that we are using zero-based numbering for array
indices. Consider arr = [1, 2, 3, 4, 5, 6]. Then, arr[1 : 4] = [2, 3, 4] and arr[{2, 5}] = [3, 6].
To keep the whole array, we simply write arr[:]. Slicing applies to higher dimensions by
treating each dimension separately:

arr =

1 2 3
4 5 6
7 8 9

 , arr[1 : 3, :] =

(
4 5 6
7 8 9

)
, arr[{0, 2} , 1 : 3] =

(
2 3
8 9

)
.

We need further notation: by I([a, b], n) we denote the discrete interval [a, b] with number
of grid-points n, including the end-points, and equidistant spacing with step size h = b−a

n−1 .
Let

(4.4) S = I([smin, smax], nS) and T = I([tmin, tmax], nT)

where smin < smax and tfirst ≤ tmin < tmax. Hence, S × T is the discretized s-t-domain
for the kernels. We require nS to be odd. This is not a principal restriction, however, it
eases somewhat the presentation because the midpoint smid = (smax + smin)/2 is in S.

In the sequel we must carefully distinguish between functions of continuous arguments
(such as τ and a etc.) and arrays containing numerical approximations of these functions
evaluated at points of a grid. To this end we write fG for the array containing the
approximations of f restricted to G. Thus, fG ≈ f |G but fG 6= f |G in general.

4.3.1. Input data for reference kernels. To obtain υp,γ on S×T it is sufficient to calculate
υ(smid,p2),γ on an extended grid Sref × T on which we can realize the shift operation (3.8)
with r = smid by slicing as explained above in the cases of τ±α and a±α. Here, Sref =
I([smin− pref , smax + pref ], nref) and in Section 4.3.3 below we will assign values to pref and
nref to enable slicing for all p ∈Mp. Note that S ⊂ Sref will be satisfied.

In this subsection we process the needed input data to compute υ(smid,p2),γ on Sref × T

for p2 in a discrete subset Pref of the non-negative real numbers. The resulting arrays
(υ(smid,p2),γ)Sref×T, p2 ∈ Pref , are called reference kernels.

To start we fix an equidistant Cartesian mesh M ⊂ X which contains the origin and
is symmetric with respect to the axis x1 = 0. Further, we require M to be large enough:
L(0,t) ⊂ conv(M) (convex hull) for all t ∈ T. Let the number of grid-points be nM

1 × nM
2

with the step sizes hM1 and hM2 . Define iα := dα/hM1 e3 as the number of points on a line

3For x ∈ R: dxe = min{m ∈ Z : x ≤ m}.
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segment on the x1-axis with length α. As explained above, to obtain the arrays (τ±α)M
and (a±α)M, we expand M on both sides of the x1-coordinate direction by adding iα grid-
points to the left and to the right. We then solve the eikonal and transport equations on
this expanded mesh Mα with respect to the origin using Algorithms 1 and 2 to obtain
the arrays τMα and aMα . Then,

(τ−α)M = τMα [iα : nM
1 + iα, :] and (τ+α)M = τMα [0 : nM

1 , :]

and this relation holds for a as well. In the actual implementation we only calculate the
right halves of τMα and aMα because we can flip the results for symmetry.

Now, we have ϕM = (τ−α)M + (τ+α)M to determine the reflection isochrones (3.6).
Further, we set

IM =
(a−α)M(a+α)M

c|M
√

1 + c2|M∇(τ−α)M · ∇(τ+α)M
,

where the arithmetic operations on arrays are understood element-wise. The gradients
of (τ−α)M and (τ+α)M are arrays of pairs containing approximations to the respective
partial derivatives at the grid points which have been computed from (τ±α)M by second
order central differences at interior points and first order one-sided differences at the
boundaries.

Note that IM is an important ingredient for the kernels being independent of the mol-
lifier, especially, it is independent of p ∈ Mp, see (3.4) and (3.5). We continue in the
following section with finally computing the reference kernels relying on the arrays ϕM

and IM.

4.3.2. Reference kernels. For p2 ∈ Pref we here provide the array (υ(smid,p2),γ)Sref×T. For
any t ∈ T we determine the reflection isochrones L(0,t) = {x ∈ X : ϕ(0,x) = t} using
the marching squares algorithm4 on the array ϕM. This yields a list of points in X
approximating L(0,t). In the sequel we identify this list with L(0,t). As the discrete points
in L(0,t) lie on edges connecting points in M we extend IM to L(0,t) by linear interpolation
(along the respective edge). In view of (3.8) we have L(s,t) as discrete set as well.

Now, if K∗eγ(· − p) is explicitly available we are ready to compute (υ(smid,p2),γ)Sref×T
via (3.4), where the integral over L(s,t) in (3.5) is approximated by the trapezoidal sum.
For instance, let K = ∆M q (β = 0 in (2.12)). Then, with eγ from (3.3) we have that

K∗eγ(x− p) = Ck,γ

{
xq2 4k

(
γ2 − |x− p|2

)k−2 (
k |x− p|2 − γ2

)
: |x− p| < γ,

0 : |x− p| ≥ γ,

for k ≥ 2. Corresponding reference kernels are displayed in Figure 1 for k = 3 and q = 2.
To speed up the kernel calculation, we use parallel computing with shared arrays

ϕM, IM, and Sref . Here, we avoid repeated computation of the t-contour by assigning
a single job to the calculation of one row of (υ(smid,p2),γ)Sref×T. This is possible because
the extension of IM to L(s,t) by interpolation is independent of s ∈ Sref . Consequently,
for each pair of t ∈ T and p2 ∈ Pref we start a job that calculates (υ(smid,p2),γ)Sref×T[:, it],
where it is the index of t in T.

From these reference kernels we finally obtain (υp,γ)S×T at any position p ∈ Mp by
means of (3.8) and piecewise linear interpolation with respect to p2, see next section for
details.

4We used the implementation skimage.measure.find_contours from the module skimage.

https://scikit-image.org/docs/dev/api/skimage.measure.html
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(a) c(x) = 0.1x2 + 0.5.
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Figure 1. Reference kernels approximating υ(0,4),0.8 for α = 3 and K = ∆M2

with respect to linear and oscillating velocities (both velocity models are used for
numerical experiments in Section 5). The cross sections on the right are taken
for s = 0.

Remark 4.1. Above, we have basically described an implementation of the generalized
Radon transform F (2.7) via (3.5) applied to the function K∗eγ(· − p). So, using the
same concepts, we can compute Fu(s, t) at any (s, t) ∈ Y and for any function u for
which we have an explicit expression. If there is no dependence on additional variables
besides s and t, each job is assigned to a single t.

4.3.3. Implementation of the approximate inverse. Based on the reference kernels we next
show how to evaluate the inner products defining the approximate inverse Λγ in (3.1).

Recall that we want to compute Λγn onMp for given data g and a chosen cutoff function
ψ. We assume Mp to be a Cartesian mesh whose range for the x1-coordinate is contained
in [smin, smax] and the range for the depth-coordinate matches [minPref ,maxPref ]. To
get the (approximated) reconstruction kernel for a point p = (p1, p2) ∈ Mp, we first
determine pl, pr ∈ Pref such that pl ≤ p2 < pr. The kernel (υ(smid,p2),γ)Sref×T will then be
approximated by linear interpolation of the two corresponding reference kernels:

(υ(smid,p2),γ)Sref×T :=
pr − p2
pr − pl

(υ(smid,pl),γ)Sref×T +
p2 − pl
pr − pl

(υ(smid,pr),γ)Sref×T.
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smin smax x1
p1

imid

ind

ip1 nS − ip1

(a) p1 = smid.

smin smax x1
p1

imid

ind

ip1 nS − ip1

(b) p1 < smid.

Figure 2. Examples for clipping the reference kernels. The light-gray box
represents the reference kernel on Sref ×T, while the area within the dashed lines
is the correct part for (υp,γ)S×T where p = (p1, p2) ∈Mp.

Now we need to cut out (υp,γ)S×T from this array transferring the shift relation (3.8) to
the array concept. Note that the shifted argument s − p1 is not a grid point of Sref in
general, even for s ∈ S. In a first step we therefore replace p1 by p1 = S[ip1 ], the next
smaller entry in S, that is,

(4.5) ip1 =

⌊
p1 − S[0]

hS

⌋
.5

For example, if S = I([−1, 1], 21) = [−1,−0.9, . . . , 0.9, 1], we have −0.8 = −0.8 with
i−0.8 = 2 and 0.13 = 0.1 with i0.13 = 11.

Define pref = maxp∈Mp

∣∣smid − p1
∣∣ and set nref = nS + 2pref/hS (note that pref/hS ∈ N).

Then, it is sufficient to calculate the reference kernels on the extended grid Sref := I([smin−
pref , smax + pref ], nref). In fact, we have

(4.6) (υp,γ)S×T = (υ(smid,p2),γ)Sref×T[imid − ip1 : imid − ip1 + nS, :] where imid =
nS − 1

2
,

which is the array operation accounting for (3.8). Figure 2 illustrates this slicing operation
for different p1.

Based on the reconstruction kernel (υp,γ)S×T we now describe the implementation of
the approximate inverse Λγ (3.1). Without loss of generality we assume the data g to
be measured on a Cartesian grid, say on Sdata × Tdata, where Sdata = I([smin, smax], nSdata)
and Tdata = I([tmin, tmax], nTdata). Thus, we consider g ∈ RnSdata

×nTdata in what follows.
Further, we assume that the reference kernels have at least the resolution of the data:
nSdata ≤ nS and nTdata ≤ nT. In doing so, we address a situation that can occur in
practice when only relatively few measurements can be taken. If we would compute
the reference kernels on the same rough data grid Sdata × Tdata, the nearest neighbor
interpolation (4.6) via (4.5) could affect the reconstructions, see Figure 9 for a numerical
demonstration. Since data and kernels are given on different grids, we need an operator
Π: RnS×nT → C([smin, smax]× [tmin, tmax]) which interpolates the kernels, for instance, we
use piecewise bilinear interpolation in Section 5.2.

Finally, we get Λγn ≈ Λ̃γn by

(4.7) Λ̃γn(p) := hSdatahTdata
∑
Sdata

∑
Tdata

ψ|Sdata×Tdata g (Πυp,γ)|Sdata×Tdata for any p ∈Mp.

5For x ∈ R: bxc = max{m ∈ Z : m ≤ x}.
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Above we first have an element-wise multiplication of three arrays and then we take the
sum over rows and columns.

5. Numerical experiments

In this section we present numerical experiments to demonstrate the performance of
our inversion scheme in several test scenarios using the common offset scanning geom-
etry (2.11) with offset α ≥ 0. We compute Λ̃γn (4.7) from consistent data under the
geometric optics assumption and under a violation thereof, and from inconsistent data
generated by a wave solver. The needed reference kernels are computed with respect to
the mollifier eγ from (3.3) for k = 3 on the grid S × T (4.4) in the data space Y (2.9)
with parameters smin, smax, nS, and tmin, tmax, nT.

In both test cases, for truncating the data by a cutoff function ψ ∈ C∞0 (Y ), we modify
a function proposed in [25, Section 5], see also [11, Section 4], such that

suppψ = [smin, smax]× [tmin, tmax], ψ|[smin+0.5,smax−0.5]×[tmin,tmax−0.5] = 1.

See Appendix A for an explicit expression of ψ.
Our implementation in the Python programming language, which we used to execute

the numerical experiments of this section, is freely available, see [9].

5.1. Consistent data. The data g here are generated by an application of the GRT (2.7)
to the function6

(5.1) n = χB2((0,5),2) − χB2((0,5),1) + χB∞((3,6),1.25) + χ{x∈X : x2≥6.5+sin(πx1/2)},

which is a linear combination of indicator functions of circular and rectangular disks and
of a half space with a sine-like boundary, see Figure 3 (left). We emphasize strongly that
both, data and kernels, are given on the same grid throughout this subsection: Sdata = S

and Tdata = T. As a consequence, the interpolation operator Π in (4.7) needs not to
be specified and may in fact be omitted. According to Remark 4.1, g = (Fn)S×T can
numerically be evaluated just as the reconstruction kernels, see Figure 3 (right) for an
illustration.

Further, we use the offset α = 5 if not stated otherwise.

5.1.1. Geometric optics assumption applies. The background wave velocity here is lin-
early increasing: c(x) = mx2 + b, m, b > 0. It satisfies the geometric optics assumption
and the corresponding imaging operator Λ (2.10) with K from (2.12) is an elliptic pseu-
dodifferential operator of order 1 over the domains

X0 =
{
x ∈ R2 : x2 > xmin

}
and Y = S0× ]tfirst,∞[

where

xmin :=
b

m

(√
1 +

m2α2

b2
− 1

)
, tfirst :=

2

m
asinh

(mα

b

)
,

see Section 2.1. If S0 is sufficiently large all singularities (wave fronts) of n are in fact
visible in Λn [15, Proposition 3.5 and Remark 3.7]7. The numerical approximation Λ̃0.2n
displayed in Figure 4 (left) clearly confirms the conservation and enhancement of the
singularities. In contrast, the image on right of Figure 4 misses all singularities with

6By Bq(c, r) we denote the (closed) q-norm ball with center c and radius r.
7The mathematically correct statement reads WFr(u) = WFr−1(Λu) for any distribution u with

compact support in X. Here, WFr(u), r ∈ R, denotes the Hr-wave front set of u.
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Figure 3. Left: illustration of the function n from (5.1) with the following
color coding: white, grey, and black represent the numerical values 0, 1, and 2,
respectively. Right: corresponding processed data ψ|S×T g = ψ|S×T (Fn)S×T for
the linear velocity model c(x) = 0.1x2 +0.5 and offset α = 5. The reconstruction
on the left of Figure 4 has been computed from these data.

a horizontal (normal) direction. Again Λ̃0.2n is shown, however, for the constant back-
ground velocity c(·) = 1. It is known that singularities with horizontal directions are not
visible in Λn for this velocity, regardless of the specific choice of ψ and K, see [10].
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Figure 4. Reconstruction Λ̃0.2n of Λn from data g = (Fn)S×T. Left: linear
velocity model c(x) = 0.1x2+0.5 with K = ∆M2 and T = I([17.64, 47.64], 3001),
S = I([−10, 15], 2501). Right: constant velocity model c(·) = 1 with K = ∆M
and T = I([10.5, 40.5], 3001), S = I([−10, 15], 2501). For both reconstructions,
130 reference kernels have been computed: Pref = I([1.5, 8], 130).

We have computed two further reconstructions for the linear velocity model c(x) =
0.1x2+0.5. In Figure 5 (left) we chose the same setting as for the reconstruction displayed
in Figure 4 (left), however, the data used gε have been artificially disturbed by noise:

(5.2) gε = g + ε ‖g‖?
N

‖N‖?
, ε > 0,
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where N is an nS× nT array containing uniformly distributed random numbers in [−1, 1]
and ‖·‖? denotes the Frobenius norm. So, ε is the relative noise level with respect to ‖·‖?.

−2 0 2 4

p1

2

3

4

5

6

7

8

p 2

−2000

−1000

0

1000

2000

−2 0 2 4

p1

2

3

4

5

6

7

8

p 2

−6000

−4000

−2000

0

2000

4000

Figure 5. Reconstructions for background velocity c(x) = 0.1x2 + 0.5. Left:
reconstruction Λ̃0.2n from noisy data gε (5.2) with ε = 10%. All other settings
are as in Figure 4 (left). Right: reconstruction Λ̃0.2n

∗ from data g = (Fn∗)S×T
for n∗(x1, x2) = n(x1, x2 + 1) with n from (5.1). Here, we used a slightly differ-
ent cutoff function which satisfies ψ|[smin+0.5,smax−0.5]×[tmin+0.1,tmax−0.5] = 1. The
other settings agree with those of Figure 4 (left).

Finally, in Figure 5 (right) we present a reconstruction where Λ fails to be a pseudo-
differential operator. To this end we generate the data (Fn∗)S×T where n∗ is a version
of n (5.1) shifted towards the surface: n∗(x1, x2) = n(x1, x2 + 1). The support of n∗
intersects slightly the strip R2

+\X0 = {x ∈ R2 : 0 < x2 ≤ xmin ≈ 2.07}, over which Λ is
“only” a Fourier integral operator. Fourier integral operators might add artifacts (to be
precise: the wave front set of Λn∗ might be larger than the wave front set of n∗). Exactly
this phenomenon can be observed in the reconstruction Λ̃0.2n

∗ which exhibits a strong
horizontally elongated singularity at about x2 = 2.5 that is not present in n∗.

5.1.2. Geometric optics assumption is violated. Figure 6 contains two reconstructions of
Λn for two slightly different background velocities

(5.3) c1(x) =
1

2

(
1 + x2 +

1

2
cos
(π

4
x2

))
and

(5.4) c2(x) =
1

2

(
1 +

1

2
cos
(π

4
x2

))
.

Velocity c1 violates the geometric optics assumption since different rays intersect (even
though this velocity is strictly increasing). In case of c2, the geometric optics assumption
is satisfied but Λ fails to be a pseudodifferential operator over the support of n. We
do not have rigorous proofs, but the numerically computed rays and isochrones strongly
support these statements, see Appendix B.

In both cases the Fast Marching algorithm for solving the eikonal equation terminates
and our reconstruction algorithm delivers a decent reconstruction for c1 but very strong,
added artifacts corrupt the reconstruction for c2.
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Figure 6. Reconstructions Λ̃0.3n with K = ∆M2 from data g = (Fn)S×T
and α = 3. Left: velocity model c1 (5.3), T = I([6.2, 15.2], 901), S =
I([−12, 12], 2401). Right: velocity model c2 (5.4), T = I([8.1, 98.1], 9001),
S = I([−20, 20], 2001). For both reconstructions, 86 reference kernels have been
computed: Pref = I([1.5, 8], 86)

5.2. Data from the wave equation. In this subsection, we generate the data g as
input to (4.7) by the right-hand side of (2.6), that is, we numerically solve the wave
equation (2.1) for u and ũ. In view of (1.1), for a given background velocity c we set

(5.5) ν2pr(x) =
c2(x)

1 + λn(x)
,

where n is as in (5.1), see Figure 3 left, and the parameter λ > 0 scales the committed
linearization error. By varying λ we stress the validity of the linear model (2.6) and (2.7).

In (2.1) we replace the source term by a scaled and time-shifted Gaussian pulse. The
resulting equation is then solved on the computational domain [−15, 20] × [0, 15] using
the wave solver of the open source toolbox PySIT [6] with a step size 1/22 in each
direction. To suppress spurious reflections, the computational domain is equipped with
an absorbing boundary by a perfectly matched layer (PML). With νpr and c as input for
the wave solver, we compute the seismograms

u(t;xr(s),xs(s)) and ũ(t;xr(s),xs(s)) for (s, t) ∈ Sdata × Tdata,

where Sdata = I([smin, smax], nSdata), nSdata odd, and Tdata = I([tmin, tmax], nTdata).

Remark 5.1. Note that nTdata will be set by the wave solver to satisfy the CFL condition
and will therefore be larger for u. For this reason we interpolate ũ piecewise linear on the
time grid of u.

Some post-processing of the seismograms u and ũ is required: we account for the time-
shift of the Gaussian pulse by a corresponding time-shift of the seismograms. Further, we
fit the seismograms u and ũ by scaling ũ so that the maximal amplitudes of both match.
Approximating the integral on the right-hand side of (2.6) finally by the trapezoidal sum
yields the data g for our reconstruction scheme. In this subsection, if data and kernels
exist on different grids, the operator Π in (4.7) interpolates piecewise bilinear.

For our first experiments we chose c(x) = 0.1x2+0.5 as background velocity and α = 5
as offset. On the left of Figure 7 one sees the processed data from the wave solver where
λ = 0.05 in (5.5). Here, the linearization error is rather small, so that these data are
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Figure 7. Left: processed wave data ψ|Sdata×Tdatag where c(x) = 0.1x2 +
0.5, λ = 0.05 in (5.5), α = 5, Sdata = I([−10, 15], 1001), and Tdata =

I([17.64, 47.64], 7729). Right: corresponding reconstruction Λ̃0.2n with K =
∆M2. The reference kernels were computed on Pref = I([1.5, 8], 130) for
S = I([−10, 15], 1501) and T = Tdata.
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Figure 8. Reconstructions for different values of λ in (5.5). All other settings
are those of Figure 7. Left: λ = 0.1. Right: λ = 0.2.

qualitatively comparable with those on the right of Figure 3. The resulting reconstruction
for Λn is shown on the right.

Remark 5.2. The wave data displayed on the left of Figure 7 exhibit a sudden decrease
about along the line t ≈ 29. This effect originates from reflections at the bottom of
the computational domain, even though PML boundary conditions are implemented (t =
29.012 is exactly the time it takes for the wavefront reflected at the bottom to travel from
the source to the receiver in the medium with wave speed c). A remedy is to increase
the computational domain at the cost of much more computing time for generating the
data. One could also shrink the observation period, say to [17.64, 29], but then not all
singularities of n are visible in the selected reconstruction area.

With Figure 8 we demonstrate how the reconstructions deteriorate with increasing λ,
that is, with an increasing linearization error.
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Figure 9. Reconstructions Λ̃0.3n from low resolution wave data: Sdata =
I([−10, 15], 101), Tdata = I([17.64, 47.64], 7729). Further, c(x) = 0.1x2 + 0.5,
α = 5, K = ∆M2, and λ = 0.1 in (5.5). Left: S = I([−10, 15], 1001), T = Tdata,
and Pref = I([1.5, 8], 86). Right: S = Sdata, T = Tdata, and Pref = I([1.5, 8], 86).
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Figure 10. Reconstructions Λ̃0.3n with K = ∆M2, α = 3, and λ = 0.1
in (5.5). Left: velocity model c1 (5.3), T = Tdata = I([6.2, 15.2], 9262),
Sdata = I([−10, 15], 1001), S = I([−10, 15], 1501). Right: velocity model c2 (5.4),
T = Tdata = I([8.1, 98.1], 8910), Sdata = I([−10, 15], 1001), S = I([−10, 15], 1501).
For both reconstructions, 86 reference kernels have been computed: Pref =
I([1.5, 8], 86)

So far in this section, we have presented reconstructions from finely sampled data
to study purely the impact of the wave data (data inconsistency) and the nonlinearity.
Left in Figure 9 we now show a reconstruction based on a larger sampling rate for the
seismograms, namely hSdata = 0.25, which is ten times higher than the sampling rates
used for Figures 7 and 8. The obtained quality is remarkably good, however, some high-
frequency artifacts appear, even though we increased γ to 0.3. Further increasing γ would
mitigate the artifacts but at the same time blur the image.8 As before we have computed
the reference kernels with a higher resolution than the data. If we dispense with this and
calculate the kernels with the resolution of the data, we obtain the coarse-grained image
on the right of Figure 9.

8See [11, Remark 4.1] for a discussion on how to set the numerical value for γ.



APPROXIMATE INVERSION OF A CLASS OF GENERALIZED RADON TRANSFORMS 21

We end this section with numerical examples for the velocity models (5.3) and (5.4),
both of which violate the geometric optics assumption. The reconstructions in Figure 10
agree rather well with their counterparts from consistent and higher resolution data in
Figure 6.

Appendix A. Cutoff function

The cutoff function ψ, used in our numerical experiments in Section 5, is defined as
follows. It depends on several parameters which steer its shape, that is, the width of the
transition zone from 0 to 1. We have that

ψ(s, t;Ls, Ls, Rs, Rs, Lt, Lt, Rt, Rt) = φ
(
s, Ls, Ls, Rs, Rs

)
φ
(
t, Lt, Lt, Rt, Rt

)
,

where

φ(r, L, L,R,R) =


0 : r ≤ L or r ≥ R,

p(r, L, L) : L < r < L,

q(r, R,R) : R < r < R,

1 : L ≤ r ≤ R,

with

p
(
r, R,R

)
=

f (r −R)

f (r −R) + f
(
R− r

) , q
(
r, R,R

)
=

f
(
R− r

)
f
(
R− r

)
+ f (r −R)

,

and

f(r) =

{
exp

(
−1
r

)
: r > 0,

0 : r ≤ 0.

The last four parameters of φ define the lower and upper ranges where the smooth
cutoff is performed. If not otherwise stated we used Ls = smin, Ls = smin + 0.5, Rs =
smax − 0.5, Rs = smax and Lt = tmin, Lt = tmin, Rt = tmax − 0.5, Rt = tmax.

Appendix B. Ray systems

In this appendix we provide numerical support for our statements in Section 5.1.2 that
velocity c1 (5.3) violates the geometric optics assumption while c2 (5.4) satisfies it, but
on the other hand yields an imaging operator Λ that is not a pseudodifferential operator.

Seismic or optical rays are the (bi-)characteristic curves of the eikonal equation (2.4),
see, e.g., [3, Appendix E.2.3]. We rely on the ray system (the running parameter t ≥ 0
agrees with the travel time from the source point)

dr

dt
= c(r)

p

|p| , r(0) = xs;
dp

dt
= −∇c(r)

c(r)
, p(0) =

ξ

c(r(0))
,

with a unit vector ξ = (ξ1, ξ2)
> ∈ S1. Here, p(t) = ∇τ(r(t),xs).

We solved the above system by a standard ODE solver for xs = (0, 0)> and several ξ
pointing downwards to the right of xs, that is, ξ1 ≥ 0 and ξ2 > 0. In Figure 11 (left)
the rays are plotted with respect to c1. In the upper right corner, rays do intersect. This
happens also in other parts of X. Contrary, the rays with respect to c2, Figure 11 (right),
do not intersect (at least we could not find intersection points numerically) but the rays
converge to horizontal lines at depth values being integer multiples of 8 which is the
period of c2. They meet virtually as x1 → ∞. Further, isochrones for large travel times
share the same normal direction at different points. For the experts: this observation,
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Figure 11. Seismic rays with origin as take-off point but different take-off
directions (indicated by 10 colors that repeat cyclically). The dotted lines connect
points with equal travel times (isochrones). Left: velocity model (5.3). Right:
velocity model (5.4).

together with the relation ∂sϕ = −∂x1ϕ for the travel time function ϕ defined in (2.8),
strongly suggests Λ not to be a pseudodifferential operator (the Fourier integral operator
F : E′(X) → D′(Y ) (2.7) presumably does not satisfy the Bolker condition for offset
α = 0). A rigorous proof would require an analytically explicit representation of ϕ.
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