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Abstract In this paper, we construct and analyze a new dynamical low-rank integra-
tor for second-order matrix differential equations. The method is based on a combi-
nation of the projector-splitting integrator introduced in [12] and a Strang splitting.
We also present a variant of the new integrator which is tailored to semilinear second-
order problems.
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1 Introduction

Dynamical low-rank integrators [10] have been introduced for the approximation of
large, time-dependent matrices which are solutions to first-order matrix differential
equations that can be well approximated by low-rank matrices. Typically, such ma-
trix differential equations stem from spatially discretized PDEs. The idea is to project
the right-hand side of the problem onto the tangent space of the manifold of matri-
ces with small, fixed rank. It was shown in [10], that this ansatz yields differential
equations for the factors of a low-rank decomposition resembling a singular value
decomposition. Compared to the approximation of the full matrix solution, working
only with the factors of the low-rank decomposition significantly reduces the com-
putational costs and the required storage. Unfortunately, the integrator of [10] suffers
from ill-conditioning in the presence of small singular values, a situation which is
called over-approximation, i.e., the rank chosen within the method exceeds the rank
of the actual solution. A projector-splitting integrator which is robust in the case of
over-approximation was introduced in [12] by Lubich and Oseledets. It is based on
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a clever Lie-Trotter splitting of the projected right-hand side, by which the subprob-
lems can be solved exactly. Another dynamical low-rank integrator for first-order ma-
trix differential equations is the unconventional robust integrator recently presented
in [2]. It is especially suited for strongly dissipative problems. Although its deriva-
tion is rather different from the construction of the projector-splitting integrator, both
methods share their robustness in the case of over-approximation and they satisfy the
same error bounds.

Both the projector-splitting integrator and the unconventional integrator have been
applied to a variety of first-order matrix differential equations, e.g., for Schrödinger
equations in [2], for the Vlasov–Poison equation in [4], for Vlasov–Maxwell equa-
tions in [5], and for Burgers’ equation with uncertainty in [11]. However, to the best
of our knowledge, for second-order matrix differential equations of the form

A′′(t) = F
(
A(t)

)
, A(t) ∈ Cm×n, A(0) = A0, A′(0) = B0, (1)

with large m,n, such integrators have not been considered so far. The obvious tech-
nique of reformulating (1) into a first-order system and applying the projector-split-
ting integrator [12] for first-order matrix differential equations behaved poorly in our
numerical experiments. The reason might be that the inherent structure of the se-
cond-order problem is ignored by this procedure, causing the approximation quality
to deteriorate.

Therefore, we propose to combine the projector-splitting integrator with a Strang
splitting. The resulting method is closely related to the leapfrog scheme and called
LRLF method in the following. It is a robust and reliable dynamical low-rank inte-
grator for second-order equations of type (1), provided that the exact solution A(t)
and its derivative A′(t) can be well approximated by matrices of low rank. When the
exact flows used within the Strang splitting preserve the low rank of the previous
approximation, our integrator reduces to the leapfrog scheme if the rank chosen in
the method is sufficiently large. We also develop a variant of the scheme which is
tailored to semilinear second-order equations. For this, we combine our newly devel-
oped scheme with the ideas in [15], where a dynamical low-rank integrator for stiff
semilinear first-order equations was derived based on the projector-splitting integra-
tor.

For the projector-splitting integrator, a detailed error analysis was provided in [9].
It relies on an exactness property of the integrator, namely that it provides the exact
solution if this solution preserves the (low) rank of the initial value for all times and
the exact initial value is used to start the integrator. Unfortunately, this is no longer
true for the LRLF scheme. Nevertheless, we will provide error bounds under similar
assumptions as in [9].

The paper is organized as follows: In Section 2, we briefly recall the projector-
splitting integrator introduced in [12] by Lubich and Oseledets. The construction
of the LRLF scheme is presented in Section 3 and its error analysis in Section 4.
A modification of the LRLF scheme which is tailored to semilinear second-order
problems is developed in Section 5.

Throughout this paper, m,n, and r are natural numbers, where w.l.o.g. m≥ n� r.
If n > m, we consider the equivalent differential equation for the transpose. By Mr
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we denote the manifold of complex m×n matrices with rank r,

Mr = {Ŷ ∈ Cm×n | rank(Ŷ ) = r}.

The Stiefel manifold of m× r unitary matrices is denoted by

Vm,r = {U ∈ Cm×r |UHU = Ir},

where Ir is the identity matrix of dimension r and UH is the conjugate transpose of
U .

The singular value decomposition of a matrix Y ∈ Cm×n is given by

Y =UΣV H , U ∈ Vm,m, V ∈ Vn,n, Σ = diag(σ1, . . . ,σn) ∈ Cm×n,

where σ1 ≥ . . . ≥ σn ≥ 0 are its singular values. It is well known that for r < n, the
rank-r best-approximation to Y w.r.t. the Frobenius norm ‖ · ‖ is given by

Ŷ best =U Σ̃V H = Û Σ̂V̂ H ,

where Σ̃ = diag(σ1, . . . ,σr,0, . . . ,0) and

Û =U [Ir 0] ∈ Vm,r, V̂ =V [Ir 0] ∈ Vn,r, Σ̂ = diag(σ1, . . . ,σr).

For a given step size τ we use the notation tk = kτ for any k with 2k ∈ N0.

2 The projector-splitting integrator

In this section, we briefly review dynamical low-rank approximations as introduced
in [10, 12]. We start with the following problem: Given some time-dependent matrix
A(t), find a low-rank approximation Â(t) ∈Mr such that

Â(t)≈ A(t) for all t ∈ [0,T ].

In [10], this is done by imposing that Â′(t), which is contained in the tangent space
TÂ(t)Mr to Mr at Â(t), satisfies

‖Â′(t)−A′(t)‖= min! (2)

For an initial value Â(0) = Â0 ∈Mr, condition (2) is equivalent to a Galerkin condi-
tion. In fact, then Â solves the evolution equation

Â′(t) = P
(
Â(t)

)
A′(t), Â(0) = Â0 ∈Mr, (3)

where P
(
Â(t)

)
denotes the orthogonal projection onto the tangent space TÂ(t)Mr. A

natural choice for the initial value Â0 of (3) is the rank-r best approximation to A(0).
For all Â ∈Mr there is a non-unique low-rank factorization

Â = Û ŜV̂ H , Û ∈ Vm,r, V̂ ∈ Vn,r, Ŝ ∈ Cr×r invertible,
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which allows us to write the orthogonal projector P(Â) onto TÂ(t)Mr as

P(Â)Z = ZV̂V̂ H −ÛÛHZV̂V̂ H +ÛÛHZ, (4)

cf., [10, Lemma 4.1]. The dynamical low-rank integrator constructed in [12] is based
on a Lie-Trotter splitting, applied to the differential equation (3) with P(Â) given in
(4). Given a step size τ > 0, the first integration step consists of solving the three
subproblems

Y ′α = A′V̂αV̂ H
α , Yα(0) = Â0, (5a)

Y ′
β
=−ÛβÛH

β
A′V̂βV̂ H

β
, Yβ (0) = Yα(τ), (5b)

Y ′γ = ÛγÛH
γ A′, Yγ(0) = Yβ (τ). (5c)

As shown in [12, Lemma 3.1], all subproblems (5) can be solved exactly on Mr when
the additional conditions

V̂ ′α(t) = 0, Û ′
β
(t) = 0, V̂ ′

β
(t) = 0, Û ′γ(t) = 0,

are imposed. Then, the solutions

Yη(t) = Ûη(t)Ŝη(t)V̂η(t)H , η ∈ {α,β ,γ},

can be written in terms of the increment ∆A = A(τ)−A(0),

Ûα(t)Ŝα(t) = Ûα(0)Ŝα(0)+∆AV̂α(0), V̂α(t) = V̂α(0),

Ŝβ (t) = Ŝβ (0)−Ûβ (0)
H

∆AV̂β (0), Ûβ (t) = Ûβ (0), V̂β (t) = V̂β (0),

V̂γ(t)Ŝγ(t)H = V̂γ(0)Ŝγ(0)H +∆AHÛγ(0), Ûγ(t) = Ûγ(0).

The integration process is continued with initial value Yγ(τ) ≈ Â(τ) in the next
time step. A single time step of the resultant projector-splitting integrator is presented
in Algorithm 1, version (α).

The above approach is also suitable for the construction of low-rank approxima-
tions to the unknown solution A(t) of the first-order differential equation

A′(t) = F
(
A(t)

)
, A(0) = A0 ∈ Cm×n, t ∈ [0,T ]. (6)

As explained in [12, Section 3.4], the only change affects the replacement of the
increment ∆A in Algorithm 1 in a way resembling the explicit Euler method,

∆A = τF(Â0),

see version (β ). The global error of this first-order scheme depends on the quality of
the approximation of the exact solution A(t) of (6) by a low-rank matrix (for t ∈ [0,T ])
and on properties of the right-hand side F , cf. [9]. Alternatively, any other explicit
scheme, e.g., a fourth order Runge-Kutta method can be used to replace the increment
∆A. We denote the latter method by PSI-RK.

Remark 1 The computational complexity of Algorithm 1 is dominated by the two
products ∆AV̂ and ∆AHÛ in lines 7 and 11, respectively, the two QR-decompositions
of matrices of dimension m× r and n× r, respectively, and the three matrix-matrix
products in lines 8, 10, and 11. For an efficient implementation, it is important to
compute the products ∆AV̂ and ∆AHÛ without computing ∆A explicitly.
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Algorithm 1 Projector-splitting integrator for low-rank approximations to
(α) given time-dependent matrices A(t) or (β ) the solution of (6), single time step
1: function PSI(Û , Ŝ,V̂ ,r,∆A)
2: {input: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r , V̂ ∈ Vn,r ,
3: Ŝ ∈ Cr×r , functions for matrix-vector multiplication with ∆A and ∆AH ,
4: (α) ∆A = A(t + τ)−A(t),
5: (β ) ∆A = τF(Â) }
6:
7: K̃ = ∆AV̂
8: K̂ = Û Ŝ+ K̃
9: compute QR-decomposition Û Ŝ = K̂

10: Ŝ = Ŝ−ÛH K̃
11: L̂ = V̂ ŜH +∆AHÛ
12: compute QR-decomposition V̂ ŜH = L̂
13:
14: return Û , Ŝ,V̂ , L̂
15: {output: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t + τ) and L̂ = V̂ ŜH (optional),
16: with Û ∈ Vm,r , V̂ ∈ Vn,r , Ŝ ∈ Cr×r}
17: end function

3 Dynamical low-rank approximation of second-order matrix ODEs

Next, we devise a low-rank integrator for second-order matrix differential equations
of the form (1). A straightforward practice would be to rewrite (1) as a first-order
system [

A
B

]′
=

[
B

F(A)

]
,

[
A(0)
B(0)

]
=

[
A0
B0

]
, (7)

and to apply Algorithm 1. However, numerical tests showed that the quality of the
numerical solutions deteriorates over time, possibly caused by the neglection of the
structure of the the right-hand side of (7).

We thus use a different ansatz and first split (7) into[
A
B

]′
=

[
0

F(A)

]
+

[
B
0

]
, (8)

and then apply a standard Strang splitting. Solving the subproblems exactly leads to
the well-known leapfrog or Störmer-Verlet scheme,

Bk+ 1
2
= Bk +

τ

2
F(Ak), (9a)

Ak+1 = Ak + τBk+ 1
2
, (9b)

Bk+1 = Bk+ 1
2
+

τ

2
F(Ak+1), (9c)

cf. [6, Section 1.5]. If approximations to A′ = B are not required at full time steps,
then the most economic implementation of the leapfrog scheme is to combine (9a)
and (9c) via

Bk+ 1
2
= Bk− 1

2
+ τF(Ak), k ≥ 1. (9d)
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For k = 0, B 1
2

is computed from (9a).
A low-rank integrator for the second-order equation (1) is now designed by ap-

proximating the exact flows of the subproblems in (8) by their respective low-rank
flows using the projector-splitting method [12]. First, we determine initial values Â0
and B̂0 as rank-rA and rank-rB best-approximations to A0 and B0, respectively. Af-
ter k time steps, the low-rank approximations Âk ≈ A(tk) and B̂k− 1

2
≈ B(tk− 1

2
) are

represented by (non-unique) decompositions

Âk = ÛkŜkV̂ H
k ∈MrA , B̂k− 1

2
= T̂k− 1

2
R̂k− 1

2
Ŵ H

k− 1
2
∈MrB ,

where

Ûk ∈Vm,rA , V̂k ∈Vn,rA , Ŝk ∈CrA×rA , T̂k− 1
2
∈Vm,rB , Ŵk− 1

2
∈Vn,rB , R̂k− 1

2
∈CrB×rB .

The low-rank matrices Âk+1 ≈ A(tk+1) and B̂k+ 1
2
≈ B(tk+ 1

2
) are obtained by approxi-

mating the solutions of (8) by applying Algorithm 1 to

B̃′k− 1
2
(σ) = F(Âk), B̃k− 1

2
(0) = B̂k− 1

2
, σ ∈ [0,τ], k ≥ 1, (10a)

Ã′k(σ) = B̂k+1/2, Ãk(0) = Âk, σ ∈ [0,τ], k ≥ 0, (10b)

where for k = 0, we have

B̃′0(σ) = F(Â0), B̃0(0) = B̂0, σ ∈ [0,
τ

2
]. (10c)

Since the exact solutions of (10) read

B̃k− 1
2
(τ) = B̂k− 1

2
+ τF(Âk), (11a)

Ãk(τ) = Âk + τB̂k+ 1
2
, (11b)

B̃0(
τ

2
) = B̂0 +

τ

2
F(Â0), (11c)

the increments ∆Bk− 1
2

and ∆Ak are given explicitly as

∆Bk− 1
2
= B̃k− 1

2
(τ)− B̃k− 1

2
(0) = τF(Âk), k ≥ 1,

∆Ak = Ãk(τ)− Ãk(0) = τB̂k+ 1
2
, k ≥ 0,

∆B0 = B̃0(
τ

2
)− B̃0(0) =

τ

2
F(Â0).

The resulting dynamical low-rank integrator for second-order matrix ODEs will
be named LRLF method, for low-rank leapfrog integrator. It is presented in Algo-
rithm 2.

There is a close relationship between the LRLF and the leapfrog schemes:

Theorem 2 If for all t ∈ [0,T ] the exact solutions A(t) and B(t) of the subproblems
(8) with rankA0 = rA, rankB0 = rB stay of rank rA and rB, respectively, then the solu-
tions of the LRLF and leapfrog schemes coincide.
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Proof The LRLF scheme is derived by exchanging the exact flows of the leapfrog
scheme by their corresponding low-rank flows. Since the exact flows preserve the
rank by assumption, the application of the exactness property of the projector-split-
ting integrator [12, Theorem 4.1] yields the desired result. ut

Algorithm 2 DLR integrator for second-order ODEs (1), LRLF scheme, single time
step
1: function LRLF(τ,F,Û , Ŝ,V̂ , T̂ , R̂,Ŵ ,rA,rB)
2: {input: step size τ , right-hand side F ,
3: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈ Vn,rA ,
4: Ŝ ∈ CrA×rA ,
5: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t− τ

2 ) with T̂ ∈ Vm,rB ,
6: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
7:
8: B̂-step: T̂ , R̂,Ŵ , L̂ = PSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τF(Û ŜV̂ H)

9:
10: Â-step: Û , Ŝ,V̂ = PSI

(
Û , Ŝ,V̂ ,rA,∆A

)
where ∆A = τT̂ L̂H

11:
12: return Û , Ŝ,V̂ , T̂ , R̂,Ŵ
13: {output: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
14: V̂ ∈ Vn,rA , Ŝ ∈ CrA×rA ,
15: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t + τ

2 ) with T̂ ∈ Vm,rB ,
16: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
17: end function

Algorithm 3 DLR integrator for second-order ODEs (12), LRLF(ω) scheme, single
time step
1: function LRLFOMEGA(τ,ω,F,Û , Ŝ,V̂ , T̂ , R̂,Ŵ ,rA,rB)
2: {input: step size τ , weight ω , right-hand side F ,
3: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈ Vn,rA ,
4: Ŝ ∈ CrA×rA ,
5: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t) with T̂ ∈ Vm,rB , Ŵ ∈ Vn,rB ,
6: R̂ ∈ CrB×rB}
7:
8: B̂-step: T̂ , R̂,Ŵ , L̂ = PSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τ

2 F(Û ŜV̂ H)
9:

10: Â-step: Û , Ŝ,V̂ = PSI
(
Û , Ŝ,V̂ ,rA,∆A

)
where ∆A = ω2τT̂ L̂H

11:
12: B̂-step: T̂ , R̂,Ŵ = PSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τ

2 F(Û ŜV̂ H)
13:
14: return Û , Ŝ,V̂ , T̂ , R̂,Ŵ
15: {output: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
16: V̂ ∈ Vn,rA , Ŝ ∈ CrA×rA ,
17: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t + τ) with T̂ ∈ Vm,rB ,
18: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
19: end function
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Clearly, in general the LRLF scheme does not inherit the exactness property of
the projector-splitting integrator, because of the splitting error. A detailed error anal-
ysis of the LRLF iteration will be presented in Section 4.

In the same way, a variant of the LRLF method for the second-order matrix dif-
ferential equation

A′′ = ω
2F(A), t ∈ [0,T ], A(0) = A0, A′(0) = ω

2B0, (12)

or equivalently [
A
B

]′
=

[
ω2B
F(A)

]
,

[
A(0)
B(0)

]
=

[
A0
B0

]
,

is based on the non-staggered version of the leapfrog scheme (9), procuring approxi-
mations to A′ on the same time-grid as approximations to A. Here, the function F has
to be evaluated twice in each time step so that the computational effort is larger. The
resulting method is called the LRLF(ω) scheme. It is described in Algorithm 3.

Remark 3 A dynamical low-rank integrator for second-order matrix differential equa-
tions (1) can also be derived based on the two-step formulation of the leapfrog scheme,

Ak+1−2Ak +Ak−1 = τ
2F(Ak), k ≥ 1,

A1 = A0 + τB0 +
τ2

2
F(A0),

cf. [16, Section 4.2]. In numerical experiments it was observed that the resulting
scheme does not yield better approximations than the LRLF method, and even pro-
duces larger errors in some examples.

4 Error analysis of LRLF

In the following, we analyze the error of the LRLF scheme given in Algorithm 2
when applied to (1) with a right-hand side F which is Lipschitz-continuous with a
moderate Lipschitz constant L, i.e., F satisfies

‖F(Y )−F(Ỹ )‖ ≤ L‖Y − Ỹ‖ for all Y,Ỹ ∈ Cm×n. (13)

Our analysis relies on the error analysis in [9] for the projector-splitting integrator.
Recall that the LRLF scheme is derived from the leapfrog scheme (9), which is

stable under the CFL condition, cf. [8],

τ
2 ≤ τ

2
CFL =

4
L
. (14)

We therefore assume that the step size τ always satisfies (14).
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Assumption 1 The exact solution A : [0,T ]→ Cm×n of (1) is in C 4([0,T ]). Further-
more, there are low-rank approximations XA(t) ∈MrA ,XB(t) ∈MrB such that

A(t) = XA(t)+RA(t), ‖RA(0)‖ ≤ ρA, ‖R′A(t)‖ ≤ ρ
′
A, (15a)

B(t) = A′(t) = XB(t)+RB(t), ‖RB(0)‖ ≤ ρB, ‖R′B(t)‖ ≤ ρ
′
B. (15b)

Additionally, there exist sufficiently large constants γA and γB such that (15) is also
satisfied for all YA(t),YB(t) ∈ Cm×n with

‖A(t)−YA(t)‖ ≤ γA, ‖B(t)−YB(t)‖ ≤ γB.

For the approximations Âk ≈A(tk) and B̂k+ 1
2
≈B(tk+ 1

2
) computed with the LRLF

scheme and for Ãk and B̃k− 1
2

given in (11), we define

Ek
A = ‖A(tk)− Âk‖, E

k+ 1
2

B = ‖B(tk+ 1
2
)− B̂k+ 1

2
‖, k ≥ 0, (16a)

Ẽ0
A = 0, Ẽ

1
2

B = ‖B(t 1
2
)− B̃0(t 1

2
)‖, (16b)

Ẽk
A = ‖A(tk)− Ãk−1(τ)‖, Ẽ

k+ 1
2

B = ‖B(tk+ 1
2
)− B̃k− 1

2
(τ)‖, k ≥ 1, (16c)

Ê0
A = E0

A, Ê
1
2

B = ‖B̃0(t 1
2
)− B̂ 1

2
‖, (16d)

Êk
A = ‖Ãk−1(τ)− Âk‖, Ê

k+ 1
2

B = ‖B̃k− 1
2
(τ)− B̂k+ 1

2
‖, k ≥ 1. (16e)

By the triangle inequality, we have

E
k+ 1

2
B ≤ Ẽ

k+ 1
2

B + Ê
k+ 1

2
B and Ek+1

A ≤ Ẽk+1
A + Êk+1

A , k ≥ 0. (17)

The analysis of the LRLF scheme is organized in two lemmas and a theorem.

Our first result are coupled, recursive inequalities for Ek+1
A and E

k+ 1
2

B .

Lemma 4 Let A : [0,T ]→Cm×n with A∈C 4([0,T ]) be the exact solution of (1) with
initial values A0,B0 ∈ Cm×n and B = A′. Further, denote by B̂k− 1

2
and Âk the low-

rank approximations obtained by the LRLF scheme after k steps started with initial
values Â0 ∈MrA , B̂0 ∈MrB . Then, the errors introduced in (16) satisfy

E
1
2

B ≤ E0
B +

τ

2
LE0

A + Ê
1
2

B +CLF
B τ

2, (18a)

E1
A ≤ (1+

τ2

2
L)E0

A + τE0
B + τÊ

1
2

B + Ê1
A +(CLF

A +CLF
B )τ3 (18b)

and for k ∈ N we have

E
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A + Ê

k+ 1
2

B +CLF
B τ

3, (19a)

Ek+1
A ≤ (1+ τ

2L)Ek
A + τE

k− 1
2

B + τÊ
k+ 1

2
B + Êk+1

A +(CLF
A +CLF

B τ)τ3. (19b)
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The constants CLF
A and CLF

B are given explicitly as

CLF
A = max

t∈[0,T ]

1
24
‖A′′′(t)‖, CLF

B = max
{

max
t∈[0, τ

2 ]

1
8
‖A′′′(t)‖, max

t∈[0,T ]

1
24
‖A(4)(t)‖

}
.

Proof By Taylor series expansion, we have

‖A(tk+1)−
(
A(tk)+ τB(tk+ 1

2
)
)
‖ ≤CLF

A τ
3, k ≥ 0, (20a)

‖B(tk+ 1
2
)−
(
B(tk− 1

2
)+ τF(A(tk))

)
‖ ≤CLF

B τ
3, k ≥ 1, (20b)

as well as

‖B(t 1
2
)−
(
B0 +

τ

2
F(A0)

)
‖ ≤CLF

B τ
2. (20c)

Hence for k = 0, we have

Ẽ
1
2

B ≤ ‖B0 +
τ

2
F(A0)− (B̂0 +

τ

2
F(Â0))‖+CLF

B τ
2

≤ E0
B +

τ

2
LE0

A +CLF
B τ

2 (21)

by (20c), (11c), and (13). Employing (17) shows (18a). Using (18a) and (20a) yields

Ẽ1
A ≤ ‖A0 + τB(

τ

2
)− (Â0 + τB̂ 1

2
)‖+CLF

A τ
3

≤ E0
A + τE

1
2

B +CLF
A τ

3

≤
(
1+

τ2

2
L
)
E0

A + τE0
B + τÊ

1
2

B +(CLF
A +CLF

B )τ3. (22)

Together with (17) this proves (18b).
For k ≥ 1 we follow the same steps. We have by (11), (13), and (20b)

Ẽ
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A +CLF

B τ
3 (23)

and by (17) thus (19a). Lastly, we have by (20a), using again (11), and inserting (19a)

Ẽk+1
A ≤ Ek

A + τE
k+ 1

2
B +CLF

A τ
3

≤ Ek
A + τ

(
E

k− 1
2

B + τLEk
A + Ê

k+ 1
2

B +CLF
B τ

3
)
+CLF

A τ
3

= (1+ τ
2L)Ek

A + τE
k− 1

2
B + τÊ

k+ 1
2

B +(CLF
A +CLF

B τ)τ3, (24)

which together with (17) completes the proof. ut

In [9, Section 2.6.1] it was shown that the error between a time-dependent matrix
A(t) satisfying (15a) and the rank-rA approximation Y1 ≈ A(τ) computed by Algo-
rithm 1 started from XA(0) ∈MrA is bounded by

‖A(τ)−Y1‖ ≤ ρA +7τρ
′
A. (25)

In the next lemma we eliminate Ê
k+ 1

2
B and Êk+1

A from (19) by using (25).
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Lemma 5 Let the assumptions of Lemma 4 be satisfied. Furthermore, assume that

E0
A ≤ ρA, E0

B ≤ ρB. (26)

If Assumption 1 is fulfilled, then for all k such that tk+4 ≤ T , the errors E
k+ 1

2
B and

Ek+1
A defined in (16) satisfy

E
k+ 1

2
B ≤ ρB +7tk+1ρ

′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk), (27a)

Ek+1
A ≤ ρA + tk+1ρB + τL

k

∑
j=0

tk+1− jE
j
A +7tk+1ρ

′
A +

7
2

tk+1tk+2ρ
′
B

+

(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B

)
τ

2,

(27b)

respectively.

Proof The proof is accomplished by induction on k. First, we show that the errors

Ẽk+1
A and Ẽ

k+ 1
2

B are uniformly bounded by suitable constants γA and γB. Then the
auxiliary solutions Ã and B̃ are sufficiently close to the exact solutions A and B, and
hence they admit representations like (15) by Assumption 1. Since the approxima-
tions Â and B̂ are low-rank approximation to Ã and B̃ computed by Algorithm 1
started from initial values of rank rA and rB, respectively, the local errors Êk+1

A and

Ê
k+ 1

2
B are bounded by

Ê
1
2

B ≤
7
2

τρ
′
B, Ê

k+ 1
2

B ≤ 7τρ
′
B, k ≥ 1, Êk+1

A ≤ 7τρ
′
A, k ≥ 0, (28)

cf. (25). The estimate on the global error then follows from (17).
For k = 0 we deduce from (21) and (26)

Ẽ
1
2

B ≤ ρB +
τ

2
LρA +CLF

B τ
2.

By Assumption 1, for γB ≥ ρB +
τ

2 LρA +CLF
B τ2, it holds by (18a) and (28) that

E
1
2

B ≤ ρB +
τ

2
LE0

A +7
τ

2
ρ
′
B +CLF

B τ
2

< ρB + τLE0
A +7t1ρ

′
B +CLF

B τ
2, (29)

which is (27a) for k = 0.
Likewise, by (22), (26), and (29) we have

Ẽ1
A ≤ ρA + τ

2LE0
A + τρB +7τ

2
ρ
′
B +(CLF

A +CLF
B )τ3. (30)

Choosing γA as the right-hand side of (30), by Assumption 1 and (28) we deduce

E1
A ≤ ρA + τ

2LE0
A + t1ρB +7t1ρ

′
A +

7
2

t1t2ρ
′
B +(CLF

A +CLF
B )t1τ

2,
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which shows (27b) for k = 0.
Assuming that (27) holds true for some arbitrary, but fixed k−1 ∈ N0, we now

prove (27). Applying the Gronwall-type Lemma 7 below, we find from (27b) for
j = 1, . . . ,k

E j
A ≤ e

√
Ltk M j

A, (31)

where

M j
A = ρA + t jρB +7t jρ

′
A +

7
2

t jt j+1ρ
′
B +
(
(CLF

A +CLF
B )t j +

1
2

t j−1t jCLF
B
)
τ

2. (32)

By (26), this bound is also valid for j = 0. From (23) and (27a) we obtain

Ẽ
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A +CLF

B τ
3

≤
(

ρB +7tkρ
′
B + τL

k−1

∑
j=0

E j
A +CLF

B τ
2(1+ tk−1)

)
+ τLEk

A +CLF
B τ

3

= ρB +7tkρ
′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk). (33)

Inserting (31) into (33) for 0≤ tk+4 ≤ T results in constants CB(T ), C̃B(T ) depending
on L,ρA,ρB,ρ

′
A,ρ

′
B,C

LF
A , and CLF

B such that

Ẽ
k+ 1

2
B ≤CB(T )+ τ

2C̃B(T ).

By Assumption 1 for γB ≥CB(T )+τ2C̃B(T ), (28) shows that Ê
k+ 1

2
B ≤ 7τρ ′B. Thus we

obtain from (33) and (17)

E
k+ 1

2
B ≤ ρB +7tk+1ρ

′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk),

which proves (27a) for all k ∈ N0.
Similarly, using (24) and the induction hypothesis, we get

Ẽk+1
A ≤

(
ρA + tkρB + τL

k−1

∑
j=0

tk− jE
j
A +7tkρ

′
A +

7
2

tktk+1ρ
′
B

+
(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B
)
τ

2
)
+ τ

2LEk
A

+ τ

(
ρB +7tkρ

′
B + τL

k−1

∑
j=0

E j
A +CLF

B τ
2(1+ tk−1)

)
+7τ

2
ρ
′
B +(CLF

A +CLF
B τ)τ3

= ρA + tk+1ρB + τL
k

∑
j=0

tk+1− jE
j
A +7tkρ

′
A +

7
2

tk+1tk+2ρ
′
B

+
(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B
)
τ

2.

(34)
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By employing the bound (31) on E j
A for 0 ≤ tk+4 ≤ T , we define constants CA(T ),

C̃A(T ) depending on L,ρA,ρB,ρ
′
A,ρ

′
B,C

LF
A , and CLF

B such that

Ẽk+1
A ≤CA(T )+ τ

2C̃A(T ).

Now let Assumption 1 be fulfilled for some γA ≥ CA(T )+ τ2C̃A(T ). Then we have
Êk+1

A ≤ 7τρ ′A by (28). Finally, we conclude from (34) and (17)

Ek+1
A ≤ ρA + tk+1ρB + τL

k

∑
j=0

tk+1− jE
j
A +7tk+1ρ

′
A +

7
2

tk+1tk+2ρ
′
B

+

(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B

)
τ

2.

This completes the proof. ut

We are now able to prove a global error bound.

Theorem 6 If the assumptions of Lemma 5 are satisfied, then the global errors Ek+1
A

and E
k+ 1

2
B are bounded by

Ek+1
A ≤ e

√
Ltk+1 Mk+1

A ,

where Mk+1
A is given in (32), and

E
k+ 1

2
B ≤ e

√
Ltk M

k+ 1
2

B ,

for

M
k+ 1

2
B = ρB + tk+ 1

2
LρA +7tk+ 1

2
ρ
′
B +

1
2

tktk+1ρ
′
A +
(1

2
tktk+1CLF

A +(1+ tk)CLF
B
)
τ

2,

respectively, as long as tk+4 ≤ T .

Proof The bound for Ek+1
A is a direct consequence of (31) with j = k+1. The bound

for E
k+ 1

2
B is obtained as for Ek+1

A in the proof of Lemma 5, but starting from substi-
tuting (19b) into (19a). ut

The error of the LRLF scheme is hence a combination of two error contributions: an
error caused by the low-rank approximations, and a time discretization error stem-
ming from the leapfrog scheme. If the low-rank errors ρA,ρB,ρ

′
A, and ρ ′B are small,

i.e., the solutions A,B of (1) are well-approximated by low-rank matrices, the time
discretization error dominates.

In the proofs of Lemma 5 and Theorem 6 we used the following Gronwall-type
lemma.
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Lemma 7 Let τ,L ≥ 0 and {Mk}k≥0 a nonnegative, monotonically increasing se-
quence. If the nonnegative sequence {Ek}k≥0 satisfies

Ek ≤Mk + τ
2L

k−1

∑
j=0

(k− j)E j,

then

Ek ≤Mk eτk
√

L .

Proof Define εk := Ek/Mk for all k ≥ 0. The sequence {εk}k≥0 is nonnegative and
satisfies

εk ≤ 1+ τ
2L

k−1

∑
j=0

(k− j)ε j

due to the monotonicity of {Mk}k≥0. The statement then follows from [1, Lemma
3.8]. ut

5 Dynamical low-rank integrator for semilinear second-order matrix
differential equations

We now consider semilinear second-order matrix differential equations of the form

A′′ =−Ω
2
1 A−AΩ

2
2 + f (A), t ∈ [0,T ], A(0) = A0, A′(0) = B0 (35)

with given Hermitian, positive semidefinite matrices Ω1 ∈ Cm×m and Ω2 ∈ Cn×n of
large norm and a Lipschitz continuous function f with a moderate Lipschitz constant.
Our aim is to construct a dynamical low-rank integrator which exploits the semilin-
ear structure of the right-hand side of (35) and yields smaller errors than the LRLF
scheme.

A dynamical low-rank integrator for stiff semilinear first-order equations was pro-
posed in [15]. It is based on the important property of linear first-order equations, that
the exact solution of an initial value problem stays in Mr for all times if the initial
value is in Mr. This is in general not the case for linear second-order equations, so
that additional considerations are required here.

We transform (35) into an equivalent first-order problem and split the right-hand
side into two linear and one nonlinear part by introducing weights ωi ≥ 0, i = 1,2,3,
with ω2

1 +ω2
2 +ω2

3 = 1, that is

[
A
B

]′
=

[
B

−Ω 2
1 A−AΩ 2

2 + f
(
A
)]= [ ω2

1 B
−Ω 2

1 A

]
+

[
ω2

2 B
−AΩ 2

2

]
+

[
ω2

3 B
f (A)

]
.
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A natural choice is ω2
i = 1/3, i = 1,2,3, but different weightings are feasible. The

split equations can be written as

[
A
B

]′
=

[
ω2

1 B
−Ω 2

1 A

]
=

[
0 ω2

1 I
−Ω 2

1 0

][
A
B

]
, (36a)

[
A B
]′
=
[
ω2

2 B −AΩ 2
2
]
=
[
A B
][ 0 −Ω 2

2
ω2

2 I 0

]
, (36b)[

A
B

]′
=

[
ω2

3 B
f
(
A
)] . (36c)

The solution of the linear problems (36a) and (36b) can be expressed in terms of the
matrix exponential

exp
(

t
[

0 ω2
i I

−Ω 2
j 0

])
=

[
cos(ωitΩ j) ω2

i t sinc(ωitΩ j)
−tΩ 2

j sinc(ωitΩ j) cos(ωitΩ j)

]
, j = 1,2.

The full splitting scheme reads

[
Â1

B̂1

]
=
(

φ
Ω1
τ
2
◦φ

Ω2
τ
2
◦φ

S
τ ◦φ

Ω2
τ
2
◦φ

Ω1
τ
2

)[Â0

B̂0

]
, (37)

where φ
Ω1
τ
2

and φ
Ω2
τ
2

denote the numerical flows given by Algorithm 1 with step size
τ

2 to the exact solutions of (36a) and (36b), respectively. φS
τ denotes the numerical

flow of the LRLF(ω) scheme, described in Algorithm 3, with right-hand side f . The
overall method (37) is called LRLF-semi.

When approximations at full time steps are dispensable, the last half step φ
Ω1
τ
2

in
(37) can be combined with the first one of the next time step.

6 Numerical experiments

In this section, we present numerical experiments to confirm our theoretical findings.
We consider the wave equation

∂ 2

∂ t2 a(t,x,y) = ∆a(t,x,y)+ γa3(t,x,y), t ∈ [0,T ], (x,y) ∈Ω , (38a)

a(0,x,y) = a0(x,y),
∂

∂ t
a(0,x,y) = b0(x,y), (38b)

with periodic boundary conditions on a rectangular domain Ω ⊂ R2.
The codes for reproducing the numerical results are available on https://doi.

org/10.5445/IR/1000152590.

https://doi.org/10.5445/IR/1000152590
https://doi.org/10.5445/IR/1000152590
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6.1 Homogeneous wave equation

In our first example we set Ω = [−π,π]2 and γ = 0. With the initial values

a0(x,y) =
1
2

sin
(
−2(kxx+ kyy)

)
, b0(x,y) =

√
2cos

(
−2(kxx+ kyy)

)
,

where kx,ky ∈R, (38) models a planar wave traveling into the direction of k = (kx,ky).
For the discretization in space we use second-order finite differences with n and m
discretization points in x- and y-direction, respectively. This yields the second-order
matrix differential equation (35) with f ≡ 0, where Ω 2

1 and Ω 2
2 denote the positive

semidefinite, symmetric Toeplitz matrices with first rows( n
2π

)2
[2,−1,0, . . . ,−1] and

( m
2π

)2
[2,−1,0, . . . ,−1],

respectively.
For m = n = 512, T = 10 and 2kx = ky = 2, we compute low-rank approximations

to the exact solution of (35) with the LRLF and the LRLF-semi schemes and ranks
rA = rB = 2. For the latter method, we use the weight configurations

ω
2
1 = ω

2
2 =

1
2
, and ω

2
1 = sin2

ϕ, ω
2
2 = cos2

ϕ, ϕ = arctan
ky

kx
.

While the first choice treats the two subproblems equally, the second takes the direc-
tion of motion into account. Moreover, we compute low-rank approximations with
the projector-splitting integrator (Algorithm 1), applied to the equivalent first-order
system (7) of (35) and rank r = 4. For the inner integration we use the explicit Euler
method (PSI) and the classical Runge–Kutta method of order 4 (PSI-RK).

In Figure 1, the relative global error between the exact solution A and its low-
rank approximations Â at time t = T is displayed. Temporal convergence of order 2
is observed for both the LRLF and the LRLF-semi scheme. Compared to the LRLF
method, the LRLF-semi scheme is more accurate and allows slightly larger step
sizes. Choosing the weights ωi in consideration of the direction of motion improves
the approximation substantially. In contrast, the PSI and PSI-RK methods require
significantly smaller step sizes τ and come with larger errors than the schemes for
second-order matrix differential equations.

6.2 Semilinear wave equation

In a second experiment, we set Ω = [−π,π]× [−2π,2π] and γ = 0.01 in (38), and
use the initial values

a0(x,y) = 0.1exp
(
−y2

l2
0

)
exp
(
− x2

w2
0

)
, b0(x,y) = 2

y
l2
0

a0(x,y),

with l0 = π/30 and w0 = π/3. Due to the strong localization of the initial value, we
discretize in space by a pseudospectral method in y-direction and fourth-order finite
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10−4 10−3 10−2

10−12

10−9

10−6

10−3

100

103

τ

‖A
−

Â
‖

‖A
‖

O(τ) PSI LRLF-semi, ω2
1 = ω2

2 = 1
2

LRLF

O(τ2) PSI-RK LRLF-semi, ω2
1 = sin2

ϕ,ω2
2 = cos2 ϕ

Fig. 1 Example from Section 6.1: Relative error in Frobenius norm between the exact solution of (35)
with f ≡ 0 and its low-rank approximations computed with different dynamical low-rank integrators at
time t = 10.

differences in x-direction. This yields the second-order matrix differential equation
(35) with the cubic nonlinearity

f (A) = γ A•A•A, (39)

where the symbol • denotes the entrywise matrix product. The matrix Ω 2
1 ∈ Rm×m is

given by

Ω
2
1 =

1
4
F−1

m diag
(
0, . . . ,

m
2
−1,−m

2
, . . . ,−1

)
Fm,

where Fm denotes the discrete Fourier transformation operator with m modes, and
Ω 2

2 ∈ Rn×n denotes the positive semidefinite, symmetric Toeplitz matrix with first
row

1
12

( n
2π

)2
[30,−16,1,0, . . . ,1,−16].

For m = 4096, n = 512, T = 0.5π , and rA = rB = 10, we compute low-rank approxi-
mations to the solution of (35) with the LRLF and the LRLF-semi scheme. A refer-
ence solution has been computed with the leapfrog scheme and step size τ0 = 10−4T .
For the LRLF-semi scheme, we again use two weight configurations, where the first
treats all subproblems equally and the second takes the direction of propagation into
account,

ω
2
1 = ω

2
2 = ω

2
3 =

1
3
, and ω

2
1 =

2
3
, ω2 = 0, ω

2
3 =

1
3
.

In Figure 2, the relative global error of the low-rank approximations compared to the
reference solution at time t = T is displayed. Both LRLF and LRLF-semi schemes
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10−4 10−3 10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

τ

‖A
−

Â
‖

‖A
‖

O(τ2) LRLF-semi, ω2
1 = ω2

2 = ω2
3 = 1/3

LRLF LRLF-semi, ω2
1 = 2ω2

3 = 2/3, ω2 = 0

Fig. 2 Example from Section 6.2: Relative error in the Frobenius norm between the reference solution of
(35) with f given in (39) and the low-rank approximations computed by LRLF and LRLF-semi at time
t = 0.5π . The red dashed line shows the relative best-approximation error, cf. (40).

show convergence of order 2. For both weight configurations the LRLF-semi scheme
yields smaller errors, and the approximation quality improves if the weights are cho-
sen according to the direction of motion. For all integrators, the error reaches a plateau
for small τ . This is caused by the low rank best approximation error to the exact so-
lution. In fact, the rank-rA best-approximation Âbest

rA
to the exact solution A ∈ Cm×n

satisfies
‖A− Âbest

rA
‖2

‖A‖2 =
σ2

rA+1 + . . .+σ2
n

‖A‖2 , (40)

which is a lower bound on the relative error of an arbitrary low-rank approximation.
The error plateau observed in Figure 2 suggests to choose the rank adaptively

such that the temporal convergence order is preserved for smaller step sizes. This
issue has been addressed in [7].

7 Conclusion and Outlook

In the present paper, we developed and analyzed dynamical low-rank integrators for
second-order matrix differential equations of the forms (1) or (35). For LRLF we
proved second-order convergence under reasonable assumptions. The theoretical re-
sults have been confirmed by numerical experiments.

Both the projector-splitting integrator and the unconventional robust integrator
have been successfully adapted to first-order tensor differential equations, cf. [3, 13,
14] and references therein. We are confident that the constructed dynamical low-rank
integrators for second-order matrix differential equations can be adapted to the tensor
case as well. This is part of ongoing research and will be reported in the future.
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