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In the present paper, we consider a specific class of non-autonomous wave equations on a smooth,
bounded domain and their discretization in space by isoparametric finite elements and in time by the
implicit Euler method. Building upon the work of Baker and Dougalis (1980), we prove optimal error
bounds in the W 1,∞×L∞-norm for the semi discretization in space and the full discretization. The key
tool is the gain of integrability coming from the inverse of the discretized differential operator. For this,
we have to pay with (discrete) time derivatives on the error in the H1×L2-norm which are reduced to es-
timates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical
experiments.

Keywords: error analysis, full discretization, wave equation, maximum norm error bounds, nonconform-
ing space discretization, isoparametric finite elements, a-priori error bounds

1. Introduction

In the present paper, we consider the non-autonomous wave equation

∂ttu(t,x) = λ (t,x)−1
∆ u(t,x)+ f (t,x), t ∈ [0,T ], x ∈Ω , (1.1)

on the domain Ω ⊆ RN , N = 2,3. We assume it to be bounded and convex with a sufficiently regular
boundary, and impose homogeneous Dirichlet boundary conditions and appropriate initial conditions.
We discretize (1.1) with isoparametric finite elements in space and the implicit Euler scheme in time, and
derive W 1,∞×L∞-norm error bounds both for the semi discretization in space and the full discretization.

A bound in the maximum norm allows us to control the numerical error at every point in the do-
main Ω . Compared to the classical estimates in L2, see, e.g., Bales et al. (1985); Bales & Dougalis
(1989), which are implied (with non-optimal order) by our maximum norm error estimates, and in the
energy space H1, see, e.g., Maier (2022); Hochbruck & Maier (2021), they provide an additional in-
sight in the approximation quality. For example, they become particularly interesting if one wants to
approximate the quasilinear wave equation

∂ttu(t,x) = λ (u(t,x))−1
∆ u(t,x)+ f (t,x,u(t,x),∂tu(t,x)), (1.2)

where for example in nonlinear acoustics λ (u) = 1− um, m = 2,3. The reason is, that this equation is
only well-posed as long as λ (u) satisfies a pointwise lower bound away from zero. When discretizing
(1.2) in space, it has to be ensured that the spatial discretization inherits this property. Since this requires
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a pointwise bound of the numerical approximation, maximum norm estimates, as they are provided in
this paper, are sufficient - once they are transferred to the nonlinear case - to guarantee such constraints.
Indeed, for some spatial discretization uh the triangle inequality

∥uh∥L∞ ⩽ ∥u∥L∞ +∥uh−u∥L∞

allows to keep the maximum norm of the numerical solution arbitrarily close to the one of the exact
solution once convergence is established. So far, to show convergence an inverse inequality has to
be employed, which leads to an unsatisfactory CFL condition, even for methods which are known
to be unconditionally stable, or a restriction to higher-order finite elements, see, e.g., Maier (2022);
Antonietti et al. (2020); Makridakis (1993). Alternatively, H2-conforming finite elements, as suggested
in Zlámal (1968), can be employed. For those, Sobolev’s embedding can be used to obtain maximum
norm estimates, once the convergence in H2 is established. However, in order to achieve this type of
conformity, the number of degrees of freedom has to be increased significantly. Our hope is to show that
these constraints are only of theoretical nature and can be removed. We are confident, that the analysis
presented here for the linear problem (1.1) is an important step towards the quasilinear problem (1.2)
using Lagrangian finite element methods without CFL conditions and also generalizes to higher-order
methods in time.

In the articles Baker et al. (1979); Baker & Dougalis (1980), the space and time discretization of
the linear autonomous wave-equation (i.e., λ = 1, f = 0 in (1.1)) by finite elements and one- or two-
step methods, respectively, is analyzed. In our paper, we extend their analysis to the W 1,∞×L∞-norm,
to the more general case of linear, non-autonomous wave equations and, also to nonconforming finite
elements. We point out that the latter cannot be omitted due to the following reason: In the error analysis,
we rely on elliptic regularity results only available on a smooth domain Ω . Unfortunately, this prevents
us from using these results on a computational domain Ωh with a piecewise polynomial boundary. Our
research is mainly inspired by Baker et al. (1979); Baker & Dougalis (1980) and we are not aware of
further maximum norm estimates for wave equations discretized by finite elements, besides the one-
dimensional case considered in Trautmann et al. (2018). For finite differences on a square combined
with a fourth-order in time scheme, an error bound under a CFL condition is established in Liao & Sun
(2011).

For the spatial semi discretization in Baker & Dougalis (1980), they trade integrability, coming from
the inverse of the discretized differential operator ∆h, for time derivatives on the error in the L2-norm.
Those errors are controlled by the derivatives of the initial error which can be bounded using a properly
preconditioned initial value. For our semi discretization, we use a similar approach to transfer and
extend the results with additional technical effort to the non-autonomous case.

For the full discretization, the proofs in Baker et al. (1979); Baker & Dougalis (1980) rely on an
expansion of the discrete error in the eigenbasis of ∆h. However, we are not aware of how to generalize
this approach to the non-autonomous case. Hence, we pursue the strategy of the semi discretization.
From the implicit Euler scheme we derive discrete derivatives and adapt the proofs to derive fully dis-
crete error bounds. Let us also note that the bounds in Baker & Dougalis (1980) derived in the L∞-norm
are of order k+1, but since our bounds involve the W 1,∞-norm, we derive optimal error bounds of order
k.

Further, we comment on maximum norm error bounds for finite element discretizations of elliptic
problems as they are the fundamental tool for our error bounds in the time-dependent case. The first
quasi-optimal error bounds in the maximum norm were given by Natterer (1975) and Scott (1976). Many
extensions and refinements have been achieved in the following years, see, e.g., Nitsche (1975, 1977);
Rannacher (1976); Rannacher & Scott (1982); Schatz & Wahlbin (1977, 1982, 1995); Wahlbin (1978).
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More recently in the context of nonconforming space discretizations, maximum norm error bounds for
linear finite elements applied to an inhomogeneous Neumann problem were derived in Kashiwabara &
Kemmochi (2020). For (evolving) surface finite element methods, estimates on the finite element solu-
tion and the generalized Ritz map for isoparametric finite elements are considered in Demlow (2009);
Kovács & Power Guerra (2018). In Dörich et al. (2023), the authors of the present paper extended
the approach in Brenner & Scott (2008) to derive stability of a generalized Ritz map to higher-order
isoparametric elements.

We also briefly comment on further work conducted in the context of maximum norm error esti-
mates for parabolic problems. Here, we are aware of two strategies: In Bramble et al. (1977); Baker
et al. (1977), a similar approach as for the wave equation is taken and integrability is gained for time
derivatives. Alternatively, some kind of stability of the semigroup generated by ∆h on L∞ is shown.
This is done either directly using energy techniques, see, e.g., Schatz et al. (1980, 1998), or via resol-
vent estimates on L∞ and maximal parabolic regularity, see, e.g., Bakaev et al. (2003); Palencia (1996);
Thomée & Wahlbin (2004); Chatzipantelidis et al. (2006); Li (2019). However, such stability estimates
cannot be expected for hyperbolic problems in general, see (Arendt et al., 2011, Exa. 8.4.9) and Littman
(1963).

The paper is organized as follows: In Section 2, we present the analytical framework and the space
discretization by isoparametric Lagrange finite elements. After providing some properties of the dis-
cretized objects, we state our main results on the error bounds for the semi discretization in space and
the full discretization by the implicit Euler method.

The main parts of the proof of the semi-discrete error bound are given in Section 3. Here, we
exchange the integrability in the error for time derivatives of the defect and trace those back to the initial
values. We adapt the presented technique in Section 4 and transfer it from the continuous to the discrete
derivatives in order to prove the theorem on the fully discrete error bound.

Section 5 is devoted to the final conclusion of our main results. We collect several approximation
results and estimate the defects. Further, the (discrete) derivatives of the initial error as well as the errors
in the first approximations of the fully discrete scheme are bounded.

In Appendix A, we collect some further results employed in the error analysis.

Notation

In the rest of the paper we use the notation
a ≲ b ,

if there is a constant C > 0 independent of the spatial parameter h and the time step-size τ such that a ⩽
Cb. For the sake of readability, we introduce the notation tn = nτ and for an arbitrary time-dependent,
continuous object x(t) in some Banach space X and a sequence (xm) in X , we define

∥x∥L∞(X) := max
[0,T ]
∥x(t)∥X , ∥xn∥ℓ∞(X) := max

m=1,...,n
∥xm∥X .

If it is clear from the context, we write Lp instead of Lp(Ω) or Lp(Ωh).

2. General Setting

For a convex, bounded domain Ω ⊂ RN , N = 2,3, with boundary ∂Ω ∈ Cs,1, s ∈ N, we study the
non-autonomous wave equation (1.1) and the positive, self-adjoint operator −∆ on L2(Ω) with ho-
mogeneous Dirichlet boundary conditions. Therefore, we introduce the spaces H = L2(Ω) and V =
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D
(
(−∆)1/2

)
= H1

0 (Ω). The equation is further equipped with initial values

u(0) = u0, ∂tu(0) = v0.

We expect that it is also possible to treat more general elliptic differential operators L with regular
coefficients and Neumann boundary conditions, as long as one can establish the properties of the spatial
discretization as stated in Section 2.1. Our analysis relies on the following regularity assumptions of λ .

ASSUMPTION 2.1 There are κ, ℓmax ∈ N such that the following holds.

(λ1) There exist Cλ ⩾ cλ > 0 such that the function λ : [0,T ]×Ω → R satisfies

cλ ⩽ λ (t,x)⩽Cλ , t ∈ [0,T ], x ∈Ω .

Moreover, we have λ ,λ−1 ∈C2
(
[0,T ],W κ,∞(Ω)

)
.

(λ2) For 0 ⩽ ℓ⩽ ℓmax and u ∈D
(
(−∆)ℓ/2

)
it holds

λu,λ−1u ∈D
(
(−∆)ℓ/2).

We note that assumption (λ2) guarantees that the multiplication with λ preserves the boundary
conditions incorporated in ∆ .

EXAMPLE 2.2 On a smooth domain Ω it holds

D(∆) = {u ∈ H2(Ω) | u|∂Ω = 0}, D(∆ 2) = {u ∈ H4(Ω) | u|∂Ω = ∆ u|∂Ω = 0}.

In this case, we have the following sufficient conditions for (λ2).
(a) We always have ℓmax ⩾ 2 and achieve ℓmax ⩾ 4 by the product rule if

∇xλ
∣∣
Γ
= 0. (2.1)

(b) Having the quasilinear case (1.2) in mind, and assuming λ = λ (t,u) where u is the solution in
H1

0 (Ω), then a sufficient condition for (2.1) is given by ∂uλ (t,0) = 0.

(c) If ∇xλ has compact support in Ω , (λ2) is satisfied for any ℓmax ∈ N.

Further, condition (λ1) directly yields the following lemma.

LEMMA 2.3 Let Assumption 2.1 be satisfied for some κ ∈ N. Then, we have for t ∈ [0,T ], 0 ⩽ ℓ⩽ κ ,
1 ⩽ p ⩽ ∞, and j = 0,1,2 the bounds∥∥∂

j
t λ (t)ϕ

∥∥
W ℓ,p ⩽C∥ϕ∥W ℓ,p ,

∥∥∂
j

t λ (t)−1
ϕ
∥∥

W ℓ,p ⩽C∥ϕ∥W ℓ,p ,

with a constant C > 0 depending on λ and its derivatives.

Equivalently to (1.1), we consider the non-autonomous wave equation in first-order formulation

∂ty(t) = Λ(t)−1Ay(t)+F(t), t ∈ [0,T ], (2.2)
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with initial value y(0) = y0 in the product space X =V ×H, with

y =
(

u
∂tu

)
, y0 =

(
u0

v0

)
, Λ(t) =

(
Id 0
0 λ (t)

)
, A =

(
0 Id
∆ 0

)
, F(t) =

(
0

f (t)

)
.

In particular, we emphasize that under Assumption 2.1 the operator Λ generates the time-dependent
inner product

(y | z)
Λ(t) = (Λ(t)y | z)X , t ∈ [0,T ], y,z ∈ X . (2.3)

Since the multiplication with λ ,λ−1 is continuous on L2, the corresponding norm is equivalent to the
norm of X , i.e., we have

cΛ ∥z∥2
X ⩽ ∥z∥2

Λ(t) ⩽CΛ ∥z∥2
X , t ∈ [0,T ], z ∈ X , (2.4)

with constants cΛ = min{1,cλ} and CΛ = max{1,Cλ}. Further, we conclude from (λ2) the continuity
of the map

Λ(t) : D(Aℓ)→D(Aℓ), 0 ⩽ ℓ⩽ ℓmax, t ∈ [0,T ]. (2.5)

Our analysis relies on the solution operators of the Poisson equation in second- and first-order formu-
lation, respectively. In particular, we introduce the second-order solution operator ∆−1 : H → V given
by

−
(
∆
−1

ϕ | ψ
)

V = (ϕ | ψ)H , ϕ ∈ H, ψ ∈V. (2.6)

For the analysis, we heavily rely on the following elliptic regularity result (Grisvard, 1985, Thm. 2.4.2.5).

THEOREM 2.4 (Elliptic regularity) Let ∂Ω ∈C1,1, then for all 1 < p < ∞ there is a constant Cp > 0
such that for all ϕ ∈ Lp(Ω) it holds

∥∆−1
ϕ∥W 2,p ⩽Cp ∥ϕ∥Lp .

Furthermore, we define the first-order solution operator T: X →D(A) by

T =

(
0 ∆−1

Id 0

)
.

In particular, this implies TA = Id on D(A) and AT = Id on X .

2.1 Space discretization

We study the nonconforming space discretization of (2.2) based on isoparametric finite elements. For
further details on this approach, we refer to Elliott & Ranner (2021). In particular, we introduce a
shape-regular and quasi-uniform mesh Th, consisting of isoparametric elements of degree k ∈N and let
∂Ω ∈Ck+1,1. The computational domain Ωh is given by

Ωh =
⋃

K∈Th

K ≈Ω ,
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where the subscript h denotes the maximal diameter of all elements K ∈Th. In the following, we require
that h ⩽ h0 such that all cited results below hold true. We note that h0 only depends on the geometry
of the domain Ω and the polynomial degree k. Based on the transformations FK mapping the reference
element K̂ to K ∈Th, we introduce the finite element space of degree k

Wh = {ϕ ∈C0(Ω h) | ϕ|K = ϕ̂ ◦ (FK)
−1 with ϕ̂ ∈Pk(K̂) for all K ∈Th} .

Here, Pk(K̂) consists of all polynomials on K̂ of degree at most k. The discrete approximation spaces
are given by

Hh =
(
Wh,(· | ·)L2(Ωh)

)
, Vh =

(
Wh,(· | ·)H1

0 (Ωh)

)
,

and we set Xh = Vh×Hh Following the detailed construction in (Elliott & Ranner, 2021, Sec. 5), we
introduce the lift operator Lh : Hh→H. In particular, for p ∈ [1,∞] there are constants cp,Cp > 0 with

cp ∥ϕh∥Lp(Ωh)
⩽ ∥Lhϕh∥Lp(Ω) ⩽Cp ∥ϕh∥Lp(Ωh)

, ϕh ∈ Lp(Ωh), (2.7a)

cp ∥ϕh∥W 1,p(Ωh)
⩽ ∥Lhϕh∥W 1,p(Ω) ⩽Cp ∥ϕh∥W 1,p(Ωh)

, ϕh ∈W 1,p(Ωh), (2.7b)

cf. (Elliott & Ranner, 2021, Prop. 5.8). Further by (Elliott & Ranner, 2013, Sec. 4), the lift preserves
node values, i.e. in particular

IhLhϕh = ϕh, ϕh ∈Vh ,

where we denote the nodal interpolation operator by Ih : C(Ω)→ Vh. As shown in (Elliott & Ranner,
2021, Thm. 5.9), we have for m = 0,1, 1 ⩽ p ⩽ ∞, and 1 ⩽ ℓ⩽ k the estimates

∥(Id−LhIh)ϕ∥W m,p(Ω) ≲ hℓ+1−m ∥ϕ∥W ℓ+1,p(Ω) , ϕ ∈W ℓ+1,p(Ω). (2.8)

Further, ℓ= 0 is allowed for N < p ⩽ ∞.
We define the adjoint lift operators L H∗

h : H→ Hh and L V∗
h : V →Vh by(

L H∗
h ϕ | ψh

)
Hh

= (ϕ |Lhψh)H , ϕ ∈ H, ψh ∈ Hh, (2.9a)(
L V∗

h ϕ | ψh
)

Vh
= (ϕ |Lhψh)V , ϕ ∈V, ψh ∈Vh, (2.9b)

and note in the conforming case L H∗
h and L V∗

h coincide with the L2- and the Ritz projection, respec-
tively. From (Hipp et al., 2019, Thm. 5.3) and (Elliott & Ranner, 2021, Lem. 8.24), we obtain for
1 ⩽ ℓ⩽ k the bounds

∥L H∗
h ϕ∥Hh ≲ ∥ϕ∥L2(Ω) , ϕ ∈ L2(Ω). (2.10a)∥∥(Ih−L H∗

h )ϕ
∥∥

Hh
≲ hℓ+1 ∥ϕ∥Hℓ+1(Ω) , ϕ ∈ Hℓ+1(Ω), (2.10b)

as well as for 1 ⩽ ℓ⩽ k

∥L V∗
h ϕ∥Vh ≲ ∥ϕ∥H1(Ω) , ϕ ∈ H1(Ωh), (2.11a)∥∥(Id−LhL

V∗
h )ϕ

∥∥
Hh

≲ hℓ+1 ∥ϕ∥Hℓ+1(Ω) , ϕ ∈ Hℓ+1(Ω). (2.11b)

In addition, we need the stability of L H∗
h in H1∥∥L H∗

h ϕ
∥∥

Vh
≲ ∥ϕ∥H1(Ω) , ϕ ∈ H1(Ω), (2.12)
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Further, we define the (standard) L2-projection πh onto Vh for ϕ ∈ L2(Ωh) via

(πhϕ | ψh)L2(Ωh)
= (ϕ | ψh)L2(Ωh)

, ϕ ∈ L2(Ωh),ψh ∈Vh.

We note that it only differs from L H∗
h by geometric errors and thus, we obtain for ϕ ∈ H2(Ω)∥∥πhL
−1

h ϕ−L H∗
h ϕ

∥∥
L2(Ωh)

≲ hk+1 ∥ϕ∥H2(Ω) . (2.13)

The proofs for (2.12) and (2.13) are given in Appendix A. In addition, there hold the following stability
estimates. Let p ∈ [2,∞] , then for any ϕ ∈ Lp(Ωh) and ψ ∈ H1(Ωh)

∥πhϕ∥Lp(Ωh)
⩽C∥ϕ∥Lp(Ωh)

, ∥πhψ∥H1(Ωh)
⩽C∥ψ∥H1(Ωh)

, (2.14)

with a constant C > 0 independent of h. We note that the case p = 2 is trivially satisfied by the definition
of the projection. The case p = ∞ is covered by (Nitsche, 1975, Thm. 1), and an interpolation argument
yields the first bound. The stability in H1 is shown as for (2.12).

For the analysis in the following sections, we additionally rely on stability and approximation prop-
erties of L V∗

h in the maximum norm. These features are well known in the literature for conforming
finite elements, see, e.g., the monograph (Brenner & Scott, 2008, Ch. 8). In the non-conforming case,
the authors recently extended these results in (Dörich et al., 2023, Thm. 2.5 & 2.6) to isoparametric
finite elements. A special case is stated in the following proposition.

PROPOSITION 2.5 Let ∂Ω ∈Ck+1,1 and h ⩽ h0. Then, the adjoint lift is stable in W 1,∞ with

∥L V∗
h ϕ∥W 1,∞(Ωh)

≲ ∥ϕ∥W 1,∞(Ω) , ϕ ∈W 1,∞(Ω). (2.15)

For 0 ⩽ ℓ⩽ k, it holds∥∥(Id−LhL
V∗
h )ϕ

∥∥
W 1,∞(Ω)

≲ hℓ ∥ϕ∥W ℓ+1,∞(Ω) , ϕ ∈W ℓ+1,∞(Ω). (2.16)

Related estimates can be found in Kashiwabara & Kemmochi (2020) for the Neumann problem and
linear elements, and in the context of evolving surfaces also in Kovács & Power Guerra (2018). We will
also employ the inverse estimate, cf. (Brenner & Scott, 2008, Thm. 4.5.11) or (Maier, 2020, Lem. 5.6)

∥ϕh∥L∞(Ωh)
⩽Ch−N/p ∥ϕh∥Lp(Ωh)

, ∥ϕh∥Vh
⩽Ch−1 ∥ϕh∥L2(Ωh)

, ϕh ∈Vh. (2.17)

We introduce the first-order lift operator LhLhLh : W ℓ,p(Ωh)
2→W ℓ,p(Ω)2, for ℓ= 0,1 and 1 ⩽ p ⩽ ∞, and

reference operator Jh : V ×V → Xh defined by

LhLhLh =

(
Lh 0
0 Lh

)
, Jh =

(
L V∗

h 0
0 L V∗

h

)
,

which are bounded uniformly in h due to (2.7) and (2.11). In particular, we have by (2.16) the stability
Jh ∈ L(

(
W 1,∞(Ω)

)2
,
(
W 1,∞(Ωh)

)2
). For t ∈ [0,T ] we define the discrete operators λh(t) : Hh → Hh,

Λh(t) : Xh→ Xh, and the discrete right-hand side Fh(t) by

λh(t)ϕh = πh
(
Ihλ (t)ϕh

)
, Λh(t) =

(
Id 0
0 λh(t)

)
, Fh(t) =

(
0

Ih f (t)

)
.

Correspondingly to Lemma 2.3, we collect important properties of λh in the following lemma.
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LEMMA 2.6 Let Assumption 2.1 be satisfied for some κ ⩾ 2 and h ⩽ h0. Then, we have for t ∈ [0,T ],
1 ⩽ p ⩽ ∞, and j = 0,1,2 the bounds∥∥∂

j
t λh(t)ϕh

∥∥
Lp ⩽C∥ϕh∥Lp ,

∥∥∂
j

t λh(t)ϕh
∥∥

Vh
⩽C∥ϕh∥Vh

,

with a constant C > 0 depending only on λ and its derivatives.

Proof. Using the stability in (2.14), it is sufficient to show the assertion for the product (Ih∂
j

t λ )ϕh.
Combining the interpolation property (2.8) and Assumption 2.1, the Hölder inequality yields the desired
bound. □

Finally, we introduce the operators ∆h : Vh→ Hh and Ah : Xh→ Xh for ϕh,ψh ∈Vh given by

−(∆hϕh | ψh)Hh
= (ϕh | ψh)Vh

, Ah =

(
0 Id

∆h 0

)
.

Note that these operators are not uniformly bounded with respect to h. Correspondingly to (2.3) and
(2.4) using the identity (λhϕh | ψh)L2(Ωh)

= (Ihλ ϕh | ψh)L2(Ωh)
, the discrete operator Λh generates the

time-dependent inner product

(yh | zh)Λh(t)
= (Λh(t)yh | zh)Xh

, t ∈ [0,T ], yh,zh ∈ Xh,

with the induced norm being equivalent to the norm of Xh, i.e., we have as in (2.4) by Lemma 2.6

cΛh∥zh∥2
Xh

⩽ ∥zh∥2
Λh(t) ⩽CΛh∥zh∥2

Xh
, t ∈ [0,T ], zh ∈ Xh. (2.18)

We define the discrete solution operator ∆
−1
h : Hh→Vh by

−
(
∆
−1
h ϕh | ψh

)
Vh

= (ϕh | ψh)Hh
, ϕh,ψh ∈Vh, (2.19)

and further the corresponding first-order solution operator

Th =

(
0 ∆

−1
h

Id 0

)
,

which again satisfies ThAh = Id and AhTh = Id on Xh.
The spatially discrete non-autonomous wave equation in first-order formulation then reads

∂tyh(t) = Λh(t)
−1Ahyh(t)+Fh(t), t ∈ [0,T ], (2.20)

with the initial value yh(0) = y0
h, where

y0
h = Jhy0 =

(
L V∗

h u0,L V∗
h v0

)T
. (2.21)

This choice of the initial value guarantees the convergence of the expression JhA2y0−A2
hy0

h with optimal
order, see Lemma 5.4 below, and error bounds for the first approximations, see Section 5.3. We note
that in practice, one would usually choose the interpolation yh(0) =

(
Ihu0 , Ihv0

)
. However, already

in Baker & Dougalis (1980) preconditioned initial values of the type u0
h = (∆−1

h )m ∆
m u0, m ⩾ 4, had

to be chosen for the full order of convergence. Note that (2.21) is equivalent to the case m = 1 in
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the conforming case, but we do not require knowledge on ∆ u0. A discussion on the computation of
high-order approximations to L V∗

h is given in (Dörich, 2022, Prop. 2.4).
In the spatially continuous case, the solution operator ∆−1 can be used to obtain regularity which is

traded in for pointwise estimates via the bounded map

∆
−1 : L2→ H2 ↪→ L∞.

However, since we use Lagrangian finite elements which are not H2-conforming, this approach does not
work with ∆

−1
h . Hence, in the following we provide estimates of ∆

−1
h that directly give us integrability

without a detour via higher-order Sobolev spaces. A weaker form of this result has already been proven
in (Bramble et al., 1977, Lem. 4.1) in the conforming case only, and was recently sharpened in Dörich
(2022). We state a variant of this result and, for completeness, give the proof in Appendix A.

LEMMA 2.7 Let ∂Ω ∈C1,1 and h ⩽ h0. Then, the solution operator ∆
−1
h satisfies

∥∆−1
h ϕh∥L∞ ≲ ∥ϕh∥L2 ∥∆−1

h ϕh∥W 1,∞ ≲ ∥ϕh∥L4

for ϕh ∈Vh.

A direct consequence of the above lemma for N = 2,3, is the possibility to consider the maps

Xh ↪→ L4×L2 Th−→ L∞×L4 Th−→W 1,∞×L∞, (2.22)

which allow us to bound the maximum norm ∥·∥W 1,∞×L∞ in terms of the energy norm ∥·∥X if we apply
the solution operator Th twice. We explain in Section 3 how to employ this observation. Note that in
fact, one could sharpen the result to show that ∆

−1
h : L2→W 1,p is bounded uniform in h as long as the

embedding H2 ↪→W 1,p is valid. For p > N, this then also implies the first estimate of the lemma.
We can finally state our first main result on the semi discretization. The proof is given in Section 3.

We let H ℓ
∆

:= D
(
(−∆)ℓ/2

)
and use the notation

k∗ = max{k,2}

in order to treat linear and higher-order finite elements simultaneously.

THEOREM 2.8 Let ∂Ω ∈Ck+1,1, h⩽ h0, and let Assumption 2.1 hold for some ℓmax ∈N and κ = k+1.
Further, assume that the right-hand side f and the solution of (1.1) satisfy

u ∈C4([0,T ],Hk∗(Ω)
)
∩C2([0,T ],Hk+1(Ω)

)
∩C1([0,T ],W k+1,∞(Ω)

)
,

f ∈C1([0,T ],Hk+1(Ω)
)
∩C

(
[0,T ],H 1

∆

)
,

u0 ∈ Hk∗+2(Ω)∩H 3
∆ , v0 ∈ Hk∗+1(Ω)∩H 2

∆ ,

(2.23)

and the initial value yh(0) is chosen as in (2.21). Then we have the error bound

∥y(t)−LhLhLhyh(t)∥W 1,∞×L∞ ⩽Chk,

where C is independent of h.
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2.2 Full discretization

We study the full discretization with the backward Euler scheme

∂τ yn
h = Λ

−1
h (tn)Ahyn

h +Fh(tn), n ⩾ 1, (2.24)

where τ > 0 denotes the time step and the discrete approximation of the time derivative is for a sequence
(ϕn) given by

∂τ ϕ
n =

ϕn−ϕn−1

τ
. (2.25)

For the fully discrete scheme, we use the same initial value and set y0
h = Jhy0 =

(
L V∗

h u0,L V∗
h v0

)T as
in (2.21). Our second main result on the full discretization, which is proved in Section 4, then reads as
follows.

THEOREM 2.9 Let ∂Ω ∈ Ck+1,1, h ⩽ h0, and let Assumption 2.1 hold for ℓmax ⩾ 2 and κ = k+ 1.
Further, assume that the right-hand side f and the solution of (1.1) satisfy in addition to (2.23)

u ∈C5([0,T ],H1(Ω)
)
∩C4([0,T ],H 1

∆

)
∩C3([0,T ],H 2

∆

)
∩C2([0,T ],H 3

∆

)
,

f ∈C1([0,T ],H k∗
∆

)
∩C

(
[0,T ],H k∗+1

∆

)
,

u0 ∈H k∗+3
∆

, v0 ∈ ∩H k∗+2
∆

,

and the initial value y0
h is chosen as in (2.21). Then, there is τ0 > 0 such that for τ ⩽ τ0 we have the error

bound

∥y(tn)−LhLhLhyn
h∥W 1,∞×L∞ ⩽Cτ +Chmin{k,ℓmax}, n ⩾ 2,

where C is independent of h and τ , and τ0 is independent of h.

We refer to Remark 5.10 below in order to explain the minimum in the convergence rate. Further,
we emphasize that the first two approximations do not enter the above error bound. However, we have
the following convergence result for the first approximations.

THEOREM 2.10 Let the assumptions of Theorem 2.9 hold. Then, we have∥∥y(tℓ)−LhLhLhyℓh
∥∥

W 1,∞×L∞ ⩽C
(
τ +hk), ℓ= 0,1.

The proof is given in Section 5.

REMARK 2.11 Considering the strategy of the proof, we see that the same ideas can be applied by only
differentiating the error equations once and to exploit the relation

Xh = H1×L2 Th−→ L∞×H1 .

Following the lines of the presented proof below, we obtain the very same estimates for the L∞×H1

norm. The gain in using the ”weaker” norm are the decreased regularity assumptions as well as the
simpler choice of the initial value y0

h =
(
L V∗

h u0, Ihv0
)T , where we save one computation of L V∗

h .
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3. Analysis of the space discretization

3.1 Strategy of the proof

We now prove Theorem 2.8, i.e., we derive an error bound for the spatially discrete approximation
obtained by (2.20) in the maximum norm. To this end, we proceed as follows. We split the error in

y(t)−LhLhLhyh(t) =
(
Id−LhLhLhJh

)
y(t)+LhLhLh

(
Jhy(t)− yh(t)

)
=: eJh(t)+LhLhLheh(t) (3.1)

and derive an equation for the discrete error eh. With the solution operator T, we rewrite (2.2) as

TΛ(t)∂ty = y+TΛ(t)F(t), t ∈ [0,T ],

with initial value y(0) = y0. Correspondingly, we use the discrete solution operator Th to obtain from
(2.20) the semi-discrete equation

ThΛh(t)∂tyh = yh +ThΛh(t)Fh(t), t ∈ [0,T ], (3.2)

with initial value yh(0) = y0
h. Thus, we conclude that the discrete error eh solves the evolution equation

ThΛh(t)∂teh(t) = eh(t)+δh,T(t), t ∈ [0,T ], (3.3)

with initial value eh(0) = e0
h = Jhy0− y0

h and the defect

δh,T(t) =
(
ThΛh(t)Jh− JhTΛ(t)

)
∂ty(t)+ JhJhTΛ(t)F(t)−ThΛh(t)Fh(t). (3.4)

As illustrated in Figure 1, the proof of Theorem 2.8 mainly consists of two steps. First, in Lemma 3.1
we exchange the maximum norm of eh(t) for bounds of time derivatives of eh(t) in Xh. To do so, we
use (3.3) and Lemma 2.7, i.e., we rely on the property of the solution operator to gain integrability as
sketched in (2.22). Note that we can view the error equation as an ordinary differential equation in a
finite-dimensional space with right-hand side, say g(t,eh). Since the right-hand side g is smooth by
our assumptions, we obtain local existence. Since all norms are equivalent, the error bounds below
guarantee existence up to the final time T .

Next, in Lemma 3.2 we trace back the time derivatives of eh(t) to time derivatives of the initial error
eh(0), which can be bounded due to the choice (2.21) of the discrete initial value y0

h. Here, we obtain
from (2.2) and (2.20) for the discrete error eh the evolution equation

Λh(t)∂teh(t) = Aheh(t)+δh,A(t), t ∈ [0,T ], (3.5)

with the defect

δh,A(t) =
(
Λh(t)Jh− JhΛ(t)

)
∂ty(t)+

(
JhA−AhJh

)
y(t)+ JhΛ(t)F(t)−Λh(t)Fh(t). (3.6)

Note that we have the relation δh,A = Ahδh,T. Moreover, we emphasize that a similar defect was already
studied in the unified error analysis provided in Hipp et al. (2019). However, here we also have to bound
time derivatives of δh,T and δh,A as well as a different choice of Jh. We postpone the derivation of these
bounds as well as the estimates for the time derivatives of the initial error to Section 5.
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∥∥eh(t)
∥∥

W 1,∞×L∞

∥∥∂
j

t eh(t)
∥∥

Xh

∥∥∂
j

t δh,T(t)
∥∥

W 1,∞×L∞

Lemma 5.2

∥∥∂
j

t eh(0)
∥∥

Xh

Lemma 5.6

∥∥∂
j

t δh,A(t)
∥∥

Xh

Lemma 5.5

Lemma 3.1 Lemma 3.2

FIG. 1: Strategy of the proof of Theorem 2.8. The forked arrows indicate how the corresponding term
is estimated, and the lemmas below show where the term is bounded.

3.2 Proof of Theorem 2.8

Our first result shows how to bound the error in the maximum norm in terms of time derivatives of the
error in the energy norm.

LEMMA 3.1 Let the assumptions of Theorem 2.8 hold. Then, it holds

∥eh∥L∞(W 1,∞×L∞) ≲
∥∥∂

1
t eh

∥∥
L∞(Xh)

+
∥∥∂

2
t eh

∥∥
L∞(Xh)

+
∥∥δh,T

∥∥
L∞(W 1,∞×L∞)

+
∥∥∂tδh,T

∥∥
L∞(L∞×L4)

.

Proof. From the representation in (3.3) we obtain with the properties of Th in Lemma 2.7 and (2.22),
and the bounds on Λh in Lemma 2.6

∥eh(t)∥W 1,∞×L∞ ≲ ∥∂teh(t)∥L∞×L4 +
∥∥δh,T(t)

∥∥
W 1,∞×L∞ .

For the derivative we compute using the same estimates

∥∂teh(t)∥L∞×L4 ≲
∥∥ThΛh(t)∂ 2

t eh(t)
∥∥

L∞×L4 +∥Th∂tΛh(t)eh(t)∥L∞×L4 +
∥∥∂tδh,T(t)

∥∥
L∞×L4 (3.7)

≲
∥∥∂

2
t eh(t)

∥∥
Xh
+∥∂tΛh(t)eh(t)∥Xh

+
∥∥∂tδh,T(t)

∥∥
L∞×L4 ,

and, using Sobolev’s embedding ∥ξh∥L4×L2 ≲ ∥ξh∥Xh
for ξh ∈ Xh, concludes the proof. □

In the following lemma, we provide the bounds of the time derivatives appearing in Lemma 3.1 in
the Xh norm using the initial errors and certain defects.

LEMMA 3.2 Let the assumptions of Theorem 2.8 hold. Then, there is a constant C > 0 independent of
h such that for j = 1,2 we have∥∥∂

j
t eh

∥∥2
L∞(Xh)

≲ eCT
j

∑
ℓ=1

(∥∥∂
ℓ
t eh(0)

∥∥2
Xh
+
∥∥∂

ℓ
t δh,A

∥∥2
L∞(Xh)

)
.

Proof. In the following, we prove for j = 1,2 the estimate∥∥∂
j

t eh
∥∥2

L∞(Xh)
≲ (1+T )eCT

(∥∥∂
j

t eh(0)
∥∥2

Xh
+
∥∥∂

j
t δh,A

∥∥2
L∞(Xh)

+
j−1

∑
ℓ=1

∥∥∂
ℓ
t eh

∥∥2
L∞(Xh)

)
. (3.8)

The result then follows from using this bound recursively. In the following, we often suppress the time
arguments to increase the readability.

To prove (3.8), we first obtain by taking the derivative of (3.5) with respect to time

j

∑
ℓ=0

(
j
ℓ

)
∂

j−ℓ
t Λh∂

ℓ+1
t eh−Ah∂

j
t eh = ∂

j
t δh,A,
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for j = 0,1,2. Taking the inner product with ∂
j

t eh gives(
Λh∂

j+1
t eh | ∂ j

t eh

)
Xh

=
(

Ah∂
j

t eh | ∂ j
t eh

)
Xh
+
(

∂
j

t δh,A | ∂ j
t eh

)
Xh

−
j−1

∑
ℓ=0

(
j
ℓ

)(
∂

j−ℓ
t Λh∂

ℓ+1
t eh | ∂ j

t eh

)
Xh
.

Since Ah is skew-symmetric with respect to the inner product of Xh, we obtain with the triangle inequal-
ity and Young’ inequality the bound

2
(

Λh∂
j+1

t eh | ∂ j
t eh

)
Xh

⩽
∥∥∂

j
t δh,A

∥∥2
Xh
+2 j∥∥∂

j
t eh

∥∥2
Xh
+

j−1

∑
ℓ=0

(
j
ℓ

)∥∥∂
j−ℓ

t Λh∂
ℓ+1
t eh

∥∥2
Xh
.

In particular, due to the boundedness of Λh by Lemma 2.6 and the corresponding time derivatives, we
conclude

2
(

Λh∂
j+1

t eh | ∂ j
t eh

)
Xh

⩽
∥∥∂

j
t δh,A

∥∥2
Xh
+C j

∥∥∂
j

t eh
∥∥2

Xh
+Ĉ j

j−1

∑
ℓ=1

∥∥∂
ℓ
t eh

∥∥2
Xh
, (3.9)

with the constants

C j = 2 j + j
∥∥∂tΛh

∥∥2
L∞(L(Xh))

, Ĉ j = max
ℓ=0,..., j−1

(
j
ℓ

)∥∥∂
j−ℓ

t Λh
∥∥2

L∞(L(Xh))
.

Note that these constants are bounded independently of j ⩽ 2 by C2 and Ĉ2, respectively.
We rely on (3.9) to bound the first term on the right-hand side of

d
dt

∥∥∂
j

t eh
∥∥2

Λh(t)
= 2

(
Λh∂

j+1
t eh | ∂ j

t eh

)
Xh
+
(

∂tΛh∂
j

t eh | ∂ j
t eh

)
Xh
.

Moreover, integration in time, using the boundedness of ∂tΛh for the second term, and the norm equiv-
alence (2.18) yields

∥∥∂
j

t eh
∥∥2

Λh(t)
≲
∥∥∂

j
t eh(0)

∥∥2
Λh(0)

+ t
∥∥∂

j
t δh,A

∥∥2
L∞(Xh)

+ t
j−1

∑
ℓ=1

∥∥∂
ℓ
t eh

∥∥2
L∞(Xh)

+
∫ t

0

∥∥∂
j

t eh(s)
∥∥2

Λh(s)
ds.

Finally, the Gronwall inequality implies for all t ∈ [0,T ]

∥∥∂
j

t eh(t)
∥∥2

Λh(t)
≲ eCt

(∥∥∂
j

t eh(0)
∥∥2

Λh(0)
+ t

∥∥∂
j

t δh,A
∥∥2

L∞(Xh)
+

j−1

∑
ℓ=1

∥∥∂
ℓ
t eh

∥∥2
L∞(Xh)

)
,

and (3.8) follows with (2.18). □
With these preparations we can prove our first main result.

Proof of Theorem 2.8. Using the decomposition (3.1) and the stability of the lift in (2.7), we estimate
with the approximation property derived in (2.16)

∥y(t)−LhLhLhyh(t)∥W 1,∞×L∞ ⩽ ∥eJh(t)∥W 1,∞×L∞ +CLhLhLh ∥eh(t)∥W 1,∞×L∞

⩽Chk ∥y(t)∥W k+1,∞×W k+1,∞ +CLhLhLh ∥eh(t)∥W 1,∞×L∞ ,

and apply Lemmas 3.1 and 3.2. The remaining defects and errors in the initial values are bounded in
Lemmas 5.2, 5.5, and 5.6. □
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∥∥en
h

∥∥
W 1,∞×L∞

∥∥∂
j

τ en
h

∥∥
Xh

∥∥∂
j

τ δ n
h,T

∥∥
W 1,∞×L∞

Lemma 5.2

∥∥∂
j

τ e j
h

∥∥
Xh

Lemma 5.7

∥∥∂
j

τ δ n
h,A

∥∥
Xh

Lemma 5.5

Lemma 4.4 Lemma 4.6

FIG. 2: Strategy of the proof of Theorem 2.9. The forked arrows indicate how the corresponding term
is estimated, and the lemmas below show where the term is bounded.

4. Analysis of the full discretization

In this section, we establish the proof of Theorem 2.9. The strategy is very similar to the one in Section 3,
see Figure 2, where we replace the continuous by discrete derivatives. Hence, after introducing some
useful calculus, we explain the adapted strategy.

4.1 Calculus for discrete derivatives

We first need some auxiliary results for the discrete derivatives defined in (2.25). A straightforward
calculation yields the following.

LEMMA 4.1 It holds the discrete product rule

∂τ

(
ϕ

n
ψ

n)= (∂τ ϕ
n)ψn +ϕ

n−1(∂τ ψ
n)

and also the more general discrete Leibniz rule

∂
j

τ

(
ϕ

n
ψ

n)= j

∑
ℓ=0

(
j
ℓ

)(
∂

j−ℓ
τ ϕ

n−ℓ)(
∂
ℓ
τ ψ

n), j ⩾ 0.

In order to mimic the strategy of the proof of Theorem 2.8, we state the well-known discrete version
of the fundamental theorem of calculus and a direct consequence of a discrete Gronwall lemma.

LEMMA 4.2 Let (ϕn) be a sequence in a Hilbert space with inner product (· | ·), and let k0 ∈ N.
(a) For any M ⩾ k0, it holds

1
2

∥∥ϕ
M∥∥2

⩽
1
2

∥∥ϕ
k0−1∥∥2

+ τ

M

∑
j=k0

(
∂τ ϕ

j | ϕ j) .
(b) If there are constants α,β1,β2 ⩾ 0 such that(

∂τ ϕ
j | ϕ j) ⩽ α

2 +β1
∥∥ϕ

j−1∥∥2
+β2

∥∥ϕ
j∥∥2

, j ⩾ k0, (4.1)

holds, then for τ ⩽ 1
4(β1+β2)

and M ⩾ k0 we have

∥∥ϕ
M∥∥ ⩽

(√
1+2τβ1

∥∥ϕ
k0−1∥∥+√

2tNα

)
e2(β1+β2)tN .
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Proof. Part (a) is for example shown in (Hochbruck & Pažur, 2017, Lemma 4.2). Inserting (4.1) in (a)
yields ∥∥ϕ

N∥∥2
⩽
∥∥ϕ

k0−1∥∥2
+2τ

N

∑
j=k0

(
α

2 +β1
∥∥ϕ

j−1∥∥2
+β2

∥∥ϕ
j∥∥2

)
⩽
(
1+2τβ1

)∥∥ϕ
k0−1∥∥2

+2tNα
2 +2(β1 +β2)τ

N

∑
j=k0

∥∥ϕ
j∥∥2

and by a Gronwall argument, see, e.g., (Linz, 1969, Lemma 1), we obtain∥∥ϕ
N∥∥2

⩽
((

1+2τβ1
)∥∥ϕ

k0−1∥∥2
+2tNα

2
)

e4(β1+β2)tN .

Taking roots yields the assertion. □
We conclude with a useful bound which relates the discrete derivatives to their continuous limit.

LEMMA 4.3 Let Z be some Banach space, j ⩾ 1 and x : [0,T ] → Z be j-times differentiable with
bounded derivatives, then ∥∥∂

j
τ x(tn)

∥∥
Z ⩽ sup

t∈[tn− j ,tn]

∥∥∂
j

t x(t)
∥∥

Z .

Proof. This simply follows from an iterative application of the fundamental theorem of calculus. □

4.2 Proof of Theorem 2.9

As in (3.1), we are interested in bounds on the discrete error

en
h = Jhy(tn)− yn

h,

and derive for the exact solution inserted in the numerical scheme similar to (3.2)

ThΛh(tn)Jh∂τ y(tn) = Jhy(tn)+ThΛh(tn)Fh(tn)+δ
n
h,T

with a defect of the form, using the representation of δh,T in (3.4),

δ
n
h,T = δh,T(tn)+ThΛh(tn)Jh

(
∂τ y(tn)−∂ty(tn)

)
. (4.2)

From this we obtain the fully discrete error equation

ThΛh(tn)∂τ en
h = en

h +δ
n
h,T. (4.3)

For the estimates in the energy we need the equivalent formulation involving the operator Ah. To
this end, we insert Jhy into (2.24) and obtain

Λh(tn)Jh∂τ y(tn) = AhJhy(tn)+Fh(tn)+δ
n
h,A

with the defect, using the representation of δh,A in (3.6),

δ
n
h,A = δh,A(tn)+Λh(tn)Jh

(
∂τ y(tn)−∂ty(tn)

)
. (4.4)

This gives us the second version of the error recursion

Λh(tn)∂τ en
h = Ahen

h +δ
n
h,A. (4.5)

Starting from (4.3), we obtain the following bound as a discrete counterpart to Lemma 3.1.

Christian Knieling

Christian Knieling
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LEMMA 4.4 Let the assumptions of Theorem 2.9 hold. Then, there exists a constant C > 0 independent
of h, τ , and n such that

∥en
h∥W 1,∞×L∞ ≲

∥∥∂
1
τ en

h

∥∥
Xh
+
∥∥∂

2
τ en

h

∥∥
Xh
+
∥∥δ

n
h,T

∥∥
W 1,∞×L∞

+
∥∥∂

1
τ δ

n
h,T

∥∥
L∞×L4

holds for n ⩾ 2.

REMARK 4.5 From this lemma it becomes clear that this technique does not provide bounds for n= 0,1,
since we can evaluate ∂

j
τ en

h only for n ⩾ j.

Proof of Lemma 4.4. As in (3.7), we obtain from (4.3) and Lemma 4.1

∂
1
τ en

h =−∂
1
τ δ

n
h,T +ThΛh(tn−1)∂ 2

τ en
h +Th∂

1
τ Λh(tn)∂ 1

τ en
h,

and the proof follows along the lines of Lemma 3.1. □
The next step is to establish the discrete analogue to Lemma 3.2 where the discrete derivatives are

bounded in terms of discrete derivatives of the initial error and defects.

LEMMA 4.6 Let the assumptions of Theorem 2.9 hold. Then, there is τ0 > 0 such that for τ ⩽ τ0∥∥∂
j

τ en
h

∥∥2
Xh

⩽C(1+T )eCT
j

∑
ℓ=1

(∥∥∂
ℓ
τ eℓh

∥∥2
Xh
+
∥∥∂

ℓ
τ δ

n
h,A

∥∥2
ℓ∞(Xh)

)
,

for j = 1,2 and n ⩾ j+1.

Proof. As in the proof of Lemma 3.2, we provide the bound

∥∥∂
j

τ en
h

∥∥2
Xh

⩽C(1+T )eCT
(∥∥∂

j
τ e j

h

∥∥2
Xh
+
∥∥∂

j
τ δ

n
h,A

∥∥2
ℓ∞(Xh)

+
j−1

∑
ℓ=1

∥∥∂
ℓ
τ en

h

∥∥2
Xh

)
, (4.6)

cf. (3.8). Using this estimate recursively directly yields the assertion.
To do so, we apply the bounds from Lemma 4.2 for ϕn = Λ

1/2
h (tn)∂ j

τ en
h. In particular, we first study

the term

(∂τ ϕ
n | ϕn)Xh

=
(

Λh(tn)∂ j+1
τ en

h | ∂
j

τ en
h

)
Xh
+
((

∂τΛ
1/2
h (tn)

)
∂

j
τ en−1

h | ϕn
)

Xh
,

where we used Lemma 4.1 and the fact that Λ
1/2
h is self-adjoint in Xh. Due to Assumption 2.1 and

Young’s inequality, this implies

(∂τ ϕ
n | ϕn)Xh

⩽
(

Λh(tn)∂ j+1
τ en

h | ∂
j

τ en
h

)
Xh
+C

∥∥ϕ
n∥∥2

Xh
+C

∥∥ϕ
n−1∥∥2

Xh
. (4.7)

For the first term, we obtain with Lemma 4.1 applied to (4.5)

Λh(tn)∂ j+1
τ en

h = Ah∂
j

τ en
h +∂

j
τ δ

n
h,A−

j−1

∑
ℓ=0

(
j
ℓ

)(
∂

j−ℓ
τ Λh(tn−ℓ)

)(
∂
ℓ+1
τ en

h
)
.

Thus, taking the inner product in Xh with ∂
j

τ en
h yields as in (3.9) the estimate

2
(

Λh(tn)∂ j+1
τ en

h | ∂
j

τ en
h

)
Xh

⩽
∥∥∂

j
τ δ

n
h,A

∥∥2
Xh
+C

∥∥ϕ
n∥∥2

Xh
+C

j−1

∑
ℓ=1

∥∥∂
ℓ
τ en

h

∥∥2
Xh
.
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Using this bound in (4.7) together with the discrete Gronwall lemma in Lemma 4.2, we obtain (4.6) for
τ sufficiently small. □

Hence, we conclude our second main result.
Proof of Theorem 2.9. Using a decomposition analogous to (3.1), we estimate as in the proof of
Theorem 2.8

∥y(tn)−LhLhLhyn
h∥W 1,∞×L∞ ⩽ ∥eJh(t

n)∥W 1,∞×L∞ +CLhLhLh ∥e
n
h∥W 1,∞×L∞

⩽Chk ∥y(tn)∥W k+1,∞×W k+1,∞ +CLhLhLh ∥e
n
h∥W 1,∞×L∞ ,

and apply Lemmas 4.4 and 4.6 for n ⩾ 2. The remaining defects and errors in the initial values are
bounded in Lemmas 5.2, 5.5, and 5.7. □

5. Bounds on the defects and initial conditions

In this section, we provide all bounds missing in the proofs of Sections 3 and 4. Throughout this section,
we mostly omit the time dependency for the sake of readability and assume h ⩽ h0. Further, we take
the assumptions of Section 2 as given, but will be precise about the regularity of the solution u and the
right-hand side f .

5.1 Estimates of the defects

We first provide certain approximation properties in the maximum norm which are used for the defects.
We recall the notation k∗ = max{k,2}.

LEMMA 5.1 Let ξ = (ϕ,ψ) ∈ H1(Ω)×Hk+1(Ω) and λ , f ∈C1([0,T ],Hk+1(Ω)). Then, the discrete
operators introduced in Section 2 satisfy the bounds∥∥(ThJh− JhT

)
ξ
∥∥

W 1,∞×L∞ ≲ hk ∥ψ∥Hk+1 , (5.1a)∥∥(ThJh− JhT
)
ξ
∥∥

L∞×L4 ≲ hk ∥ψ∥Hk∗ , (5.1b)∥∥(ΛhJh− JhΛ
)
ξ
∥∥

L∞×L4 ≲ hk ∥ψ∥Hk+1 . (5.1c)

For j = 0,1 we further have∥∥∂
j

t
(
ΛhJh− JhΛ

)
ξ
∥∥

H1×L2 ≲ hk ∥ψ∥Hk∗ , (5.2a)∥∥∂
j

t ΛhFh− Jh∂
j

t ΛF
∥∥

L∞×L4 ≲ hk∥∥∂
j

t (λ f )
∥∥

Hk+1 . (5.2b)

Proof. Using the identity L V∗
h ∆−1ψ = ∆

−1
h L H∗

h ψ , we compute

(
ThJh− JhT

)
ξ =

(
∆
−1
h

(
L V∗

h −L H∗
h

)
ψ

0

)
.

Using Lemma 2.7, we obtain∥∥∆
−1
h

(
L V∗

h −L H∗
h

)
ψ
∥∥

L∞ ≲
∥∥(L V∗

h −L H∗
h

)
ψ
∥∥

L2 ,∥∥∆
−1
h

(
L V∗

h −L H∗
h

)
ψ
∥∥

W 1,∞ ≲
∥∥(L V∗

h −L H∗
h

)
ψ
∥∥

Vh
,
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and the bound (5.1a) and (5.1b) follow from (2.10) and (2.11). For the bound on (5.1c) we exploit the
bounds in (2.8), (2.10), (2.11), (2.13), and (2.14) to obtain∥∥(ΛhJh− JhΛ

)
ξ
∥∥

L∞×L4 ≲
∥∥λhL

V∗
h ψ−L V∗

h (λψ)
∥∥

H1

≲
∥∥πh

(
IhλL V∗

h ψ−L −1
h (λψ)

)∥∥
H1 +

∥∥(πhL
−1

h −L H∗
h

)
(λψ)

∥∥
H1

+
∥∥(L H∗

h −L V∗
h

)
(λψ)

∥∥
H1

≲ hk(∥ψ∥Hk+1 +∥λψ∥Hk+1
)
,

(5.3)

and in the same way for j = 0,1∥∥∂
j

t
(
ΛhJh− JhΛ

)
ξ
∥∥

H1×L2 ≲ hk(∥ψ∥Hk∗ +
∥∥(∂ j

t λ )ψ
∥∥

Hk∗
)
.

Similarly, (5.2b) follows from∥∥∂
j

t ΛhFh− Jh∂
j

t ΛF
∥∥

L∞×L4 ⩽
∥∥∂

j
t πh

(
Ihλ Ih f −L −1

h (λ f )
)∥∥

L4 +
∥∥∂

j
t
(
πhL

−1
h −L H∗

h
)
(λ f )

∥∥
L4

+
∥∥(L H∗

h −L V∗
h )∂ j

t (λ f )
∥∥

L4

(5.4)

by (2.8), (2.10), (2.11), (2.13), and (2.14). □
From these approximation properties we conclude the bounds on the defects appearing in Lem-

mas 3.1 and 4.4.

LEMMA 5.2 Let the solution u∈C3([0,T ],Hk∗(Ω)∩C2([0,T ],Hk+1(Ω)) and λ , f ∈C1([0,T ],Hk+1(Ω)).

(a) The defect δh,T(t) introduced in (3.4) satisfies for t ∈ [0,T ]∥∥δh,T(t)
∥∥

W 1,∞×L∞ +
∥∥∂tδh,T(t)

∥∥
L∞×L4 ≲ hk .

(b) If in addition u∈C2([0,T ],W 1,∞(Ω))∩C4([0,T ],H1(Ω)), then the defect δ n
h,T introduced in (4.2)

satisfies for n ⩾ 2 ∥∥δ
n
h,T

∥∥
W 1,∞×L∞ +

∥∥∂τ δ
n
h,T

∥∥
L∞×L4 ≲ τ +hk .

Proof. (a) We decompose the defect δh,T = δ 1
h,T +δ 2

h,T introduced in (3.4) with

δ
1
h,T =

(
ThΛhJh− JhTΛ

)
∂ty , δ

2
h,T = JhTΛF−ThΛhFh ,

and first consider δ 1
h,T. We write∥∥δ

1
h,T

∥∥
W 1,∞×L∞

⩽
∥∥Th

(
ΛhJh− JhΛ

)
∂ty

∥∥
W 1,∞×L∞ +

∥∥(ThJh− JhT
)
Λ∂ty

∥∥
W 1,∞×L∞

≲
∥∥(ΛhJh− JhΛ

)
∂ty

∥∥
L∞×L4 +

∥∥λ∂
2
t u

∥∥
Hk+1

≲
∥∥∂

2
t u

∥∥
Hk∗ +

∥∥λ∂
2
t u

∥∥
Hk+1 ,

where we used Lemma 2.7 together with (5.1a) and (5.1c). Differentiating and taking norms, gives with
Lemma 2.3∥∥∂tδ

1
h,T

∥∥
L∞×L4 ⩽

∥∥Th
(
ΛhJh− JhΛ

)
∂

2
t y

∥∥
L∞×L4 +

∥∥Th
(
∂tΛhJh− Jh∂tΛ

)
∂ty

∥∥
L∞×L4

+
∥∥(ThJh− JhT

)
∂t(Λ∂ty)

∥∥
L∞×L4

⩽
∥∥(ΛhJh− JhΛ

)
∂

2
t y

∥∥
H1×L2 +

∥∥(∂tΛhJh− Jh∂tΛ
)
∂ty

∥∥
H1×L2

+
∥∥(ThJh− JhT

)
∂t(Λ∂ty)

∥∥
L∞×L4
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such that (5.1b) and (5.2a) together imply∥∥∂tδ
1
h,T

∥∥
L∞×L4 ≲ hk(∥∥∂

3
t u

∥∥
Hk∗ +

∥∥∂
2
t u

∥∥
Hk∗ +∥∂t(λ∂tu)∥Hk∗

)
.

With similar arguments, we obtain for j = 0,1 with (5.1a), Lemma 2.7, and (5.2b)∥∥∂
j

t δ
2
h,T

∥∥
W 1,∞×L∞ ⩽

∥∥(JhT−ThJh
)
∂

j
t
(
Λ(t)F(t)

)∥∥
W 1,∞×L∞ +

∥∥Th
(
Jh∂

j
t
(
Λ(t)F(t)

)
−∂

j
t
(
Λh(t)Fh(t)

))∥∥
W 1,∞×L∞

≲ hk∥∥∂
j

t
(
λ f

)∥∥
Hk+1 ,

and thus the claim.
(b) Thanks to Lemma 4.3, the estimate from part (a) extends to this case, and we only have to provide

the following bound for the additional defect∥∥ThΛh(tn)Jh
(
∂τ y(tn)−∂ty(tn)

)∥∥
W 1,∞×L∞ ≲

∥∥∂τ y(tn)−∂ty(tn)
∥∥

W 1,∞×H1∥∥∂τ ThΛh(tn)Jh
(
∂τ y(tn)−∂ty(tn)

)∥∥
L∞×L4 ≲

∥∥∂τ y(tn)−∂ty(tn)
∥∥

H1×H1 +
∥∥∂τ

(
∂τ y(tn)−∂ty(tn)

)∥∥
H1×H1 .

We note the identity

∂τ y(tn)−∂ty(tn) = τ

1∫
0

(−s)∂ 2
t y(tn−1 + τs)ds , (5.5)

and conclude the assertion. □
In the next step, we consider the time derivatives of the error which we estimate in the energy norm,

and provide some more approximation properties. We first characterize the inverse of λh, which plays a
crucial rule in the subsequent error analysis. We define the inner product (ϕh | ψh)λh

:=(Ihλ ϕh | ψh)L2(Ωh)
,

and the corresponding L2-projection Qh for ψ ∈ L2(Ωh) via

(Qhψ | ψh)λh
= (ψ | ψh)λh

, ψh ∈Vh.

This leads us to the following result, which is proved in Appendix A.

LEMMA 5.3 (a) For ϕ ∈ Hk+1(Ω) and ψ ∈ H1(Ωh), we have the bounds∥∥QhL
−1

h ϕ−L H∗
h ϕ

∥∥
L2(Ωh)

≲ hk+1 ∥ϕ∥Hk+1(Ω) , ∥Qhψ∥H1(Ωh)
≲ ∥ψ∥H1(Ωh)

.

(b) The inverse of λh is given by λh
−1ϕh = Qh

(
(Ihλ )−1ϕh

)
for ϕh ∈Vh.

We further make use in the following of the operators

Λ̃(tn) :=
(

λ (tn) 0
0 Id

)
(5.6)

and analogously defined, Λ̃h(tn), Λ̃h(tn)−1, and Λ̃(tn)−1.

LEMMA 5.4 Let ξ = (ϕ,ψ) ∈ Hk+1(Ω)×Hk∗(Ω) and λ , f ∈ C1([0,T ],Hk∗(Ω)). Then, the discrete
operators introduced in Section 2 satisfy for j = 0,1 the bounds∥∥(Λ̃hJh− JhΛ̃

)
ξ
∥∥

Xh
≲ hk ∥ϕ∥Hk+1 , (5.7a)∥∥(Λ̃−1

h Jh− JhΛ̃
−1)

ξ
∥∥

Xh
≲ hk ∥ϕ∥Hk+1 , (5.7b)∥∥∂

j
t ΛhFh− Jh∂

j
t ΛF

∥∥
Xh

≲ hk∥∥∂
j

t (λ f )
∥∥

Hk∗ . (5.7c)
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If ξ = (ϕ,ψ) ∈ (Hk+3(Ω)∩D(∆ 2))× (Hk∗+2(Ω)∩D(∆)) and f ∈C([0,T ],Hk+1(Ω)∩D(∆)), then∥∥AhFh− JhAF
∥∥

Xh
≲ hk ∥ f∥Hk+1 , (5.8a)∥∥(AhJh− JhA

)
ξ
∥∥

Xh
≲ hk ∥∆ ϕ∥Hk∗ , (5.8b)∥∥(A2

hJh− JhA2)
ξ
∥∥

Xh
≲ hk ∥ξ∥Hk+3×Hk∗+2 . (5.8c)

Proof. The same computation as in (5.3) yields (5.7a) and with Lemma 5.3 also (5.7b), and the
representation in (5.4) implies (5.7c). We obtain∥∥AhFh− JhAF

∥∥
Xh

=
∥∥Ih f −L V∗

h f
∥∥

Vh
,

and thus with (2.11) and (2.8) the claim. We use the identity ∆hL
V∗
h = L H∗

h ∆ to derive

(
AhJh− JhA

)
ξ =

(
0

(L H∗
h −L V∗

h )∆ ϕ

)
,

(
A2

hJh− JhA2)
ξ =

(
(L H∗

h −L V∗
h )∆ ϕ

(L H∗
h −L V∗

h )∆ ψ

)
.

We employ (2.10) and (2.11) to obtain (5.8b). Together with the inverse estimate (2.17), this further
implies (5.8c). □

With these approximations at hand, we can finally provide bounds for the defects from Lemmas 3.2
and 4.6.

LEMMA 5.5 Let the solution u ∈C4
(
[0,T ],Hk∗(Ω)

)
∩C2

(
[0,T ],D(∆)

)
and λ , f ∈C2([0,T ],Hk∗(Ω)).

(a) The defect defined in (3.6) satisfies for j = 1,2 and t ∈ [0,T ]∥∥∂
j

t δh,A(t)
∥∥

Xh
≲ hk .

(b) If in addition u∈C5([0,T ],H1(Ω)), then the defect defined in (4.4) satisfies for j = 1,2 and n ⩾ j∥∥∂
j

τ δ
n
h,A

∥∥
Xh

≲ τ +hk .

Proof. (a) We estimate the defect with the help of Lemma 5.4. We employ Lemma 2.6 and the bounds
(5.2a), (5.7c) and (5.8b) to obtain

∥∥∂
j

t δh,A(t)
∥∥

Xh
⩽Chk( 4

∑
ℓ=2

∥∥∂
ℓ
t u

∥∥
Hk∗ +

∥∥∂
j

t ∆ u
∥∥

Hk∗ +
∥∥∂

j
t (λ f )

∥∥
Hk∗

)
.

(b) Thanks to Lemma 4.3, it remains to show for j = 1,2∥∥∂
j

τ Λh(tn)Jh
(
∂τ y(tn)−∂ty(tn)

)∥∥
Xh

≲ τ
∥∥∂

4
t y

∥∥
H1×H1 .

Using the continuity of Jh in H1×H1 and the identity (5.5) immediately yields the claim. □

5.2 Errors of the differentiated initial values

The last part to prove Theorem 2.8 and Theorem 2.9 is to bound the initial error in Lemma 3.2 and
Lemma 4.4. We recall the preconditioned initial values defined in (2.21) where y0

h = yh(0) = Jhy0. The
aim of this section is to prove the following bounds.

Christian Knieling

Christian Knieling



MAXIMUM NORM ERROR BOUNDS FOR NON-AUTONOMOUS WAVE EQUATIONS 21 of 31

LEMMA 5.6 Under the assumptions of Theorem 2.8 it holds for ℓ= 1,2∥∥∂
ℓ
t eh(0)

∥∥
Xh

⩽Chk.

LEMMA 5.7 Under the assumptions of Theorem 2.9 it holds for ℓ= 1,2∥∥∂
ℓ
τ eℓh

∥∥
Xh

⩽C
(
τ +hk).

In order to conclude the desired assertion, we proceed in a series of lemmas and introduce the
notation Λ n = Λ(tn), F(tn) = F(tn), Λ n

h = Λh(tn), Fh(tn) = Fh(tn) and also

Rn =
(
Λ

n− τA
)−1

, Rn
h =

(
Λ

n
h − τAh

)−1
. (5.9)

We provide a detailed proof of Lemma 5.7 first and explain afterwards how to conclude the assertion of
Lemma 5.6. In order to keep the notation simple, we assume without loss of generality in the following
that the spatial order satisfies

k∗ ⩽ ℓmax , (5.10)

with ℓmax defined in Assumption 2.1. This induces the restriction ℓmax ⩾ 2. In a first step, we find a
suitable representation for the discrete and exact solutions.

LEMMA 5.8 The numerical solution can be expanded via

∂τ yn
h = Rn

h Ahyn−1
h +Gn

h, Gn
h = Rn

hΛ
n
h Fn

h ,

∂
2
τ yn

h = Rn
h AhR

n−1
h Ahyn−2

h +
(
∂τR

n
h
)
Ahyn−2

h +Rn
h AhGn−1

h +∂τ Gn
h .

The same holds for ∂ ℓ
τ y(tn), ℓ= 1,2,3, with h formally set to zero and

Gn
h→ Gn = Rn

Λ
n(Fn +δ

n), δ
n = ∂τ y(tn)−∂ty(tn). (5.11)

Proof. Starting from (2.24), we multiply by Λ n
h and reorder the terms to obtain(

Λ
n
h − τAh)yn

h = Λ
n
h yn−1

h + τΛ
n
h Fn

h .

Using the resolvent, this further gives

yn
h = yn−1

h + τRn
h Ahyn−1

h + τRn
hΛ

n
h Fn

h ,

which implies the representation for ∂τ yn
h. The remaining identity is deduced from the product rule in

Lemma 4.1. The results for the exact solution can be derived from the representation

Λ
n
∂τ y(tn) = Ay(tn)+Λ

nFn +Λ
n
δ

n

and the same computations as above. □
In order to bound the expressions in Lemma 5.7, we subtract the representations for the exact and

the numerical solution. Let us for example consider the first term in ∂ 2
τ e2

h = Jh∂ 2
τ y(t2)−∂ 2

τ y2
h given by(

∂
2
τ e2

h
)

1 =
(

JhR
2AR1A−R2

h AhR
1
h AhJh

)
y0,
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where we used the initial value (2.21) with y0
h = Jhy0. In order to bound the difference, we proceed in

two steps. First, we move the operators A and Ah to the right. Therefore, we employ the identities

ARn
Λ

n = Λ
nRnA, AΛ

n = Λ̃
nA, (5.12)

with Λ̃ defined in (5.6). The corresponding equalities are also valid for the discrete objects and the
inverse A(Λ n)−1 = (Λ̃ n)−1A. Hence, we can write

JhR
2AR1Ay0 = JhR

2
Λ

1R1(Λ̃ 1)−1A2y0

and similarly for the discrete counterpart. A reformulation of Lemma 5.8 according to the above strategy
is given in Lemma A.1. The differences of A and Ah as well as F and Fh are bounded by (5.8). The
remaining differences in front of them are treated by the following abstract estimate. As a shorthand
notation, we set

m
∏
j=1

B j := Bm . . .B1, m ⩾ 1, and
m
∏
j=1

B j := Id, m < 1.

LEMMA 5.9 Let Y ⊆ X be a Hilbert space, m ∈ N, and consider operators B j
h ∈ L(Xh) and B j ∈ L(X),

j = 1, . . . ,m, with the following properties:∥∥(JhB j−B j
hJh

)
x
∥∥

Xh
≲

(
τ +hk)∥x∥Y ,∥∥B jx

∥∥
Y

≲ ∥x∥Y .
(5.13)

Then, the product is bounded by∥∥∥(Jh

( m
∏
j=1

B j
)
−
( m

∏
j=1

B j
h

)
Jh

)
x
∥∥∥

Xh
≲

(
τ +hk

)
∥x∥Y .

Proof. Using the telescopic sum(
Jh

( m
∏
j=1

B j
)
−
( m

∏
j=1

B j
h

)
Jh

)
x =

m

∑
ℓ=1

( m
∏

j=ℓ+1
B j

h

)(
JhBℓ−Bℓ

hJh
)(ℓ−1

∏
j=1

B j
)

x,

we immediately conclude the assertion. □
With these preparations, we finally conclude the bounds for the initial values.

Proof of Lemma 5.7. We estimate the differences of the continuous and discretized operators in
Lemma A.1. We split the proof in two parts. First, we compare the products of bounded operators
involving

B j ∈ {Λ n,∂τΛ
n,(Λ̃ n)−1,Rn} (5.14)

and the discrete counterparts using Lemma 5.9 with Y = D(Ak∗). In the second step, we deal with
the powers of A and Ah applied to the initial value, the right-hand side and the defects. Because of
∂Ω ∈Ck+1,1, we several times use the embedding D(Ak) ↪→ Hk+1(Ω)×Hk(Ω), see, e.g., (Grisvard,
1985, Rem. 2.5.1.2).
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(i) We first consider the operators involving Λ . Under Assumption 2.1 for κ = k + 1 and with
Lemmas 2.3, 2.6, and 5.3 and the bounds (5.7a) and (5.7b), the properties (5.13) are satisfied. For the
resolvent Rn , we directly employ Lemma A.2 to compute with (5.2a) and (5.8b)∥∥(JhR −RhJh

)
y
∥∥

Xh
⩽ τ

∥∥Rh
(
JhA−AhJh

)
Ry

∥∥
Xh
+
∥∥Rh

(
JhΛ −ΛhJh

)
Ry

∥∥
Xh

⩽Chk
τ
∥∥Ak∗+1Ry

∥∥
Xh
+Chk∥∥Ak∗Ry

∥∥
Xh

⩽Chk∥∥Ak∗y
∥∥

X ,

and hence Lemma 5.9 is applicable.
(ii) We employ Lemma A.1 and denote any product of operators from part (i) by Π and the discrete

counterpart Πh. Then, we have to compare expressions of the form

JhΠ(x+δ )−Πhxh = (JhΠ −ΠhJh)x+Πh(Jhx− xh)+ JhΠδ

with
x ∈ {Ay0,A2y0,F1,∂τ F2,AF1}, xh ∈ {AhJhy0,A2

hJhy0,F1
h ,∂τ F2

h ,AhF1
h }, (5.15)

and δ ∈ {δ 1,∂τ δ 2,Aδ 1} with δ ℓ given in (5.11). Then, the first part is covered by part (i), provided that
∥Ak∗x∥X ⩽C holds for all x in (5.15), which follows from the assumptions of the theorem. The second
part is bounded due to (5.7c), (5.8a), (5.8b), and (5.8c). Lastly, the estimate

∥JhΠδ∥Xh
≲ ∥Aδ∥X

together with (5.5) yields

∥JhΠδ∥Xh
≲ τ

(∥∥A2
∂

2
t y

∥∥
L∞(X)

+
∥∥A∂

3
t y

∥∥
L∞(X)

)
,

and hence the desired bound. □

REMARK 5.10 The restriction ℓmax ⩾ k∗ in (5.10) is necessary in order to guarantee (2.5) for ℓ = k∗

which is needed in the estimates above to transport the regularity past Λ .

We now prove Lemma 5.6 and observe that formally setting τ = 0 in (2.24), we obtain the spatially
discretized equation (2.20). This observation drives the following proof.
Proof of Lemma 5.6. Several steps in the proof simplify, and we mainly explain why we can neglect
the assumption on ℓmax. First note, that compared to the proof above we replace due to τ = 0

Rn→ (Λ 0)−1, Rn
h → (Λ 0

h )
−1,

and the most delicate term is given by(
∂

2
t eh(0)

)
1 =

(
Jh(Λ

0)−1A(Λ 0)−1A− (Λ 0
h )
−1Ah(Λ

0
h )
−1Ah

)
Jhy0

=
(

Jh(Λ
0)−1(Λ̃ 0)−1A2− (Λ 0

h )
−1(Λ̃ 0

h )
−1A2

hJh

)
y0,

Further, the terms in (5.14) reduce to B j ∈ {Λ 0,∂tΛ
0,(Λ̃ 0)−1}. In contrast to above, we may employ

Lemma 5.9 with Y = Hk∗+1(Ω)×Hk∗(Ω), and thus obtain no restriction on ℓmax. Then, we proceed
along the lines of Lemma 5.7. □
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5.3 Bounds on the first approximations

This section is devoted to the proof of Theorem 2.10, i.e., we provide bounds for the first two approxi-
mations of the fully discrete scheme (2.24), which are not covered by Theorem 2.9.
Proof of Theorem 2.10. (i) For ℓ= 0, the assertion directly follow from Theorem 2.8.

(i) For ℓ= 1, as before, we decompose the error using (3.1) and estimate by (2.7), (2.8) and (2.11)∥∥y(t1)−LhLhLhy1
h

∥∥
W 1,∞×L∞ ⩽

∥∥(Id−LhLhLhJh
)
y(t1)

∥∥
W 1,∞×L∞ +C

∥∥Jhy(t1)− y1
h

∥∥
W 1,∞×L∞

⩽Chk +
∥∥Jhy(tℓ)− yℓh

∥∥
W 1,∞×L∞ .

Hence, we only have to prove by Lemma 2.7 the bound∥∥A2
h
(
Jhy(t1)− y1

h
)∥∥

Xh
⩽C

(
τ +hk) . (5.16)

We expand

A2
h
(
Jhy(t1)− y1

h
)
= A2

h
(
Jhy(t0)− y0

h
)
+ τ

(
A2

hJh∂τ y(t1)−A2
h∂τ y1

h
)

and note that the first summand vanishes by (2.21), and it holds with (2.10) and (2.12)∥∥A2
hJh∂τ y(t1)

∥∥
Xh

=
∥∥∥(L H∗

h ∆ u0

L H∗
h ∆ v0

)∥∥∥
Xh

≲ ∥∆ u0∥H1 +∥∆ v0∥L2 .

For the last term, Lemma 5.8 gives ∂τ y1
h = R1

h AhJhy0 +R1
hΛ 1

h F1
h . We treat the terms separately, using

A2
hR

1
h AhJhy0 = Λ̃

1
h Λ

1
h R1

h(Λ̃
1
h )
−1Ah(Λ̃

1
h )
−1A2

hJhy0,

exploiting (5.12), we are by Lemma 2.6 left to bound∥∥Ah(Λ̃
1
h )
−1A2

hJhy0∥∥
Xh

⩽
∥∥L H∗

h ∆ v0∥∥
Vh
+
∥∥∆hλh

−1(L H∗
h ∆ u0)

∥∥
L2 .

The first term is bounded by (2.12) for v0 ∈D(∆ 2). We first note that for any ϕ ∈D(∆), we have

∥∆hIhϕ∥L2 ⩽
∥∥∆hL

V∗
h ϕ

∥∥
L2 +

∥∥∆h(Ih−L V∗
h )ϕ

∥∥
L2 ≲

∥∥L H∗
h ∆ ϕ

∥∥
L2 +h−1∥∥(Ih−L V∗

h )ϕ
∥∥

Vh
≲ ∥∆ ϕ∥L2 ,

where we used the inverse estimate (2.17) together with (2.11) and (2.8). Along the same lines we show∥∥∆hL
H∗

h ϕ
∥∥

L2 ≲ ∥∆ ϕ∥L2 . This implies with Lemma 5.3∥∥∆hλh
−1(L H∗

h ϕ)
∥∥

L2 ⩽
∥∥∆hL

H∗
h

(
λ
−1

ϕ
)∥∥

L2 +
∥∥∆h

(
L H∗

h −QhL
−1

h

)(
λ
−1

ϕ
)∥∥

L2

+
∥∥∆hQh

(
L −1

h

(
λ
−1

ϕ
)
−
(
(Ihλ )−1L H∗

h ϕ
))∥∥

L2

≲
∥∥∆(λ−1

ϕ)
∥∥

L2 ,

and thus the second term is bounded if u0 ∈D(∆ 2)∩H4(Ω). Similarly, we have

A2
hR

1
hΛ

1
h F1

h = Λ̃
1
h Λ

1
h R1

h(Λ̃
1
h )
−1A2

hF1
h

and taking norms gives ∥∥A2
hFh

∥∥
Xh

= ∥∆hIh f∥L2 ≲ ∥∆ f∥L2 ,

and with this we established (5.16). □
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6. Numerical experiments

To illustrate our theoretical findings, we present some numerical experiments. Let Ω = B1(0)⊂ R2 be
the two-dimensional unit sphere and consider equation (1.1) with data given by

u0(x) =
1

20
sin(πr2)7 , v0(x) =

1
20

sin(πr2)7 ,

λ (t,x) = 2+(1− r2)2(x1et +(1− r2)x2 cos(t)
)
,

where r2 = |x|2. The right-hand side f is chosen such that the exact solution is given by

u(t,x) =
1
20

et sin(πr2)7.

A simple calculation shows, that the regularity assumptions of Theorems 2.8 and 2.9 are satisfied with
k = 3 and ℓmax = 4. The scaling by a factor 20 is used to approximately normalize the W 1,∞-norm of the
solution u.

6.1 Discretization

To discretize in space, we multiply (1.1) with λ (t,x) and obtain the equivalent formulation

λ (t,x)∂ttu(t,x) = ∆ u(t,x)+λ (t,x) f (t,x).

Using the mass and stiffness matrix defined by(
Mh(t)

)
i, j := ((Ihλ (t))ϕi | ϕ j)L2(Ωh)

,
(
Lh
)

i, j := (∇ϕi | ∇ϕ j)L2(Ωh)
,

where we denote by (ϕi)i the nodal basis of Vh, the discrete solution in (2.20) satisfies

Mh(t)∂ttuh(t) =−Lhuh(t)+Mh(t)Ih f (t),

by abusing the notation for the coefficient vectors and their corresponding function in Vh. The fully
discrete method in (2.24) is then given for n ⩾ 2 by

Mh(tn)
(
un

h−2un−1
h +un−2

h

)
=−τ

2Lhun
h + τ

2Mh(tn)Ih f (tn),

and for n = 1, we have to solve

Mh(t1)
(
u1

h−u0
h− τv0

h
)
=−τ

2Lhu1
h + τ

2Mh(t1)Ih f (t1).

Further, we have vn
h = ∂τ un

h for n ⩾ 1. We implemented the numerical experiments in C++ using the
finite element library deal.II (version 9.4) Arndt et al. (2022); Bangerth et al. (2007). A precise
description of the implementation can for example be found in (Leibold, 2021, Ch. 6.5.1). The codes
written by Malik Scheifinger to reproduce the experiments are available at https://doi.org/10.
5445/IR/1000157919.

https://doi.org/10.5445/IR/1000157919
https://doi.org/10.5445/IR/1000157919
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FIG. 3: Left: Error E(0.8) of the implicit Euler method (with time step size τref = 8 · 10−5) combined
with finite elements of order k = 1,2,3 plotted against the mesh width h. The dashed lines indicate order
hk for k = 1,2,3. Right: Error E(0.8) of the implicit Euler method combined with finite elements of
order k = 3 (href = 1.52 ·10−2) plotted against the time step size τ . The dashed line indicates order 1.

6.2 Numerical results

For the problem described above, we performed experiments for the time and space discretization. To
this end, we used finite elements of order k = 1,2,3. Since the computation of the lift of a finite element
function is very laborious, we do not compute the full error in the form Lhu− uh. Instead, in our
numerical examples we consider the error

E(t) := ∥uh(t)− Ihu(t)∥W 1,∞(Ωh)
+∥vh(t)− Ih∂tu(t)∥L∞(Ωh)

,

which is of the same order by the standard interpolation estimates. In the left part of Figure 3, the
convergence of the error with respect to the spatial mesh width h is shown when using the implicit Euler
method with τref = 8 ·10−5. We observe that for finite elements of order k the error converges with order
k in space as predicted by Theorem 2.8 until the error for k = 3 is dominated by the error of the temporal
approximation. In the right part of Figure 3, we consider the convergence of the error with respect to
the time step size τ . In space, we discretized with finite elements of order 3 and href = 1.52 ·10−2 such
that the spatial error is negligible. Aligning to Theorem 2.9, we observe convergence of order 1 in time.
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CHATZIPANTELIDIS, P., LAZAROV, R. D., THOMÉE, V. & WAHLBIN, L. B. (2006) Parabolic finite element
equations in nonconvex polygonal domains. BIT , 46, S113–S143.

DEMLOW, A. (2009) Higher-order finite element methods and pointwise error estimates for elliptic problems on
surfaces. SIAM J. Numer. Anal., 47, 805–827.
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A. Appendix

In this appendix, we provide the proof of Lemma 2.7, properties (2.12) and (2.13), and the postponed
calculations from Section 5. The following proof is adapted from the conforming case presented in
(Bramble et al., 1977, Lem. 4.1), and Dörich (2022).

Proof of Lemma 2.7. We first recall the solution operators ∆−1 and ∆
−1
h defined in (2.6) and (2.19),

respectively. We further define the modified solution operator S̃h = L V∗
h ∆−1Lh, and use it to expand

∆
−1
h = S̃h +(∆−1

h − S̃h). For the first term, we use Sobolev’s embedding, the stability of the Ritz map in
W 1,p, 2 ⩽ p ⩽ ∞, (which is interpolated from (2.11) and (2.15)), as well as Theorem 2.4 to obtain∥∥S̃hϕh

∥∥
L∞(Ωh)

≲
∥∥S̃hϕh

∥∥
W 1,4(Ωh)

≲
∥∥∆
−1Lhϕh

∥∥
W 1,4(Ω)

≲
∥∥∆
−1Lhϕh

∥∥
H2(Ω)

≲
∥∥ϕh

∥∥
L2(Ωh)

,

and similarly using the same steps∥∥S̃hϕh
∥∥

W 1,∞(Ωh)
≲
∥∥∆
−1Lhϕh

∥∥
W 1,∞(Ω)

≲
∥∥∆
−1Lhϕh

∥∥
W 2,4(Ω)

≲
∥∥Lhϕh

∥∥
L4(Ω)

≲
∥∥ϕh

∥∥
L4(Ωh)

.

It remains to bound the difference, stemming from the nonconformity, by the inverse estimate (2.17) via∥∥S̃hϕh−∆
−1
h ϕh

∥∥
W 1,∞(Ωh)

⩽Ch−N/2∥∥S̃hϕh−∆
−1
h ϕh

∥∥
Vh

=Ch−N/2 sup
∥ψh∥Vh

=1

(
S̃hϕh−∆

−1
h ϕh | ψh

)
Vh

=Ch−N/2 sup
∥ψh∥Vh

=1

(
(ϕh | ψh)L2(Ωh)

− (Lhϕh |Lhψh)L2(Ω)

)
,

where we used (2.6), (2.9), and (2.19) in the last step. Finally, we employ (Elliott & Ranner, 2021,
Lem. 8.24) to obtain∣∣(ϕh | ψh)L2(Ωh)

− (Lhϕh |Lhψh)L2(Ω)

∣∣≲ h3/2 ∥ϕh∥L2 ∥ψh∥Vh
,

which yields the assertion. □
Next, we show the stability and convergence properties for L H∗

h and πh.
Proof of (2.12) and (2.13). Let ϕh ∈Vh, and estimate with (Elliott & Ranner, 2021, Lem. 8.24)∥∥L H∗

h ϕ−ϕh
∥∥

L2 ≲ hk ∥ϕh∥L2 +∥ϕ−Lhϕh∥L2

and thus obtain with the inverse estimate (2.17)∥∥L H∗
h ϕ

∥∥
Vh

≲ ∥ϕh∥Vh
+h−1∥∥L H∗

h ϕ−ϕh
∥∥

L2 ≲ ∥ϕh∥Vh
+h−1 ∥ϕ−Lhϕh∥L2 .

We now use the quasi-interpolation from (Bernardi, 1989, Thm 5.1), which is stable in H1 and converges
linearly in L2, and hence gives (2.12).
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30 of 31 B. DÖRICH. J. LEIBOLD, AND B. MAIER

Employing again (Elliott & Ranner, 2021, Lem. 8.24), for ϕ ∈ H2(Ω) we compute

|
(
πhL

−1
h ϕ−L H∗

h ϕ | ψh
)

L2(Ωh)
|= |

(
L −1

h ϕ | ψh
)

L2(Ωh)
− (ϕ |Lhψh)L2(Ω) |

⩽Chk ∥ϕ∥L2(Uh)
∥Lhψh∥L2(Ω)

⩽Chk+1 ∥ϕ∥H2(Ω) ∥Lhψh∥L2(Ω) ,

where we used (Dörich, 2022, Appendix B) in the last step, and (2.13) is shown. □
Further, we verify the properties in Lemma 5.3 of the (weighted) L2-projection Qh and the formula

for the inverse of λh.
Proof of Lemma 5.3. (a) By the definition of Qh, we have(

L H∗
h v−QhL

−1
h v |L H∗

h v−QhL
−1

h v
)

λh
=
(
L H∗

h v−QhL
−1

h v |L H∗
h v−L −1

h v
)

λh
,

and thus the equivalence of norms together with (2.8) and (2.10) gives the first claim. The stability in
H1 is shown as for (2.12).

(b) One easily verifies the identities for ϕh,ψh ∈Vh(
λh(λh

−1
ϕh) | ψh

)
L2(Ωh)

= (ϕh | ψh)L2(Ωh)
,

(
λh
−1(λhϕh) | ψh

)
λh

= (ϕh | ψh)λh
,

which gives the last statement. □
Next, we give an extension of Lemma 5.8. We do not provide a proof here, since the expressions are

derived by an iterative application of the identities (5.12).

LEMMA A.1 It holds the representation

∂τ y1
h = R1

h AhJhy0 +R1
hΛh(t1)F1

h ,

∂
2
τ y2

h = R2
hΛ

1
h R1

h(Λ̃
1
h )
−1A2

hJhy0−R2
h ∂τΛ

2
h R1

h AhJhy0 +R2
hΛ

1
h R1

h AhF1
h

+R2
hΛ

2
h ∂τ F2

h +R2
h ∂τΛ

2
h F1

h −R2
h ∂τΛ

2
h R1

hΛ
1
h F1

h .

The same expansion holds for ∂ ℓ
τ y(tℓ), ℓ= 1,2, with h formally set to zero and

Fn
h → Fn +δ

n, δ
n = ∂τ y(tn)−∂ty(tn) .

Since, in the case Λ ̸= Id, the operator A does in general not commute with the resolvent, we provide
the bounds which are still available under Assumption 2.1.

LEMMA A.2 Let R be the resolvent defined in (5.9) and ℓmax given in Assumption 2.1. Then, for
0 ⩽ ℓ⩽ ℓmax there are constants Cℓ such that∥∥AℓRy

∥∥
X ⩽Cℓ

∥∥Aℓy
∥∥

X

τ
∥∥Aℓ+1Ry

∥∥
X ⩽Cℓ

∥∥Aℓy
∥∥

X .

for all y ∈D(Aℓmax).

Proof. By the skew-adjointness of A and (2.4), we derive

∥Ry∥X ⩽C∥y∥X ,
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which is the first equation for ℓ= 0. For 0 ⩽ ℓ⩽ ℓmax−1, we compute∥∥Aℓ+1Ry
∥∥

X =
∥∥Aℓ

Λ R(Λ̃ )−1Ay
∥∥

X

⩽
∥∥Λ

∥∥
D(Aℓ)←D(Aℓ)

∥∥R
∥∥

D(Aℓ)←D(Aℓ)

∥∥(Λ̃ )−1∥∥
D(Aℓ)←D(Aℓ)

∥∥Aℓ+1y
∥∥

X

and the claim follows by induction. The second estimate is due to the resolvent identity

τAℓ+1Ry = Aℓ
ΛRy−Aℓy

and an application of the above bound. □
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