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NONLINEAR WAVE EQUATIONS WITH SLOWLY DECAYING

INITIAL DATA

JAN ROZENDAAL AND ROBERT SCHIPPA*

Abstract. New local smoothing estimates in Besov spaces adapted to the

half-wave group are proved via `2-decoupling. We apply these estimates to
obtain new well-posedness results for the cubic nonlinear wave equation in

two dimensions. The results are compared to new well-posedness results in

Lp-based Sobolev spaces.

1. Introduction

Setting. We consider nonlinear wave equations with power-type nonlinearity:

(1.1)

{
∂2
t u = ∆xu± |u|α−1u, (t, x) ∈ R× Rd, d ≥ 2,

u(0) = f ∈ X, u̇(0) = g ∈ Y,
We shall analyze in detail the cubic nonlinear wave equation, where d = 2 and
α = 3. Moreover, we consider slowly decaying initial data, by which we mean
initial data contained in Lp-based spaces for p > 2.

Recently, the well-posedness of the nonlinear Schrödinger equation with slowly
decaying initial data has attracted attention [7, 23], in part due to the importance
of such initial data for modeling signals. The well-posedness results in this article
are proved via a simple contraction mapping argument; similar as in [23] by the
second author. We use Duhamel’s formula to write (1.1) as

u(t) = Φf,g(u) = cos(t
√
−∆)f+

sin(t
√
−∆)g√
−∆

±
∫ t

0

sin((t− s)
√
−∆)√

−∆
(|u|α−1u)(s)ds.

The proof that Φf,g is a contraction in a space-time function space S hinges on
linear estimates

‖ cos(t
√
−∆)f‖S . ‖f‖X ,

∥∥∥ sin(t
√
−∆)g√
−∆

g
∥∥∥
S
. ‖g‖Y ,

and a nonlinear estimate∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(|u|α−1u)(s)ds

∥∥∥
S
. ‖u‖αS .

We shall use space-time Lebesgue spaces S = Lrt ([0, T ], Lp(R2)) as iteration spaces;
possibly intersected with another function space. As spaces of initial data, for
2 < p < ∞, we choose X = W s,p(R2) and Y = W s−1,p(R2), or we consider Besov
spaces X = Bsp,2,2(R2) and Y = Bs−1

p,2,2(R2) adapted to the half-wave group. The

spaces Bsp,q,r(Rd), which are introduced in this article, are invariant under the half-
wave group, and they satisfy Sobolev embeddings into the standard Besov scale.
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This invariance under the half-wave group is in sharp contrast with W s,p(Rd) for
p 6= 2, and a key motivation to consider adapted spaces.

Adapted spaces and local smoothing. The use of adapted Besov spaces builds
on recent work concerning invariant spaces for Schrödinger and wave equations.
Indeed, modulation spaces, invariant spaces for Schrödinger propagators, have been
used extensively as spaces of initial data for nonlinear Schrödinger equations (see
[1, 5, 6, 23] and references therein). On the other hand, a scale (HpFIO(Rd))1≤p≤∞
of Hardy spaces for Fourier integral operators (FIOs) was introduced in [10] by
Hassell, Portal and the first author. This work in turn generalizes the case p = 1
due to Smith [26], which predates [10] by decades. The Hardy spaces for FIOs are
invariant under half-wave propagators and more general FIOs, and they satisfy the
Sobolev embeddings

(1.2) W s(p),p(Rd) ⊆ HpFIO(Rd) ⊆W−s(p),p(Rd)
for all 1 < p < ∞, with the natural modifications involving the local Hardy space
H1(Rd) for p = 1, and bmo(Rd) for p =∞. Here and throughout,

(1.3) s(p) =
d− 1

2

∣∣∣1
2
− 1

p

∣∣∣.
By combining these two properties, one recovers the sharp Lp mapping properties
of the half-wave group, due to Peral and Miyachi [17,20]:

(1.4) eit
√
−∆ : W 2s(p),p(Rd)→ Lp(Rd)

for all 1 < p <∞ and t ∈ R, and the more general Lp mapping properties of FIOs
due to Seeger, Sogge and Stein [25].

The invariance of these spaces under the solution operators to Schrödinger and
wave equations allows one to use iterative constructions to build parametrices, as
was done for rough wave equations using HpFIO(Rd) in [11]. It also shows that such
spaces are natural for the fixed-time regularity of these equations.

On the other hand, it was observed by Sogge [27] that considering space-time
Lebesgue norms of the solution to the Euclidean wave equation yields a gain of
regularity over the fixed-time estimates in (1.4). More precisely, in [27] Sogge for-
mulated the local smoothing conjecture for the Euclidean wave equation, which
states that

(1.5) ‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) .ε ‖f‖Wσ(p)+ε,p(Rd)

for all ε > 0, where σ(p) = 0 for 2 < p ≤ 2d/(d − 1), and σ(p) = 2s(p) − 1/p for
p > 2d/(d− 1).

The local smoothing conjecture implies several open problems in harmonic anal-
ysis, like the Bochner–Riesz conjecture and the restriction conjecture. A break-
through result was the proof of the sharp `2-decoupling inequality for the cone, due
to Bourgain–Demeter [4]. More precisely, set

s(p) :=

{
0, 2 ≤ p ≤ 2(d+1)

d−1 ,

s(p)− 1
p ,

2(d+1)
d−1 ≤ p <∞.

For k ∈ N, let (χν)ν be a partition of unity of Rd\{0} with smooth zero-homogeneous
functions, which localize to cones of aperture aproximately 2−k/2, and let g ∈ S(R)
be such that |g(t)| ≥ 1 for t ∈ [0, 1], and supp(ĝ ) ⊆ [−1, 1]. After rescaling

to unit frequencies (see e.g. [3, Section 3]), using that ‖eit
√
−∆f‖Lp([0,1]×Rd) ≤
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‖g(t)eit
√
−∆f‖Lp(R×Rd) and that (t, x) 7→ g(t)eit

√
−∆f(x) has frequency support

near the light cone, it then follows from the `2-decoupling inequality [4, Theo-
rem 1.2] that

(1.6) ‖eit
√
−∆f‖Lp([0,1]×Rd) . 2k(s(p)+ε)

(∑
ν

‖g(t)eit
√
−∆χν(D)f‖2Lp(R×Rd)

)1/2

for any ε > 0 and f ∈ Lp(Rd) with supp(f̂ ) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k}.
In turn, from (1.6) follow local smoothing estimates by an application of Hölder’s
inequality, to pass from the `2-norm to the `p-norm, and from a kernel estimate.
Although (1.6) is sharp, it does not imply the local smoothing conjecture; it only
yields the required bounds for p ≥ 2(d+1)/(d−1). The local smoothing conjecture
was recently resolved for d = 2 via a sharp (reverse) L4-square function estimate
by Guth–Wang–Zhang [9], but it is still open for d ≥ 3.

Coming back to the nonlinear wave equation, we will use local smoothing es-
timates to lower the regularity of the initial data required to solve (1.1), thereby
providing, to the best of the authors’ knowledge, a novel approach to nonlinear
wave equations with slowly decaying initial data.

Main results. Firstly, we introduce the adapted Besov spaces Bsp,q,r(Rd) and we
derive some of their properties. In particular, we show the Besov counterpart of the
Sobolev embeddings in (1.2):

(1.7) Bs+s(p)p,p (Rd) ⊆ Bsp,p,p(Rd) ⊆ Bs−s(p)p,p (Rd).

We also show the invariance of Bsp,q,q(Rd) under the half-wave propagators. In fact,

we take this opportunity to show the sharp polynomial growth rate of the Bsp,q,q(Rd)-
norm under evolution of the half-wave group. This quantifies a polynomial growth
result by the first author [22, Lemma 3.5], which was established for the Hardy
spaces for FIOs. More precisely, in Proposition 3.1 we show that

(1.8) ‖eit
√
−∆f‖Bsp,q,q(Rd) . (1 + |t|)2s(p)‖f‖Bsp,q,q(Rd)

for all p ∈ [1,∞], q ∈ [1,∞), s, t ∈ R and f ∈ Bsp,q,q(Rd). In Proposition 3.2 we
show that this is sharp, by using a radial Knapp example.

Next, we obtain improved local smoothing estimates, in terms of Bsp,2,2(Rd).

Theorem 1.1. Let d ≥ 2, p ∈ (2,∞) and ε > 0. Then there exists a C ≥ 0 such
that

(1.9) ‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) ≤ C‖f‖Bs(p)+εp,2,2 (Rd)

for all f ∈ Bsp,2,2(Rd).

The exponent s(p) in (1.9) is sharp for all 2 < p < ∞, cf. Remark 4.2. In fact,

the right-hand side of (1.6) is equivalent to the Bs(p)+εp,2,2 (Rd)-norm. Hence, when

restricted to dyadic frequency annuli, Bs(p)+εp,2,2 (Rd) is the largest space of initial data

for which one can obtain local smoothing estimates when applying the `2-decoupling
inequality in the manner in which it is typically used.

The corresponding bounds for Hs,pFIO(Rd), or equivalently for Bsp,p,p(Rd), are due
to the first author [22]. We note that

(1.10) W s+s(p)+2ε,p(Rd) ⊆ Bs+εp,p,p(Rd) ⊆ Bsp,2,2(Rd)
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for all s ∈ R, 2 < p < ∞ and ε > 0, and that the Bsp,p,p(Rd)-norm of certain

functions is substantially larger than their Bsp,2,2(Rd)-norm (see Remark 2.5). Hence
(1.9) strictly improves upon the bounds in [22], and in particular upon the local
smoothing conjecture for p ≥ 2(d + 1)/(d − 1). On the other hand, it is an open
question whether Bsp,2,2(Rd) is invariant under general FIOs, as Hs,pFIO(Rd) is. For
2 < p < 2(d+ 1)/(d− 1), (1.9) neither follows from the local smoothing conjecture,
nor does it imply it.

Next, we show how local smoothing estimates can be combined with nonlin-
ear Strichartz estimates to prove well-posedness for nonlinear wave equations with
slowly decaying initial data. We write Ḣs(Rd) = |D|−sL2(Rd).

Theorem 1.2. Let d = 2, α = 3, and ε > 0. Then, (1.1) is analytically locally well
posed with initial data space

(1.11) X × Y = (Bε4,2,2(R2) + Ḣ3/8(R2))× (Bε−1
4,2,2(R2) + Ḣ−5/8(R2)),

and solution space ST = L
24/7
t ([0, T ], L4(R2))∩C([0, T ],Bε4,2,2(R2)+Ḣ3/8(R2)) with

T = T (‖(f, g)‖X×Y ). Moreover, (1.1) is analytically locally well posed with initial
data space

(1.12) X × Y = (Bε6,2,2(R2) + Ḣ1/2(R2))× (Bε−1
6,2,2(R2) + Ḣ−1/2(R2)),

and solution space ST = L4
t ([0, T ], L6(R2)) ∩ C([0, T ],Bε6,2,2(R2) + Ḣ1/2(R2)).

For the definition of analytic well-posedness we refer to Section 5.1. Roughly
speaking, here it means that we obtain a time of existence T (‖(f, g)‖X×Y ), for
which there is a unique solution u in ST which depnds analytically on the initial
data. Moreover, it follows from the proof that, for any T > 0, there exists some
ε = ε(T ) > 0 such that (1.1) is well posed in ST whenever ‖(f, g)‖X×Y < ε.

Remark 1.3. The homogeneous Sobolev spaces Ḣ3/8(R2) and Ḣ−5/8(R2) in (1.11)
can be replaced by the inhomogeneous spaces Hs(R2) = W 2,s(R2) and Hs−1(R2),
for s ≥ 3/8, and similarly for (1.12). Furthermore, the arguments from the proof
yield local well-posedness for initial data in

(1.13) X × Y = W ε,4(R2)×W−1+ε,4(R2)

with solutions in ST = L
24/7
t ([0, T ], L4(R2)), and for

X × Y = W 1/6+ε,6(R2)×W−5/6+ε,6(R2),

with solution space ST = L4
t ([0, T ], L6(R2)). By the embeddings in (1.10), we have

W 1/6+3ε(R2) ⊆ B2ε
6,6,6(R2) ⊆ Bε6,2,2(R2),

which shows that a local well-posedness result with initial data in Bs+ε6,2,2(Rd) su-

persedes one involving W s+1/6+ε(Rd). This is not quite the case for the L4-based
result because one has the sharp embeddings

W 1/8+3ε,4(R2) ⊆ B2ε
4,4,4(R2) ⊆ Bε4,2,2(R2).

It appears that this mismatch of 1/8 derivatives reflects the fact that `2-decoupling
does not imply the local smoothing conjecture. It would be very interesting to
eventually translate this additional smoothing effect to adapted function spaces.
However, it follows from Remark 4.2 that such an additional smoothing effect cannot
be captured by Bsp,q,q(Rd) for q = 2. We do note that, since (1.9) complements the
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local smoothing conjecture, the well-posedness result in Theorem 1.2 neither follows
from one involving (1.13), nor does it imply it.

Furthermore, we show local well-posedness for slower decaying initial data, i.e.,

with initial data in spaces Bs(p)p,2,2(Rd) × Bs(p)−1
p,2,2 (Rd) and p = 4n + 2, n ∈ Z≥2,

d ∈ {2, 3}. The more technical result is stated in Theorem 5.7.
In Theorems 5.8 and 5.11 we prove global well-posedness in the defocusing case.

Global well-posedness in L2-based Sobolev spaces typically follows from conserved
quantity. This does not fit well into the Lp-scale. Instead, we show global well-
posedness by adapting arguments of Dodson–Soffer–Spencer [7]; see also [15,23].

Generalizations. The presented arguments are robust in nature and allow one to
treat more general nonlinearities than α = 3 (see, e.g., Theorem 5.3). One can
also consider higher dimensions d ≥ 3, albeit in this case with a different derivative
parameter s.

Moreover, the arguments transpire to the variable-coefficient case. Consider the
nonlinear wave equation on a compact Riemannian manifold (M, g) with dimM ≥ 2:

(1.14)

{
∂2
t u = ∆gu± |u|α−1u, (t, x) ∈ R×M,

u(0) = f1 ∈ X, u̇(0) = f2 ∈ Y.

For X × Y ∈ W s,p(M) ×W s−1,p(M), dimM = 2, we can argue as in the proof of
Theorem 1.2, because both local smoothing and Strichartz estimates remain true in
the variable coefficient case. Indeed, variable-coefficient decoupling was proved by
Beltran–Hickman–Sogge [3] and local-in-time Strichartz estimates remain true on
compact manifolds, as proved by Kapitanskii [12,13]. These are the key ingredients
for the iteration argument in Section 5.

For an extension of the results on nonlinear equations with initial data in adapted
spaces, one would have to find a suitable definition on compact manifolds. On the
other hand, to prove global results it seems necessary to work with spaces of initial
data which are invariant under more general FIOs. Indeed, the solution operator
to the linear part of (1.14) is a Fourier integral operator, an observation which goes
back to Lax [16]. This motivated the pioneering works by Seeger–Sogge–Stein [25]
and Mockenhaupt–Seeger–Sogge [18] on the fixed-time and space-time mapping
properties of FIOs. It is unclear whether Bsp,2,2(Rd) is invariant under more general

FIOs, but Hs,pFIO(Rd) is. Moreover, one could solve nonlinear wave equations with
initial data in Hs,pFIO(Rd) in the same manner as we do for Bsp,2,2(Rd).

Our goal in this article is not to develop a full theory of Besov spaces adapted to
the half-wave group, as has been done for the Hardy spaces for FIOs in [8, 10, 21].
The advantage of working with Besov spaces is that it suffices to obtain estimates
on dyadic frequency annuli, instead of working with square functions. On the other
hand, one only recovers the sharp fixed-time regularity for wave equations in the
Besov scale, cf. (1.7), as opposed to the Lp-scale, cf. (1.2).

Organization. In Section 2 we introduce the function spaces Bsp,q,r(Rd), and we

determine some of their properties. In Section 3 we show that Bsp,q,q(Rd) is invariant
under the action of the half-wave group, cf. (1.8), and we obtain product estimates.
In Section 4 we prove the local smoothing estimates in Theorem 1.1. Using these,
in Section 5 we derive local well-posedness results, and in particular Theorem 1.2.
In Section 5.4 we use a blow-up alternative to prove global well-posedness in the
defocusing case.
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Notation. Throughout most of this article we fix a general dimension d ≥ 2, but
in Section 5 we will typically assume that d ∈ {2, 3}.

For ξ ∈ Rd we write 〈ξ〉 = (1+|ξ|2)1/2, and ξ̂ = ξ/|ξ| if ξ 6= 0. We use multi-index
notation, where ∂ξ = (∂ξ1 , . . . , ∂ξd) and ∂αξ = ∂α1

ξ1
. . . ∂αdξd for ξ = (ξ1, . . . , ξd) ∈ Rd

and α = (α1, . . . , αd) ∈ Nd0. The Fourier transform of f ∈ S ′(Rd) is denoted by Ff
or f̂ , and the Fourier multiplier with symbol ϕ ∈ S ′(Rd) is denoted by ϕ(D).

We write f(s) . g(s) to indicate that f(s) ≤ Cg(s) for all s and a constant
C > 0 independent of s, and similarly for f(s) & g(s) and g(s) h f(s).

2. Function spaces

In this section we introduce the relevant function spaces for this article, and we
derive some of their properties, most notably equivalent norms and embeddings.

2.1. Definitions. We first recall the definition of the Hardy spaces for FIOs from
[8,10,21,26]. Fix a non-negative radial ϕ ∈ C∞c (Rd) such that ϕ(ξ) = 0 for |ξ| > 1,
and ϕ ≡ 1 in a neighbourhood of zero. For ω ∈ Sn−1, σ > 0, and ξ ∈ Rd \ {0}, set

ϕω,σ(ξ) := cσϕ
(
ξ̂−ω
σ1/2

)
, where cσ :=

( ∫
Sd−1 ϕ

(
e1−ν
σ1/2

)2
dν
)−1/2

for e1 = (1, 0, . . . , 0).

Furthermore, we set ϕω,σ(0) := 0. Let ψ ∈ C∞c (Rd) be a non-negative radial
function such that ψ(ξ) = 0 if |ξ| /∈ [1/2, 2], with ψ(ξ) = 0 if |ξ| /∈ [1/2, 2], and∫ ∞

0

ψ(σξ)2 dσ

σ
= 1 for all ξ 6= 0.

Let ϕω(ξ) :=
∫ 4

0
ψ(σξ)ϕω,σ(ξ)dσσ . Recall the following properties of ϕω ∈ C∞(Rd)

from [21, Remark 3.3]:

(1) For all ω ∈ Sd−1 and ξ 6= 0 one has ϕω(ξ) = 0 if |ξ| < 1/8 or |ξ̂ − ω| >
2|ξ|−1/2.

(2) For all α ∈ Nd0 and β ∈ N0 there exists Cα,β ≥ 0 such that

|(ω · ∂ξ)β∂αξ ϕω(ξ)| ≤ Cα,β |ξ|
d−1
4 −

|α|
2 −β

for all ω ∈ Sd−1 and ξ 6= 0.
(3) For all α ∈ Nd0 there exists a Cα ≥ 0 such that∣∣∣∂αξ (∫

Sd−1

ϕω(ξ)dω
)−1∣∣∣ ≤ Cα|ξ| d−1

4 −|α|

for all ξ ∈ Rd with |ξ| ≥ 1/2. Hence there is an m ∈ S d−1
4 (Rd) such that, if

f ∈ S ′(Rd) satisfies supp(f̂) ⊆ {ξ ∈ Rd | |ξ| ≥ 1/2}, then

f =

∫
m(D)ϕν(D)fdν.

For simplicity of notation, we write Hp(Rd) = Lp(Rd) for 1 < p <∞, and H1(Rd)
is the classical local Hardy space. Fix a q ∈ C∞c (Rd) such that q(ξ) = 1 for |ξ| ≤ 2.

We define the Hardy spaces for FIOs as follows.

Definition 2.1. For p ∈ [1,∞) and s ∈ R, let Hs,pFIO(Rd) consist of all f ∈ S ′(Rd)
such that q(D)f ∈ Lp(Rd), 〈D〉sϕω(D)f ∈ Hp(Rd) for almost all ω ∈ Sd−1, and

‖f‖Hs,pFIO(Rd) := ‖q(D)f‖Lp(Rd) +
(∫

Sd−1

‖〈D〉sϕω(D)f‖pHp(Rd)
dω
)1/p

<∞.

Moreover, Hs,∞FIO(Rd) := (H−s,1FIO(Rd))∗.
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In fact, HpFIO(Rd) was originally defined in [10, 26] using conical square func-
tion estimates over the cosphere bundle. This includes an intrinsic definition of
H∞FIO(Rd) in terms of Carleson measures. The equivalent characterization in Defi-
nition 2.1 was obtained in [8, 21].

In this article we consider the following Besov variant of these spaces, where
Bsp,q(Rd) is the standard Besov space on Rd.

Definition 2.2. For p, r ∈ [1,∞], q ∈ [1,∞) and s ∈ R, let Bsp,q,r(Rd) consist of all

f ∈ S ′(Rd) such that q(D)f ∈ Lp(Rd), ϕω(D)f ∈ Bsp,q(Rd) for almost all ω ∈ Sd−1,
and

‖f‖Bsp,q,r(Rd) := ‖q(D)f‖Lp(Rd) +
(∫

Sd−1

‖ϕω(D)f‖q
Bsp,r(Rd)

dω
)1/q

<∞.

We will mostly consider the case where q = r. Then one can use Fubini’s theorem
to prove the following lemma, which in turn allows one to reduce various arguments
to dyadic frequency annuli. Throughout, we fix a standard Littlewood-Paley de-
composition (ψk)∞k=0 ⊆ C∞c (Rd), with supp(ψk) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k}
for k ∈ N, and

∑∞
k=0 ψk(ξ) = 1 for all ξ 6= 0.

Lemma 2.3. Let p ∈ [1,∞], q ∈ [1,∞) and s ∈ R. Then an f ∈ S ′(Rd) satisfies
f ∈ Bsp,q,q(Rd) if and only if (

∑∞
k=0 ‖ψk(D)f‖qBsp,q,q(Rd)

)1/q <∞, in which case

‖f‖Bsp,q,q(Rd) =
( ∞∑
k=0

‖ψk(D)f‖qBsp,q,q(Rd)

)1/q

.

2.2. An equivalent norm. For each k ∈ N0, fix a maximal collection Θk ⊆ Sd−1

of unit vectors such that |ν − ν′| ≥ 2−k/2 for all ν, ν′ ∈ Θk. Let (χν)ν∈Θk ⊆
C∞(Rd \ {0}) be an associated partition of unity. That is, each χν is homogeneous

of order 0 and satisfies 0 ≤ χν ≤ 1 and supp(χν) ⊆ {ξ ∈ Rd | |ξ̂ − ν| ≤ 21−k/2}.
Moreover,

∑
ν∈Θk

χν(ξ) = 1 for all ξ 6= 0, and for all α ∈ Nd0 and β ∈ N0 there

exists a Cα,β ≥ 0 independent of N such that, if 2−1+k ≤ |ξ| ≤ 21+k, then

|(ξ̂ · ∂ξ)β∂αξ χν(ξ)| ≤ Cα,β2−k(|α|/2+β)

for all ν ∈ Θk. Also write χkν := χνψk for k ∈ N0 and ν ∈ Θk, so that

f =

∞∑
k=0

∑
ν∈Θk

χkν(D)f

for f ∈ S ′(Rd). Moreover, it follows from integration by parts that

(2.1) ‖F−1(χkν)‖Lp(Rd) . 2
k n+1

2p′

for all p ∈ [1,∞], with an implicit constant independent of k and ν.
We can now give a discrete description of the Bsp,q,q(Rd)-norm. For p = q, the

first statement in the following proposition is [22, Proposition 4.1].

Proposition 2.4. Let p ∈ [1,∞], q ∈ [1,∞) and s ∈ R. Then there exists a C > 0

such that the following holds. Let f ∈ S ′(Rd) be such that supp(f̂ ) ⊆ {ξ ∈ Rd |
2−1+k ≤ |ξ| ≤ 21+k} for some k ∈ N. Then

1

C
‖f‖Bsp,q,q(Rd) ≤ 2k(s+ d−1

2 ( 1
2−

1
q ))
( ∑
ν∈Θk

‖χν(D)f‖q
Lp(Rd)

)1/q

≤ C‖f‖Bsp,q,q(Rd).
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Hence an f ∈ S ′(Rd) satisfies f ∈ Bsp,q,q(Rd) if and only if

(2.2)
( ∞∑
k=0

2qk(s+ d−1
2 ( 1

2−
1
q ))

∑
ν∈Θk

‖χkν(D)f‖q
Lp(Rd)

)1/q

is finite, and (2.2) defines an equivalent norm on Bsp,q,q(Rd).

Proof. It is straightforward to deal with the low frequencies, so we may assume that
q(D)f = 0. Moreover, by Lemma 2.3, the second statement follows from the first.

To prove the first statement, for each ν ∈ Θk write χ̃ν :=
∑
|ν′−ν|≤22−k/2 χν and

Eν := {ω ∈ Sd−1 | |ω − ν| ≤ 23−k/2}. Then

‖ϕω(D)χν(D)f‖W s,p = ‖ϕω(D)χ̃ν(D)χν(D)f‖W s,p . 2k(s+ d−1
4 )‖χν(D)f‖Lp

for each ω ∈ Eν , by a kernel estimate, and |Eν | . 2−k(d−1)/2. Hence(∫
Sd−1

‖ϕω(D)f‖q
W s,p(Rd)

dω
)1/q

.
( ∑
ν∈Θk

∫
Eν

‖ϕω(D)χν(D)f‖q
W s,p(Rd)

)1/q

. 2k(s+ d−1
4 )|Eν |1/q

(∑
∈Θk

‖χν(D)f‖q
Lp(Rd)

)1/q

. 2k(s+ d−1
2 ( 1

2−
1
q ))
(∑
∈Θk

‖χν(D)f‖q
Lp(Rd)

)1/q

.

The other inequality follows by duality. �

Remark 2.5. Let f ∈ Bsp,q,q(Rd) be such that

supp(f̂ ) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k, |ξ̂ − ν| ≤ 21−k/2}
for some k ∈ N and ν ∈ Sd−1. Then Proposition 2.4 yields

‖f‖Bsp,q,q(Rd) h 2k(s+ d−1
2 ( 1

2−
1
q ))‖f‖Lp(Rd) h ‖f‖

W
s+ d−1

2
( 1
2
− 1
q
),p

(Rd)
.

2.3. Embeddings. We first obtain Sobolev embeddings into the Besov scale. Note
that (2.3) was already stated in (1.7) in the introduction, and recall the definition
of s(p) from (1.3).

Proposition 2.6. Let p ∈ [1,∞) and s ∈ R. Then

(2.3) Bs+s(p)p,p (Rd) ⊆ Bsp,p,p(Rd) ⊆ Bs−s(p)p,p (Rd).
Moreover, one has

(2.4) B
s+s(p)
p,p′ (Rd) ⊆ Bsp,p′,p′(Rd), 1 < p ≤ 2,

and

(2.5) Bsp,p′,p′(Rd) ⊆ B
s−s(p)
p,p′ (Rd), 2 ≤ p <∞.

Proof. By recalling that the Sobolev and Besov norms of a function with frequency
support in a dyadic annulus are equivalent, (2.3) follows directly from (1.2).

On the other hand, by Proposition 2.4, we may prove (2.4) and (2.5) for f ∈
S ′(Rd) with supp(f̂ ) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k} for some k ∈ N. Moreover,
both identities follow from (2.3) for p = 2. Hence, by interpolation, it suffices to
note that

max
ν∈Θk

‖χν(D)f‖L1(Rd) . ‖f‖L1(Rd),
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where we used that the kernels of the χν are uniformly in L1(Rd), cf. (2.1), and
that

‖f‖L∞(Rd) =
∥∥∥ ∑
ν∈Θk

χν(D)f
∥∥∥
L∞(Rd)

≤
∑
ν∈Θk

‖χν(D)‖L∞(Rd). �

Remark 2.7. The Sobolev exponents in (2.3) are sharp, by Proposition 3.1 and
because the half-wave propagators lose 2s(p) derivatives in the Besov scale.

By Proposition 2.6 and by standard embeddings for Besov spaces, one has

Bs(p)p,p,p(Rd) ⊆ Lp(Rd) ⊆ B
−s(p)
p,p′,p′(R

d)

for 1 < p ≤ 2, and

(2.6) Bs(p)p,p′,p′(R
d) ⊆ Lp(Rd) ⊆ B−s(p)p,p,p (Rd)

for 2 ≤ p <∞. These embeddings are similar to embeddings for modulation spaces.
Next, we obtain embeddings within the scales of adapted Besov spaces and Hardy

spaces for FIOs. Combined with the Sobolev embeddings for HpFIO(Rd) in (1.2),
this proposition implies the embeddings in (1.10).

Proposition 2.8. Let p, r ∈ [1,∞], q ∈ [1,∞) and s ∈ R. Then

(2.7) Bsp,q2,r(R
d) ⊆ Bsp,q1,r(R

d)

and

(2.8) B
s+ d−1

2 ( 1
q1
− 1
q2

)
p,q1,q1 (Rd) ⊆ Bsp,q2,q2(Rd)

for all q1, q2 ∈ [1,∞) with q1 ≤ q2. Moreover, one has

(2.9) B
s+ d+1

2 ( 1
p1
− 1
p2

)
p1,q,q (Rd) ⊆ Bsp2,q,q(R

d)

for all p1, p2 ∈ [1,∞] with p1 ≤ p2, and for all t ∈ [1,∞] and ε > 0 one has

(2.10) Bs+εp,q,r(Rd) ⊆ Bsp,q,t(Rd)

and

(2.11) Bs+εp,p,r(Rd) ⊆ H
s,p
FIO(Rd) ⊆ Bs−εp,p,r(Rd).

Proof. For (2.7) one can rely on Hölder’s inequality, while (2.8) follows from the
inclusion `q1 ⊆ `q2 . Moreover, both (2.10) and (2.11) follow from standard embed-
dings between Besov and Sobolev spaces (see [28, Section 2.3.2]).

Finally, by Proposition 2.4, for (2.9) it suffices to show that

(2.12) ‖χkν(D)f‖Lp2 (Rd) . 2k
d+1
2 ( 1

p1
− 1
p2

)‖χk(D)f‖Lp1 (Rd)

for all k ≥ 0, ν ∈ Θk and f ∈ Bsp1,q,q(R
d). To this end, one can construct a

collection {χ̃kν | k ≥ 0, ν ∈ Θk} ⊆ C∞c (Rd) of cut-offs with similar support and
decay properties as the χkν , but such that χ̃kν ≡ 1 on supp(χkν). Then, as in (2.1),

‖F−1(χ̃kν)‖Lp3 (Rd) . 2k
d+1
2 ( 1

p1
− 1
p2

),

where 1
p3

= 1 + 1
p2
− 1

p1
. Now (2.12) follows from Young’s inequality, since χkν =

χ̃kνχ
k
ν . �
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3. Invariance and product estimates

In this section we prove that Bsp,q,q(Rd) is invariant under the half-wave propa-
gators and more general operators. We also obtain some product estimates, which
are useful for solving nonlinear equations.

3.1. Invariance. The main result of this subsection is the following slightly more
general version of (1.8).

Proposition 3.1. Let φ ∈ C∞(Rd \ {0}) be homogeneous of order 1, and let p ∈
[1,∞], q ∈ [1,∞) and s ∈ R. Then there exists a C ≥ 0 such that

‖eitφ(D)f‖Bsp,q,q(Rd) ≤ C(1 + |t|)2s(p)‖f‖Bsp,q,q(Rd)

for all t ∈ R and Bsp,q,q(Rd).

Proof. By Proposition 2.4, it suffices to show that

‖χkν(D)eitφ(D)f‖Lp(Rd) . (1 + |t|)2s(p)‖χkν(D)f‖Lp(Rd)

for all t ∈ R, f ∈ Bsp,q,q(Rd), k ∈ N0 and ν ∈ Θk. This is clearly true for p = 2.
Hence, by interpolation and duality, it suffices to show the statement for p = 1.

To do so, we rely on a dilation argument. Let {χ̃mω | m ∈ N0, ω ∈ Θm} ⊆ C∞c (Rd)
be a collection of cut-offs with similar support and decay properties as the χmω , but
such that χ̃mω ≡ 1 on supp(χmω ). Then

(3.1) sup
|t|≤4

‖χ̃ωm(D)eitφ(D)g‖L1(Rd) . ‖g‖L1(Rd)

for all g ∈ L1(Rd), as follows either from kernel bounds (see [25]), or from the
boundedness of eitφ(D) on H1

FIO(Rd). Either way, we may thus suppose that |t| > 4.
Let l ≥ 2 be such that 2l < |t| ≤ 2l+1. Then the dilated function χkν( ·|t| ) satisfies

supp(χkν( ·|t| )) ⊆ {ξ ∈ Rd | 2k+l−1 ≤ |ξ| ≤ 2k+l+2, |ξ̂ − ν| ≤ 21−k/2}.

Hence one has

χkν( ·|t| ) =

k+l+3∑
m=k+l−2

∑
ω∈Θ̃m

χ̃mω χ
k
ν( ·|t| ),

where each Θ̃m has approximately 2l(n−1)/2 h |t|(n−1)/2 elements. Write ft(y) :=
|t|df(|t|y) for y ∈ Rd. Then it suffices to combine (3.1) with dilation arguments:

‖χkν(D)eitφ(D)f‖L1(Rd) = |t|−d
∥∥(χkν(D|t| )e

iφ(D)ft
)( ·
|t|
)∥∥
L1(Rd)

= ‖χkν(D|t| )e
iφ(D)ft‖L1(Rd)

≤
k+l+3∑

m=k+l−2

∑
ω∈Θ̃m

∥∥χ̃mω (D)eiφ(D)χkν(D|t| )ft
∥∥
L1(Rd)

. |t|(n−1)/2‖χkν(D|t| )ft‖L1(Rd) = |t|(n−1)/2‖χkν(D)f)‖L1(Rd),

where we used in particular the homogeneity of φ. �

The bounds are sharp for p = q, since otherwise they would imply sharper bounds
in the Besov scale than are known to be possible, by (2.3). Moreover, the following
radial Knapp example shows sharpness of the polynomial growth bound for general
p, q, since the Bsp,q,q(Rd) norm coincides with the Lp(Rd) norm for low frequencies.
The analog for the Schrödinger equation was considered in [23, Corollary 1.4].
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Proposition 3.2. Let d ≥ 2 and p ∈ [1,∞]. Then there exist an f ∈ Lp(Rd) with

supp(f̂ ) ⊆ B(0, 1), and a C ≥ 0, such that

‖eit
√
−∆f‖Lp(Rd) ≥ C(1 + |t|)(d−1)| 12−

1
p |‖f‖Lp(Rd)

for all t ∈ R.

Proof. We can suppose that t� 1, and by duality it is enough to consider p ∈ [1, 2].
Let χ ∈ C∞c (B(0, 1)\B(0, 1/2)) be a radial bump function, and let χ0 be such

that χ(ξ) = χ0(|ξ|). We consider as initial data f with f̂(ξ) = χ(ξ) and rewrite the
linear solution by radial symmetry:

(eit
√
−∆f)(x) =

∫
Rd
ei(x·ξ+t|ξ|)χ0(|ξ|)dξ

=

∫ ∞
0

ds

∫
Sd−1

dσ(θ)ei(x·sθ+ts)sd−1χ0(s).

We have ∫
Sd−1

eix·θdθ = |x|−
d−2
2 J d−2

2
(|x|)

with Jν the Bessel function of the first kind:

Jν(r) =
(r/2)ν

Γ(ν + 1/2)π1/2

∫ 1

−1

eirt(1− t2)ν−
1
2 dt, ν > −1

2
.

We have the following asymptotic expansion by [19, Section 10.17]:

Jν(z) =
( 2

πz

) 1
2
(

cosω

∞∑
k=0

(−1)k
a2k(ν)

z2k
− sinω

∞∑
k=0

(−1)k
a2k+1(ν)

z2k+1

)
with ω = z − 1

2νπ −
1
4π. Hence, we can write

χ0(s)(s|x|)−
d−2
2 J d−2

2
(s|x|) =

M∑
j=0

|x|−
d−1
2 −j

∑
±
e±is|x|χj,±(s) +O(|x|−

d−1
2 −M )

with χj,± ∈ C∞c (B(0, 1)\B(0, 1/2)). We find

(eit
√
−∆f)(x) =

M∑
j=0

|x|−
d−1
2 −j

∑
±

∫
R
eist±is|x|χj,±(s)ds+O(|x|−

d−1
2 −M ).

Let t � 1 and
∣∣|x| − t∣∣ ≤ 2−10. In this case st + s|x| is a non-stationary phase,

which means for j = 0 the contribution of χ0,+ can be neglected against χ0,−. But
by the explicit form of χj,−, we have∣∣ ∫ eist−is|x|χ0,−(s)ds

∣∣ & 1.

Thus, the higher orders can be neglected against the contribution of χ0,− likewise.

This shows |eit
√
−∆u0|(x) & |t|− d−1

2 for
∣∣|x| − t

∣∣ ≤ 2−10, and this concludes the
proof by integration. �
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3.2. Product estimates. We begin with a simple bilinear estimate.

Lemma 3.3. Let p1, p2, p ∈ [1,∞] be such that 1
p = 1

p1
+ 1

p2
, and let s > 3(d−1)

4 .

Then there exists a C ≥ 0 such that, for all f ∈ Bsp1,1,1(Rd) and g ∈ Bsp2,1,1(Rd),
one has fg ∈ Bsp,1,1(Rd) and

‖fg‖Bsp,1,1(Rd) ≤ C‖f‖Bsp1,1,1(Rd)‖g‖Bsp2,1,1(Rd).

Proof. We use paraproduct analysis. More precisely, one has

‖f‖Bsp,1,1(Rd) h
∞∑
k=0

2k(s− d−1
4 )
∑
ν∈Θk

∥∥∥ ∞∑
l,m=0

∑
ω∈Θl,µ∈Θm

χkν(D)(χlω(D)f · χmµ (D)g)
∥∥∥
Lp(Rd)

≤
∞∑

k,l,m=0

2k(s− d−1
4 )

∑
ν∈Θk,ω∈Θl,µ∈Θm

‖χkν(D)(χlω(D)f · χmµ (D)g)‖Lp(Rd)

by Proposition 2.4. We write the latter expression as I1 + I2 + I3, where I1 involves
the sum over m ≤ l − 3, I2 the sum over l − 2 ≤ m ≤ l + 2, and I3 the sum over
m ≥ l + 3. Moreover, by symmetry, it suffices to consider only I1 and I2.

For the High×Low term I1, we only need to consider l−3 ≤ k ≤ l+3, since the
low-frequency factor χmµ (D)g does not essentially change the dyadic localization.
However, it can change the angular localization. For l ≥ 0, m ≤ l − 3, ω ∈ Θl

and µ ∈ Θm, we decompose the support of χmµ , which is approximately a 2m/2 ×
. . . × 2m/2 × 2m slab, into 2m/2 × . . . × 2m/2 × 2min(l/2,m) slabs. Let (χm,iµ )i∈I be

a corresponding partition of unity, with |I| h 1 + 2m−l/2. Then the support of the
convolution of χωl with a given χm,iµ can only intersect the support of O(1) elements
of Θk. Hence the support of the convolution of χωl and χµm can only intersect the

support of O(1 + 2m−l/2) elements of Θk. Since m− l/2 . m/2, we obtain

I1 h
3∑

j=−3

∞∑
l=0

l−3∑
m=0

2l(s−
d−1
4 )

∑
ν∈Θl+j ,ω∈Θl,µ∈Θm

‖χl+jν (D)(χlω(D)f · χmµ (D)g)‖Lp(Rd)

.
∞∑
l=0

l−3∑
m=0

2l(s−
d−1
4 )+m

2

∑
ω∈Θl,µ∈Θm

‖χlω(D)f‖Lp1 (Rd)‖χmµ (D)g‖Lp2 (Rd)

. ‖f‖Bsp1,1,1(Rd)‖g‖Bsp2,1,1(Rd),

where in the final step we used Proposition 2.4 and that s ≥ (d+ 1)/4.
For the High×High term I2, all information on angular localization is lost. By

trivially summing over ν ∈ Θk, using also that s > 3(d− 1)/4, we obtain

I2 =

∞∑
l=0

l+2∑
m=l−2

l+5∑
k=0

2k(s− d−1
4 )

∑
ν∈Θk,ω∈Θl,µ∈Θm

‖χkν(D)(χlω(D)f · χmµ (D)g)‖Lp(Rd)

.
∞∑
l=0

l+2∑
m=l−2

l+5∑
k=0

2k(s+ d−1
4 )

∑
ω∈Θl,µ∈Θm

‖χlω(D)f‖Lp1 (Rd)‖χmµ (D)g‖Lp2 (Rd)

. ‖f‖Bsp1,1,1(Rd)‖g‖Bsp2,1,1(Rd). �

A trilinear estimate can be proved by similar means.

Lemma 3.4. Let p1, p2, p3, p ∈ [1,∞] be such that 1
p =

∑3
i=1

1
pi

, and let s >

max( 3(d−1)
4 − 1, d−1

4 ). Then there exists a C ≥ 0 such that, for all fi ∈ Bspi,1,1(Rd),
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1 ≤ i ≤ 3, one has
∏3
i=1 fi ∈ Bsp,1,1(Rd) and∥∥∥ 3∏
i=1

fi

∥∥∥
Bs−1
p,1,1(Rd)

≤ C
3∏
i=1

‖fi‖Bspi,1,1(Rd).

Proof. The approach to the proof is similar as in Lemma 3.3, so we only indicate
how to deal with the relevant terms, involving indices k, ki ∈ N0 for 1 ≤ i ≤ 3.

For the High × Low × Low term, we consider 2k h 2k1 � 2k2 ≥ 2k3 and the
term

I := 2k(s−1− d−1
4 )

∑
ν∈Θk

∥∥∥χNν (D)
( 3∏
i=1

χkiνi (D)fi

)∥∥∥
Lp(Rd)

,

for νi ∈ Θki , 1 ≤ i ≤ 3. We have to estimate the number of ν for which the support
of χν intersects the support of χk1ν1 ∗χ

k2
ν2 ∗χ

k3
ν3 . Note that χk2ν2 ∗χ

k3
ν3 is supported in a

slab of dimensions approximately 2max(k3,k2/2) × 2k2/2 × . . .× 2k2/2 × 2k2 . This we
subdivide into cubes of side length no more than 2k1/2, of which there are no more
than approximately (1 + 2k3−k1/2)(1 + 2k2−k1/2). This yields

I . 2k1(s−1− d−1
4 )(1 + 2

k3
2 )(1 + 2

k2
2 )

3∏
i=1

‖χkiνi (D)fi‖Lpi (Rd).

Since s ≥ d−1
4 , this suffices for the High× Low × Low term.

Next, suppose that 2k h 2k1 h 2k2 � 2k3 . Then we obtain, by trivial summation,

2k(s−1− d−1
4 )

∑
νk∈Θk

∥∥∥χkν(D)
( 3∏
i=1

χkiνi (D)fi

)∥∥∥
Lp(Rd)

. 2k(s−1+ d−1
4 )

3∏
i=1

‖χNiνi (D)fi‖Lpi (Rd).

This suffices for the High×High× Low term, since s > max( 3(d−1)
4 − 1, d−1

4 ).
The High × High × High term is also dealt with through trivial summation,

using that s > (d− 2)/4. By symmetry, this concludes the proof. �

4. Local smoothing in Bsp,2,2(Rd)

In this section we prove Theorem 1.1. The proof is analogous to that of [22,
Theorem 1.1]. In particular, the key to the proof is the following proposition, which
generalizes the case q = p in [22, Corollary 4.2] to arbitrary q ∈ (1,∞).

Proposition 4.1. Let p ∈ [1,∞], q ∈ [1,∞) and s ∈ R, and let 0 6= g ∈ S(R).
Then there exists a C > 0 such that the following holds. Let f ∈ S ′(Rd) be such

that supp(f̂ ) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k} for some k ∈ N. Then

1

C
‖f‖Bsp,q,q(Rd) ≤ 2k(s+ d−1

2 ( 1
2−

1
q ))
( ∑
ν∈Θk

‖χν(D)g(t)eit
√
−∆f‖q

Lp(R×Rd)

)1/q

≤ C‖f‖Bsp,q,q(Rd).

Hence an f ∈ S ′(Rd) satisfies f ∈ Bsp,q,q(Rd) if and only if

(4.1)
( ∞∑
k=0

2qk(s+ d−1
2 ( 1

2−
1
q ))

∑
ν∈Θk

‖g(t)eit
√
−∆χν(D)ψk(D)f‖q

Lp(R×Rd)

)1/q

is finite, and (4.1) defines an equivalent norm on Bsp,q,q(Rd).
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Proof. It is straightforward to deal with the low frequencies, so we may assume that
q(D)f = 0. Moreover, by Lemma 2.3, the second statement follows from the first.

For the first statement, note that there exists an N ≥ 0 such that

‖χν(D)eit
√
−∆f‖Lp(Rd) . (1 + |t|)N‖χν(D)f‖Lp(Rd)

for all ν ∈ Θk and t ∈ R, as follows either from kernel bounds, or by combining
Remark 2.5 and Proposition 3.1. Either way, one thus has

‖χν(D)g(t)eit
√
−∆f‖Lp(R×Rd) =

(∫
R
|g(t)|‖χν(D)eit

√
−∆f‖p

Lp(Rd)
dt
)1/p

. ‖χν(D)f‖Lp(Rd).

It now follows from Proposition 2.4 that

2k(s+n−1
2 ( 1

2−
1
q ))
( ∑
ν∈Θk

‖χν(D)g(t)eit
√
−∆f‖q

Lp(R×Rd)

)1/q

. 2k(s+n−1
2 ( 1

2−
1
q ))
( ∑
ν∈Θk

‖χν(D)f‖q
Lp(Rd)

)1/q

h ‖f‖Bsp,q,q(Rd).

On the other hand, for all ν ∈ Θk one has

‖χν(D)f‖Lp(Rd) = ‖e−it
√
−∆eit

√
−∆χν(D)f‖Lp(Rd) . ‖g(t)eit

√
−∆χν(D)f‖Lp(Rd)

on any compact interval I ⊆ R such that |g(t)| & 1 for all t ∈ I. Hence

‖f‖Bsp,q,q(Rd) h 2k(s+n−1
2 ( 1

2−
1
q ))
( ∑
ν∈Θk

‖χν(D)f‖q
Lp(Rd)

)1/q

. 2k(s+n−1
2 ( 1

2−
1
q ))
( ∑
ν∈Θk

‖χν(D)g(t)eit
√
−∆f‖q

Lp(R×Rd)

)1/q

,

again by Proposition 2.4. �

The proof of Theorem 1.1 is now almost immediate.

Proof of Theorem 1.1. Let g ∈ S(R) be such that |g(t)| ≥ 1 for t ∈ [0, 1], and
supp(ĝ ) ⊆ [−1, 1]. Let ε > 0 and f ∈ Bsp,2,2(Rd). We apply the Littlewood–
Paley decomposition (ψk)∞k=0 to f . Moreover, we can use a kernel estimate for the
low-frequency term, so we may assume that ψ0(D)f = 0. Then the `2-decoupling
inequality (1.6), with ε replaced by ε/2, yields

‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) ≤

∞∑
k=1

‖eit
√
−∆ψk(D)f‖Lpt ([0,1],Lp(Rd))

.
∞∑
k=1

2k(s(p)+ε/2)
( ∑
ν∈Θk

‖g(t)eit
√
−∆χν(D)ψk(D)f‖2Lpt,x(R×Rd)

)1/2

.

Now Proposition 4.1 implies that the final quantity is equivalent to

∞∑
k=1

2−ε/2‖ψk(D)f‖Bs(p)+εp,2,2 (Rd)
.
∞∑
k=1

2−ε/2‖f‖Bs(p)+εp,2,2 (Rd)
h ‖f‖Bs(p)+εp,2,2 (Rd)

.

This concludes the proof. �
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Remark 4.2. For each 2 < p < ∞ the exponent s(p) in Theorem 1.1 is sharp, in
the sense that, for any s < s(p), there does not exist a C ≥ 0 such that

(4.2) ‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) ≤ C‖f‖Bsp,2,2(Rd)

for all f ∈ Bsp,2,2(Rd).
To see this, first note that (4.2) and (1.10) combine to yield

(4.3) ‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) .ε ‖f‖W s+s(p)+2ε,p(Rd)

for all f ∈W s+s(p)+2ε,p(Rd) and ε > 0. Hence, for p ≥ 2(d+1)/(d−1), by choosing ε
sufficiently small, (4.3) improves upon the conjectured local smoothing estimates in
(1.5). Since these are known to be sharp, (4.2) cannot hold for p ≥ 2(d+1)/(d−1).

On the other hand, suppose f ∈ Bsp,2,2(Rd) is such that

supp(f̂ ) ⊆ {ξ ∈ Rd | 2−1+k ≤ |ξ| ≤ 21+k, |ξ̂ − ν| ≤ 21−k/2}

for some k ∈ N and ν ∈ Sd−1. Then Remark 2.5, Proposition 3.1 and (4.2) yield

‖f‖Lp(Rd) h ‖f‖B0
p,2,2(Rd) h ‖eit

√
−∆f‖Lpt ([0,1],B0

p,2,2(Rd))

h ‖eit
√
−∆f‖Lpt ([0,1],Lp(Rd)) . ‖f‖Bsp,2,2(Rd) h ‖f‖W s,p(Rd) h 2ks‖f‖Lp(Rd).

Since s(p) = 0 for 2 < p < 2(d+ 1)/(d− 1), this leads to a contradiction, and (4.2)
cannot hold for such p.

5. Well-posedness for nonlinear wave equations

In this section we will mainly focus on the cubic nonlinear wave equation

(5.1)

{
∂2
t u−∆xu = ±|u|2u, (t, x) ∈ R× R2,

u(0) = f1 ∈ X, u̇(0) = f2 ∈ Y,

outside L2-based Sobolev spaces.
We first collect some preliminaries. In Section 5.2 we then prove local results

for slowly decaying initial data, including a theorem for the quintic nonlinear wave
equation. The local results do not distinguish between focusing and defocusing
nonlinearity. In Section 5.3 we then prove local results for initial data which decay
even slower than in Section 5.2, and finally we prove global results for the defocusing
equation, that is, (5.1) with a minus sign on the right hand-side.

5.1. Preliminaries. Our notion of well-posedness is based on [2, Section 3]. We
recall the key elements. We use Duhamel’s formula to write (5.1) as an abstract
evolution equation:

(5.2) u = L(f, g) +N3(u, u, u),

where u ∈ S, which is a space-time function space, L : X × Y → S is a densely
defined linear operator, and N3 : S×S×S → S is a densely defined operator which
is either linear or antilinear in each of its variables. In our case one has

L(f, g)(t) := cos(t
√
−∆)f +

sin(t
√
−∆)√
−∆

g,

N3(u1, u2, u3)(t) := ±
∫ t

0

sin((t− s)
√
−∆)√

−∆
u1(s)u2(s)u3(s)ds.
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We say that (5.2) is quantitatively well posed (with initial data space X × Y and
solution space S) if there exists a C ≥ 0 such that

‖L(f, g)‖S ≤ C‖(f, g)‖X×Y ,(5.3)

‖N3(u1, u2, u3)‖S ≤ C
3∏
i=1

‖ui‖S ,(5.4)

for all (f, g) ∈ X × Y and ui ∈ S, 1 ≤ i ≤ 3.
If (5.2) is quantitatively well posed, then it follows from a fixed-point argument

(see [2, Theorem 3]) that (5.2) is analytically locally well posed. In particular, there
exist C0, ε0 > 0 such that, for all (f, g) ∈ B(X,Y )(0, ε0), there exists a unique solution
u[f, g] ∈ BS(0, C0ε0) to (5.2). Moreover, the map (f, g) 7→ u[f, g] is Lipschitz
continuous from B(X,Y )(0, ε0) to BS(0, C0ε0), and one can expand u[f, g] in terms of
its Picard iterates. That is, define the nonlinear maps Am : X×Y → S recursively:

A1(f, g) := L(f, g),

Am(f, g) :=
∑

m1,m2,m3≥1:
m1+m2+m3=m

N3(Am1
(f, g), Am2

(f, g), Am3
(f, g)) for m > 1.(5.5)

Then

u[f, g] =

∞∑
m=0

Am(f, g),

where the series converges absolutely in S for all (f, g) ∈ B(X,Y )(0, ε0). In the
following we define solution spaces locally in time S → ST and by improving the
estimates (5.3) and (5.4) to

‖L(f, g)‖ST ≤ CT δ‖(f, g)‖X×Y ,

‖N3(u1, u2, u3)‖ST ≤ CT δ
3∏
i=1

‖ui‖ST
(5.6)

for some δ > 0, we can find T = T (‖(f, g)‖X×Y ), also for large data, such that we
find analytic dependence on the initial data in ST .

We use the following sharp local smoothing estimate due to Guth–Wang–Zhang
[9] to prove the linear estimate (5.3) for initial data in Lp-based Sobolev spaces.

Theorem 5.1. Let p ∈ (2,∞) and s > max( 1
2 −

2
p , 0). Then there exists a C ≥ 0

such that

‖eit
√
−∆f‖Lpt ([0,1],Lp(R2)) ≤ C‖f‖W s,p(R2)

for all f ∈W s,p(R2).

The smoothing estimate for data in Bsp,2,2(R2) is provided by Theorem 1.1. For
the proof of the nonlinear estimate (5.4), we use Strichartz estimates (cf. [14]).

Theorem 5.2. Let 2 ≤ pi, qi ≤ ∞, 2
pi

+ 1
qi

= 1
2 , si = 2( 1

2 −
1
qi

)− 1
pi

. Then, we find

the following estimate to hold:

‖〈D〉−s1u‖Lp1t ([0,T ],Lq1 (R2))

. ‖u(0)‖L2(R2) +
∥∥〈D〉s2(i∂t +

√
−∆)u

∥∥
L
p′2
t ([0,T ],Lq

′
2 (R2))

.
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5.2. Local well-posedness results. We begin with the local well-posedness result
in Theorem 1.2 and Remark 1.3.

Proof of Theorem 1.2 and Remark 1.3. As explained above, it suffices to prove (5.6).
In what follows, let T ≤ 1, which simplifies powers of T .

We first consider the linear estimate (5.3) with initial data in W s,p(Rd), as in
Remark 1.3. Theorem 5.1 and Hölder’s inequality in time yield

‖eit
√
−∆f‖

L
24/7
t ([0,T ],L4(R2))

. T 1/24‖f‖W ε,4(R2),

‖eit
√
−∆f‖L4

t ([0,T ],L6(R2)) . T
1/12‖f‖W 1/6+ε,6(R2).

This yields the linear estimate for cos(t
√
−∆)f and for the high frequencies of

sin(t
√
−∆)√
−∆

g. On the other hand, the low-frequency estimate holds since

(5.7) χ(D)
sin(t
√
−∆)√
−∆

: Lp(R2)→ Lp(R2)

for some cut-off χ ∈ C∞c (R2) near zero and all 1 < p <∞, due to Mikhlin’s theorem.

Now consider the linear estimate (5.3) for initial data in Bsp,2,2(R2) + Ḣt(R2),
cf. Theorem 1.2. Recall that in this case we consider the solution space

(5.8) ST = L24/7([0, T ], L4(R2)) ∩ C([0, T ];Bε4,2,2(R2) + Ḣ3/8(R2)).

To obtain the linear estimate for the first space on the right-hand side, we again
rely on Hölder’s inequality, Theorem 1.1, and on linear Strichartz estimates as in
Theorem 5.2. More precisely, let f = f1 + f2 with f1 ∈ Bε4,2,2(R2) and f2 ∈
Ḣ3/8(R2). Then Theorems 1.1 and 5.2 yield

‖eit
√
−∆f‖

L
24/7
t ([0,T ],L4(R2))

. T 1/24(‖f1‖Bε4,2,2(R2) + ‖f2‖Ḣ3/8(R2)).

Note that we can likewise estimate f2 in Hs(R2) for s ≥ 3/8. By taking the infimum

over all decompositions f = f1 + f2 in Bε4,2,2(R2) + Ḣ3/8(R2), we find

‖ cos(t
√
−∆)f‖

L
24/7
t ([0,T ],L4(R2))

. T 1/24‖f‖Bε4,2,2(R2)+Ḣ3/8(R2).

Next, write g = g1 + g2 with g1 ∈ Bε−1
4,2,2(R2) and g2 ∈ Ḣ−5/8(R2). To obtain∥∥∥ sin(t

√
−∆)

(−∆)1/2
g
∥∥∥
L

24/7
t ([0,T ],L4(R2))

. T 1/24(‖g1‖Bε−1
4,2,2(R2) + ‖g2‖Ḣ−5/8(R2))

one proceeds in the same way when it comes to g2 and the high frequencies of g1,
using the additional smoothing. On the other hand, for the low frequencies of g1,
one can argue as in (5.7). Indeed, one has

(5.9) χ(D)
sin(t
√
−∆)√
−∆

: Bε−1
p,2,2(R2)→ Bs(p)+εp,p,p (R2) ⊆ Bεp,p(R2) ⊆ Lp(R2).

Here we used Proposition 2.4, Mikhlin’s theorem and trivial summation to obtain
the mapping property, and (2.3) and standard embeddings from Besov spaces into
Lp(Rd) for the inclusions. This proves the linear estimate (5.3) for the first space
on the right-hand side of (5.8).

To show the linear estimate involving the solution space C([0, T ];Bε4,2,2(R2) +

Ḣ3/8(R2)), we use the invariance of Bε4,2,2(R2) and Ḣ3/8(R2)) under the half-wave

group, as well as (5.9) to deal with the low frequencies of sin(t
√
−∆)(−∆)−1/2.



18 JAN ROZENDAAL AND ROBERT SCHIPPA

Finally, by relying instead on the L6([0, T ];L6(R2)) smoothing estimate in The-
orem 1.1, as well as the L6

t ([0, T ], L6(R2)) Strichartz estimate, we obtain

‖ cos(t
√
−∆)f‖L4

t ([0,T ],L6(R2)) . T
1/12‖f‖Bε6,2,2(R2)+Ḣ1/2(R2).

Similarly, ∥∥∥ sin(t
√
−∆)√
−∆

g
∥∥∥
L4
t ([0,T ],L6(R2))

. T 1/12‖g‖Bε−1
6,2,2(R2)+Ḣ−1/2(R2).

Moreover, to obtain the linear estimate for the solution space C([0, T ];Bε6,2,2(R2) +

Ḣ1/2(R2)), one argues as above. This takes care of the linear estimate (5.3) for
both Theorem 1.2 and Remark 1.3.

We turn to the trilinear estimate (5.4), as a consequence of Strichartz estimates,
and begin with the estimate∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(u1u2u3)(s)ds

∥∥∥
L

24/7
t ([0,T ],L4(R2))

. T
1
24

3∏
i=1

‖ui‖L24/7
t ([0,T ],L4(R2))

.

The low frequencies χ(D)(u1u2u3) are again estimated via Mikhlin’s theorem. For
the high frequencies, we use Theorem 5.2 with pi = 8, qi = 4, i = 1, 2, to find∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(1− χ)(D)(u1u2u3)(s)ds

∥∥∥
L

24/7
t ([0,T ],L4(R2))

. T 1/8
∥∥∥ |D|6/8|D|

(1− χ)(D)(u1u2u3)
∥∥∥
L

8/7
t L4/3

. T 1/8‖u1u2u3‖L8/7
t L4/3

. T 1/8
3∏
i=1

‖ui‖3L24/7
t ([0,T ],L4(R2))

.

This already concludes the proof for initial data in W ε,4(R2) ×W−1+ε,4(R2). For
initial data involving the Bs4,2,2(R2)-spaces, we also need to consider the solution

space C([0, T ], Ḣ3/8(R2)). Here we estimate by Minkowski’s inequality∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
χ(D)(u1u2u3)(s)ds

∥∥∥
L∞t ([0,T ],Ḣ3/8(R2))

. ‖u1u2u3‖L1
t ([0,T ],L4/3(R2)) . T

3
24

3∏
i=1

‖ui‖L24/7
t ([0,T ],L4(R2))

for the low frequencies, again by Mikhlin’s theorem. For the high frequencies, we
use a Sobolev embedding:∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(1− χ)(D)(u1ū2u3)(s)ds

∥∥∥
L∞t ([0,T ],Ḣ3/8(R2))

. ‖〈D〉−5/8(u1u2u3)‖L1
t ([0,T ],L2(R2)) . T

3/24
n∏
i=1

‖ui‖L24/7
t ([0,T ],L4(R2))

.

This proves the required supremum norm bounds, while the continuity statements
are automatic, since the half-wave group is strongly continuous on Ḣs(R2). This
also concludes the proof for initial data as in (1.11).
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Finally, we consider the trilinear estimate with parameter p = 6. First consider∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(u1u2u3)(s)ds

∥∥∥
L4
t ([0,T ],L6(R2))

. T 1/12
3∏
i=1

‖ui‖L4
t ([0,T ],L6(R2)).

The estimate of low frequencies is as before, so it suffices to use Strichartz estimates
with p1 = q1 = 6 and p2 =∞, q2 = 2:∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(1− χ)(D)(u1u2u3)(s)ds

∥∥∥
L4
t ([0,T ],L6(R2))

. T 1/12
∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(1− χ)(D)(u1u2u3)(s)ds

∥∥∥
L6
tL

6
x

. T 1/12‖u1u2u3‖L1
tL

2
x
. T 1/12

3∏
i=1

‖ui‖L4
t ([0,T ],L6(R2)).

This proves the required statement for initial data in W 1/6+ε,6(R2)×W−5/6+ε,6(R2)
and concludes the proof of Remark 1.3.

On the other hand, for the local well-posedness with initial data in Bs6,2,2(R2) we

also have to consider the solution space C([0, T ], Ḣ1/2(R2)), in the following sense:∥∥∥ ∫ t

0

sin((t− s)
√
−∆)√

−∆
(u1u2u3)(s)ds

∥∥∥
L∞t ([0,T ],Ḣ1/2(R2))

. T 1/12
3∏
i=1

‖ui‖L4
t ([0,T ],L6(R2)).

The estimate for the low frequencies is carried out by Mikhlin’s theorem, while for
the high frequencies the argument is∥∥∥∫ t

0

sin((t− s)
√
−∆)√

−∆
(1− χ(D))(u1ū2u3)(s)ds

∥∥∥
L∞t Ḣ

1/2
. ‖u1ū2u3‖L1

tL
2
x

. T 1/12
3∏
i=1

‖ui‖L4
tL

6
x
.

This concludes the proof. �

We remark that there is slack in the spatial regularity in the nonlinear argument.
This can be translated to solve the quintic nonlinear wave equation
(5.10){

∂2
t u−∆xu = ±|u|4u, (t, x) ∈ R× R2,

u(0) = f ∈ Bε6,2,2(R2) + Ḣ1/2(R2), u̇(0) = g ∈ Bε−1
6,2,2(R2) + Ḣ−1/2(R2)

in the solution space ST = L6
t ([0, T ], L6

x)∩C([0, T ],Bε6,2,2(R2)+Ḣ1/2(R2)) for small
initial data. The crucial nonlinear estimate reads∥∥∥ ∫ t

0

sin((t− s)
√
−∆)√

−∆

5∏
i=1

ui(s)ds
∥∥∥
L6
t ([0,T ],L6(R2))

.
∥∥∥ 5∏
i=1

ui

∥∥∥
L

6/5
t ([0,T ],L6/5(R2))

.
5∏
i=1

‖ui‖L6
t ([0,T ],L6(R2))

with Strichartz pairs (pi, qi) = (6, 6), i = 1, 2, because inhomogeneous Strichartz
pairs as in Theorem 5.2 lose exactly one derivative. Note that we cannot afford to
apply Hölder’s inequality in time anymore. Hence, this argument does not allow to
prove well-posedness for large initial data. This is not surprising because (5.10) is
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Ḣ1/2(R2)× Ḣ−1/2(R2)-scaling critical. Easy variants of the above arguments yield
the following theorem.

Theorem 5.3. For any T > 0, there is an ε > 0 such that (5.10) is analytically

locally well posed with u ∈ ST = L6([0, T ], L6(R2)) ∩ C([0, T ],Bε6,2,2 + Ḣ1/2(R2))
provided that

‖f‖Bε6,2,2(R2)+Ḣ1/2(R2) + ‖g‖Bε−1
6,2,2+Ḣ−1/2 ≤ ε.

5.3. Results for slower decaying initial data. In the following we point out
how considering higher Picard iterates allows to construct solutions for very slowly
decaying initial data. The arguments are similar to [23] and [7], albeit with the
difference that the Duhamel integral has a stronger smoothing effect. We consider
the cubic nonlinear wave equation in d dimensions:{

∂2
t u−∆xu = ±|u|2u, (t, x) ∈ R× Rd, d ≥ 2,
u(0) = f1 ∈ X, u̇(0) = f2 ∈ Y,

although our main results concern d ∈ {2, 3}. We write the solution abstractly:

u = L(f1, f2) +N3(u, u, u),

as in Section 5.1.
For d, n ≥ 2, we consider initial data in L4n+2-based spaces, and we let

u0(t) = L(f1, f2),

u1(t) = N3(u0, u0, u0),

uj(t) = N3

( j−1∑
k=0

uk,

j−1∑
k=0

uk,

j−1∑
k=0

uk
)
−
j−1∑
k=1

uk, (j ≥ 2).

We will prove the existence of a

v ∈ S0([−1, 1]× R2) := L∞t ([−1, 1];L2
x(R2)) ∩ L4

t ([−1, 1], L∞x (R2))

which solves

v = u−
n−1∑
j=0

uj .

We can rewrite this as

(5.11) v = N3(u, u, u)−
n−1∑
j=1

uj = N3

(
v +

n−1∑
j=0

uj , v +

n−1∑
j=0

uj , v +

n−1∑
j=0

uj
)
−
n−1∑
j=1

uj

for j ≥ 2. One can check that uj contains only terms Ak with k ≥ 2j+ 1, where Ak
is as in (5.5) (see [24, Section 4.2]). We therefore obtain estimates for such terms.

Lemma 5.4. Let d ∈ {2, 3}, n ≥ 2 and s > d−1
2 (1 − 1

4n+2 ). Then there exists a
C ≥ 0 such that

‖Am(f1, f2)‖
L∞t ([−1,1];L

4n+2
m (Rd))

≤ C
(
‖f1‖mW s,4n+2(Rd) + ‖f2‖mW s−1,4n+2(Rd)

)
.

for all m ∈ {1, . . . , 2n− 1}, f1 ∈W s,4n+2(Rd) and f2 ∈W s−1,4n+2(Rd).
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Proof. First note that Am = 0 if m is even. Hence we may suppose that m = 2k+1
for some k ∈ N0. Let ε > 0 and set p := 4n+ 2 and q := (4n+ 2)/m. Then, by the
embeddings (2.6) and (2.8), one has

‖Am(f1, f2)‖L∞t Lqx . ‖Am(f1, f2)‖
L∞t B

s(q)

q,q′,q′
. ‖Am(f1, f2)‖

L∞t B
(d−1)/4
q,1,1

. ‖Am(f1, f2)‖
L∞t B

s(1)+ε
q,1,1

,

since s(1) = (d−1)/4. We can use this regularity to iterate the Duhamel integral in
adapted spaces, by Lemma 3.4 and because d ∈ {2, 3}. First, we split the Duhamel
integral into low and high frequencies:∥∥ ∫ t

0

ei(t−s)
√
−∆

√
−∆

(u1u2u3)(s)ds
∥∥
L∞t B

s(1)+ε
q,1,1

≤ ‖χ(D)

∫ t

0

ei(t−s)
√
−∆

√
−∆

(u1u2u3)(s)ds
∥∥
L∞t L

q
x

+ ‖(1− χ(D))

∫ t

0

ei(t−s)
√
−∆(u1u2u3)(s)ds‖

L∞t B
s(1)−1+ε
q,1,1

.

The low frequencies are estimated by Mikhlin’s theorem:

‖χ(D)

∫ t

0

ei(t−s)
√
−∆

√
−∆

(u1u2u3)(s)ds‖Lq

. T‖u1u2u3‖L∞t Lqx . T
3∏
i=1

‖ui‖L∞t L3q
x
. T

3∏
i=1

‖ui‖L∞t Bs(1)+ε3q,1,1
,

which allows for iteration. Moreover, for the high frequencies we use the bounded-

ness of eit
√
−∆ on the adapted Besov spaces, and iterate the trilinear estimate in

Lemma 3.4 k times, to obtain

‖Am(f1, f2)‖
L∞t B

s(1)+ε
q,1,1

. ‖f1‖mBs(1)+ε4n+2,1,1

+ ‖f2‖mBs(1)+ε−1
4n+2,1,1

. ‖f1‖mBs(1)+2ε
p,p,p

+ ‖f2‖mBs(1)+2ε−1
p,p,p

. ‖f1‖mW s(1)+s(p)+3ε,p + ‖f2‖mW s(1)+s(p)−1+3ε,p .

Here we also used the embeddings (2.7), (2.10), (2.11) and (1.2). By choosing ε
sufficiently small, this concludes the proof. �

Similarly, we can iterate

‖Am(f1, f2)‖L∞t L∞x . ‖Am(f1, f2)‖
L∞t B

d−1
4

+ε

∞,1,1

. ‖f1‖m
B
d−1
4

+ε

∞,1,1

+ ‖f2‖m
B
d−1
4
−1+ε

∞,1,1

and
‖f‖

B
d−1
4

+ε

∞,1,1

. ‖f‖
B
d−1
4

+ d+1
2p

+ε

p,1,1

. ‖f‖
B
d−1
4

+ d+1
2p

+ε

p,p,p

. ‖f‖W s,p

for s > α with

(5.12) α :=
d− 1

4
+
d+ 1

2p
+
d− 1

2

(1

2
− 1

p

)
=
d− 1

2

(
1− 1

p

)
+
d+ 1

2p
.

This shows that

‖Am(f1, f2)‖L∞t L∞x . ‖f1‖mW s,p + ‖f2‖mW s−1,p .

We can argue like above to find

‖Am(f1, f2)‖L∞t L∞x . ‖f1‖m
B
d−1
4

+ε

∞,1,1

+ ‖f2‖m
B
d−1
4
−1+ε

∞,1,1

.
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Now we use the embeddings

‖f‖Bs∞,1,1 . ‖f‖
B
s+ d+1

2p
p,1,1

. ‖f‖
B
s+ d+1

2p
p,2,2

.

This shows that

‖Am(f1, f2)‖L∞t L∞x . ‖f1‖mBsp,2,2 + ‖f2‖mBs−1
p,2,2

for s > α̃ with

(5.13) α̃ =
d− 1

4
+
d+ 1

2p
.

We have proved the following lemma, regarding the uj from above.

Lemma 5.5. Let d ∈ {2, 3}, n ≥ 2, 0 ≤ j ≤ n−1. Then, for ε > 0, there is εn ≤ 1
and ε̃n ≤ 1 such that

‖uj‖L∞t,x([0,1]×Rd) + ‖uj‖
L∞t L

4n+2
2j+1 ([0,1]×Rd)

. ‖f‖Wα+ε,4n+2(Rd)

holds true provided that ‖f‖Wα+ε,4n+2(Rd) ≤ εn, and

‖uj‖L∞t,x([0,1]×Rd) + ‖uj‖
L∞t L

4n+2
2j+1 ([0,1]×Rd)

. ‖f‖Bα̃+ε
4n+2,2,2(Rd)

provided that ‖f‖Bα̃+ε
4n+2,2,2(Rd) ≤ ε̃n.

With the estimate for the higher Picard iterates at hand, the following proposition
is proved like in [23, Proposition 4.6]:

Proposition 5.6. Let d ∈ {2, 3}, ε > 0, n ≥ 2, and εn, ε̃n ≤ 1 like in Lemma 5.4.
Then, there is a unique v ∈ S0, which solves (5.11) with v(0) = v̇(0) = 0.

This yields the following theorem on local well-posedness for slowly decaying
initial data. We focus on the two-dimensional case with small data to simplify the
Strichartz space, but there are clearly analogs available in higher dimensions.

Theorem 5.7. Let d = 2, ε > 0, n ≥ 2, and (f1, f2), εn, and ε̃n like in Proposition
5.6. Let 2

p + 1
4n+2 = 1

2 . Then, there is u ∈ Lpt ([0, 1], L4n+2(R2)) which solves (5.1).

Furthermore, for

‖(f1, f2)‖Wα+ε,4n+2×Wα+ε−1,4n+2 + ‖(g1, g2)‖Wα+ε,4n+2×Wα+ε−1,4n+2 ≤ εn
or ‖(f1, f2)‖Bα̃+ε

4n+2,2,2×B
α̃+ε
4n+2,2,2

+ ‖(g1, g2)‖Bα̃−1+ε
4n+2,2,2×B

α̃−1+ε
4n+2,2,2

≤ ε̃n

we have for the corresponding solutions ‖u1 − u2‖Lp([0,1],L4n+2) → 0 provided that
the initial data are converging in the spaces of initial data.

5.4. Global well-posedness results. We prove global results for the defocusing
cubic nonlinear wave equation in two dimensions:

(5.14)

{
∂2
t u−∆xu = −|u|2u, (t, x) ∈ R× R2,
u(0) = f1 ∈ Bsp,2(R2), u̇(0) = f2 ∈ Bs−1

p,2 (R2).

We focus on the case p = 6.
The main result of this section is the following:

Theorem 5.8. Let s > 1/2, and (f1, f2) ∈ Bs6,2,2(R2) × Bs−1
6,2,2(R2). Then, for any

T > 0, there is a global solution u ∈ L4
t ([0, T ], L6(R2)) to (5.14).
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In the following the arguments from [23] are adapted, which were previously ap-
plied to nonlinear Schrödinger equations. To avoid technicalities, we shall consider
Schwartz initial data which admit global solutions and allow for integration by parts
arguments. The a priori assumption can be removed later by well-posedness and
limiting arguments. We denote the linear part of the solution to (5.14) by

w(t) = cos(t
√
−∆)f1 +

sin(t
√
−∆)√
−∆

f2.

The difference with the full solution is given by

(5.15) v(t) = u(t)− w(t) = −
∫ t

0

sin((t− s)
√
−∆)√

−∆
(|v + w|2(v + w))ds.

We have the following blow-up alternative (cf. [23, Lemma 4.9]):

Lemma 5.9. Let s > 0, (f1, f2) ∈ (Bs6,2,2(R2) +H1(R2))× (Bs−1
6,2,2(R2) + L2(R2)),

and u be the solution to (5.14) provided by Theorem 1.2 in L4
t ([0, T ], L6(R2)). If T ∗

is maximal such that u ∈ L4
t ([0, T ], L6

x(R2)) for T < T ∗, but u /∈ L4
t ([0, T

∗], L6
x(R2)),

then limt→T∗(‖v(t)‖H1(R2) + ‖∂tv(t)‖L2) =∞ with v defined like in (5.15).

Proof. We note that for the free solution we have

sup
t∈[0,T ]

‖w(t)‖Bs6,2,2+H1 .T ‖(f, g)‖(Bs6,2,2+H1)×(Bs−1
6,2,2+L2),(5.16)

sup
t∈[0,T ]

‖∂tw(t)‖Bs−1
6,2,2+L2 .T ‖(f, g)‖(Bs6,2,2+H1)×(Bs−1

6,2,2+L2).(5.17)

We further argue by contradiction. Suppose that there is a sequence (tn) ⊆ [0, T ∗)
with tn ↑ T ∗ and

(5.18) lim
n→∞

(‖v(tn)‖H1(R2) + ‖v(tn)‖L2) ≤ C.

But by Theorem 1.2, we can solve the nonlinear wave equation with initial data

w(tn) + v(tn) ∈ Bs6,2,2 +H1, ẇ(tn) + v̇(tn) ∈ Bs−1
6,2,2 + L2

for times T = T (‖w(tn) + v(tn)‖Bs6,2,2+H1 , ‖ẇ(tn) + v̇(tn)‖Bs−1
6,2,2+L2) and by (5.16),

(5.17), and (5.18), we find

‖w(tn) + v(tn)‖Bs6,2,2+H1 + ‖ẇ(tn) + v̇(tn)‖Bs−1
6,2,2+L2

.T∗ C + ‖(f, g)‖(Bs6,2,2+H1)×(Bs−1
6,2,2+L2).

This means the local existence time is bounded from below, which yields a con-
tradiction because it means we can continue the solution beyond T ∗. The proof is
complete. �

Hence, for the proof of global well-posedness it suffices to show

sup
t∈[0,T ]

(‖v(t)‖H1(R2) + ‖∂tv(t)‖L2(R2)) ≤ C(T ).

Recall that mass and energy are conserved quantities for (smooth) solutions to
(5.14):

M(u) =

∫
R2

|u|2dx,(5.19)

E(u) =

∫
R2

1

2
|∂tu|2 +

1

2
|∇xu|2 +

1

4
|u|4dx.(5.20)
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But the quantities are not conserved for differences of solutions or v. Still we can
control M(v)+E(v) by Grønwall’s argument for sufficiently regular initial data like
in [7, 23] in the context of the defocusing nonlinear Schrödinger equation. In the
proof we have to control ‖w(t)‖L6(R2) and ‖w(t)‖L∞(Rd), for which we use embed-
dings, namely (2.6), Propositions 2.6 and 2.8, and a standard Sobolev embedding:

‖w(t)‖L6(R2) . ‖w(t)‖B1/6
6,6,6(R2)

. ‖w(t)‖B1/6+ε
6,2,2 (R2)

,

‖w(t)‖L∞(R2) . ‖w(t)‖W 1/3+ε,6(R2) . ‖w(t)‖B1/2+2ε
6,2,2 (R2)

.

We show the following:

Proposition 5.10. Let ε > 0 and (f1, f2) ∈ B1/2+ε
6,2,2 (R2) × B−1/2+ε

6,2,2 (R2). With
notation as above, we find the following estimate to hold:

∂t(M(v) + E(v) + 1)(t) .T M(v) + E(v) + 1

for all 0 ≤ t ≤ T .

With Proposition 5.10 in place, we find by Grønwall’s argument

(M(v) + E(v) + 1)(t) ≤ e
∫ t
0
C(s)ds

and hence, M(v) does not blow-up. Theorem 5.8 follows.

Proof of Proposition 5.10. We introduce the notation

(f, g) = <
∫
R2

f(x)g(x)dx.

For the growth of M(v), we find

∂tM(v) = 2(∂tv, v) . E(v)1/2M(v)1/2 .M(v) + E(v) + 1.

For the time-derivative of E we find

∂tE(v) = ((∂2
t v), ∂tv) + (∂t∇xv,∇xv) + (∂tv, |v|2v)

= (∂tv, ∂
2
t v −∆v + |v|2v)

= (∂tv,−|v + w|2(v + w) + |v|2v)

. |(∂tv, |v|2w)|+ |(∂tv, v|w|2)|+ |(∂tv, |w|2w)|

. ‖∂tv‖L2‖v‖2L4‖w‖L∞ + ‖∂tv‖L2‖v‖L2‖w‖2L∞ + ‖∂tv‖L2‖w‖3L6

.T E(v) + E(v)1/2M(v)1/2 + E(v)1/2.

This finishes the proof. �

We sketch the extension to slower decaying initial data:

Theorem 5.11. Let d = 2, ε > 0, n ≥ 2, α̃ like in (5.13). Let (f1, f2) ∈
Bα̃+ε

4n+2,2,2(R2) × Bα̃+ε−1
4n+2,2,2(R2). Let 2

p + 1
4n+2 = 1

2 . Then, there is some p̃ < p

such that for any T > 0 there is u ∈ Lp̃t ([0, T ], L4n+2(R2)), which solves (5.14).

The key point is that solving (5.14) in LptL
q
x-spaces provides us with a blow-up

alternative:

Lemma 5.12. Let s > α̃,

(f1, f2) ∈ (Bs4n+2,2,2(R2) +H1(R2),Bs−1
4n+2,2,2(R2) + L2(R2)),

and let u be the solution to (5.14) provided by Theorem 5.7 in Lp̃t ([0, T ], L4n+2(R2)).

If T ∗ is maximal such that u ∈ Lp̃t ([0, T ], L4n+2(R2)) for T < T ∗, but we have



NONLINEAR WAVE EQUATIONS WITH SLOWLY DECAYING INITIAL DATA 25

u /∈ Lp̃t ([0, T ], L4n+2(R2)), then limt→T∗(‖v(t)‖H1 +‖∂tv(t)‖L2) =∞ with v defined
like in (5.11).

The proof of Lemma 5.12 follows along the lines of the proof of Lemma 5.9. We
turn to the proof of Theorem 5.11.

Proof of Theorem 5.11. By Lemma 5.12, for the proof of Theorem 5.11 it suffices
to show

E(v) +M(v) + 1 .T 1.

We use again Grønwall’s argument: We have like above

∂tM(v) .M(v)1/2E(v)1/2,

and we compute with un =
∑n−1
j=0 u

j

∂tE(v) = (∂tv, ∂
2
t v) + (∂t∇xv,∇xv) + (∂tv, |v|2v)

= (∂tv, ∂
2
t v −∆v + |v|3)

= (∂tv,−|v + un|2(v + un) + |v|3 +
∣∣ n−2∑
j=0

uj
∣∣2 n−2∑
j=0

uj).

We can write schematically

− |v + un|2(v + un) + |v|3 +
∣∣ n−2∑
j=0

uj
∣∣2 n−2∑
j=0

uj

= A(2,1)(v, un) +A(1,2)(v, un) +
[∣∣ n−2∑
j=0

uj
∣∣2 n−2∑
j=0

uj −
∣∣ n−1∑
j=0

uj
∣∣2 n−1∑
j=0

uj
]

with A(i,j)(f, g) denoting terms which are homogeneous of degree i in f and of
degree j in g. We can estimate ‖un(t)‖L∞x .t 1:

|(∂tv,A(2,1)(v, un))| . ‖∂tv‖L2‖v‖2L4‖un‖L∞ .T E(v),

and

|(∂tv,A(1,2)(v, un))| . ‖∂tv‖L2‖v‖L2‖un‖2L∞ .T E(v)1/2 +M(v)1/2.

At last, we rewrite

∣∣ n−2∑
j=0

uj
∣∣2 n−2∑
j=0

uj −
∣∣ n−1∑
j=0

uj
∣∣2 n−1∑
j=0

uj = −
∑
k,m

un−1ukum

up to complex conjugates on the right-hand side. This allows to estimate by Hölder’s
inequality

|(∂tv,
∑
k,m

un−1ukum)| .
∑
k,m

‖∂tv‖L2‖un−1‖
L

4n+2
2n−1
‖uk‖L4n+2‖um‖L4n+2 .T E(v)1/2

noting that uk ∈ L4n+2 for any k ≥ 0. This shows

∂t(E(v) +M(v) + 1) . C(T )(E(v) +M(v) + 1),

and the proof is complete. �
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