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PRECONDITIONED IMPLICIT TIME INTEGRATION SCHEMES1

FOR MAXWELL’S EQUATIONS ON LOCALLY REFINED GRIDS ∗2

MARLIS HOCHBRUCK† , JONAS KÖHLER‡ , AND PRATIK M. KUMBHAR§3

Abstract. In this paper, we consider an efficient implementation of higher-order implicit time4
integration schemes for spatially discretized linear Maxwell’s equations on locally refined meshes.5
In particular, our interest is in problems where only a few of the mesh elements are small while6
the majority of the elements is much larger. We suggest to approximate the solution of the linear7
systems arising in each time step by a preconditioned Krylov subspace method, e.g., the quasi-8
minimal residual method by Freund and Nachtigal [13].9

Motivated by the analysis of locally implicit methods by Hochbruck and Sturm [25], we show10
how to construct a preconditioner in such a way that the number of iterations required by the Krylov11
subspace method to achieve a certain accuracy is bounded independently of the diameter of the small12
mesh elements. We prove this behavior by using Faber polynomials and complex approximation13
theory.14

The cost to apply the preconditioner consists of the solution of a small linear system, whose15
dimension corresponds to the degrees of freedom within the fine part of the mesh (and its next coarse16
neighbors). If this dimension is small compared to the size of the full mesh, the preconditioner is17
very efficient.18

We conclude by verifying our theoretical results with numerical experiments for the fourth-order19
Gauß-Legendre Runge–Kutta method.20

Key words. Maxwell’s equations, higher-order time integration, locally refined mesh, Krylov21
subspace methods, preconditioning, error analysis.22

AMS subject classifications. 65F10, 65F08, 65L04, 65L06, 65M2223

1. Introduction. Maxwell’s equations play a crucial role in understanding and24

analyzing electromagnetic waves. Though finite difference time-domain methods [32]25

are still predominately utilized to solve Maxwell’s equations, numerous other methods26

based on finite element or finite volume space discretizations have been introduced27

and are gaining more and more importance.28

The numerical solution of time dependent partial differential equations by a29

method of lines approach involves first discretization in space and then integrating30

the semi-discrete system in time. For the space discretization, discontinuous Galerkin31

(dG) methods (see [5] and references therein) are popular due to their flexibility in32

treating complex geometries and discontinuous material parameters. Since dG meth-33

ods lead to block diagonal mass matrices, applying an explicit time integration scheme34

can be implemented very efficiently. Unfortunately, explicit time integration methods35

are subject to the so-called Courant-Friedrichs-Lewy (CFL) condition depending on36

the minimum diameter of mesh elements, denoted by hmin, that is, the time step τ37

needs to satisfy τ . hmin. Here, we are interested in locally refined meshes, where38

most of the mesh elements are coarse but a very small number of mesh elements are39

fine. The latter require very small time steps on all mesh elements, which makes the40

computation inefficient. An alternative is to use implicit time integrators. These can41

eliminate the CFL condition completely but involve solving a linear system involving42

all degrees of freedom at each time step. Unfortunately, this is expensive and might43

∗version June 27, 2022.
Funding: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) — Project-ID 258734477 — SFB 1173
†Karlsruhe Institute of Technology, Germany, (marlis.hochbruck@kit.edu).
‡Karlsruhe Institute of Technology, Germany, (jonas.koehler@kit.edu).
§Karlsruhe Institute of Technology, Germany, (pratik.kumbhar@kit.edu).

1

This manuscript is for review purposes only.

mailto:marlis.hochbruck@kit.edu
mailto:jonas.koehler@kit.edu
mailto:pratik.kumbhar@kit.edu


2 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

even not be feasible for large 3D problems.44

To tackle this problem, locally implicit (LI) methods [31, 3, 25, 1, 4, 26] and local45

time stepping methods [28, 6, 16, 15] were introduced and studied. While there is a46

rigorous analysis of LI methods of order two for linear problems, it is not clear how to47

prove the stability for higher-order LI methods constructed via composition methods48

[18, Section II.4].49

In this paper, we introduce a new strategy to develop a higher-order time inte-50

gration method to solve linear Maxwell’s equations on a locally refined spatial grid in51

a computationally efficient way. Note that though we only consider linear Maxwell’s52

equations, our analysis can be applied to general Friedrich’s system as well [20, 21].53

We start with a higher-order implicit Runge-Kutta method. Due to the large54

size of the coefficient matrices, iterative solvers are usually used to solve the linear55

systems. These solvers in many cases require less memory, less total time, and have56

more scalable parallel performance. There have been numerous iterative methods57

which were discovered in the last few decades to solve a linear system. Here, we restrict58

ourselves to Krylov subspace methods (see [29] and references therein). We observe59

that the coefficient matrix resulting from the full discretization of the linear Maxwell’s60

equations is complex symmetric, and hence we use the quasi-minimal residual (QMR)61

method to solve it [10, 13, 14]. Our main contribution is to construct a suitable62

preconditioner for the QMR method and to prove, that the number of iterations63

required to reach a certain accuracy is independent of the fine mesh.64

The paper is organized as follows. In Section 2, we present our model problem,65

notations, and recall properties of curl matrices obtained through spatial discretization66

of Maxwell’s equations. Section 3 is dedicated to higher-order implicit Runge-Kutta67

methods. In Section 4, we recall known results on Krylov subspace methods and68

prove how their efficiency can be improved by the proposed preconditioning. Finally69

in Section 5, we verify our theoretical findings with numerical experiments.70

2. Problem setting. Let Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded Lipschitz71

domain. For T > 0, let H,E : (0, T )×Ω→ Rd be the unknown magnetic and electric72

field respectively, and J : (0, T ) × Ω → Rd be the given electric field density. The73

linear Maxwell’s equations in an isotropic medium with permeability µ : Ω → R,74

permittivity ε : Ω→ R, and a perfect conducting boundary are given by75

µ∂tH = −curlE, (0, T )× Ω,(2.1a)76

ε∂tE = curlH − J, (0, T )× Ω,(2.1b)77

H(0) = H0, E(0) = E0, Ω,(2.1c)78

n× E = 0, (0, T )× ∂Ω,(2.1d)7980

where ∂t denotes the partial derivative with respect to time and n is the unit outward81

normal vector of the domain Ω. The initial conditions H0 and E0 satisfy82

div(µH0) = 0, div(µE0) = %(0), Ω,(2.1e)83

n · (µH0) = 0, ∂Ω,(2.1f)8485

where %(0) is the charge density at the initial time t = 0.86

For a full discretization of (2.1), we first discretize it in space using a dG method87

with central fluxes on a suitable mesh Th [5],[25, Section 2]. On this mesh we define88

the broken polynomial space Vh = (Pm(Th))3 consisting of piecewise polynomials of89
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PRECONDITIONED IMPLICIT TIME INTEGRATION METHODS 3

degree at most m on each mesh element. The dG method then yields90

(2.2)

∂tHh = −CE Eh, (0, T ),

∂tEh = CH Hh − Jh, (0, T ),

Hh(0) = H0
h, Eh(0) = E0

h,

91

where CE and CH are spatially discretized curl-operators containing µ and ε respec-92

tively, and H0
h, E

0
h, and Jh are L2 projections of H0, E0 and J respectively, onto Vh93

with respect to the weighted inner products defined below. The boundary condition94

(2.1d) is weakly enforced in the definition of CE . These discrete operators CE , CH95

are constructed by using weighted L2 inner products defined via96 (
u, v
)
µ

=
(
µu, v

)
L2(Ω)

,
(
u, v
)
ε

=
(
εu, v

)
L2(Ω)

, u, v ∈ L2(Ω).97

The corresponding norms are denoted by
∥∥ · ∥∥

µ
and

∥∥ · ∥∥
ε

respectively. We refer to98

[5, 25] for details on the dG discretization.99

Let {φ1, . . . , φN} be a basis of Vh. Then the unknown discrete solutions Hh, Eh :100

(0, T )→ Vh and the source term Jh : (0, T )→ Vh can be represented as101

Hh(t) =

N∑
j=1

Hj(t)φj , Eh(t) =

N∑
j=1

Ej(t)φj , Jh(t) =

N∑
j=1

Jj(t)φj ,102

with coefficient vectors H(t) = (Hj(t))
N
j=1, E(t) = (Ej(t))

N
j=1, J(t) = (Jj(t))

N
j=1. This103

results in mass and stiffness matrices given by104

(MH)l,j =
(
φj , φl

)
µ
, (C̃H)l,j =

(
CHφj , φl

)
ε
,(2.3a)105

(ME)l,j =
(
φj , φl

)
ε
, (C̃E)l,j =

(
CEφj , φl

)
µ
.(2.3b)106

107

Then, for t ∈ [0, T ], (2.2) is equivalent to the following system of ordinary differential108

equations,109

(2.4)

∂tH = −CE E, CE = M−1
H C̃E ,

∂tE = CH H− J, CH = M−1
E C̃H ,

H(0) = H0, E(0) = E0.

110

Here, H0 and E0 are the coefficient vectors of H0
h and E0

h respectively.111

With an abuse of notation, given xh, yh ∈ Vh with coefficient vectors x,y ∈ CN ,112

we define113

(2.5)
(
x,y

)
ε

:= y∗MEx =
(
xh, yh

)
ε
,

(
x,y

)
µ

:= y∗MHx =
(
xh, yh

)
µ
,114

and do so analogously for the induced norms in CN . Here, ∗ denotes the conjugate115

transpose. For the matrix norms, we also take these weights into account, since then116

these norms are equivalent to the operator norms of the discrete operators CH and117

CE , i.e., we have118 ∥∥CH

∥∥
ε�µ = sup

x∈CN\{0}

∥∥CHx
∥∥
ε∥∥x∥∥

µ

= sup
xh∈Vh\{0}

∥∥CHxh∥∥ε∥∥xh∥∥µ =
∥∥CH∥∥ε�µ,(2.6a)119

∥∥CE

∥∥
µ�ε = sup

x∈CN\{0}

∥∥CEx
∥∥
µ∥∥x∥∥

ε

= sup
xh∈Vh\{0}

∥∥CExh∥∥µ∥∥xh∥∥ε =
∥∥CE∥∥µ�ε.(2.6b)120

121
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4 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

In this paper, we are interested in locally refined meshes. We refer to our earlier122

papers [25, 26] for detailed explanations on these meshes, but for the completion of123

this paper, we introduce the necessary notation here. A locally refined mesh is a124

mesh in which most of the mesh elements are coarse and very few mesh elements are125

fine. Let Th,c and Th,f denote the collection of all coarse and fine mesh elements,126

respectively. We denote by hf and hc the size of smallest mesh elements in Th,f and127

in Th,c, respectively. These two sets are related to each other via128

hf � hc and card (Th,f )� card (Th,c) .129

Based on this decomposition of the mesh, the matrices defined in (2.4) can be split130

into131

(2.7) CH = Ci
H + Ce

H , CE = Ci
E + Ce

E ,132

cf. [25] for more details. The indices i and e indicate that the elements on which133

Ci
H ,C

i
E act are treated implicitly and the ones on which Ce

H ,C
e
E act are integrated134

explicitly. In fact, it was shown in [25] that not only the fine elements have to be135

treated implicitly but also their direct coarse neighbors.136

Let us state some properties of these matrices which are inherited from their137

corresponding discrete operators, cf. [25]. First, CE and CH are adjoint to each138

other, that is, for all H,E ∈ CN ,139

(2.8)
(
CHH,E

)
ε

=
(
H,CEE

)
µ
.140

It is easy to verify that these split matrices preserve the adjointness property of their141

respective full ones, that is,142

(2.9)
(
Ce
HH,E

)
ε

=
(
H,Ce

EE
)
µ
,

(
Ci
HH,E

)
ε

=
(
H,Ci

EE
)
µ
.143

In addition to this, they satisfy144

(2.10) Ce
HCe

E = Ce
HCE , Ci

HCi
E = Ci

HCE .145

Furthermore, combining the above properties, it holds146

(2.11)
∥∥CEE

∥∥2

µ
=
∥∥Ce

EE
∥∥2

µ
+
∥∥Ci

EE
∥∥2

µ
.147

One of the important results from [25] is that the explicit split matrices Ce
H and148

Ce
E can be bounded independently of the fine mesh, that is, using the definition of149

weighted norm in (2.6) we have150

(2.12)
∥∥Ce

E

∥∥
µ�ε ≤ ch

−1
c ,

∥∥Ce
H

∥∥
ε�µ ≤ ch

−1
c ,151

with a constant c that is independent of hf and hc.152

In [25, 26], these split matrices were constructed to develop a locally implicit153

time integration method. In this paper, we use these split matrices in a different154

way: to construct preconditioners which improve the performance of Krylov subspace155

methods.156
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PRECONDITIONED IMPLICIT TIME INTEGRATION METHODS 5

3. Higher-order implicit Runge–Kutta methods. In this section, we con-157

sider the time integration of (2.4) by an s-stage implicit Runge–Kutta (RK) methods158

given by its matrix Oι = (aij)
s
i,j=1, weights bi and nodes ci, i = 1, . . . , s, cf., [18,159

Section II.1]. To simplify the presentation, we write (2.4) in the compact form160

(3.1)
∂tu = Cu + j, (0, T ),

u0 = u(0),
161

where162

u =

(
H
E

)
, j =

(
0
−J

)
∈ R2N , and C =

(
0 −CE

CH 0

)
∈ R(2N)×(2N).163

Assume that we already computed an approximation un ≈ u(tn) at time tn = nτ ,164

where τ > 0 denotes the step size. Then, the implicit Runge–Kutta method applied165

to (3.1) leads to the following coupled linear system of equations for the intermediate166

stages Ui ≈ u(tn + ciτ)167

(3.2) Ui = un + τ

s∑
j=1

aij
(
CUj + Fj

)
, i = 1, . . . , s,168

where Fj = j(tn + cjτ). The new approximation un+1 ≈ u(tn+1) is then given169

explicitly by170

(3.3) un+1 = un + τ

s∑
i=1

bi
(
CUi + Fi

)
.171

3.1. Gauß collocation methods. We use Gauß collocation methods to con-172

struct higher-order implicit RK methods. It is well known that these methods are173

algebraically stable [19, Theorem IV.12.9] and the RK matrix Oι is invertible [19,174

Section IV.14]. In addition, the error analysis for linear wave-type problems [24, Sec-175

tion 3.1] makes use of the existence of a diagonal positive definite matrix D̂ and a176

positive scalar η > 0 such that177

(3.4) v>D̂Oι−1v ≥ ηv>D̂v, for all v ∈ Rs.178

Here, > denotes the transpose. For Gauß collocation methods, the coercitivity con-179

dition (3.4) is satisfied for D̂ = B̂(Ĉ−1 − Is), where B̂ := diag(b1, . . . , bs), Ĉ :=180

diag(c1, . . . , cs), and Is is the identity matrix of size s, cf. [19, Theorem IV.14.5].181

For an efficient implementation of (3.2), we use Kronecker products [18, Section182

VIII.6] to rewrite it as183

(3.5) U = 1s ⊗ un + τ
(
(Oι⊗C)U + (Oι⊗ I2N )F

)
,184

where U = (Ui)
s
i=1, F =

(
Fi
)s
i=1
∈ C2Ns, I2N is the identity matrix of size 2N ,185

and the term 1s denotes the vector in Rs consisting of all ones. Diagonalization of186

Oι yields a nonsingular matrix T ∈ Cs×s containing the eigenvectors and a diagonal187

matrix ΛOι ∈ Cs×s containing eigenvalues λi, such that188

(3.6) T−1OιT = ΛOι, ΛOι = diag(λ1, . . . , λs).189

This manuscript is for review purposes only.



6 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

Substituting Oι = TΛOιT
−1 in (3.5) and performing some Kronecker product opera-190

tions leads to s decoupled linear systems of the form191

(3.7) (Is ⊗ I2N − τ(ΛOι ⊗C))Z = Z0 + τ(ΛOι ⊗ I2N )F̃,192

where,193

(3.8) Z = (T−1 ⊗ I2N )U, Z0 = (T−1 ⊗ I2N )(1s ⊗ un), F̃ = (T−1 ⊗ I2N )F.194

Note that Oι might have complex conjugate pairs of eigenvalues. For such eigen-195

values (say λj = λi), the corresponding linear systems are196

(I2N − τλiC)Zi = Z0
i + τλiF̃i,(3.9a)197

(I2N − τλi C)Zj = Z0
j + τλi F̃j .(3.9b)198199

In the homogeneous case, i.e., J ≡ 0 which leads to F̃ ≡ 0, the first term on200

the right-hand sides of (3.9a) and (3.9b) are conjugate to each other and so are the201

solutions.202

Lemma 3.1. If J ≡ 0 and λj = λi, then the solutions of (3.9) satisfy Zj = Zi.203

Proof. The RK matrix Oι is real and thus complex eigenvalues and eigenvectors204

appear in complex conjugate pairs. Hence there exists a symmetric permutation205

matrix P̂ ∈ Rs×s s.t.,206

(3.10) T = TP̂, ΛOι = P̂ΛOιP̂,207

which implies T−1 = P̂T−1. We choose an arbitrary index i ∈ {0, . . . , s} correspond-208

ing to a complex eigenvalue λi 6∈ R and define the index j such that ej = P̂ei. By209

(3.8) and un ∈ R2N we have210

(3.11) Z
0

i = (e>i ⊗ I2N )Z
0

= (e>i T−11s ⊗ un) = ((P̂ei)
>T−1

1s)⊗ un = Z0
j .211

Conjugating (3.9a) proves that Zi solves (3.9b).212

In addition to this, Zi and F̃i in (3.9a) can be further decomposed into213

Zi =

(
ZH,i
ZE,i

)
, F̃i =

(
0

F̃E,i

)
,214

where ZH,i,ZE,i denote unknowns corresponding to the transformed intermediate215

stages of H and E respectively. Taking the Schur complement, the linear systems in216

(3.9a) can be further reduced to217

(3.12) (IN + αi CHCE)ZE,i = Z0
E,i + τλi(CHZ0

H,i + F̃E,i), αi := τ2λ2
i ∈ C,218

to compute the E-component of Zi. After solving this linear system of dimension N ,219

the H-component of Zi can be calculated explicitly via220

(3.13) ZH,i = Z0
H,i − τλiCEZE,i.221

An efficient implementation of an s-stage implicit Runge-Kutta method using Gauß222

collocation points thus requires solving a linear system of the form223

(3.14) Ax = b where A := IN + αCHCE ,224
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PRECONDITIONED IMPLICIT TIME INTEGRATION METHODS 7

with a complex parameter α ∈ C, in each time step. The adjointness property (2.8)225

implies that CHCE is symmetric with respect to
(
·, ·
)
ε

defined in (2.5). Hence, A is226

complex symmetric, that is,227 (
Ax,x

)
ε

=
(
x,Ax

)
ε
, x ∈ CN .228

However, for α 6∈ R it follows immediately that A 6= A∗ with respect to
(
·, ·
)
ε
. If229

α ∈ R, then A ∈ RN×N is symmetric. Moreover, for230

(3.15) α ∈ C\{z ∈ R : z < 0},231

the matrix A is invertible. For Gauß collocation methods, the coercivity condition232

(3.4) guarantees that the eigenvalues of Oι are not purely imaginary, and hence (3.15)233

is satisfied.234

4. Preconditioned Krylov subspace methods. In this section, we aim at235

designing a tailored preconditioner for solving the sparse linear system (3.14) by a236

preconditioned Krylov subspace method. We will prove that the number of Krylov237

iterations to achieve a certain tolerance is independent of the fine mesh. The overall238

method can be considered as a locally implicit scheme, because it only requires the239

solution of a small linear system as it is required for the second-order method in [25].240

We remark that in Subsection 4.1, we consider the L2 inner products and norms,241

but this analysis holds in any weighted inner products.242

4.1. Krylov subspace methods for complex symmetric matrices. For a243

nonsingular, complex symmetric matrix K = K> ∈ CN×N and a given vector f ∈ CN ,244

we consider the linear system245

(4.1) Kx = f .246

Given an initial guess x0 ∈ CN and its initial residual vector r0 = f −Kx0, a Krylov247

subspace method yields an approximation of the form248

(4.2) xm = x0 + Wmym, m = 1, 2, . . . ,249

where Wm ∈ CN×m is a basis of the mth Krylov subspace250

Km(K, r0) := span(r0,Kr0, . . . ,K
m−1r0),251

and ym ∈ Cm is a suitable coefficient vector. The choices of Wm and ym characterize252

the Krylov subspace method, cf. [11, 17, 29] for more details.253

To exploit the complex symmetric structure of K, we suggest to use the quasi-254

minimal residual (QMR) algorithm for complex symmetric matrices [10, Section 3],255

which is based on the complex symmetric Lanczos process. Here, Wm satisfies256

(4.3) KWm = Wm+1H̃m, Dm+1H̃m = W>
m+1KWm,257

with a diagonal matrix Dm+1 = W>
m+1Wm+1 ∈ C(m+1)×(m+1). The complex symme-258

try of K implies that H̃m ∈ C(m+1)×m is tridiagonal and the upper m×m submatrix259

of Dm+1H̃m is again complex symmetric. H̃m has full column rank m until Km(K, r0)260

becomes a K-invariant subspace.261

With β =
∥∥r0

∥∥, the QMR approximation is defined as262

(4.4) xm = x0 + Wmym, ym = βH̃+
me1, H̃+

m = (H̃∗mH̃m)−1H̃∗m,263
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8 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

where e1 denotes the first canonical unit vector. Its residual can be written as264

rm = f −Kxm = Wm+1(βe1 − H̃mym).265

The advantage of this algorithm compared to methods based on the Arnoldi266

process (e.g., GMRES) is that it uses three-term recurrences for the computation of267

the basis as well as for the approximation. It can be combined with look-ahead strate-268

gies [12] to prevent breakdowns of the Lanczos process, which might appear because it269

constructs a basis which is orthogonal w.r.t. the indefinite bilinear form 〈x,y〉 = x>y,270

instead of the Euclidean inner product
(
x,y

)
= x∗y, see [10, Section 4]. For the sake271

of presentation, we assume that breakdowns do not appear until a sufficiently accurate272

solution is computed, but we note that with minor modifications, our analysis also273

holds for the (complex symmetric) look-ahead Lanczos method [12]. This assumption274

ensures that275

(4.5)
∥∥D−1

m+1

∥∥ ≤ δ,276

for a given (small) tolerance δ > 0, because otherwise, one would switch to the look-277

ahead version of the Lanczos process.278

In the following, Pm denotes the set of all polynomials over C of degree at most279

m.280

Theorem 4.1. Let K be a nonsingular, complex symmetric matrix, and xm be281

the QMR approximation (4.4) after m steps. Then the error of the QMR method282

satisfies283

(4.6)
∥∥K−1f − xm

∥∥ ≤ ∥∥K−1Pm

∥∥ min
pm∈Pm

pm(0)=1

∥∥pm(K)r0

∥∥284

with a projection matrix Pm given by285

Pm = IN −Wm+1H̃mH̃+
mD−1

m+1W
>
m+1.286

Moreover, if
∥∥Wm+1ej

∥∥ = 1, j = 1, . . . ,m+ 1, and (4.5) holds, we have287

(4.7)
∥∥Pm

∥∥ ≤ 1 + (m+ 1)δ.288

Proof. Analogously to the proof of [23, Theorem 2] it can be seen from (4.3) that289

PmKWm = 0. Using (4.4) this implies290

K−1f − xm = K−1Pmr0 = K−1Pmpm(K)r0291

for all pm ∈ Pm with pm(0) = 1.292

The bound on
∥∥Pm

∥∥ follows from (4.5) and
∥∥Wm

∥∥ ≤ √m.293

Since
∥∥pm(K)r0

∥∥ ≤ ∥∥pm(K)
∥∥∥∥r0

∥∥, it remains to bound294

min
pm∈Pm

pm(0)=1

∥∥pm(K)
∥∥.295

This can be done by means of Faber polynomials and complex approximation theory,296

cf. [9], based on a superset of the field of values of K defined as297

F(K) := {ρK(v),v ∈ CN ,v 6= 0}, ρK(v) :=

(
v,Kv

)(
v,v

) .298
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Theorem 4.2. Let S ⊂ C be a convex and bounded superset of F(K) with 0 6∈ S299

and let φ be the conformal map which maps the exterior of S onto the exterior of the300

unit circle with φ(∞) =∞. Then301

(4.8) min
pm∈Pm

pm(0)=1

∥∥pm(K)
∥∥ ≤ (1 +

√
2) min

{ 3∣∣φ(0)
∣∣m , 2∣∣φ(0)

∣∣m − 1

}
.302

Proof. It was shown in [2] that303 ∥∥pm(K)
∥∥ ≤ (1 +

√
2) max

z∈S

∣∣pm(z)
∣∣.304

The statement then follows from [22, Eq. (2.14)] and [9, Theorem 2].305

The conformal map φ can be determined numerically by using the Schwarz-306

Christoffel toolbox [8].307

4.2. Preconditioning for locally refined grids. Our aim and the content308

of this section is the construction of a preconditioner such that the field of values309

of the preconditioned matrix with respect to the weighted inner product
(
·, ·
)
ε

is310

independent of the fine mesh elements. Then by Theorem 4.2, the same holds for the311

error of the preconditioned Krylov method in this weighted inner product.312

Motivated by locally implicit methods for Maxwell’s equations in [25, 31], we313

suggest to precondition A from (3.14) with its dominant part,314

(4.9) A ≈ B := IN + γCi
HCi

E ,315

where γ > 0 is a suitably chosen parameter. Note that this basically boils down to316

replacing the curl matrices CH ,CE in (3.14) defined on the full mesh by the split317

matrices acting on the implicitly treated mesh elements, cf. Section 2. By (2.9) and318

γ > 0, the preconditioner B is symmetric and positive definite with respect to
(
·, ·
)
ε
,319

and thus it has a symmetric and positive definite square root B1/2. This allows us to320

define an equivalent preconditioned linear system321

(4.10a) Ãx̃ = b̃,322

where323

(4.10b) Ã := B−1/2AB−1/2, x̃ := B1/2x and b̃ := B−1/2b.324

Since A is complex symmetric and B is real symmetric, the preconditioned matrix Ã325

is again complex symmetric (with respect to
(
·, ·
)
ε
).326

We now apply the complex symmetric QMR method to the preconditioned linear327

system (4.10) and refer to this method as the preconditioned QMR (pQMR) method,328

cf. [14, Alg. 8.1.]. It is essential that B1/2 is only used for theoretical purposes since329

its computation is usually too expensive. The implementation of this method only330

requires the solution of linear systems with B but does not involve the computation331

of B1/2 or B−1/2. Solving linear systems with B does not lead to too much overhead332

costs because Ci
HCi

E only acts on the fine elements and their direct neighbors and333

thus is of small dimension compared to A.334

It remains to show that its error can indeed be bounded independently of the fine335

mesh. Note that Theorems 4.1 and 4.2. also hold for
∥∥ ·∥∥ =

∥∥ · ∥∥
ε
, if the Lanczos336

process and the field of values are defined w.r.t.
(
·, ·
)

=
(
·, ·
)
ε
. Using these theorems,337
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10 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

it is sufficient to show that the field of values F(Ã) can be bounded independent of338

the fine mesh.339

Let340

(4.11) α := αR + iαI , αR, αI ∈ R,341

and342

(4.12) Γeζ = 1 + ζ
∥∥Ce

E

∥∥2

µ�ε, Γiζ = 1 + ζ
∥∥Ci

E

∥∥2

µ�ε, for ζ ∈ C.343

Defining quadrilaterals344

Q = conv
{

1, Γeα,
α

γ
,
α

γ
Γeγ
}
,(4.13a)345

R = conv
{

1, Γeγ , 1 +
(α
γ
− 1
)(

Γeγ −
1

Γiγ

)
, Γeγ +

(α
γ
− 1
)(

Γeγ −
1

Γiγ

)}
,(4.13b)346

347

allows us to construct a superset of F(Ã) which is independent of the fine mesh.348

Theorem 4.3. Let α 6= 0 satisfy (3.15) and let Ã be defined in (4.10b) where349

the preconditioner B is given in (4.9) for some parameter γ > 0. Then we have350

F(Ã) ⊂ S, where351

S =


Q ∩R, αI 6= 0,

[αγ ,Γ
e
α], αI = 0, 0 < αR = α ≤ γ,

[1, αγ Γeγ ], αI = 0, 0 < γ ≤ αR = α,

352

is independent of the fine mesh and 0 6∈ S.353

Proof. Let v ∈ CN ,v 6= 0 and ṽ := B1/2v. Then, by the symmetry of B (and354

thus of B1/2), the adjointness and split properties (2.8), (2.9), and (2.11), we have355 (
ṽ, Ãṽ

)
ε

=
(
v,Av

)
ε

=
∥∥v∥∥2

ε
+ (αR + iαI)

(∥∥Ce
Ev
∥∥2

µ
+
∥∥Ci

Ev
∥∥2

µ

)
,(4.14a)356 (

ṽ, ṽ
)
ε

=
(
v,Bv

)
ε

=
∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ
.(4.14b)357

358

We now distinguish the cases of α being real or complex.359

(a) For αI 6= 0, it is easy to see that360

(4.15a) 1 ≤ Re ρÃ(ṽ) +
γ − αR
αI

Im ρÃ(ṽ) = 1 +
γ
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ Γeγ .361

The first inequality is obvious and the second follows from the definition of the362

weighted matrix norm in (2.6) and γ > 0. In addition, we have363

(4.15b) 0 ≤ Re ρÃ(ṽ)− αR
αI

Im ρÃ(ṽ) =

∥∥v∥∥2

ε∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ 1.364

A simple calculation shows that the inequalities (4.15) are satisfied if and only if365

ρÃ ∈ Q with Q defined in (4.13a).366
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Next we consider only the imaginary part. Using (4.14), and (4.12) we obtain367

(4.16) 0 ≤ γ

αI
Im ρÃ(ṽ) = 1 +

γ
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

−
∥∥v∥∥2

ε∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ Γeγ −
1

Γiγ
.368

The bounds (4.15a) and (4.16) are satisfied if and only if ρÃ ∈ R with R defined in369

(4.13b). Hence we proved F(Ã) ⊂ Q ∩R.370

(b) For αI = 0, the matrix Ã ∈ RN×N is symmetric and thus ρÃ(ṽ) ∈ R for all371

ṽ ∈ CN . Since α = αR we have372

ρÃ(ṽ) =
α

γ
+

(1− α
γ )
∥∥v∥∥2

ε
+ α

∥∥Ce
Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

.(4.17)373

If α ≥ γ, (4.17) can be bounded by374

1 =
α

γ
+

(1− α
γ )
∥∥v∥∥2

ε∥∥v∥∥2

ε

≤ ρÃ(ṽ) ≤ α

γ
+
α
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε

≤ α

γ
Γeγ ,375

Similarly, for 0 < α ≤ γ, it is straightforward to see376

α

γ
≤ ρÃ(ṽ) ≤ α

γ
+

(1− α
γ )
∥∥v∥∥2

ε
+ α

∥∥Ce
Ev
∥∥2

µ∥∥v∥∥2

ε

≤ Γeα.377

Furthermore, since378

0 ≤ Γeγ −
1

Γiγ
≤ Γeγ , γ > 0,379

all quantities defining the superset S are bounded independently of the implicitly380

treated mesh elements and thus, S is independent of hf . Finally, in all cases we have381

0 /∈ S.382

Note that the superset S derived in Theorem 4.3 is not optimal. Further, we383

point out that γ > 0 can be chosen freely and thus used to improve the convergence384

factor. For example, a natural choice would be385

(4.18) γ =
∣∣αR∣∣ if αR 6= 0 or γ =

∣∣α∣∣ else.386

In any case, one should choose γ ∼ τ2 so that the dominating part of A is well387

approximated by the preconditioner B.388

As a special case of Theorem 4.3, we obtain an inclusion set for the field of values389

of A itself. Hence, we can state an error bound for the complex symmetric QMR390

method without preconditioning.391

Corollary 4.4. For the matrix A defined in (3.14), Theorem 4.3 holds by sub-392

stituting Ce
E = CE and Ci

E = 0 in (4.13).393

Recall that by an inverse estimate [5, Lemma 1.44] there is a constant c indepen-394

dent of the mesh width such that
∥∥CE

∥∥
µ�ε ≤ ch

−1
min. Hence, without preconditioning,395

the superset will scale with h−1
min. Applying Theorems 4.1 and 4.2 to the precondi-396

tioned system (4.10a) provides the following error bound:397
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Theorem 4.5. Let x̃m be the QMR approximation to the solution of (4.10). If398

(4.5) is satisfied, then there is a constant φ0 > 1 independent of the fine mesh such399

that the error of the mth pQMR iterate satisfies400

(4.19)
∥∥Ã−1b̃− x̃m

∥∥
ε
≤ cÃ(1 +

√
2)
(
1 + (m+ 1)δ

)
min

{
3

φm0
,

2

φm0 − 1

}
,401

where402

(4.20)

{
cÃ = 1, if 0 < γ ≤ αR, αI = 0 or αI 6= 0,

cÃ = γ
αR
, if 0 < αR ≤ γ, αI = 0.

403

Proof. Since Ã is complex symmetric, we apply Theorem 4.1 for K = Ã with404 ∥∥ ·∥∥ =
∥∥ · ∥∥

ε
. By Theorem 4.3, F(Ã) ⊂ S is independent of the fine mesh and the405

same holds for the conformal map φ used in Theorem 4.2, in particular for
∣∣φ(0)

∣∣ =: φ0.406

Thus, the bound (4.19) follows from (4.6), (4.7), and (4.8), if we can show407

(4.21)
∥∥Ã−1w

∥∥
ε
≤ cÃ

∥∥w∥∥
ε

for all w ∈ CN .408

We choose an arbitrary w ∈ CN , w 6= 0 and define v = Ã−1w. Then Theorem 4.3409

with cÃ defined in (4.20) and the Cauchy-Schwarz inequality yield410

(4.22)
1

cÃ
≤ Re ρÃ(v) = Re

(
w, Ã−1w

)
ε∥∥Ã−1w

∥∥2

ε

≤
∥∥w∥∥

ε

∥∥Ã−1w
∥∥
ε∥∥Ã−1w

∥∥2

ε

=

∥∥w∥∥
ε∥∥Ã−1w
∥∥
ε

.411

This proves (4.21).412

As an immediate consequence of Theorem 4.5 we see that the error of the pQMR413

method is bounded independently of the fine mesh, since S only depends on the coarse414

mesh. In particular, the number of iterations is uniformly bounded with respect to415

further refinement of the fine part of the mesh.416

5. Numerical experiments. For our numerical experiments, we consider the417

transverse magnetic (TM) polarization of linear Maxwell’s equations (2.1) in a ho-418

mogeneous medium with µ = ε = 1 in a square Ω = (−1, 1)2 ⊂ R2, i.e.,419

(5.1)

∂tHx(t) = −∂yEz(t),
∂tHy(t) = ∂xEz(t),

∂tEz(t) = −∂yHx(t) + ∂xHy(t)− Jz(t),
Hx(0) = H0

x, Hy(0) = H0
y , Ez(0) = E0

z .

420

As an example of locally refined meshes, we consider a series of unstructured421

meshes as depicted in Figure 5.1, cf. [25] for more details.422

We start with the initial mesh in Figure 5.1a, which is divided into two parts:423

an inner fine mesh Th,f in the green square [−0.05, 0.05]2 and an outer coarse mesh424

Th,c in [−1, 1]2\[−0.05, 0.05]2. We call this mesh T (1)
h,f , where the superscript denotes425

the level of refinement of the fine mesh. We keep the coarse part the same but426

refine the innermost part of the fine meshes recursively to produce three new meshes427

T (2)
h,f , T

(3)
h,f , T

(4)
h,f . The fine parts of all four meshes are shown in Figure 5.1b. Based428

on this decomposition, the split curl matrices Ci
E ,C

i
H act on the fine mesh elements429
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-1

-0.5

0

0.5

1

(a) Mesh T (1)
h,f with fine mesh of refinement level 1.

(b) Refinement of the elements in Th,f : from left to right T (1)
h,f , . . . , T

(4)
h,f .

Fig. 5.1: Illustration of mesh refinements.

and their direct neighbors, while Ce
E ,C

e
H act on the remaining coarse mesh elements.430

The codes for these experiments are available at [27].431

Furthermore, for all these experiments we fix432

(5.2) α =
( 1

24
+ i

√
3

24

)
τ2, γ = αR =

τ2

24
,433

for A in (3.14) and the preconditioner B in (4.9) respectively. This choice of α434

corresponds to (3.12), where λi is one of the two complex conjugate eigenvalues of435

the RK matrix Oι of the fourth-order implicit Gauß-Legendre RK method.436

In the first experiment, we consider the locally refined mesh in Figure 5.1a, and437

construct Ã with α, γ defined in (5.2) for different choices of τ . We then compute the438

boundary of F(Ã) using the matlab function wber.m from [30], and the superset S439

derived in Theorem 4.3. In Figure 5.2, we observe that F(Ã) ⊆ S for all considered440

values of τ = 0.1, 0.01, 0.001, and hence numerically verify Theorem 4.3. Moreover,441

the superset S is close to being optimal for τ = 0.1 and τ = 0.001, but not for442

τ = 0.01. Clearly, for τ → 0, F(Ã)→ {1}.443

Next, we numerically calculate an optimized value γopt of γ used in the definition444

of the preconditioner B in (4.9). For the mesh in Figure 5.1a, we choose α in (5.2)445

with τ = 0.05, and compute φ0 defined in Theorem 4.5 using the Schwarz–Christoffel446

toolbox [7]. In Figure 5.3, we plot 1/φ0 for different values of γ, and observe that447

1/φ0 for γopt ≈ 3.7e−5 and γ = αR ≈ 1e−4 are close to each other. This suggests448

that γ ≈ αR for αR > 0 could be a good guess for γopt.449

We then examine the number of iterations required by QMR and pQMR to solve450

the linear system (3.14) up to a tolerance of 10−3 in
∥∥ · ∥∥

ε
. The coefficient matrix A451

and the preconditioner B are constructed with α, γ in (5.2) for τ = 0.05 on the meshes452

T (1)
h,f , . . . , T

(4)
h,f depicted in Figure 5.1. For this experiment, we fix random vectors x0453
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Fig. 5.2: Boundary of a numerical approximation of F(Ã) in blue, quadrilaterals Q
and R in red and green, respectively, for τ = 0.1, 0.01, 0.001 (from left to right).
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Fig. 5.3: Dependence of φ0 on γ for α in (5.2) with τ = 0.05.

and b. In Figure 5.4, we plot their relative errors against number of iterations m. We454

observe that for all meshes, pQMR requires same number of iterations to reach the455

tolerance. In contrast, the number of iterations without preconditioning grows as the456

fine mesh is refined, as expected.457

It remains to verify the error bounds presented in Theorem 4.5. To do so, we458

consider the mesh in Figure 5.1a and solve the preconditioned linear system (4.10a)459

for a fixed time step τ = 0.01, α, γ given in (5.2), and fixed random vectors b,x0. Fig-460

ure 5.5 numerically verifies the error bounds produced by Theorem 4.5 for differently461

calculated values of φ0 for the pQMR method.462

6. Conclusion. In this paper, we proposed and analyzed computationally ef-463

ficient implicit higher-order time integration methods for solving linear Maxwell’s464

equations on locally refined spatial grids which consist of a small number of fine and465

a large number of coarse mesh elements. This is achieved by constructing a precon-466

ditioned Krylov subspace method for solving the linear systems arising in each time467

step of the implicit scheme. Our main result shows that the number of Krylov steps468

to achieve the desired accuracy can be bounded independently of the fine mesh.469

Although we focused on linear Maxwell’s equations, our ideas carry over to non-470

linear problems, where linear systems of the same type appear in each iteration of a471

(simplified) Newton method. Moreover, instead of Gauß collocation methods other472

implicit time integration schemes might be employed and the preconditioner can also473

be combined with rational Krylov subspace methods.474
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Fig. 5.4: Relative error of QMR (solid lines) and pQMR (dashed lines) for different
levels of fine mesh refinement.
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Fig. 5.5: Error produced by pQMR in black and its bound when φ0 is calculated using
a numerical approximation to F(Ã) in blue while that calculated using the polygon
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