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SEISMIC IMAGING WITH GENERALIZED RADON TRANSFORMS:
STABILITY OF THE BOLKER CONDITION
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ABSTRACT. Generalized Radon transforms are Fourier integral operators which are used, for
instance, as imaging models in geophysical exploration. They appear naturally when linearizing
about a known background compression wave speed. In this work we first consider a linearly
increasing background velocity in two spatial dimensions. We verify the Bolker condition for
the zero-offset scanning geometry and provide meaningful arguments for it to hold even if the
common offset is positive. Based on this result we suggest an imaging operator for which we
calculate the top order symbol in the zero-offset case to study how it maps singularities. Second,
to support the usage of background models obtained from linear regression we present a stability
result for the Bolker condition under perturbations of the background velocity and of the offset.

1. INTRODUCTION

Generalized Radon transforms serve, for instance, as linear models in seismic imaging in
the acoustic regime. To this end the nonlinear inverse problem of recovering the wave speed
from reflected wave fields is linearized about a known background velocity: We start from the
acoustic wave equation

(1.1)
1

ν2
p

∂2
t u−∆xu = δ(x− xs)δ(t), u|t=0 = ∂tu|t=0 = 0,

where νp = νp(x) is the velocity (sound speed) and xs denotes the position of the source. So,
the pressure wave u = u(t;x,xs), x ∈ Rd, d ∈ {2, 3}, at time t ≥ 0 is initiated solely by the
source at time t = 0. The corresponding nonlinear inverse problem entails the recovery of νp

from measurements of u(·;xr,xs) over a time interval at several pairs (xs,xr) of source and
receiver positions.

For the linearization we make the ansatz
1

ν2
p(x)

=
1 + n(x)

v2(x)

with an a priori known background velocity v = v(x) which satisfies the geometric optics
assumption, i.e., points on the surface are connected to points in the subsurface by unique

Date: January 5, 2022.
2010 Mathematics Subject Classification. 58J40, 44A12, 86A22, 35S30.
Key words and phrases. Generalized Radon transforms, Fourier integral operators, Microlocal analysis, Seis-

mic imaging.
The second author is indebted to Victor Guillemin for his inspiration as a Ph.D. advisor, his warmth as a person,

and his beautiful mathematics.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 258734477
- SFB 1173. Quinto’s work was partially supported by U.S. NSF grant DMS 1712207 and Simons Foundation
award 708556. The authors received no financial benefit from this work.

1



2 P. C. KUNSTMANN, E. T. QUINTO, AND A. RIEDER

characteristic rays. Now, n is the object we seek. It is a dimensionless quantity which records
the high frequency content of νp.

Using the principles of wave propagation in geometric optics one derives the following linear
integral equation for n,

(1.2) Fn(t;xr,xs) =

∫ t

0

(t− s)d−2(ũ− u)(s;xr,xs)ds,

where the operator F is given by

(1.3) Fw(t;xr,xs) =

∫
w(x)

v2(x)
A(x,xs)A(x,xr)δ

(
t− τ(x,xs)− τ(x,xr)

)
dx

with the amplitudeA and the travel time τ from the progressing wave expansion of the reference
solution ũ which solves (1.1), however, with νp replaced by v. So, the right hand side of (1.2)
is available from the measurements and the computed reference solution. Further, τ and A can
be computed as well, the former from the eikonal equation

(1.4) |∇xτ(·,xs)| =
1

v
, τ(xs,xs) = 0,

and the latter from the transport equation

(1.5) div(A2∇xτ) = 0.

The operator F is a generalized Radon transform as Fn(t;xr,xs) is an integral mean over
the reflection isochrone connecting points of equal travel time t to source and to receiver. We
recall the representation of F as Fourier integral operator (for a definition see next section).
Assuming that pairs of source and receiver points are parametrized by a variable s we have that

(1.6) Fw(s, t) =
1

2π

∫
w(x)

v2(x)
A(x,xs(s))A(x,xr(s))e

ıω(t−ϕ(s,x)) dxdω

with
ϕ(s,x) := τ(x,xs(s)) + τ(x,xr(s)).

Hence, {x : t = ϕ(s,x)} is the reflection isochrone at time t with respect to xs(s) and xr(s).
For all the details we refer to, e.g., [22, Sec. 6] or [12]. See also [2, Appendix E] and [5, 7].

As there is no inversion formula known for F one defines imaging operators mimicking
well-known reconstruction formulas of filtered backprojection type from X-ray computerized
tomography, see, e.g., [17]. For instance, given the data y (right hand side of (1.2)), the output of
Kirchhoff migration, the traditional inversion procedure in geophysics, can be written as F †Ky
where K is a convolution filter and F † denotes a dual transform (generalized backprojection).
The corresponding imaging operator F †KF is a kind of low pass filter superimposed with a
smoothing operator, see [1]. Hence, prominent features of n are in fact visible in F †KFn.

In a series of papers [11, 12, 13] we have demonstrated the potential of imaging operators
of the type KF ∗ψF from an analytical as well as a numerical point of view. Here, F ∗ is a
backprojection operator (i.e., the formal, possibly weighted, L2 adjoint of F ), K is a suitable
pseudodifferential operator and ψ is a smooth cutoff function. Under a technical assumption
(the Bolker condition (2.3)) these imaging operators are pseudodifferential operators and we
have computed their top order symbols to understand how they map singularities. In case of
a constant background velocity v and if source and receiver positions are offset by a constant
vector (common offset data acquisition geometry), we have thus been able to construct ex-
plicit K’s such that KF ∗ψFn enhances features (discontinuities) of n relatively independent
of location and offset.



SEISMIC IMAGING WITH GENERALIZED RADON TRANSFORMS 3

In the present work we extend our results to the linear background velocity model in two
spatial dimensions. This velocity model approximates well seismic wave propagation in Ter-
tiary basins [21, Lesson 37] and is, for that reason, also derived by linear regression from well
log measurements for other geological formations, see, e.g., [4]. Moreover, sound velocity in
the oceans can be calculated by an empirical formula which depends on temperature, salinity
and depth [16]. For depths below 1000m, salinity and temperature can be considered constant
and the formula is then essentially linear in depth.

First, for the common zero offset scanning geometry, we verify the Bolker condition, com-
pute and study the top order symbol of KF ∗ψF which reveals a fundamentally different map-
ping property compared to the constant background velocity model: singularities of n with a
vertical tangent are visible in KF ∗ψFn (for an adequate choice of ψ). If the offset is positive
we provide overwhelming numerical combined with analytical evidence for the Bolker condi-
tion to hold. Second, to strengthen the usage of linear models obtained by regression we explore
how stable the properties of KF ∗ψF are under perturbations of the velocity model. This will
be done in a rather general framework which even covers stability of the Bolker condition under
a perturbation of the offset.

The layout of the paper is as follows. In the following section we compile background
material on Fourier integral operators and microlocal analysis on which our accomplishments
are based. The experienced reader can skip it. Section 3 is then devoted to the study of the
linear velocity model where we first validate the Bolker condition for zero offset. We succeed
here because we find an explicit parameterization of the reflection isochrones. Unfortunately,
in the positive offset case, we only have an implicit parameterization which prevents a complete
rigorous proof. We are nevertheless able to show that the Bolker condition cannot hold near the
surface. In the last part of Section 3 we study the top order symbol of Λ = KF †ψF for zero
offset and where K = ∆ is the Laplacian. We characterize visible and invisible singularities
and find how the top order symbol depends asymptotically on increasing depth. The latter result
leads to the definition ofK’s counteracting the depth dependence. A first numerical experiment
illustrates these findings.

The Bolker condition actually is a condition on the phase function of a Fourier integral
operator. The phase function of our operator (1.6) depends on the travel time. Therefore,
Section 4 prepares our stability results by providing a stability analysis for the travel time as
a solution of the eikonal equation (1.4) under perturbation of the wave speed. To this end
we study the corresponding characteristic system (ray system). Finally, we show in Section 5
that if the phase functions of two Fourier integral operators are sufficiently close and one of
them satisfies the Bolker condition, so does the other. This is then applied twice to our seismic
situation: once for a small offset and once for a perturbation in the wave speed, using the insight
from Section 4.

In three appendices we have outsourced technical calculations which would otherwise make
Section 3 overly technical.

2. BASIC MATERIAL

In this section we not only collect essential standard textbook material on Fourier integral
and pseudodifferential operators but we also introduce our notation. See, e.g., [15, 18, 23, 24]
for proofs and further details.
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If X is an open subset of Rd and f : X → R, then we define∇xf =
(
∂f
∂x1
, ∂f
∂x2
, · · · ∂f

∂xd

)
. We

let N0 = {0, 1, 2, . . .} and if α = (α1, α2, . . . , αd) ∈ Nd
0, we use the standard notation for the

differential operator Dα by Dαf = ∂α1

∂x
α1
1

∂α2

∂x
α2
2
. . . ∂αd

∂x
αd
d

f .

2.1. Fourier Integral Operators. For positive integers dX and dY letX ⊂ RdX and Y ⊂ RdY

be open subsets. Let N be a positive integer.

Definition 2.1 (Symbol). A function p ∈ C∞(Y ×X × RN\{0}) is a symbol of order m ∈ Z
if for every compact set K ⊂ Y × X and all multi-indices α ∈ NN

0 , β ∈ NdX
0 , and γ ∈ NdY

0

there exists a positive constant C = C(K, α, β, γ) such that

|Dα
ξD

β
xD

γ
yp(y,x, ξ)| ≤ C(1 + |ξ|)m−|α|

holds for all (y,x) ∈ K and all ξ with |ξ| ≥ 1 and if p is locally integrable on K × SN−1. The
set of all symbols of order m is denoted by Sm(Y ×X × RN).

The symbol p of order m is elliptic if for each compact subset K of Y ×X there are positive
constants c and M such that

(2.1) |p(y,x, ξ)| ≥ c (1 + |ξ|)m

for all (y,x) ∈ K and all ξ with |ξ| ≥M .
Let (y0,x0, ξ0) ∈ Y × X × (RN\{0}). Then, the symbol p is microlocally elliptic near

(x0, ξ0) if there are an open neighborhood U of x0, a conic open neighborhood V of ξ0, and
positive constants C and M such that (2.1) holds for all x ∈ U and ξ ∈ V with |ξ| ≥M .

Definition 2.2 (Phase function). A real-valued function Φ ∈ C∞(Y × X × RN\{0}) with
arguments (y,x, ξ) is called a phase function if it is positively homogeneous of degree 1 in ξ
and (∇yΦ,∇ξΦ) as well as (∇xΦ,∇ξΦ) do not vanish on Y ×X × RN\{0}.

The phase function is nondegenerate if the set {∇(y,x,ξ)∂ξjΦ : j = 1, . . . , N} is linearly
independent on the manifold

ΣΦ = {(y,x, ξ) ∈ Y ×X × RN\{0} : ∇ξΦ(y,x, ξ) = 0}.
Definition 2.3 (Fourier integral operator). Given a symbol p ∈ Sm(Y × X × RN\{0}) and
a nondegenerate phase function Φ ∈ C∞(Y × X × RN\{0}) we define the Fourier integral
operator (FIO) F applied to u ∈ C∞0 (X) by

Fu(y) =

∫
RN

∫
X

p(y,x, ξ)u(x)eıΦ(y,x,ξ) dx dξ

where the integral exists as an oscillatory integral which represents a distribution in general,
see [15, Chap. I]. The operator F maps C∞0 (X) continuously to C∞(Y ) and can be extended
as a continuous map from E′(X) to D′(Y ).

To simplify notation, and because the sets we consider are all subsets of Euclidean space, we
will identify cotangent bundles with subsets of Euclidean space; if Ω is an open subset of Rd,
we identify T ∗(Ω) with Ω× Rd.

With the FIO F we associate the set

C =
{(

y,∇yΦ(y,x, ξ);x,−∇xΦ(y,x, ξ)
)

: (y,x, ξ) ∈ ΣΦ

}
⊂ T ∗(Y )× T ∗(X)

which is called the canonical relation of F .
The canonical relation encodes how the FIO propagates singularities. To describe this more

precisely, we define singularities of a distribution as the elements of the distribution’s wave
front set.
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Definition 2.4. Let Ω ⊆ Rd be open and let u ∈ D′(Ω) be a distribution.
a) u is microlocally C∞ at (x0, ξ0) ∈ T ∗(Ω) if for some φ ∈ C∞0 (Ω) with φ(x0) 6= 0 and some
conic neighborhood V of ξ0 in Rd\{0}, the Fourier transform φ̂u is rapidly decaying on V ,
that is, for every M ∈ N exists a constant C = C(M) > 0 such that

|φ̂u(ξ)| ≤ C(1 + |ξ|)−M for all ξ ∈ V.
b) The wave front set WF(u) of u is given by

WF(u) = {(x, ξ) ∈ T ∗(Ω) : u is not microlocally C∞ at (x, ξ)}.
For any u ∈ E′(X) we have

(2.2) WF(Fu) ⊂ ΠLΠ−1
R WF(u) = {(y, η) ∈ T ∗(Y ) : ∃(x, ξ) ∈WF(u) : (y, η;x, ξ) ∈ C}

which is the statement of the Hörmander-Sato lemma. Above we used the two canonical pro-
jections ΠL : C → T ∗(Y ) and ΠR : C → T ∗(X) onto the left and right components of C,
respectively. The Bolker condition is satisfied if the left projection

(2.3) ΠL : C→ T ∗(Y )\{0} is an injective immersion.

Assume that F ∗F , the composition of F with its formal L2-adjoint operator F ∗, is well defined.
Then, under (2.3), F ∗F is a pseudodifferential operator, see [14]. Pseudodifferential operators
are introduced in the next subsection: they are FIOs with favorable qualities for imaging.

2.2. Pseudodifferential Operators. Pseudodifferential operators are FIOs where X = Y ,
dX = N , and Φ(y,x, ξ) = (y − x) · ξ is the nondegenerate phase function.

In the applications we consider in the next sections, the symbols of the pseudodifferential
operators depend only on the two variables x and ξ. All concepts and results of the previous
subsection carry over. Since X ⊂ RN we write Sm(X) instead of Sm(X × RN). Hence, for
p ∈ Sm(X), the linear map P : E′(X)→ D′(X),

(2.4) Pu(y) =

∫
RN

∫
X

p(x, ξ)u(x)eı(y−x)·ξ dx dξ,

is a pseudodifferential operator (ΨDO) of order m. Here, p is called the full symbol of the
operator P . The principal symbol σ(P ) of P is the equivalence class of p in the quotient space
Sm(X)/Sm−1(X).

Since ΨDOs are FIOs with specific phase functions, one might expect the symbol p in (2.4)
to be a function of (x,y, ξ) as in Definition 2.3. However, ΨDOs with symbol p(x, ξ) generate
the same class of operators modulo smoothing operators1 as those with symbol p(x,y, ξ) [18,
Theorem 4.5, p. 188].

The ΨDO P is elliptic (respectively: microlocally elliptic) if its symbol is elliptic (respec-
tively: microlocally elliptic).

Let P be a ΨDO of order m. When we write σ(P ) as a function, we understand this as the
equivalence class of the function modulo Sm−1(X). We will introduce some more technical
terminology in Section 5.

ΨDOs do not create singularities: The Hörmander-Sato inclusion (2.2) for a ΨDO P reads

WF(Pu) ⊂WF(u) for any u ∈ E′(X)

and is known as pseudo local property of ΨDOs. In case P is elliptic we even have equality:

WF(Pu) = WF(u) for any u ∈ E′(X).

1Smoothing operators map E′ into C∞.
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A finer analysis of how ΨDOs affect singularities allows a microlocalization with respect to the
Sobolev space Hr, r ∈ R. A distribution u ∈ D′(X) is microlocally Hr at (x0, ξ0) ∈ T ∗(X) if
there are a neighborhood U ⊂ X of x0 and a conic neighborhood V ⊂ Rd\{0} of ξ0 such that∫

V

|φ̂u(ξ)|2(1 + |ξ|2)r dξ <∞ for all φ ∈ C∞0 (U).

Now, we define the Hr-wave front set of u by

WFr(u) = {(x, ξ) ∈ T ∗(X) : u is not microlocally Hr at (x, ξ)},
see [18]. Note that Hr-wave front sets are indeed a refinement of wave front sets: WF(u) =
cl
(
∪r∈R WFr(u)

)
.

Theorem 2.5. Let P be a ΨDO of order m. If P is microlocally elliptic at (x0, ξ0) ∈ T ∗(X),
we have

(x0, ξ0) ∈WFr(u) if and only if (x0, ξ0) ∈WFr−m(Pu)

for u ∈ E′(Ω) and r ∈ R.

The proof of the theorem above is given by the same argument as in [3, Proposition A.6]
which is based on [15, Theorem 4.3.2].

3. LINEAR VELOCITY MODEL

In this section we restrict ourselves to two spatial dimensions, i.e., d = 2, and consider the
background wave speed

(3.1) v(x) = b+ ax2, x2 > 0,

where a and b are positive constants (the positive direction of the x2-axis points downwards to
the interior of the earth). Finally, we position sources and receivers according to the common
offset data acquisition geometry on the line x2 = 0 with common offset α ≥ 0. Thus, source
and receiver positions are determined by a real parameter s via

xs(s) = (s− α, 0)>, xr(s) = (s+ α, 0)>.

Under those assumptions F from (1.3) can be represented as the FIO

(3.2) Fw(s, t) =

∫
R

∫
X

1

2π
Θ(s,x)w(x)eı ω (t−ϕ(s,x))dxdω,

compare (1.6). For defining the preimage and image spaces of F we set

(3.3) X = {x ∈ R2 : x2 > xmin} and Y = S× ]tmin,∞[

where

(3.4) xmin :=
b

a

(√
1 +

a2α2

b2
− 1

)
, tmin :=

2

a
asinh

(aα
b

)
,

and S ⊂ R being the bounded open set which contains the parameters of the source/receiver
pairs used for data recording. Note that xmin and tmin are both zero in the zero-offset case,
α = 0. The lower bounds xmin and tmin in the definitions of X and Y , respectively, are
needed to ensure the Bolker condition (2.3) for F : E′(X)→ D′(Y ). If X contains points with
x2 < xmin the Bolker condition is violated, as we will show.

Further,

(3.5) Θ(s,x) := A(x,xs(s))A(x,xr(s))/v
2(x)
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is a symbol in S0(Y × X × R). An explicit representation of A is given in Appendix A, see
(A.2) and (A.3). Moreover, the travel time from point x to source and receiver is also explicitly
known to be

ϕ(s,x) := τ(x,xs(s)) + τ(x,xr(s))

=
1

a
acosh

(
1 +

a2

2b

(x1 + α− s)2 + x2
2

b+ ax2

)

+
1

a
acosh

(
1 +

a2

2b

(x1 − α− s)2 + x2
2

b+ ax2

)
,

see [21, Lesson 41].
In the notation of Section 2.1 we have N = 1, dX = dY = 2, and the nondegenerate phase

function Φ(y,x, ξ) = ω(t− ϕ(s,x)) where y = (s, t) and ξ = ω. Note that∇xϕ is never zero
for α ≥ 0 and x2 > xmin. This is easy to see for α = 0 and we refer to Remark 3.2 below for
α > 0. Hence, the canonical relation of F is

(3.6) C =
{

(s, ϕ(s,x),−ω∂sϕ, ωdt;x, ω∇xϕ) : s ∈ R, x ∈ X, ω 6= 0
}
⊂ T ∗(Y )× T ∗(X)

and note that

(3.7) R×X × R\{0} 3 (s, ω,x) 7→ (s, ϕ(s,x),−ω∂sϕ, ωdt;x, ω∇xϕ)

define smooth global coordinates on C.
To prove the necessary injectivity we need to recover (x, ω∇xϕ) ∈ T ∗(X) uniquely from

any given (s, ϕ(s,x),−ω∂sϕ, ωdt) ∈ T ∗(Y ). Since s and ω are immediately known from the
projection, the goal is to find x ∈ X using that s, t = ϕ(s,x), and ∂sϕ(s,x) are known.

In the following two subsections we will investigate the Bolker condition, first we will verify
it for α = 0 and then provide overwhelming evidence for it to hold even for α > 0.

3.1. Bolker condition for the zero offset case.
First we explore the zero offset situation (α = 0 yielding xmin = tmin = 0) where source and
receiver locations coincide: xs(s) = xr(s) = (s, 0)>. We then have

(3.8) ϕ(s,x) =
2

a
acosh

(
1 +

a2

2b

(x1 − s)2 + x2
2

b+ ax2

)
with partial derivative

∂sϕ = − 2a

b(b+ ax2)

x1 − s√
H
√
H + 2

(3.9)

where

(3.10) H =
a2

2b

(x1 − s)2 + x2
2

b+ ax2

.

As (s, ω,x) parametrize C, see (3.7), we obtain

ΠL(s, ω,x) =

(
s,

2

a
acosh(1 +H),

ω 2a

b(b+ ax2)

x1 − s√
H
√
H + 2

, ω

)
.

To show injectivity let t > 0 be given. We introduce new (polar-)coordinates

x1 = s+ r cosϑ, x2 = c+ r sinϑ,
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with ϑ ∈ [−π/2, 3π/2[,

(3.11) c =
b

a

(
cosh

at

2
− 1

)
> 0, and r =

√
c2 +

2b

a
c =

b

a
sinh

at

2
.

Observe that x2 > 0 iff ϑ ∈ I(c) := ] − δ(c), π + δ(c)[ with δ(c) = arcsin(c/r). In the new
coordinates we have

Ls,t =
{
x(ϑ) : ϑ ∈ I(c)

}
as the expression H is independent of ϑ:

(3.12) H =
ac

b
= cosh

at

2
− 1

yielding

(3.13)
√
H
√
H + 2 = sinh

at

2
=
a

b
r.

It remains to determine ϑ ∈ I(c) smoothly from knowing

d =
2a

b(b+ ax2)

x1 − s√
H
√
H + 2

=
2 cosϑ

b+ ac+ ar sinϑ
=: f(ϑ).

We show that f is strictly decreasing in I(c) by studying its derivative

f ′(ϑ) =
−2
(
(ac+ b) sinϑ+ ar

)
(b+ ac+ ar sinϑ)2

.

Since sinϑ > −c/r for ϑ ∈ I(c) we obtain

−(ac+ b) sinϑ− ar < (ac+ b)
c

r
− ar < 0.

Hence, f ′ is negative and f is strictly decreasing. Therefore ΠL is injective.

Remark 3.1. The level sets Ls,t are circles with centers and radii depending on s, t, and a, b:(
s,
b

a

(
cosh

at

2
− 1

))
,

b

a
sinh

at

2
.

In the limit t→∞ the “north pole” of the circle converges to (s,−b/a).

To show that ΠL is an immersion we compute the determinant of the Jacobian DΠL. We
rearrange the components of ΠL and use the identity ∂sϕ = −∂x1ϕ:

ΠL(s, ω,x) =
(
s, ω, ϕ, ω∂x1ϕ

)
.

Thus,

DΠL =


1 0 0 0

0 1 0 ∂x1ϕ

0 0 ∂x1ϕ ∂x2ϕ

0 0 ω∂2
x1
ϕ ω∂x2∂x1ϕ


and

(3.14) detDΠL = ω
(
∂x1ϕ∂x2∂x1ϕ− ∂x2ϕ∂2

x1
ϕ
)
.

Using the Symbolic Math Toolbox of MATLAB (R2017b) we find that

detDΠL = −8ω
a(x1 − s)2 + x2(ax2 + 2b)

(b+ ax2)
(
(x1 − s)2 + x2

2

)(
a2(x1 − s)2 + (2b+ ax2)2

) .
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The determinant does not vanish since ω 6= 0 and x2, a, and b are positive, that is, ΠL is an
injective immersion. Thus, the Bolker condition (2.3) holds.

3.2. Bolker condition for the positive offset case.
Let α > 0 be the offset. In a first step towards the proof of Bolker we derive a parametrization
of the isochrone

Ls,t =
{
x ∈ R2 : ϕ(s,x) = t

}
∩X.

W.l.o.g. set s = 0. The idea to obtain a parametrization of L0,t is to intersect two isochrones of
the previous setting where source and receiver are located at the same position (zero offset). To
be precise: we intersect the zero offset isochrone about (−α, 0) for travel time ϑ ∈ [0, t] with
the zero offset isochrone about (α, 0) for travel time t − ϑ. All intersection points are in L0,t

and by letting ϑ vary in [0, t] we get finally all of L0,t.
The resulting system of nonlinear equations is

(x1 + α)2 + (x2 − c1)2 = r2
1 = c2

1 + 2bc1/a,(3.15)

(x1 − α)2 + (x2 − c2)2 = r2
2 = c2

2 + 2bc2/a,(3.16)

where

c1 = c1(ϑ) = b(cosh aϑ− 1)/a and c2 = c2(ϑ) = b(cosh a(t− ϑ)− 1)/a,

compare (3.11). Subtracting (3.16) from (3.15) and assuming ϑ 6= t/2, i.e. c1 6= c2, lead to

(3.17) x2 = −b/a− 2αx1/(c2 − c1).

This expression for x2 plugged into (3.16) yields the quadratic equation(
1 +

4α2

(c1 − c2)2

)
x2

1 + 2α
(2α(b/a+ c2)

c2 − c1

− 1
)
x1 +

b2

a2
+ α2 = 0

having the two solutions
x±1 = x±1 (ϑ) = (c1 − c2) dx±

with

dx± :=
α(2b+ a(c1 + c2))±√4
a
(
(c1 − c2)2 + 4α2

)
where

4 = 4a2α2(c1c2 − α2) + 4abα2(c1 + c2)− b2(c1 − c2)2.

If 4 < 0 then there exist no intersection points. We have that 4 ≥ 0 if and only if t ≥ tmin

and ϑ ∈ [ϑmin, ϑmax] where

ϑmin /max =
t

2
∓ tmin

2
,

see first paragraph of Appendix B. In view of (3.17) we finally obtain

x±2 = x±2 (ϑ) = − b
a

+ 2α dx±

which also holds in case c1 = c2.
By construction the pairs (x±1 , x

±
2 ) solve (3.16) but (3.15) as well because we obtain the same

pairs when we replace c2 by c1 and α by −α.

Remark 3.2. The isochrone L0,t, t > tmin, is the set of intersection points of two circles. These
circles intersect at two points (∆ > 0) with normal directions that are not collinear. Hence,
∇xϕ 6= 0. For t = tmin the circles touch at one point (∆ = 0). Thus,∇xϕ = 0.

In Remark 4.5 below the situation of a more general wave speed is discussed.
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FIGURE 1. Isochrones L0,t for t ∈ {8.4, 10, 12.5} for wave speed v(x) = 0.5+
0.6x2, x2 > 0. Source and receiver positions are indicated by black dots. The
offset is α = 5. Here, tmin ≈ 8.31, t ≈ 12.12 and xmin ≈ 4.24 which is
indicated by the dashed horizontal line.

From symmetry arguments we know two points explicitly on L0,t, namely (0, p±) where

p± =
b

a

(
cosh

at

2
− 1
)
±
√
b2

a2
sinh2 at

2
− α2 for t > tmin.

These points correspond to the parameter value ϑ = t/2. In case

t < t =
4

a
asinh

(a
b

α

2

)
these two points are positive and because of the symmetry of L0,t with respect to the line
x1 = 0 the curve L0,t has a horizontal tangent at (0, p±). As a consequence the equation
ω∂sϕ(0, ·) = 0, ω 6= 0, has the two solutions (0, p±) and ΠL would fail to be injective if X
contained points with depth-coordinates x2 less than

(3.18) xmin =
b

a

(
cosh

a tmin

2
− 1
)
.

Observe that xmin is the common limit of p+ and p− as t↘ tmin.
Further, for t ≥ tmin and ϑ ∈ [ϑmin, ϑmax],

(3.19) 2α
a

b
dx− =

2α
(
α(2b+ a(c1 + c2))−√4

)
b
(
(c1 − c2)2 + 4α2

) < cosh
a tmin

2
,

see Appendix B. Thus,

(3.20) x−2 = − b
a

+ 2α dx− = − b
a

+
b

a

2α
(
α(2b+ a(c1 + c2))−√4

)
b
(
(c1 − c2)2 + 4α2

) < xmin for t > tmin.

We conclude that

L0,t =
{
x+
t (ϑ) := (x+

1 (ϑ), x+
2 (ϑ)) : ϑ ∈ [ϑmin, ϑmax]

}
∩X for t > tmin,

2

see Figure 1 for an illustration3. Recalling the geometric definition of x+
t (ϑ) as intersections of

circles, see (3.15) and (3.16), it is obvious that there is a proper subinterval [ϑmin,2, ϑmax,2] of

2We use the subscript t in x+
t to emphasize the dependence on t.

3Under http://www.math.kit.edu/ianm3/˜rieder/media/plot_isochrones.m we pro-
vide a MATLAB-function to plot isochrones for different a, b, α and t.

http://www.math.kit.edu/ianm3/~rieder/media/plot_isochrones.m
http://www.math.kit.edu/ianm3/~rieder/media/plot_isochrones.m
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[ϑmin, ϑmax] such that

(3.21) L0,t =
{
x+
t (ϑ) : ϑ ∈ [ϑmin,2, ϑmax,2]

}
for t > tmin.

Analytic expressions for ϑmin,2 = ϑmin,2(t) and ϑmax,2 = ϑmax,2(t) are hard, if not even
impossible, to find. One has to solve x+

2 (·) = xmin with xmin from (3.4).
To finish the proof for the injectivity of ΠL, to determine the value of ϑ for each preimage

(which will determine the one preimage with x in L0,t), we have to solve the following task:
Given d ∈ {∂sϕ(0,x+

t (θ)) : θ ∈ [ϑmin,2, ϑmax,2]} determine smoothly a unique ϑ such that
d = ∂sϕ(0,x+

t (ϑ)).
In view of (3.10), (3.12), and (3.13) we obtain

(3.22) ∂sϕ(0,x+
t (ϑ)) =

2

b+ a x+
2 (ϑ)

(
x+

1 (ϑ) + α

r1

+
x+

1 (ϑ)− α
r2

)
.

This is an odd function in ϑ with respect to t/2. Numerous numerical experiments confirm
∂sϕ(0,x+

t (·)) to be strictly increasing in [ϑmin,2, ϑmax,2], however, an analytic proof is still
missing. But consult Appendix C for analytic arguments in case t is sufficiently large. Further,
see Figure 2 for some plots of ∂sϕ(0,x+

t (·)). The numerical values used for a, b, α, and t are
noted on top of the plots.4

Conclusion 3.3. We have overwhelming numerical and some analytical evidence that the left
projection ΠL for α > 0 is injective.

To show that ΠL is an immersion we recall the zero offset situation. The representation (3.14)
for detDΠL holds true also for non-zero offset. Since the explicit expression of detDΠL

computed by the Symbolic Math Toolbox of MATLAB is complicated and involved, we take a
different route.

Define the mapping

P : X → R2, x 7→
(
ϕ(0,x), ∂x1ϕ(0,x)

)>
,

and observe that detDΠL = ω detDP . Further, we have previously shown that X is the
disjoint union of level sets: X =

⋃
t>tmin

L0,t ∩X , see (3.21). In other words, the mapping

X :
{

(t, ϑ) : t > tmin, ϑ ∈ [ϑmin,2(t), ϑmax,2(t)]
}
→ X, (t, ϑ) 7→ x+

t (ϑ),

is one-to-one and onto. For Q := P ◦X we find that

Q(t, ϑ) =
(
t, ∂x1ϕ(0,x+

t (ϑ))
)>

=
(
t,−∂sϕ(0,x+

t (ϑ))
)>
.

Hence,

DQ(t, ϑ) =

(
1 0

−∂t∂sϕ(0,x+
t (ϑ)) −∂ϑ∂sϕ(0,x+

t (ϑ))

)
yielding

detDQ(t, ϑ) = −∂ϑ∂sϕ(0,x+
t (ϑ)).

Above we gave numerical evidence that ∂sϕ(0,x+
t (·)) is strictly increasing on the interval

[ϑmin,2(t), ϑmax,2(t)] for all t ≥ tmin, see Figure 2 right column. Thus,

detDQ(t, ϑ) < 0.

4For the reader’s own experiments, the MATLAB-function used to plot the graphs of ∂sϕ(0,x+
t (·)) shown in

Figure 2 can be downloaded following this link:
http://www.math.kit.edu/ianm3/˜rieder/media/plot_partial_s_phi3.m.

http://www.math.kit.edu/ianm3/~rieder/media/plot_partial_s_phi3.m
http://www.math.kit.edu/ianm3/~rieder/media/plot_partial_s_phi3.m
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FIGURE 2. The function ∂sϕ(0,x+
t (·)) in different scenarios. Left: over [t/2, ϑmax],

the red line indicates [t/2, ϑmax,2]. Right: over [t/2, ϑmax,2] where it is always strictly
increasing. The value for ϑmax,2 has been determined by solving equation (C.2) numer-
ically.
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Since,
0 > detDQ(t, ϑ) = (detDP )(X(t, ϑ)) detDX(t, ϑ)

we must have (detDP )(X(t, ϑ)) 6= 0 for all t > tmin and all ϑ ∈ [ϑmin,2(t), ϑmax,2(t)]. Thus,
detDP and, hence, detDΠL cannot vanish on X .

Conclusion 3.4. We have overwhelming numerical and some analytical evidence that the
Bolker condition (2.3) is satisfied for the FIO F : E′(X) → D′(Y ) as defined by (3.2) and
(3.3) for α > 0.

3.3. An analysis of the top order symbol for the zero offset case.

In this section, we calculate the top order symbol of our imaging operator

(3.23) Λ := ∆F †ψF

for offset α = 0 where ψ : Y → [0,∞) is a smooth compactly supported cutoff function and
∆ is the (negative) Laplacian with symbol | · |2. Further, F † is a generalized backprojection
operator:

(3.24) F †u(x) =

∫∫
Y

W (s,x)u(s, t)δ(t− ϕ(s,x))dt ds =

∫
R
W (s,x)u(s, ϕ(s,x))ds

with a smooth positive weight W . The formal L2-adjoint F ∗ has weight W = Θ and the
generalized backprojection used by Beylkin [1] has weight W = 1/Θ. In view of (3.5), (A.2),
and (A.3), Θ is a smooth positive function. We include the smooth cutoff function ψ : Y →
[0,∞) because F : E′(X) → D′(Y ) but F † : E′(Y ) → D′(X), so they cannot be composed
directly.

To calculate this symbol, we first analyze the preimages of ΠR : C→ T ∗(X). This will allow
us to calculate the symbol of the imaging operator at (x, ξ) ∈ T ∗(X)\{0} by multiplying the
symbols of ψF and of ∆F † at each preimage and then adding the results. The natural projection
is

(3.25) ΠR : C→ T ∗(X)\{0}, (s, ω,x) 7→ (x, ω∇xϕ)

where we are using coordinates of (3.6) on C.
We show that (x, ξ) ∈ T ∗(X)\{0}, has exactly two preimages in C under ΠR unless ξ1 = 0.

To this end we need to find (s, ω) from ω∇xϕ = ξ, i.e., from

(3.26) ω∂x1ϕ = ξ1 and ω∂x2ϕ = ξ2.

First, assume ξ1 = 0. Using (3.9) and that ∂sϕ = −∂x1ϕ, one sees there is only one so-
lution, s = x1. Using (3.26) one sees that ω = ξ2/∂x2ϕ(x1,x) (note that ∂x2ϕ(x1,x) 6= 0,
since ξ2 6= 0 and ω 6= 0). Therefore, there is only one preimage in this case: Π−1

R (x, ξ) =
{(x1, ξ2/∂x2ϕ(x1,x),x)}

Now, assume ξ1 6= 0 and let q := ξ2/ξ1. Using (3.26) yields that

∂x2ϕ

∂x1ϕ
=
ξ2

ξ1

= q.

Since ∂x1ϕ = −∂sϕ, see (3.9), and

∂x2ϕ =
2

b(b+ ax2)

ax2/b−H√
H
√
H + 2
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where H is given by (3.12), we obtain

q =
x2(2b+ ax2)− a`2

2`(b+ ax2)
with ` := x1 − s.

Completing the square we find the two solutions s+ and s− for ` where

(3.27) s± = s±(x, q) := x1 − `1,2 = x1 +
q(b+ ax2)

a
±
√
x2

a
(2b+ ax2) +

(
q(b+ ax2)

a

)2

.

Finally, using the coordinates (3.7) on C, we have the preimage of (x, ξ):

(3.28) Π−1
R (x, ξ) =

{{(
x1, ξ2/∂x2ϕ(x1,x),x

)}
: ξ1 = 0, ξ2 6= 0,{(

s, ξ1/∂x1ϕ(s,x),x
)

: s ∈ {s+, s−}
}

: ξ1 6= 0.

Since ϕ from (3.8) satisfies the Bolker condition, Λ is a ΨDO of order 1 ([12, Theorem 3.3]).
Further, our representation of the top order symbol σ(Λ) given in [12, Theorem 3.7] for a
constant v is valid also for any Radon transform (3.2) defined by a function ϕ for which the
Bolker condition holds. Thus,

(3.29) σ(Λ)(x, ξ) = 2π |ξ|2
∑

(s,ω,x)∈Π−1
R (x,ξ)

ψ(s, ϕ(s,x))W (s,x)Θ(s,x)

|ωB(s,x)|

where

B(s,x) = det

(
∇xϕ(s,x)
∂s∇xϕ(s,x)

)
is the Beylkin determinant (which does not vanish). This calculation is done in generality in
[19, pp. 337-338], and one argues microlocally around each preimage then takes the sum over
the finite number of preimages of (x, ξ) under ΠR.

To analyze the symbol of the imaging operator near ξ1 = 0, we note the following limits,
which follow from (3.27):

(3.30)
s+(x, q)

q→∞−−−→∞, s−(x, q)
q→∞−−−→ x1,

s+(x, q)
q→−∞−−−−→ x1, s−(x, q)

q→−∞−−−−→ −∞.
We emphasize that the sum on the right of (3.29) is smooth even at (x, (0, ξ2)) because, by
(3.30), one of the two values s±(x, ξ2/ξ1) for (x, ξ), ξ1 6= 0, grows without bound as ξ1 → 0
(the other value converges to x1 by (3.30)). Hence, the cutoff function ψ becomes zero as the
one value of s± becomes unbounded. Put differently, the sum in (3.29) transitions continuously
from two terms to one term as ξ1 → 0 because one of the values of s in the sum becomes
unbounded and the other converges to the preimage for ξ1 = 0.

Next we explore properties of Λ inspecting its top order symbol: In view of Theorem 2.5 we
want to know where is it microlocally elliptic? Further, how does it behave asymptotically as
x2 →∞?

To this end we first consider 1/|ωB(s,x)|. Using ξ> = ω∇xϕ(s,x) for (s, ω,x) ∈ Π−1
R (x, ξ)

and ∂sϕ = −∂x1ϕ we find that

|ωB(s,x)| =
∣∣∣ det

(
ω∇xϕ(s,x)
∂s∇xϕ(s,x)

) ∣∣∣ =
∣∣∣ det

(
ξ>

∂x1∇xϕ(s,x)

) ∣∣∣
= |ξ1 ∂

2
x1,x2

ϕ(s,x)− ξ2 ∂
2
x1
ϕ(s,x)

∣∣.
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Further,

∂2
x1,x2

ϕ(s,x) =
a3

b3

(s− x1)
(
a(s− x1)2 + x2(ax2 + b)

)
(ax2 + b)2(H + 2)3/2H3/2

and

∂2
x1
ϕ(s,x) =

1

2

a3

b3

x2
2(ax2 + 2b)2 − a2(s− x1)4

(ax2 + b)3(H + 2)3/2H3/2

with H from (3.10).
In case ξ1 = 0 and ξ2 6= 0 we have s = x1 leading to

1

|ωB(s,x)| =
1∣∣ξ2| |∂2

x1
ϕ(x1,x)

∣∣ .
The situation is a bit more involved in the general situation of ξ1 6= 0. Setting

S± := s±(x, q)− x1 =
q(b+ ax2)

a
±
√
x2

a
(2b+ ax2) +

(
q(b+ ax2)

a

)2

(3.31)

we have
1

|ωB(s±,x)| = N±(x, ξ)

where

N±(x, ξ) :=
b3

a3

(H + 2)3/2H3/2(ax2 + b)3∣∣1
2

(x2
2(ax2 + 2b)2 − a2S4

±) ξ2 − (ax2 + b)S±
(
aS2
± + x2(ax2 + b)

)
ξ1

∣∣
using the abbreviation H from (3.10).

The following result characterizes visible and invisible singularities with respect to Λ.

Proposition 3.5. Let (y, η) ∈ T ∗(X) and define

C(y) := C+(y) ∪ C−(y) ∪
{
ξ ∈ R2 : ξ1 = 0, ψ

(
y1, ϕ(y1,y)

)
> 0
}

where

C±(y) =
{
ξ ∈ R2 : ξ1 6= 0, ψ

(
s±(y, ξ2/ξ1), ϕ(s±(y, ξ2/ξ1)),y)

)
> 0
}
.

a) (visible singularity) If η ∈ C(y) then Λ is microlocally elliptic of order 1 at (y, η) which
yields

(y, η) ∈WFr(u) ⇐⇒ (y, η) ∈WFr−1(Λu)

for any u ∈ E′(X) and any r ∈ R.
b) (invisible singularity) If η 6∈ C(y) then Λu is microlocally C∞ at (y, η) for any u ∈ E′(X).

Proof. a) According to Theorem 2.5 we only need to validate the statement about the microlocal
ellipticity of Λ.

First, let η1 > 0. Define m := η2/η1 and the cone

Vε =
{

(λ,mλ)> : λ ≥ 0,m ∈ [m− ε,m+ ε]
}

where ε > 0. Obviously, Vε is a conic neighborhood of η and

(3.32) ∀ ξ ∈ Vε\{0} : m− ε ≤ ξ2

ξ1

≤ m+ ε.

Let Bρ ⊂ X be a closed ball centered at y with a sufficiently small radius ρ > 0. Since
η ∈ C(y) and η1 6= 0 we have η ∈ C+(y) or η ∈ C−(y), say, η ∈ C+(y). Using

1

|ωB(s+,x)| =
N+

(
x, (1, ξ2/ξ1)

)
|ξ1|
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we obtain

σ(Λ)(x, ξ) ≥ |ξ|2 Σ(x, ξ)

|ξ1|
with numerator

Σ(x, ξ) = ψ
(
s+(x, ξ2/ξ1), ϕ(s+(x, ξ2/ξ1),x)

)
W
(
s+(x, ξ2/ξ1),x

)
×Θ

(
s+(x, ξ2/ξ1),x

)
N+

(
x, (1, ξ2/ξ1)

)
.

In view of (3.32) and by continuity we may decrease ε and ρ such that Σ attains a positive
minimum in Bρ × Vε\{0}:

cε,ρ := min
{

Σ(x, ξ) : x ∈ Bρ, ξ ∈ Vε\{0}
}
> 0.

Hence,

∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : σ(Λ)(x, ξ) ≥ cε,ρ
|ξ|
|ξ1|
|ξ| ≥ cε,ρ |ξ|.

The case η1 < 0 can be handled similarly.
Finally, we consider η ∈ C(y) with η1 = 0. Assume η2 > 0. Here, we choose ε > 0 and

Vε =
{

(mλ, λ)> : λ ≥ 0,m ∈ [−ε, ε]
}

as conic neighborhood of η with the property that

(3.33) ∀ ξ ∈ Vε\{0} :
∣∣∣ξ1

ξ2

∣∣∣ ≤ ε.

Let ξ ∈ Vε\{0}. Note that |ξ2/ξ1| ≥ 1/ε (where 1/0 := ∞). Consider for the time being
ξ1 ≥ 0. Then, for any δ > 0 we can find ε = ε(δ) > 0 and ρ = ρ(δ) > 0 such that

(3.34) ∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : s−(x, ξ2/ξ1) ∈ [x1− δ, x1 + δ] and s+(x, ξ2/ξ1) ≥ 1/δ

where Bρ is as above (in case of ξ1 ≤ 0: s+(x, ξ2/ξ1) ∈ [x1 − δ, x1 + δ] and s−(x, ξ2/ξ1) ≤
−1/δ). Thus, for δ sufficiently small

ψ
(
s−(x, ξ2/ξ1), ϕ(s−(x, ξ2/ξ1),x)

)
> 0 and ψ

(
s+(x, ξ2/ξ1), ϕ(s+(x, ξ2/ξ1),x)

)
= 0

for any ξ ∈ Vε\{0}, ξ1 ≥ 0, and x ∈ Bρ. Now, σ(Λ)(x, ξ) consists of one term only (namely
the one with s = s−). We write

1

|ωB(s−,x)| =
N−
(
x, (ξ1/ξ2, 1)

)
|ξ2|

to get

σ(Λ)(x, ξ) ≥ |ξ|2 Σ(x, ξ)

|ξ2|
with

Σ(x, ξ) = ψ
(
s−(x, ξ2/ξ1), ϕ(s−(x, ξ2/ξ1)),x)

)
W
(
s−(x, ξ2/ξ1),x

)
×Θ

(
s−(x, ξ2/ξ1),x

)
N−
(
x, (ξ1/ξ2, 1)

)
.

By continuity, (3.33), and (3.34) we may decrease δ such that

cε,ρ := min
{

Σ(x, ξ) : x ∈ Bρ, ξ ∈ Vε\{0}
}
> 0.

Similar arguments in case ξ1 ≤ 0 let us conclude with

∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : σ(Λ)(x, ξ) ≥ cε,ρ
|ξ|
|ξ2|
|ξ| ≥ cε,ρ |ξ|.
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The case η2 < 0 can be treated analogously.
The proof of part b) follows the lines of [20, Rem. 3.3]. �

The result of the above proposition differs fundamentally from a similar result in the situation
of a constant sound speed v(·) = b where singularities (y, η) of n with η2 = 0 are not visible in
Λn (whatever the choice of ψ and S is), see [10]. The increasing sound speed (3.1), however,
allows to recover those singularities, in principle.

Now we investigate how the top order symbol σ(Λ)(x, ξ) behaves as depth increases, that is,
as x2 →∞ while x1 and ξ are kept fixed. In case ξ1 = 0 and ξ2 6= 0 we have s = x1 leading to

(3.35)
1

|ωB(s,x)| =
1∣∣ξ2 ∂2

x1
ϕ(s,x)

∣∣ � a4

4

x2
2

|ξ2|
as x2 →∞

where � indicates that the terms are asymptotically equal. The situation is a bit more involved
in the general situation of ξ1 6= 0. From (3.31) we obtain

S± � q̃± x2 as x2 →∞
with q̃± := q ±

√
1 + q2 and q = ξ2/ξ1. Using

(H + 2)3/2H3/2 � a3

8b3

(
1 + q̃2

±
)3
x3

2 as x2 →∞

we arrive at

(3.36)
1

|ωB(s±,x)| �
a

8

(1 + q̃2
±)2

|(1− q̃2
±)q/2− q̃±|

x2
2

|ξ1|
as x2 →∞.

Next, we investigate the asymptotics of Θ(s,x) as x2 → ∞. Now let (s, ω,x) ∈ Π−1
R (x, ξ),

ξ1 6= 0. By, (3.5), (A.2), (A.3), and (3.31),

(3.37) Θ(s±,x) � C2
A

1 + q̃2
±

2b

a2

1

x3
2

as x2 →∞.

In case ξ1 = 0 we have s = x1 and

(3.38) Θ(s,x) � 2b2

a2

C2
A

x3
2

as x2 →∞.

We summarize our results in the following proposition. For its compact formulation we intro-
duce new notation:

Ψ±(x, q) := ψ
(
s±(x, q), ϕ(s±(x, q),x)

)
.

Proposition 3.6. Let (x, ξ) ∈ T ∗(X). Set q = ξ2/ξ1 for ξ1 6= 0, q̃± = q ±
√

1 + q2, and
Ξ± = |(1− q̃2

±)q − 2q̃±|.
If W = Θ in (3.24) (i.e. F † = F ∗) then

σ(Λ)(x, ξ) �


2π

b2

a3

C4
A

x4
2

(
Ψ+(x, q)

Ξ+

+
Ψ−(x, q)

Ξ−

)
|ξ|2
|ξ1|

: ξ1 6= 0,

2π b4 C4
A

x4
2

ψ
(
x1, ϕ(x1,x)

) |ξ|2
|ξ2|

: ξ1 = 0,

as x2 →∞.
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If W = 1/Θ in (3.24) then

σ(Λ)(x, ξ) �


π

4
a x2

2

(
Ψ+(x, q)

(1 + q̃2
+)2

Ξ+

+ Ψ−(x, q)
(1 + q̃2

−)2

Ξ−

)
|ξ|2
|ξ1|

: ξ1 6= 0,

π

2
a4x2

2 ψ
(
x1, ϕ(x1,x)

) |ξ|2
|ξ2|

: ξ1 = 0,

as x2 →∞.

Proof. We only need to combine (3.29) with (3.35), (3.36), (3.37), and (3.38). �

The above proposition clearly reveals that the top order symbols for both weights depend
on x2. Hence, jumps in n having the same height but being located at different depths should
be reconstructed with different jump height in Λn. While the weight W = Θ diminishes,
the weight W = 1/Θ magnifies jumps. These shortcomings can be overcome by a slight
modification of Λ. Indeed, let M2 be the operator which multiplies a distribution in D′(X) by
the monomial x2. Then, the imaging operators

Λmod,1 = ∆M4
2F
∗ψF for W = Θ and Λmod,2 = ∆M−2

2 F †ψF for W = 1/Θ

are still ΨDOs of order 1 with top order symbols which are asymptotically independent of the
depth variable. Hence, jumps in n should be reconstructed relatively independently of their
depths (provided the jumps of n are visible in Λmod,in, compare Proposition 3.5).

Remark 3.7. We expect statements analogous to Propositions 3.5 and 3.6 to hold even for
α > 0 because the geometry of the isochrones (3.21) that determine the visible singularities
are similar to those spheres which are the isochrones for α = 0, compare Remark 3.1 and see
Figure 1.

We finish this section with a numerical example where the underlying background sound
speed is v(x) = 0.5 + 0.1x2 and the used common offset is α = 5. Thus, the characteristic
values are

tmin ≈ 17.63 and xmin ≈ 2.07,

that is, the Bolker condition is satisfied in the sense of Conclusion 3.4 for X = {x ∈ R2 : x2 >
xmin} and Y = S × (tmin,∞) but it is violated off these sets. We use the phantom n shown in
the left of Figure 3 together with some isochrones to travel times close to tmin. The isochrone
for t = tmin is the geodesic connecting source with receiver.

The numerical approach of [11] has been adapted to non-constant background velocity and
yields the numerical approximations to Λn = ∆F ∗ψg and Λmod,1n = ∆M2

2F
∗ψg presented in

the bottom of Figure 3 from discrete data g = Fn. The reconstructions exhibit some cutoff-
artifacts but the parts of the singular support of n with horizontal normal directions are visible
as predicted by Proposition 3.5. Moreover, while the ellipticity of Λ deteriorates with depth,
the ellipticity of Λmod,1 is asymptotically independent of it.

The illustration and numerical approximations in Figure 3 were kindly provided by Kevin
Ganster5. The underlying algorithm and further examples will be published elsewhere.

5Department of Mathematics, Karlsruhe Institute of Technology, kevin.ganster@kit.edu
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FIGURE 3. Top: Illustration of phantom n. It consists of a superposition of indicator
functions of circular disks and a half-space. The colors white, grey, and black repre-
sent the numerical values 0, 1, and 2 respectively. Moreover, the colored curves are
isochrones L0,t for ten selected travel times as specified in the legend. The black dots
mark source and receiver positions.
Bottom: Numerical approximations of Λn = ∆F ∗ψg (left) and Λmod,1n = ∆M4

2F
∗ψg

(right) computed from g(s, t) = Fn(s, t) for discrete values s ∈ [−10, 10] and
t ∈ [17.628, 47.628]. Both reconstructions show those parts of the singular support
of n with horizontal normal directions (indicated by red dots in the top image).

4. STABILITY OF THE TRAVEL TIME WITH RESPECT TO SOUND SPEED

In this section we study the dependence of the phase function Φ in the FIO representation
(1.6) of the operator F on the background sound speed v = v(x). We recall that the phase
function is given by

Φ(s, t,x, ω) = ω(t− ϕ(s,x)),

where

ϕ(s,x) = τ(x,xs(s)) + τ(x,xr(s))

and τ(x,xs) is the solution to the eikonal equation (1.4). Hence we first consider this equation
in the following section.
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4.1. Solving the eikonal equation. We denote by Rd
+ = {x = (x1, . . . , xd) ∈ Rd : xd > 0}

the subsurface (here d = 2 or d = 3). In Rd
+ we consider the eikonal equation

(4.1) |∇τ(x)|2 =
1

v(x)2

for the travel time τ of rays starting from a fixed point x0 ∈ ∂Rd
+ on the surface. Here v ∈

C∞(cl(Rd
+)) denotes the smooth and positive sound speed in the subsurface, and we write

C∞(cl(R+)) for the set of all functions g : cl(Rd
+) → R that are C∞ in Rd

+ and, together with
all derivatives, have continuous extensions to cl(Rd

+).
We also need that the solution τ is a smooth function of the initial condition x0 ∈ ∂Rd

+ in
order to get a smooth phase function, but we will suppress this dependence for the moment.

We study (4.1) as a special case of the equation

H(x, u,∇u) = 0

for a real-valued function u = u(x) on a subset of Rd where the Hamiltonian is given by

H(x, u,p) =
1

2

(
p · p− 1

v(x)2

)
for p ∈ Rd.

Note that H(x, u,p) = H(x,p) does not depend on u in our case.
According to [9, Chapter 10], solutions are thus obtained via solving the characteristic sys-

tem

(4.2)

ẋ = ∂pH(x,p) = p,

ṗ = −∂xH(x,p) = −∇v(x)
v(x)3

,

u̇ = p · ∂pH(x,p)−H(x,p),= 1
2

(
|p|2 + 1

v(x)2

)
.

We see that u is obtained by simple integration and thus we can concentrate on the (x,p)-
subsystem.

The initial conditions corresponding to those in (1.4) are

(4.3) x(0, ξ) = x0, p(0, ξ) =
1

v(x0)
ξ, u(0, ξ) = 0,

where ξ ∈ Sd−1
+ = {ξ ∈ Rd : |ξ| = 1, ξd > 0} as we are considering the subsurface.

Remark 4.1. If there is an ε0 > 0 such that v(x) = v0 > 0 for x ∈ cl(Rd
+) with xd ∈ [0, ε0],

then if a ray starts from x0 ∈ ∂Rd
+ in a direction ξ ∈ Sd−1

+ , we have an explicit formula for
t ∈ [0, ε0v0], namely

x(t, ξ) = x0 +
t

v0

ξ, p(t, ξ) =
1

v0

ξ, u(t, ξ) =
t

v2
0

,

which, for x ∈ Rd
+ with |x − x0| ≤ ε0, leads via v0(x − x0) = tξ to t = v0|x − x0| and the

well-known τ(x) = u(x) = |x−x0|
v0

.

We want to solve the system (4.2) for t ≥ 0 with initial conditions (4.3). Assuming

(4.4) v(x) is bounded away from 0 and ∇v is bounded,

the system (4.2) with initial conditions (4.3) has a unique global solution: local existence and
uniqueness hold by Picard-Lindelöf, and since the right hand side of the (x,p)-subsystem has
linear growth in p the solution exists globally (this is an application of the Gronwall lemma).
Since v is defined on cl(Rd

+), “globally” means here that, for fixed ξ ∈ Sd−1
+ , the maximal
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t-interval is either [0,∞) and we set Tmax(ξ) :=∞ or it is a compact interval [0, Tmax(ξ)] with
x(Tmax(ξ), ξ) ∈ ∂Rd

+, which means that the ray resurfaces.
In order to obtain a solution τ of the eikonal equation (4.1) we parametrize Sd−1

+ by ξ′ in
the open unit ball Bd−1 in Rd−1 via ξ =

(
ξ′,
√

1− |ξ′|2
)
. We let Tmax(ξ′) := Tmax(ξ) for

ξ′ ∈ Bd−1 and denote by

Qmax := {(t, ξ′) ∈ (0,∞)×Bd−1 : t ∈ (0, Tmax(ξ′))}

the (open) parameter set for the family of maximal solutions of (4.2) with (4.3). We introduce
the map

Ψx0 : Qmax → Rd
+, (t, ξ′) 7→ x(t, ξ),

where the subscript x0 refers to the point x0 ∈ ∂Rd
+ we fixed at the beginning. (Of course, also

the solutions x, u, p, and the maximal existence time Tmax(ξ′) depend on x0 but we skip this
dependence in notation.)

If the sound speed is constant, v = v0, then Qmax = (0,∞) × Bd−1 and Ψx0 : (0,∞) ×
Bd−1 → Rd

+ is a diffeomorphism (see Remark 4.1 above with ε0 →∞). For our linear velocity
model only the ray with ξ′ = 0 does not resurface and we have Tmax(ξ′)→ 0 for |ξ′| → 1 (see
Appendix A), but also here the map Ψx0 above is a diffeomorphism. Observe in both cases that
the diffeomorphism Ψ−1

x0
“degenerates” as we approach the initial point x0 from the subsurface.

In the general case, rays may intersect in the subsurface, and this is something we want to
exclude. So we let

Quniq := {(t, ξ′) ∈ Qmax : (Ψx0)
−1 (Ψx0(t, ξ

′)) = (t, ξ′)}.

This means that Ψx0(Quniq) is the set of points in the subsurface that are hit (exactly once) by
a unique ray from x0. In the two examples of a constant v = v0 or a linearly growing v we
clearly have Quniq = Qmax.

In the following we thus consider Ψx0 : Quniq → Rd
+. We might only have that a suitable

restriction of this map Ψx0 is a diffeomorphism. Hence we assume for the sound speed v:

(4.5) there exists a continuous T : Bd−1 → (0,∞) such that the restriction of Ψx0 to
Q := {(t, ξ′) : ξ′ ∈ Bd−1, t ∈ (0, T (ξ′))} is a diffeomorphism onto Ψx0(Q).

SinceQ ⊂ Quniq, in particular each point x in the subset Ψx0(Q) of the subsurface is hit exactly
once by a unique ray emanating from the fixed point x0 on the surface. Under (4.5) the function

τ(x) := τ(x,x0) := u(Ψ−1
x0

(x)), x ∈ Ψx0(Q),

is the desired solution to the eikonal equation (4.1), existing on Ψx0(Q). As explained above,
in our linear velocity model, we can take Q = Qmax and have Ψx0(Qmax) = Rd

+. Varying the
source point x0 of the rays in an open set L ⊂ bd(Rd

+) we assume moreover

(4.6) v is such that the map Ψx0 : Q→ Rd
+ depends smoothly on x0 ∈ L.

Here we assume for simplicity that the same Q can be used for all x0 ∈ L. In particular, this
means that the Q in (4.5) has to be a subset of Quniq for every x0 ∈ L. Obviously, this is no
restriction if v only depends on depth, i.e., only depends on xd. The assumption (4.6) is clearly
satisfied for the linear velocity model where (x,x0) 7→ τ(x,x0) is smooth on Rd

+ × ∂Rd
+ (see

Appendix A).
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4.2. Perturbation of the sound speed. Let v0 be a given sound speed satisfying (4.4), (4.5),
and (4.6) in place of v. We now assume that v1 ∈ C∞(cl(Rd

+)) is another sound speed satisfying
(4.4) such that

(4.7) the support of v1 − v0 is contained in {x ∈ Rd
+ : xd ≥ ε0} for some ε0 > 0.

For j = 0, 1, we denote by xj,pj, uj the solution to the characteristic system (4.2) with sound
speed v replaced by vj and with the same initial values (4.3), which then induces a function
T jmax : Bd−1 → (0,∞], parameter sets Qj

max and Qj
uniq and a map Ψj

x0
: Qj

uniq → Rd
+ as before.

We denote by τ0(·) the solution to (4.1) with sound speed v0 for a fixed initial value x0 ∈
∂Rd

+ (which exists by assumption (4.5) for v0). By a perturbation argument, we shall obtain a
solution τ1(·) to (4.1) with sound speed v1. The assumption ε0 > 0 guarantees that Ψ0

x0
and Ψ1

x0

coincide for small values of t. For the perturbation argument we thus can stay away from x0

where the diffeomorphism Ψ0
x0

degenerates. More precisely, we shall consider compact subsets
K ⊂ Q of the form

(4.8) K = {(t, ξ′) : ξ′ ∈ K0, t ∈ [a(ξ′), b(ξ′)]}
where K0 ⊂ Bd−1 is the compact closure of a smooth domain and a, b : K0 → (0,∞) are
smooth and satisfy, for any ξ′ ∈ K0,

0 < a(ξ′) < b(ξ′) < T (ξ′) and {x(t, ξ′) : t ∈ (0, a(ξ′)]} ⊂ {x ∈ Rd
+ : xd ∈ (0, ε0)}.

The following is the main part of the perturbation result.

Proposition 4.2. Let v0 ∈ C∞(cl(Rd
+)) be a sound speed satisfying (4.4), (4.5), and (4.6) in

place of v. Let K ⊂ Q be compact and of the form (4.8) above. Let δ > 0 and let K1 ⊂ Rd
+ be

the compact closure of an open neighborhood of Ψ0
x0

(K). If v1 ∈ C∞(cl(Rd
+)) satisfies (4.4)

and (4.7) and is sufficiently close to v0 in C2-norm on K1 then K ⊂ Q1
max and Ψ1

x0
: Q1

max →
Rd

+, (t, ξ′) 7→ x1(t, ξ′), gives rise to a diffeomorphism of an open set U ⊃ K with cl(U) ⊂ Q
and Ψ0

x0
(K) ⊂ Ψ1

x0
(U) and the solutions τ0 and τ1(x) := u1((Ψ1

x0
)−1(x)) satisfy

(4.9) |τ0(x)− τ1(x)| ≤ δ,

for all x ∈ Ψ0
x0

(K).
If C ⊂ ∂Rd

+ is compact, then K2 is the compact closure of an open neighborhood of⋃
x0∈C Ψ0

x0
(K), and if v0 and v1 are sufficiently close in C2-norm on K2 then, for x0 ∈ C,

τ1(·,x0) exists on Ψ0
x0

(K) and we have

|τ0(x,x0)− τ1(x,x0)| ≤ δ

for all x ∈ Ψ0
x0

(K) and x0 ∈ C.

Proof. Clearly we obtain the solutions x1,p1, u1 by letting, for ξ′ ∈ K0 and t ∈ [0, a(ξ′)],

x1(t, ξ) = x0(t, ξ), p1(t, ξ) = p0(t, ξ), u1(t, ξ) = u0(t, ξ),

and then solving (4.2) with initial conditions

x1(a(ξ′), ξ) = x0(a(ξ′), ξ), p1(a(ξ′), ξ) = p0(a(ξ′), ξ), u1(a(ξ′), ξ) = u0(a(ξ′), ξ),

which are non-degenerate. Here we have used assumption (4.7).
If v1 − v0 is sufficiently small in C1-norm on K1 then the solutions x0(t, ξ′) and x1(t, ξ′), as

well as u0(t, ξ′) and u1(t, ξ′) can be made arbitrarily close in sup-norm on K, since solutions
to ODE systems depend continuously on the right hand side and on parameters.

Here we need also that derivatives of Ψ0
x0

and Ψ1
x0

with respect to t and the parameter ξ′

are close to each other. This follows by the same arguments, as ∂tΨ0
x0

and ∂ξ′Ψ0
x0

are given as
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solutions to ODE systems involving derivatives of the right hand side of (4.2). We thus need
that v1 is close to v0 in C2-norm on K1.

On the compact set K we have inf |detDΨ0
x0

(t, ξ′)| > 0, and if DΨ0
x0

(t, ξ′) and DΨ1
x0

(t, ξ′)
are sufficiently close on K we infer that DΨ1

x0
(t, ξ′) ∈ Rd×d is regular for each (t, ξ′) ∈ K.

Hence Ψ1
x0

is locally an isomorphism on an open superset U of K and we may assume cl(U) ⊂
Q. Thus it only remains to show that Ψ1

x0
is injective on K.

By smoothness of a and b on the compact set K0, the set K has a Lipschitz boundary and
there exists c > 0 such that, for any two points (t1, ξ

′
1), (t2, ξ

′
2) ∈ K, we find a C1-curve

γ : [0, 1]→ K connecting these two points with length L ≤ c|(t1, ξ′1)− (t2, ξ
′
2)|. Then we have

Ψ1
x0

(t2, ξ
′
2)−Ψ1

x0
(t1, ξ

′
1) =

∫ 1

0

(DΨ1
x0

)
(
γ(r)

)
γ̇(r) dr

= Ψ0
x0

(t2, ξ
′
2)−Ψ0

x0
(t1, ξ

′
1) +

∫ 1

0

(
DΨ1

x0
−DΨ0

x0

)(
γ(r)

)
γ̇(r) dr.

By compactness of K we obtain a constant η0 > 0 such that

|Ψ0
x0

(t2, ξ
′
2)−Ψ0

x0
(t1, ξ

′
1)| ≥ η0|(t2, ξ′2)− (t1, ξ

′
1)| for all (t1, ξ

′
1), (t2, ξ

′
2) ∈ K.

Since∣∣∣ ∫ 1

0

(
DΨ1

x0
−DΨ0

x0

)(
γ(r)

)
γ̇(r) dr

∣∣∣ ≤ sup
(t,ξ′)∈K

∣∣(DΨ1
x0
−DΨ0

x0

)
(t, ξ′)

∣∣L |(t2, ξ′2)− (t1, ξ
′
1)|,

we thus obtain, if DΨ1
x0

and DΨ0
x0

are sufficiently close on K,

|Ψ1
x0

(t2, ξ
′
2)−Ψ1

x0
(t1, ξ

′
1)| ≥ η0

2
|(t2, ξ′2)− (t1, ξ

′
1)| for all (t1, ξ

′
1), (t2, ξ

′
2) ∈ K.

In particular, Ψ1
x0

is injective on K, and we find U as desired.
We may run the same arguments with a superset K ′ ⊃ K of the form (4.8) satisfying K ⊂

int(K ′) and Ψ0
x0

(K ′) ⊂ int(K1). The boundary points of Ψ0
x0

(K ′) and Ψ1
x0

(K ′) are close if v0

and v1 are close in C2-norm on K1. Hence we can arrange for Ψ0
x0

(K) ⊂ Ψ0
x0

(K ′)∩Ψ1
x0

(K ′).
Letting τ1(x) := u1((Ψ1

x0
)−1(x)) for x ∈ Ψ1

x0
(K ′) we have, for x ∈ Ψx0(K

′) ∩Ψ1
x0

(K ′),

|τ0(x)− τ1(x)| ≤ |u1((Ψ1
x0

)−1(x))− u0((Ψ1
x0

)−1(x))|+ |u0((Ψ1
x0

)−1(x))− u0((Ψ0
x0

)−1(x))|
≤ sup

(t,ξ′)∈K′
|(u1 − u0)(t, ξ′)|+ sup

(t,ξ′)∈K′
|∇u0(t, ξ′)| |(Ψ1

x0
)−1(x)− (Ψ0

x0
)−1(x)|.

We know that u1−u0 can be made small in sup-norm onK ′, and from the arguments above it is
clear that (Ψ1

x0
)−1 and (Ψ0

x0
)−1 are as close as we wish on Ψ0

x0
(K) if v0 and v1 are sufficiently

close in C2-norm on K1.
Using (4.6) and another compactness argument we prove the last assertion. �

For application of Theorem 5.2 below to our situation, we need closeness of the correspond-
ing phase functions ϕ0 and ϕ1 in C3-norm, see (5.14) and the definition of Pj , (5.4). We recall
that, e.g., ϕ0 is given by

ϕ0(s,x) = τ0(x,xs(s)) + τ0(x,xr(s))

where xs,xr : S ′ → ∂Rd
+ are smooth parameterizations of the source/receiver pairs over an

open set S ′ ⊂ Rd−1. In the situation of Proposition 4.2, i.e. if v0 satisfies (4.4), (4.5), and (4.6),
and

(4.10) xs(S
′) ∪ xr(S

′) ⊂ L,
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we have that ϕ0 is defined at least on the set

(4.11) U0 := {(s,x) ∈ S ′ × Rd
+ : x ∈ Ψ0

xs(s)(Q) ∩Ψ0
xr(s)(Q)},

this set is open, and ϕ0 : U0 → R is smooth.
The following notion seems natural in the given situation.

Definition 4.3. For a subset K ⊂ U0 we define the ray closure r(K) ⊂ cl(Rd
+) (with respect to

v0) to be the union of all trajectories of the parts of rays connecting xs(s) or xr(s) and x where
(s,x) ∈ K.

The motivation for this definition is that, for any (s,x) ∈ K, the travel time from xs(s) or
xr(s) to the point x is affected by the values of the velocity on the trajectory of the ray that hits
x before it hits. Observe that the ray closure of a compact set K is a compact subset of cl(Rd

+).

Theorem 4.4. Let v0 satisfy (4.4), (4.5), and (4.6). Let S ′ ⊂ Rd−1 be open and assume that
xs,xr : S ′ → ∂Rd

+ are smooth and satisfy (4.10). Let v1 ∈ C∞(cl(Rd
+)) satisfy (4.4) and (4.7).

Let K ⊂ U0 be compact and δ0 > 0. If v1 − v0 is sufficiently small in C5-norm on the compact
closure M ⊂ cl(Rd

+) of an open neighborhood of the ray closure of K then

‖ϕ1 − ϕ0‖C3(K) ≤ δ0.

Moreover, if∇xϕ0 6= 0 on K and ‖v1− v0‖C5(M) is sufficiently small, then we have in addition
that ∇xϕ1 6= 0 on K.

Proof. Applying Proposition 4.2 we obtain ϕ1. We have to look at derivatives of ϕ0 and ϕ1

with respect to x and the parameter s, i.e. at derivatives of solutions to the eikonal equation
(4.1) with respect to x and initial values x0. Hence we need derivatives of solutions u0 (and u1)
to (4.2) with respect to t, ξ′ and x0 as well as derivatives of the diffeomorphisms (Ψ0)−1 and
(Ψ1)−1. The latter boils down to derivatives of Ψ0 and Ψ1. All these derivatives are solutions to
ODE systems involving derivatives of the right hand side in (4.2). The first claim now follows
by the same arguments as in the proof of Proposition 4.2.

For the proof of the second claim we put

δ1 := inf

{
max
j=1,...,d

|∂xjϕ0(s,x)| : (s,x) ∈ K
}
.

By compactness of K and assumption we have δ1 > 0. Now we choose 0 < δ̃0 < min{δ0, δ1}
and apply the first claim with δ̃0 in place of δ0. Then we have, for (s,x) ∈ K,

max
j=1,...,d

|∂xjϕ1(s,x)| ≥ max
j=1,...,d

|∂xjϕ0(s,x)| − δ̃0 ≥ δ1 − δ̃0 > 0,

which proves the claim. �

Recall that ϕ0 is just a part of the phase function

Φ0(s, t,x, ω) = ω (t− ϕ0(s,x)) ,

and in order to satisfy Definition 2.2 we need ϕ0 defined on a set S ′ ×X0, where X0 ⊂ Rd
+ is

open, and we need that −∇xΦ0 = ω∇xϕ0(s,x) does not vanish on S ′ ×X0 where ω 6= 0, i.e.
we need∇xϕ0 6= 0 on S ′ ×X0. In a first step we let

(4.12) Ξ0 :=
⋂
s∈S′

Ψ0
xs(s)(Q) ∩Ψ0

xr(s)(Q).

Observe that S ′ × Ξ0 ⊂ U0. Then we set

(4.13) X0 := int ({x ∈ Ξ0 : ∇xϕ0(s,x) 6= 0 for all s ∈ S ′ }) .
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Finally, for our applications below, the second claim in Theorem 4.4, applied to a compact
subsetK ⊂ S ′×X0 makes sure that in the situation of Theorem 4.4 also the perturbed function
ϕ1 gives rise to a phase function

Φ1(s, t,x, ω) = ω (t− ϕ1(s,x)) ,

in the sense of Definition 2.2.

Remark 4.5. The condition ∇xϕ0(s,x) 6= 0 means ∇xτ0(xs(s),x) 6= −∇xτ0(xr(s),x). By
construction via the characteristic system (4.2),∇xτ0(xs(s),x) = −∇xτ0(xr(s),x) means that
the ray emanating from xs(s) and the ray emanating from xr(s) meet smoothly at x (cp. [22,
p. 35]) or, in other words, it means that the prolongation of the ray from xs(s) to x eventually
hits xr(s). So we have to exclude points of Ξ0 lying on trajectories of rays that directly connect
source xs(s) and receiver xr(s). We mention here that the argument [22, p. 35], where no
points have to be excluded, relies on the assumption that the velocity v0 is constant close to the
surface (and on uniqueness of connecting rays).

In our linear velocity model, where all (but one) of the rays starting from a fixed point x0

resurface, and in the common offset geometry with parameter α > 0 source xs(s) and receiver
xr(s) have a fixed distance 2α. Rays connecting xs(s) and xr(s) only reach a certain maximal
depth. In other words, points in X0 need to have a certain minimal depth, given by xmin in
(3.4).

5. STABILITY OF THE IMAGING OPERATOR WITH RESPECT TO PHASE FUNCTION

The main result of this section, Theorem 5.2, asserts that if the phase functions of FIOs F0

and F1 are close enough in a precise way and if F0 satisfies the Bolker condition, then F1 also
satisfies the Bolker condition. In section 5.3, we will apply this to the seismic operator with
small offset and to operators with travel time close to ones for which the forward operator
satisfies the Bolker condition.

5.1. The setup. First we provide some notation. Let U and V be subsets of Rd. If cl(U) is
compact, then we say U is precompact. If U is precompact and cl(U) ⊂ V , then we write
U b V .

If M is a matrix in Rm×n, we define the sup norm of M , ‖M‖, to be the maximum of the
absolute values of the entries of M .

If G is a differentiable map with domain B and cl(A) ⊂ B, then we will say G is an
immersion (respectively, injective) on A if G is an immersion (respectively, injective) on some
open neighborhood of cl(A). Let X be an open subset of Rd and ` ∈ N. Finally, let G be a
C` function from X to either Rn or Rm×n for some m,n. If A b X , then for m ∈ N, we
let ‖G‖Cm(A) denote the maximum of the sup norm of the component functions of G and their
derivatives up to order m on A.

Let X be an open subset of R2
+, and let S ′ be an open subset of R. For j = 0, 1, assume that

Fj is an FIO from E′(X) to D′(S ′ × (0,∞)) with phase function

(5.1) Φj(s, t,x, ω) = ω(t− ϕj(s,x)),

where ϕj : S ′ ×X → (0,∞) is smooth.
In this case, Fj is a FIO given by

(5.2) Fjn(s, t) =

∫
exp (ıΦj(s, t,x, ω)) Θj(s, t,x)n(x) dx dω

where Θj is a symbol satisfying Definition 2.1.



26 P. C. KUNSTMANN, E. T. QUINTO, AND A. RIEDER

The canonical relation for Fj is

Cj = {(s, t,−ω∂sϕj, ω dt;x, ω∇xϕj) : (s,x) ∈ S ′ ×X,ω ∈ R\{0}, t = ϕj(s,x)} ,
and it can be given global coordinates

(5.3) S ′×X×R\{0} 3 (s,x, ω) 7→ (s, ϕj(s,x),−ω∂sϕj(s,x), ω dt;x, ω∇xϕj(s,x)) ∈ Cj.

For j = 0, 1, we will let Πj
L be the left projection from Cj to T ∗(S ′ × (0,∞)) and Πj

R be
the corresponding right projection. Let A be a subset of S ′ × X . Then the projection Πj

L is
injective (or an immersion) on A× R\{0} (using coordinates (5.3)) if and only if

(5.4) Pj(s,x) = (s, ϕj(s,x), ∂sϕj(s,x))

has the same property for (s,x) ∈ A. We introduce the function Pj to simplify the calculations
since ω is given by the dt coordinate of ΠL in (5.3).

Note that if A b S ′ ×X , then

(5.5) ‖ϕ1 − ϕ0‖C3(A) ≥ ‖P1 − P0‖C2(A) .

Our next proposition is a key to the proof of Theorem 5.2 below.

Proposition 5.1. Let S b S ′ and Ω b X both be open and let Pj be as given in (5.4) where Fj
and ϕj are as given in (5.1) and (5.2) for j = 0, 1. Assume F0 satisfies the Bolker condition.
Then, there is a δ1 > 0 such that if

(5.6) ‖ϕ1 − ϕ0‖C3(S′×X) < δ1,

then,
(a) P1 is an immersion above cl(S × Ω), so C1 is a local canonical graph, and
(b) There is an ε1 > 0 depending on δ1 (and ϕ0, S, S

′,Ω and X) such that for all (s,x) ∈
cl(S × Ω), the function P1 : Bε1(s,x)→ R3 is injective.

Proof. We need to take some estimates on a superset of S×Ω with compact closure in S ′×X ,
so let S̃ and Ω̃ be open sets such that S b S̃ b S ′ and Ω b Ω̃ b X .

First, we prove part (a). Because F0 satisfies the Bolker condition and cl(S̃× Ω̃) is compact,
there is an m > 0 such that the derivative matrix satisfies

(5.7) |det (DP0(s,x))| ≥ m for all (s,x) ∈ cl(S̃ × Ω̃).

The determinant function is continuous on the space of 3× 3 matrices in sup norm, so there is
a δ1 > 0 such that

(5.8)
if ‖ϕ1 − ϕ0‖C3(cl(S̃×Ω̃)) < 2δ1, then

∀(s,x) ∈ cl(S̃ × Ω̃), |det (DP1(s,x))− det (DP0(s,x))| < m/2.

Therefore, |det (DP1(s,x))| ≥ m/2 for all (s,x) ∈ cl(S̃ × Ω̃), so P1 is an immersion on a
neighborhood of cl(S̃× Ω̃) and Π1

L is an immersion above S̃× Ω̃. Then, Π1
R must be an immer-

sion above this set by [15, Proposition 4.1.4] because C1 is a Lagrangian manifold. Therefore,
C1 is a local canonical graph above S̃ × Ω̃× R\{0}.

Without loss of generality, we will assume δ1 ≤ 1.
Now, we prove part (b). For A ∈ R3×3, let ‖A‖Op denote the operator norm of the map

R3 3 y 7→ Ay. Then, A 7→ ‖A‖Op is a continuous map in the sup norm on R3×3. This is true
because all norms are equivalent on finite dimensional normed linear spaces, due to the Heine
Borel Theorem.
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Since the map A 7→ A−1 is continuous on Gl(3), we see that

(5.9) A 7→
∥∥A−1

∥∥
Op is continuous on Gl(3).

We now prove that there is a d > 0 such that
∥∥DP−1

1 (s,x)
∥∥

Op ≤ d for all (s,x) ∈ cl(S̃× Ω̃)

and all ϕ1 satisfying (5.6).
Let C0 = DP0(cl(S̃ × Ω̃)). As the derivative DP0 is a continuous function, C0 is a compact

subset of Gl(3). Now, let C be the union of all closed balls of radius
√

3δ1 in R3×3 centered at
points of C0. Since C0 is a compact subset of Gl(3), we may assume C ⊂ Gl(3) (by making
δ1 smaller if needed).

By (5.5), for each (s,x) ∈ cl(S̃ × Ω̃), |DP1(s,x) − DP0(s,x)| ≤
√

3δ1. Therefore,
DP1(cl(S̃ × Ω̃)) ⊂ C. By (5.9), there is a maximum d > 0 on the compact set C to the contin-
uous function A 7→ ‖A−1‖Op. Therefore, for all (s,x) ∈ cl(S̃ × Ω̃),

∥∥DP−1
1 (s,x)

∥∥
Op ≤ d.

Let c = 1/d, then

(5.10) ∀(s,x) ∈ cl(S̃ × Ω̃), ∀y ∈ R3, ‖(DP1(s,x))y‖ ≥ c ‖y‖ .
For the rest of the proof let pkij(s,x) denote the ij entry of the 3 × 3 matrix DP k

j (s,x) for
k = 0, 1.

We claim there is an L > 0 depending only S̃ × Ω̃ and ϕ0 such that all first and second
derivatives of ϕ1 have Lipschitz norm bounded by L on any convex subset of cl(S̃ × Ω̃). First,
by compactness of cl(S̃× Ω̃), there is an L′ > 0 such that all second and third derivatives of ϕ0

are bounded above in sup norm by L′. Then, since (5.5) holds and δ1 ≤ 1, all second and third
derivatives of ϕ1 are bounded above in absolute value by L = L′ + 1. Then, a straightforward
Mean Value Theorem argument shows that all first and second derivatives of ϕ1 have Lipschitz
norms bounded above by L on any convex subset of cl(S̃ × Ω̃).

This implies that

(5.11)
∣∣p1
ij(s,x)− p1

ij(t,y)
∣∣ ≤ L |(s,x)− (t,y)|

for all (s,x) and (t,y) in any convex subset of cl(S̃ × Ω̃).
Let

(5.12) ε1 =
c

6L
.

Perhaps by making ε1 smaller, we can assume that the open ball Bε1(s,x) ⊂ S̃ × Ω̃ for all
(s,x) ∈ cl(S × Ω). By (5.11), if (s,x) ∈ cl(S × Ω) and (t,y) is in the convex set Bε1(s,x) ⊂
S̃ × Ω̃, then

(5.13) |(s,x)− (t,y)| < ε1 =⇒
∣∣p1
ij(s,x)− p1

ij(t,y)
∣∣ < c

6
.

This is exactly inequality (16.14) in the proof of Theorem 16.9 in [6] where the c in (5.10) is
exactly the constant in inequality (16.13) in [6]. The rest of our proof follows word for word
the proof of Theorem 16.9 in [6]. The conclusion of that theorem is that P1 is injective on
Bε1(s,x). Since (s,x) ∈ cl(S × Ω) is arbitrary, ε1 is independent of (s,x), and for every
(s,x) ∈ cl(S × Ω), P1 is injective on Bε1(s,x). �

5.2. Nearby travel times and the Bolker condition. We now state the main theorem of Sec-
tion 5.

Theorem 5.2. Let F0 and F1 be FIO from domain E′(X) to D′(S ′ × R+) given by (5.2). We
assume F0 : E′(X)→ D′(S ′ × R+) satisfies the Bolker condition.
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Let Ω b X and S b S ′ both be open. Then, there is a δ0 > 0 such that if

(5.14) ‖ϕ1 − ϕ0‖C3(S′×X) < δ0

then F1 : E′(Ω)→ D′(S × R+) satisfies the Bolker condition.

Proof. Our assumptions allow us to use Proposition 5.1 for S × Ω ⊂ S ′ × X . Let δ1 be as in
(5.8) and let ε1 > 0 be as in part (b) of Proposition 5.1 for S × Ω. Then, there is a δ0 ∈]0, δ1]
such that

(5.15)
for all s ∈ S and x and y in Ω,

|P0(s,x)− P0(s,y)| < 2δ0 =⇒ |(s,x)− (s,y)| < ε1.

This is an immediate consequence of the fact that P−1
0 is uniformly continuous from the com-

pact set P0 (cl(S × Ω)) to cl(S ×Ω) because P0 is a smooth injection on S ′ ×X and therefore
P−1

0 is also a smooth injection.
Now assume ‖ϕ1 − ϕ0‖C3(S′×X) < δ0. Let (s,x) and (t,y) be in Ω and assume P1(s,x) =

P1(t,y). By the definition of P1, s = t. Now, using (5.14) and the triangle inequality, one
sees that |P0(s,x) − P0(s,y)| < 2δ0. By (5.15), |x − y| < ε1, so (s,y) ∈ Bε1(s,x). Since
P1 is injective on this ball by Proposition 5.1, x = y. Therefore, P1 is injective on S × Ω and
F1 : E′(Ω)→ D′(S × R+) satisfies the Bolker condition. �

Somewhat related estimates have been used to prove injectivity of Radon transforms with
measures that are close to real analytic measures using the injectivity of Radon transforms with
those real analytic measures [8, Section 5].

5.3. Applications of our stability results. In this section, we apply the results of the previous
sections to show that the Bolker condition holds for a broader range of operators than just those
for the linear velocity model, as long as they are close to operators satisfying Bolker.

5.3.1. Small Offset. In Section 3, we showed that the seismic operator with linear wave speed
in dimension two satisfies the Bolker condition for zero offset, α = 0. We now show that
the operator with sufficiently small offset α > 0 also satisfies this condition. However, our
theorem is more general, and we will prove it for any travel time for which the zero-offset
operator satisfies the Bolker condition. The proof rests on the fact that ϕα for small offset, α,
is close to ϕ0 (which satisfies the Bolker condition), and this allows the use of Theorem 5.2.

Assume that the travel time τ is smooth from R2
+ × ∂(R2

+) to (0,∞). For α ≥ 0 define

(5.16)

Φα(s, t,x, ω) = ω(t− ϕα(s,x)),

where

ϕα(s,x) = τ(x, (s− α, 0)) + τ(x, (s+ α, 0))

and let

(5.17) Fαn(s, t) =

∫
exp (ıΦα(s, t,x, ω)) Θα(s, t,x)n(x) dx dω

where Θα is a symbol according to Definition 2.1.

Theorem 5.3. Let X be an open subset of R2
+. Using the notation of (5.16) (5.17), assume

F0 : E′(X) → D′(R × (0,∞)) is an FIO satisfying the Bolker condition. Let Ω b X be open
and let S b R be open.

Then, there is an α0 > 0 that depends on τ, S, X , and Ω, such that Fα : E′(Ω) → D′(S ×
(0,∞) satisfies the Bolker condition for all α ∈ [0, α0].
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Remark 5.4. Our theorem is valid in a somewhat more general setting. Assume that t0 ≥ 0,
α > 0, and Fα : E′(X)→ D′(S ′×(t0,∞)) is an FIO satisfying the Bolker condition (assuming
the function A(x,xs) in (1.6) is smooth). Then, our proof below shows there is a δ > 0
depending on ϕα, S ′, X, S, and Ω such that Fα : E′(Ω)→ D′(S× (t0,∞)) also satisfies Bolker
for |α− α| < δ. This is true because our proof rests on compactness and uniform continuity
arguments that can be used to show ϕα is sufficiently close to ϕα if α is sufficiently close to α.

Theorem 5.3 can be applied to linear, increasing wave speed, (3.1) as we now discuss. We
will write the constant xmin in (3.4) as xmin = xmin(α) since its dependence on α is important.

To apply Theorem 5.3, we first recall that F0 satisfies the Bolker condition as shown in
Section 3.1. Then, we choose an α2 > 0 and choose x0 > xmin(α2). We let

X =
{

(x1, x2)
∣∣x2 > x0

}
.

Therefore, isochrones intersect X only for t > tmin(α2). This allows us to use the arguments
in Section 3, including Remark 3.2, to assert Fα is an FIO for α ∈ [0, α2]. Next, we apply
Theorem 5.3 to conclude, for some α0 ∈ (0, α2], that

(5.18) Fα : E′(Ω)→ D′(S × (0,∞)) satisfies the Bolker condition for all α ∈ [0, α0].

The statement (5.18) includes no specific condition on x, but there is an implicit condition
since Ω b X , so x2 is bounded away from x0 for all points in Ω. By the discussion in Section 3.2
for linear wave speed, the Bolker condition holds only if x2 > xmin(α0) for all x ∈ Ω. Once Ω
is chosen, this gives an implicit restriction on α0, namely xmin(α0) < x2 for all x ∈ Ω.

Proof of Theorem 5.3. As mentioned at the beginning of this section, all we need to show is
that ϕα is sufficiently close to ϕ0 for α sufficiently close to zero.

We first show that Fα is an FIO for sufficiently small α. When Fα is an FIO, its canonical
relation is

Cα = {(s, t,−ω∂sϕα, ω dt;x, ω∇xϕα) : (s,x) ∈ S × Ω, ω ∈ R\{0}, t = ϕα(s,x)} ,
and Cα can be given coordinates

(5.19) (s,x, ω) 7→ (s, ϕα(s,x),−ω∂sϕα, ω dt;x, ω∇xϕα) .

Let α2 > 0. LetX be an open, precompact, convex set containing cl(Ω) and let S ′ be an open,
precompact, convex set containing cl(S + [−α2, α2]). Then, S ′ × X is an open, precompact,
convex set in R3.

Note that the symbol of F0, A(x,xs)2

v2(x)
(see (1.6)) is smooth by assumption. This means that the

function A(x,xs) must be smooth for s ∈ R and x ∈ X , and all α. Therefore, the symbol of
Fα is smooth.

To show that Φα is a nondegenerate phase function on S ′× (0,∞)×X×R\{0} for small α,
we note that ∂

∂t
Φα = ω is nonzero for all α. Therefore, we only need to check the x derivative.

As F0 is assumed to be an FIO satisfying Definition 2.2, −∇xΦ0 = ω∇xϕ0(s,x) is nowhere
zero on R× R2

+.
Note that the differentiable map

[−α2, α2]× (cl(S ′) + [−α2, α2])× cl(X) 3 (α, s,x) 7→ ∇xτ(x, (s− α,x)

is uniformly continuous because this domain is compact. Therefore, (α, s,x) 7→ ∇xϕα(s,x)
is uniformly continuous on [0, α2]× cl(S ′×X). Now, using uniform continuity and that∇xϕ0

is bounded away from zero on the compact set cl(S ′ × X), there is an α1 ∈ (0, α2] such that
∇xϕα(s,x) is bounded away from zero for all (α, s,x) ∈ [0, α1] × S ′ × X . This shows for
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α ∈ [0, α1] that Φα is a nondegenerate phase function according to Definition 2.2, and Fα is an
FIO from E′(X) to D′(S ′ × (0,∞)) satisfying Definition 2.3.

Let δ0 be as in Theorem 5.2 for this ϕ0, S, S
′,Ω, and X . We now show that for some α0 ∈

(0, α1],

(5.20) ∀α ∈ [0, α0], ‖ϕα − ϕ0‖C3(cl(S′×X)) < δ0.

This follows immediately since the function (α, s,x) 7→ ϕα(s,x) and its derivatives up to order
3 in (s,x) are uniformly continuous on the compact set [0, α1]× cl(S ′ ×X), therefore there is
an α0 ∈ (0, α1] such that∣∣∂βϕα(s,x)− ∂βϕ0(s,x)

∣∣ < δ0, for α ∈ [0, α0] and (s,x) ∈ cl(S × Ω)

for all partial derivatives in (s,x) up to order three, i.e., for |β| ≤ 3. Taking the sup over all
these derivatives shows that (5.20) holds for all α ∈ [0, α0].

By Theorem 5.2, this implies that Fα : E′(Ω)→ D′(S×(0,∞) satisfies the Bolker condition
for all α ∈ [0, α0]. �

5.3.2. Seismic operators with close traveltimes. In this section we show that, if the velocities
for two seismic experiments are close and the associated seismic operator for one satisfies the
Bolker condition, then the other seismic operator does, too, as long as the operators agree near
the surface, ∂Rd. We use the results of Section 4 to relate the velocities to the traveltime and
then use Theorem 5.2.

Theorem 5.5. Let v0 ∈ C∞(cl(Rd
+)) satisfy (4.4), (4.5), and (4.6). Let S ′ ⊂ Rd−1 be open

and assume that xs,xr : S ′ → ∂Rd
+ are smooth and satisfy (4.10). Let Ξ0 be given by (4.12),

assume that X0 defined in (4.13) is not empty, and that v0 induces an FIO F0 : E′(X0) →
D′(S ′ × (0,∞)) satisfying the Bolker condition.

Let v1 ∈ C∞(cl(Rd
+)) satisfy (4.4) and (4.7). Let S b S ′ and Ω b X0 be open.

If v1−v0 is sufficiently small inC5-norm on the compact closureM of an open neighborhood
M̃ of the ray closure (Definition 4.3) of cl(S × Ω) and if the amplitude function A0 is smooth
on (M̃ ∩ Rd

+) × L, where L is from (4.6) and (4.10), then v1 induces an FIO F1 : E′(Ω) →
D′(S × (0,∞)) that satisfies the Bolker condition.

Proof. We choose S̃ ′ and X such that S b S̃ ′ b S ′, Ω ⊂ X b X0, and M is still the closure
of an open neighborhood of the ray closure of cl(S̃ ′ × X). We shall apply Theorem 5.2 to
Fj : E′(X)→ D′(S̃ ′× (0,∞)), j = 0, 1. Clearly, F0 : E′(X)→ D′(S̃ ′× (0,∞)) is an FIO that
satisfies the Bolker condition.

We have to check that v1 induces an FIO F1 : E′(X) → D′(S̃ ′ × (0,∞)) and we have to
make ϕ1 − ϕ0 small in C3-norm on cl(S̃ ′ × X), which is a compact subset of S ′ × X0. To
this end we use Theorem 4.4, which asserts the required smallness of ϕ1 − ϕ0, if v1 − v0 is
sufficiently small in C5-norm on M , which is the compact closure of an open neighborhood of
the ray closure of cl(S̃ ′ ×X).

Moreover, by Theorem 4.4 we also have that v1 induces a phase function Φ1 on cl(S̃ ′ ×X).
For the amplitude function A1(x,x0) we solve the transport equation (1.5) (with A1 and τ1 in
place ofA and τ , respectively) as in [2, eq. (E3.9)], see also (A.1). Observe that the ray Jacobian
appearing there is just the determinant of DΨj

x0
(t, ξ′) in our situation. As initial values we can

take those of A0(x,x0) for x with xd ∈ (0, ε0) since v1(x) = v0(x) for such x. Hence we
conclude that v1 gives rise to an FIO F1 : E′(X) → D′(S̃ ′ × (0,∞)). Now application of
Theorem 5.2 finishes the proof. �
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APPENDIX A. THE AMPLITUDE FUNCTION

To find an explicit representation of the function Θ = Θ(s,x), see (3.5), we will use (1.5)
to get hold of A along seismic rays which are the characteristic curves of the eikonal equation
(1.4), see, e.g., [2, Appendix E2]. We rely on the ray system (4.2) (t ≥ 0 is the running
parameter)

dr

dt
= p, r(0) = xs;

dp

dt
= −∇v(r)

v3(r)
, p(0) =

ξ

v(r(0))
,

with a unit vector ξ = (ξ1, ξ2)> ∈ R2 (we denote the rays here by r rather than by x as in (4.2)
to comply with the notation of (3.5)). Note that p(t) = ∇τ(r(t)). Before we proceed with
solving the system we establish the connection of the rays to the amplitude: via the divergence
theorem follows from (1.5) that

(A.1) A2(r(t), r(0)) =
C2
A

| det Jr(t)|
where CA > 0 is a suitable constant and Jr is the Jacobian of r with respect to t and a variable
which parameterizes ξ, the initial directions of the rays, see [2, eq. (E3.9)].

For the time being let r(0) = 0 yielding p(0) = ξ/b. Then, the ray system has the following
explicit solution

r1(t) = p1(0)t =
ξ1

b
t, r2(t) =

b

a

(√
1− a2

b4
ξ2

1 t
2 + 2

a

b2
ξ2 t− 1

)
,

which can be verified by plugging in. We are only interested in down-going rays, so that ξ2 > 0.
Further, r2 ≥ 0 for t ∈ [0, tmax] where tmax = 2b2

a
ξ2
ξ21

, ξ1 6= 0 (these rays re-surface at tmax). In

case ξ1 6= 0, the orbits of the rays are arcs on the circles with centers z =
(
b
a
ξ2
ξ1
,− b

a

)
and radii

R = |z|. This fact was already reported in [21].
As ξ2 =

√
1− ξ2

1 we use ξ1 as additional parameter for the rays, that is, r = r(t, ξ1). Hence,

| det Jr| = |∂tr1∂ξ1r2 − ∂tr2∂ξ1r1| =
t

ξ2

√
b4 − a2ξ2

1 t
2 + 2 ab2ξ2 t

.

For given x ∈ X , x1 6= 0, we now find the unique ray connecting 0 with x. To this end we
need to determine the corresponding ξ1 where we use the feature that rays follow circular arcs
with centers z as explained above. For symmetry reasons we may assume that x1 > 0. Thus,(

x2 +
b

a

)2

+ (x1 − z1)2 =
b2

a2
+ z2

1

yielding

z1 =
1

2x1

((
x2 +

b

a

)2

+ x2
1 −

b2

a2

)
.

Since z1 = b
a

√
1−ξ21
ξ1

we get

ξ1 = ξ1(x) =
1√

1 + a2

4b2 x21

(
(x2 + b

a
)2 + x2

1 − b2

a2

)2

=
x1

|x|
√

1 + a
b
x2 + a2

4b2
|x|2

.
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Further,

r(t(x), ξ1(x)) = x for t(x) =
b x1

ξ1(x)
= b |x|

√
1 +

a

b
x2 +

a2

4b2
|x|2.

We conclude that

(A.2) A2(x,0) = C2
A

ξ2(x)
√
b4 − a2ξ2

1(x) t2(x) + 2 ab2ξ2(x) t(x)

t(x)
.

For arbitrary source position we get

(A.3) A(x,xs(s)) = A(x− xs(s),0).

Remark A.1. We do have that lima↘0A(x,0) = CA

√
b
√
x2/|x|. This limit is an amplitude

belonging to the wave speed v(x) = b with travel time τ(x,0) = |x|/b. Indeed,
√
x2/|x| solves

(1.5) for that τ . Another solution is 1/
√
|x|. Observe that the quotient of both amplitudes is

bounded from above and from below by positive constants on each cone given by |x1| ≤ cx2

where c > 0. In particular, both amplitudes have the same asymptotic behavior as x2 → ∞
while x1 remains bounded.

APPENDIX B. PROOF OF (3.19)

We set ε = ϑ− t/2 ∈ [−t/2, t/2] and express c1 as well as c2 as functions of ε. Then,

c1 + c2 = 2b(cosh(at/2) cosh(aε)− 1)/a, c1c2 = b2(cosh(aε)− cosh(at/2))2/a2.

Further,
(c1 − c2)2 = R2 sinh2(aε) with R = 2b sinh(at/2)/a.

It follows that

∆ = b2(R2 − 4α2)
(

1 +
a2α2

b2
− cosh2(aε)

)
.

Hence, ∆ ≥ 0 if and only if t ≥ tmin and ε ∈ [−ε∗, ε∗] where cosh2(aε∗) = 1 + a2α2/b2, that
is, ε∗ = tmin/2.

In this notation, (3.19) is equivalent to

(B.1)
2bα cosh(at/2) cosh(aε)−

√
∆

4α2 +R2 sinh2(aε)
<

b

2α
cosh(aε∗) for ε ∈ [−ε∗, ε∗].

As the left hand side is even in ε we restrict our attention to [0, ε∗]. We observe (B.1) to hold
for ε = 0 since

2α cosh(at/2)−
√
R2 − 4α2 aα/b < 2α cosh(aε∗)

⇐⇒ b(cosh(at/2)− cosh(aε∗)) < a
√
R2/4− α2

which is true for t > tmin. Further, (B.1) is also true for ε = ε∗ and t > tmin according to

4α2 cosh(at/2) cosh(aε∗) < 4α2 + 4α2
(

cosh2(at/2)− cosh2(aε∗)
)

⇐⇒ cosh(at/2) cosh(aε∗) < 1 + cosh2(at/2)− cosh2(aε∗).

To validate the general case we rewrite (B.1) equivalently into

R2 cosh(aε∗) ≤ f(ε)

with

f(ε) := R2 cosh(aε∗) cosh2(aε)− 4α2
(

cosh(at/2)− cosh(aε∗)
)

cosh(aε) + 2α
√

∆/b.
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We have just established that

f(0) ≥ R2 cosh(aε∗) and f(ε∗) ≥ R2 cosh(aε∗).

To finish the proof of (B.1) we consider the derivative of f :

f ′(ε) = 2a sinh(aε)
(
g(ε) + h(ε)

)
where

g(ε) = R2 cosh(aε∗) cosh(aε)− 2α2
(

cosh(at/2)− cosh(aε∗)
)

and

h(ε) = − α
√
R2 − 4α2 cosh(aε)√

cosh2(aε∗)− cosh2(aε)
.

The function g is positive and strictly increasing whereas h is negative and strictly decreasing
to −∞ in [0, ε∗[. Further, there is at most one ε̃ ∈ ]0, ε∗[ such that g(ε̃) = −h(ε̃).

We distinguish three cases.
(1) g(0) + h(0) > 0: Then, g + h > 0 in a neighborhood of ε = 0 and ε̃ exists, that is,

g+h ≥ 0 on [0, ε̃]. Hence, f ′|[0,ε̃] ≥ 0 on [0, ε̃] and f |[0,ε̃] ≥ R2 cosh(aε∗) since f(0) ≥
R2 cosh(aε∗). However, f |[ε̃,ε∗] ≥ R2 cosh(aε∗) as well since g+h is negative on [ε̃, ε∗[
implying f ′|[ε̃,ε∗[ ≤ 0 which yields the stated estimate by f(ε∗) ≥ R2 cosh(aε∗).

(2) g(0) + h(0) < 0: Then, g + h < 0 in a neighborhood of ε = 0 which readily implies
that g + h ≤ 0 on all of [0, ε∗] because g + h has one zero at most and has to approach
−∞. Hence, f ′|[0,ε∗[ ≤ 0 and f |[0,ε∗] ≤ R2 cosh(aε∗) by f(ε∗) ≥ R2 cosh(aε∗).

(3) g(0) + h(0) = 0: Then, either g + h > 0 or g + h < 0 in a neighborhood of ε = 0 and
we can proceed as in (1) or (2), respectively.

APPENDIX C. ON THE INJECTIVITY OF ΠL FOR POSITIVE OFFSET

Here we prove injectivity of the function ∂sϕ(0,x+
t (·)) over [ϑmin,2, ϑmax,2], see (3.22), if t

is sufficiently large.
Using the notation of Appendix B we get, for ε ∈ [−ε∗, ε∗],

f(ε) := ∂sϕ
(
0,x+

t (t/2 + ε)
)

=
4 sinh(aε)

(R2 − T 2) sinh2(aε) +R2

×
(
R2

aα
cosh(aε)− T (4α2 +R2 sinh2(aε))

aαT cosh(aε) + b
√
R2 − 4α2

√
cosh2(aε∗)− cosh2(aε)

)

=
4 sinh(aε)/a/α

(1− T 2/R2) sinh2(aε) + 1︸ ︷︷ ︸
=: g(ε)

×
aαT (R2 − 4α2) + cosh(aε)bR2

√
R2 − 4α2

√
cosh2(aε∗)− cosh2(aε)

aαTR2 cosh(aε) + bR2
√
R2 − 4α2

√
cosh2(aε∗)− cosh2(aε)︸ ︷︷ ︸

=: h(ε)

where T = 2b cosh(at/2)/a. Since T/R ≥ 1 the function g is strictly increasing in [0, ε∗] with
g(ε∗) = 4/((1 − T 2/R2)a2α2/b + b). Further, the function h is strictly decreasing in [0, ε∗]

from h(0) = 1 − 4α2T/(T +
√
R2 − 4α2)/R2 to h(ε∗) = (R2 − 4α2)/R2/

√
1 + a2α2/b2.
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Further, h′(0) = 0 and limε→ε∗ h
′(ε) = −∞. Hence, f strictly increases to its maximal value

attained at an εmax ∈ ]0, ε∗[ and then decreases strictly on [εmax, ε∗].
To validate the required injectivity we need to show that ε∗,2 := ϑmax,2 − t/2 is less or equal

to εmax. However, explicit values for both, εmax and ε∗,2, are hard to find. We can, nevertheless,
guarantee that ε∗,2 ≤ εmax for large t. Indeed, by limt→∞ T/R = 1 and limt→∞R = ∞ we
find f to converge uniformly on [0, ε∗] to

f∞(ε) :=
4 sinh(aε)

aα

aα + cosh(aε)b
√

cosh2(aε∗)− cosh2(aε)

aα cosh(aε) + b
√

cosh2(aε∗)− cosh2(aε)
.

This limit function attains its maximum, say, at ε∞max and εmax ≈ ε∞max for large t. Since

(C.1) ε∗,2 → 0 for t→∞
and ε∞max only depends on a, b, and α, we have the claimed injectivity for large t.

We close this section with a proof of (C.1). Recall that ε∗,2 is the positive solution of x+
2 (t/2+

ε) = xmin with xmin from (3.18). In view of (3.19) and (3.20) (where the minus sign in front of
the square root has to be replaced by a plus sign) this equation reads

(C.2)

√
1 +

a2α2

b2
= 2α

aαT cosh(aε)/b+
√
R2 − 4α2

√
cosh2(aε∗)− cosh2(aε)

R2 sinh2(aε) + 4α2︸ ︷︷ ︸
=: D(ε)

.

For D we have D(0) = cosh(at/2)+
√

sinh2(at/2)− a2α2/b2 →∞ as t→∞ but D(ε)→ 0

as t→∞ for any ε 6= 0. Hence, (C.1) holds true.
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