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Maximum norm error bounds for the full discretization of
non-autonomous wave equations

BENJAMIN DORICHT , JAN LEIBOLD AND BERNHARD MAIER

Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology,
Englerstr. 2, 76131 Karlsruhe, Germany

In the present paper, we consider a specific class of non-autonomous wave equations on a smooth,
bounded domain and their discretization in space by isoparametric finite elements and in time by the
implicit Euler method. Building upon the work of Baker and Dougalis (1980), we prove optimal error
bounds in the W' x L=-norm for the semi discretization in space and the full discretization. The key
tool is the gain of integrability coming from the inverse of the discretized differential operator. For this,
we have to pay with (discrete) time derivatives on the error in the H' x L2-norm which are reduced to es-
timates of the differentiated initial errors. To confirm our theoretical findings, we also present numerical
experiments.

Keywords: error analysis, full discretization, wave equation, maximum norm error bounds, nonconform-
ing space discretization, isoparametric finite elements, a-priori error bounds

1. Introduction

In the present paper, we consider the non-autonomous wave equation
Au(t,x) = A(t,x) "  Au(t,x) + f(£,x), 1€0,T),x€ Q, (1.1)

on the domain 2 C RV, N =2,3. We assume it to be bounded and convex with a sufficiently regular
boundary, and impose homogeneous Dirichlet boundary conditions and appropriate initial conditions.
We discretize (1.1) with isoparametric finite elements in space and the implicit Euler scheme in time, and
derive W1 x L*-norm error bounds both for the semi discretization in space and the full discretization.

A bound in the maximum norm allows us to control the numerical error at every point in the do-
main Q. Compared to the classical estimates in L2, see, e.g., Bales et al. (1985); Bales & Dougalis
(1989), which are implied (with non-optimal order) by our maximum norm error estimates, and in the
energy space H'!, see, e.g., Maier (2022); Hochbruck & Maier (2021), they provide an additional in-
sight in the approximation quality. For example, they become particularly interesting if one wants to
approximate the quasilinear wave equation

deu(,x) = A(u(t,x)) " Au(t,x)+ f(t.x,u(t,x), du(t,x)), (1.2)

where for example in nonlinear acoustics A (u) = 1 —u™, m = 2,3. The reason is, that this equation is
only well-posed as long as A () satisfies a pointwise lower bound away from zero. When discretizing
(1.2) in space, it has to be ensured that the spatial discretization inherits this property. Since this requires
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a pointwise bound of the numerical approximation, maximum norm estimates, as they are provided in
this paper, are sufficient - once they are transferred to the nonlinear case - to guarantee such constraints.
Indeed, for some spatial discretization uy, the triangle inequality

an]| = < Mot o+ [t = wl] =

allows to keep the maximum norm of the numerical solution arbitrarily close to the one of the exact
solution once convergence is established. So far, to show convergence an inverse inequality has to
be employed, which leads to an unsatisfactory CFL condition, even for methods which are known
to be unconditionally stable, or a restriction to higher-order finite elements, see, e.g., Maier (2022);
Antonietti ef al. (2020); Makridakis (1993). Alternatively, H>-conforming finite elements, as suggested
in Zlamal (1968), can be employed. For those, Sobolev’s embedding can be used to obtain maximum
norm estimates, once the convergence in H? is established. However, in order to achieve this type of
conformity, the number of degrees of freedom has to be increased significantly. Our hope is to show that
these constraints are only of theoretical nature and can be removed. We are confident, that the analysis
presented here for the linear problem (1.1) is an important step towards the quasilinear problem (1.2)
using Lagrangian finite element methods without CFL conditions and also generalizes to higher-order
methods in time.

In the articles Baker et al. (1979); Baker & Dougalis (1980), the space and time discretization of
the linear autonomous wave-equation (i.e., A = 1, = 0 in (1.1)) by finite elements and one- or two-
step methods, respectively, is analyzed. In our paper, we extend their analysis to the W!* x L”-norm,
to the more general case of linear, non-autonomous wave equations and, also to nonconforming finite
elements. We point out that the latter cannot be omitted due to the following reason: In the error analysis,
we rely on elliptic regularity results only available on a smooth domain 2. Unfortunately, this prevents
us from using these results on a computational domain £2; with a piecewise polynomial boundary. Our
research is mainly inspired by Baker er al. (1979); Baker & Dougalis (1980) and we are not aware of
further maximum norm estimates for wave equations discretized by finite elements, besides the one-
dimensional case considered in Trautmann et al. (2018). For finite differences on a square combined
with a fourth-order in time scheme, an error bound under a CFL condition is established in Liao & Sun
(2011).

For the spatial semi discretization in Baker & Dougalis (1980), they trade integrability, coming from
the inverse of the discretized differential operator A;, for time derivatives on the error in the L%-norm.
Those errors are controlled by the derivatives of the initial error which can be bounded using a properly
preconditioned initial value. For our semi discretization, we use a similar approach to transfer and
extend the results with additional technical effort to the non-autonomous case.

For the full discretization, the proofs in Baker et al. (1979); Baker & Dougalis (1980) rely on an
expansion of the discrete error in the eigenbasis of A,. However, we are not aware of how to generalize
this approach to the non-autonomous case. Hence, we pursue the strategy of the semi discretization.
From the implicit Euler scheme we derive discrete derivatives and adapt the proofs to derive fully dis-
crete error bounds. Let us also note that the bounds in Baker & Dougalis (1980) derived in the L*-norm
are of order k+ 1, but since our bounds involve the W **-norm, we derive optimal error bounds of order
k.

Further, we comment on maximum norm error bounds for finite element discretizations of elliptic
problems as they are the fundamental tool for our error bounds in the time-dependent case. The first
quasi-optimal error bounds in the maximum norm were given by Natterer (1975) and Scott (1976). Many
extensions and refinements have been achieved in the following years, see, e.g., Nitsche (1975, 1977);
Rannacher (1976); Rannacher & Scott (1982); Schatz & Wahlbin (1977, 1982, 1995); Wahlbin (1978).
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More recently in the context of nonconforming space discretizations, maximum norm error bounds for
linear finite elements applied to an inhomogeneous Neumann problem were derived in Kashiwabara &
Kemmochi (2020). For (evolving) surface finite element methods, estimates on the finite element solu-
tion and the generalized Ritz map for isoparametric finite elements are considered in Demlow (2009);
Kovéacs & Power Guerra (2018). In Ddrich et al. (2023), the authors of the present paper extended
the approach in Brenner & Scott (2008) to derive stability of a generalized Ritz map to higher-order
isoparametric elements.

We also briefly comment on further work conducted in the context of maximum norm error esti-
mates for parabolic problems. Here, we are aware of two strategies: In Bramble ef al. (1977); Baker
et al. (1977), a similar approach as for the wave equation is taken and integrability is gained for time
derivatives. Alternatively, some kind of stability of the semigroup generated by A, on L™ is shown.
This is done either directly using energy techniques, see, e.g., Schatz et al. (1980, 1998), or via resol-
vent estimates on L™ and maximal parabolic regularity, see, e.g., Bakaev ef al. (2003); Palencia (1996);
Thomée & Wahlbin (2004); Chatzipantelidis et al. (2006); Li (2019). However, such stability estimates
cannot be expected for hyperbolic problems in general, see (Arendt et al., 2011, Exa. 8.4.9) and Littman
(1963).

The paper is organized as follows: In Section 2, we present the analytical framework and the space
discretization by isoparametric Lagrange finite elements. After providing some properties of the dis-
cretized objects, we state our main results on the error bounds for the semi discretization in space and
the full discretization by the implicit Euler method.

The main parts of the proof of the semi-discrete error bound are given in Section 3. Here, we
exchange the integrability in the error for time derivatives of the defect and trace those back to the initial
values. We adapt the presented technique in Section 4 and transfer it from the continuous to the discrete
derivatives in order to prove the theorem on the fully discrete error bound.

Section 5 is devoted to the final conclusion of our main results. We collect several approximation
results and estimate the defects. Further, the (discrete) derivatives of the initial error as well as the errors
in the first approximations of the fully discrete scheme are bounded.

In Appendix A, we collect some further results employed in the error analysis.

Notation

In the rest of the paper we use the notation
asb,

if there is a constant C > 0 independent of the spatial parameter /. and the time step-size 7 such that a <
Cb. For the sake of readability, we introduce the notation * = n7 and for an arbitrary time-dependent,
continuous object x(¢) in some Banach space X and a sequence (x”) in X, we define

-— n - m
Ielmgey = maxOll ey = max el

If it is clear from the context, we write L” instead of LP(Q) or LP(£y,).

2. General Setting

For a convex, bounded domain 2 C RV, N = 2,3, with boundary dQ € col, s eN, we study the
non-autonomous wave equation (1.1) and the positive, self-adjoint operator —A on L*() with ho-
mogeneous Dirichlet boundary conditions. Therefore, we introduce the spaces H = L*>(Q) and V =
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2((—A4) 1/ %) = H} (). The equation is further equipped with initial values
u(0) =u°, du(0) =10,

We expect that it is also possible to treat more general elliptic differential operators L. with regular
coefficients and Neumann boundary conditions, as long as one can establish the properties of the spatial
discretization as stated in Section 2.1. Our analysis relies on the following regularity assumptions of A.

ASSUMPTION 2.1 There are k, /.« € N such that the following holds.
(A1) There exist Cy > c; > 0 such that the function A: [0,7] x 2 — R satisfies
¢y <A(t,x) <Cy, t€[0,T],x € Q.
Moreover, we have 4,4 7! € C2([0, T],W*=(Q)).
(A2) For 0 < £ < limax and u € Z((—A)"/?) it holds

Au A e 9((—A)€/2).

We note that assumption (A;) guarantees that the multiplication with A preserves the boundary
conditions incorporated in A.

EXAMPLE 2.2 On a smooth domain £2 it holds
2(A) ={u e H*(Q) | ulyo =0}, 2(A*) ={uc H'(Q)|ulyo = Aulyo =0}

In this case, we have the following sufficient conditions for (1,).
(a) We always have fi,x > 2 and achieve /¢ > 4 by the product rule if

Vid|. =0. 2.1)
(b) Having the quasilinear case (1.2) in mind, and assuming A = A(¢,u) where u is the solution in
H{ (), then a sufficient condition for (2.1) is given by d,A(t,0) = 0.
(c) If V,A has compact support in 2, (A;) is satisfied for any £pmax € N.
Further, condition () directly yields the following lemma.

LEMMA 2.3 Let Assumption 2.1 be satisfied for some k € N. Then, we have for ¢ € [0,7], 0 < ¢ < K,
1< p<o,and j=0,1,2 the bounds

||atja’(t)(puwé,p < CH(pHW[«Pv Hatjl(t)il(puwé‘p < CH(pHW[«Pv

with a constant C > 0 depending on A and its derivatives.

Equivalently to (1.1), we consider the non-autonomous wave equation in first-order formulation

Ay(t) = A1) Ay(r) + F (1), te0,71], (22)
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with initial value y(0) = y° in the product space X =V x H, with

() () () (8 ()

In particular, we emphasize that under Assumption 2.1 the operator A generates the time-dependent
inner product

(y ‘ Z)A(t) = (A(t)y | Z)Xv re [07T]7yaz €X. (2.3)

Since the multiplication with A,A~! is continuous on L?, the corresponding norm is equivalent to the
norm of X, i.e., we have

callzlly < llzliA g < Callzllx 1€[0,7],z€X, 24)

with constants c4 = min{1,c) } and C, = max{1,C, }. Further, we conclude from (4,) the continuity
of the map

A@D): 2(AY) = 2(AY), 0<L< s, 1 €[0,T). (2.5)

Our analysis relies on the solution operators of the Poisson equation in second- and first-order formu-
lation, respectively. In particular, we introduce the second-order solution operator A~!: H — V given
by

—(a e ly), = (0w, QcH yeV. (2.6)
For the analysis, we heavily rely on the following elliptic regularity result (Grisvard, 1985, Thm. 2.4.2.5).

THEOREM 2.4 (Elliptic regularity) Let 9Q € C!, then for all 1 < p < oo there is a constant C, > 0
such that for all ¢ € LP() it holds

1A~ @ llw2p <Cpllollp -

Furthermore, we define the first-order solution operator T: X — Z(A) by

0 A!
T= (Id 0 ) '
In particular, this implies TA =Id on 2(A) and AT =1d on X.

2.1 Space discretization

We study the nonconforming space discretization of (2.2) based on isoparametric finite elements. For
further details on this approach, we refer to Elliott & Ranner (2021). In particular, we introduce a
shape-regular and quasi-uniform mesh .7, consisting of isoparametric elements of degree k € N and let
dQ € C**11. The computational domain £, is given by

Q=) k=2,
Ke ),
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where the subscript 4 denotes the maximal diameter of all elements K € .7},. In the following, we require
that & < hg such that all cited results below hold true. We note that sy only depends on the geometry
of the domain £2 and the polynomial degree k. Based on the transformations Fx mapping the reference
element K to K € ., we introduce the finite element space of degree k

Wy ={@ € Co(Q,) | 0|x = o (Fx)~" with ¢ € ZX(K) for all K € 7} .

Here, gzk(l? ) consists of all polynomials on K of degree at most k. The discrete approximation spaces
are given by

Hh = (Wha ( | ')LZ(Q,I))a Vh = (Wha ( | .)Hol(-Qh)) y

and we set X;, =V}, x H;, Following the detailed construction in (Elliott & Ranner, 2021, Sec. 5), we
introduce the lift operator .%,: H;, — H. In particular, for p € [1, o] there are constants c¢,,,C, > 0 with

cp lPnllr(a,) < 1Zhnllr@) < Collonllra,) - O € LP(£24), (2.7a)
cplonllwinia,) <Za@nllwire) < Collonllwira,) on WP (), (2.7b)

cf. (Elliott & Ranner, 2021, Prop. 5.8). Further by (Elliott & Ranner, 2013, Sec. 4), the lift preserves
node values, i.e. in particular

o= @, G €Vy,

where we denote the nodal interpolation operator by I,: C(£) — Vj,. As shown in (Elliott & Ranner,
2021, Thm. 5.9), we have form = 0,1, 1 < p < o0, and 1 < £ < k the estimates

1(1d = Zd) @ llymr iy S T 19 lhyern(a pewir@). @8
Further, £ = 0 is allowed for N < p < oo,
We define the adjoint lift operators .Z/"*: H — Hj, and .£Y*: V — V}, by
(Lo lllh)Hh = (0| L)y, @ E€H, v, €Hy, (2.92)
(L o lwn)y, = (@] Ziv)y . PEV. Wy € Vi, (2.9b)
and note in the conforming case Oij * and .Zhv* coincide with the L2- and the Ritz projection, respec-

tively. From (Hipp et al., 2019, Thm. 5.3) and (Elliott & Ranner, 2021, Lem. 8.24), we obtain for
1 < ¢ < k the bounds

12 0llm, S N2 ), ¢ € L*(Q). (2.10a)

[n =205, S BNl @) peH(Q), (2.10b)
aswellasfor 1 </ <k

1<) @llv, S 1l @) » @ eH (), (2.11a)

10d =240l SH T @l ) pcH(Q). (2.11b)

In addition, we need the stability of D%,H *in H!

1z oy, S 19l ¢ eH'(Q), (2.12)
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Further, we define the (standard) L2-projection 7, onto V}, for ¢ € Lz(.Qh) via
(0@ [ W) 2 = (@ | Vi) 12(a,) » @ € L (), ¥y € V-

We note that it only differs from th * by geometric errors and thus, we obtain for ¢ € H?*(£2)
1m0 0 — L0 2y SH T 0N2(0) - (2.13)

The proofs for (2.12) and (2.13) are given in Appendix A. In addition, there hold the following stability
estimates. Let p € [2,0] , then for any ¢ € LP(2;,) and w € H' ()
1@l SCIPlr@),  1mWla @) <CIVIa (@, (2.14)

with a constant C > 0 independent of 4. We note that the case p = 2 is trivially satisfied by the definition
of the projection. The case p = o is covered by (Nitsche, 1975, Thm. 1), and an interpolation argument
yields the first bound. The stability in H' is shown as for (2.12).

For the analysis in the following sections, we additionally rely on stability and approximation prop-
erties of fhv* in the maximum norm. These features are well known in the literature for conforming
finite elements, see, e.g., the monograph (Brenner & Scott, 2008, Ch. 8). In the non-conforming case,
the authors recently extended these results in (Dérich et al., 2023, Thm. 2.5 & 2.6) to isoparametric
finite elements. A special case is stated in the following proposition.

PROPOSITION 2.5 Let 92 € C**1:! and h < hg. Then, the adjoint lift is stable in W' with
1L @llwi=a,) S 1@llwiea) @ eW'=(Q). (2.15)
For 0 < ¢ <k, it holds
1(1d 2L ) 9|12y S B 1@ llwes1(a) peW Q). (2.16)

Related estimates can be found in Kashiwabara & Kemmochi (2020) for the Neumann problem and
linear elements, and in the context of evolving surfaces also in Kovacs & Power Guerra (2018). We will
also employ the inverse estimate, cf. (Brenner & Scott, 2008, Thm. 4.5.11) or (Maier, 2020, Lem. 5.6)

1@ull =0, SCE NPl Onllnia,y> N ally, <CRV@nllz g, @ € V. (2.17)

We introduce the first-order lift operator % : WP (2,)? — W'P(Q)?, for £ =0,1 and 1 < p < o, and
reference operator Jy,: V x V — X}, defined by

(% 0 _ éfhv* 0
-%l_<0 Ds/ph)a Jh_(o %V* )
which are bounded uniformly in 4 due to (2.7) and (2.11). In particular, we have by (2.16) the stability

Jy € E((W“"’(Q))z, (W17°°(.Qh))2). For ¢t € [0,T] we define the discrete operators A, (¢): Hy, — Hp,
Ap(t): X — Xy, and the discrete right-hand side F,(¢) by

mom=m@ae).  mo=(g %) BO=(,1)

Correspondingly to Lemma 2.3, we collect important properties of A, in the following lemma.
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LEMMA 2.6 Let Assumption 2.1 be satisfied for some x > 2 and h < ho. Then, we have for 7 € [0, 7],
1 < p<oo,and j=0,1,2 the bounds

H&tj}\'h(t)q)hHLp < C”(PhHLPv Hatj)“h(t)q)h“vh < CHq)hHVh’

with a constant C > 0 depending only on A and its derivatives.

Proof.  Using the stability in (2.14), it is sufficient to show the assertion for the product (1,0/1) ¢y,.

Combining the interpolation property (2.8) and Assumption 2.1, the Holder inequality yields the desired

bound. O
Finally, we introduce the operators A, : V, — Hj, and Ay, : X, — X, for @y, y, € V), given by

0 Id
—(Anon | Wh)Hh = (¢n | Wh)th Ap = (Ah 0) ’

Note that these operators are not uniformly bounded with respect to . Correspondingly to (2.3) and
(2.4) using the identity (A, | v;) (@) = (LA on | W) 12(g,)» the discrete operator A, generates the
time-dependent inner product

On L zn) a0y = (A (0)yn [ 2n)x, t €[0,T], yn,2n € Xn,
with the induced norm being equivalent to the norm of Xj,, i.e., we have as in (2.4) by Lemma 2.6
eagllanllx, < llznllz, ) < Cayllzalz, 1 €10,T], 21 € Xp. (2.18)
We define the discrete solution operator A, ' H, =V, by

=@ ol wn)y, = (@0l Wi, O Wi € Vi, (2.19)

and further the corresponding first-order solution operator

0 A,'
T, = h
g (Id 0 ) ’
which again satisfies T,A; = Id and A, T;, = 1d on X},.
The spatially discrete non-autonomous wave equation in first-order formulation then reads

In(t) = An(t) ™' Anya(t) + Fi(t), t€0,7], (2.20)
with the initial value y;,(0) = y?, where
* * T
W=’ = (L, Ly 0) (2.21)

This choice of the initial value guarantees the convergence of the expression J;, A2y? — A,zlyg with optimal
order, see Lemma 5.4 below, and error bounds for the first approximations, see Section 5.3. We note
that in practice, one would usually choose the interpolation y,(0) = (Ihuo , Ihvo). However, already
in Baker & Dougalis (1980) preconditioned initial values of the type uf) = (A, Y A0 m > 4, had
to be chosen for the full order of convergence. Note that (2.21) is equivalent to the case m =1 in
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the conforming case, but we do not require knowledge on Au®. A discussion on the computation of
high-order approximations to .Zhv* is given in (Dorich, 2022, Prop. 2.4).

In the spatially continuous case, the solution operator A~! can be used to obtain regularity which is
traded in for pointwise estimates via the bounded map

AP S HE L

However, since we use Lagrangian finite elements which are nor H>-conforming, this approach does not
work with A, ! Hence, in the following we provide estimates of Ay ! that directly give us integrability
without a detour via higher-order Sobolev spaces. A weaker form of this result has already been proven
in (Bramble et al., 1977, Lem. 4.1) in the conforming case only, and was recently sharpened in Dérich
(2022). We state a variant of this result and, for completeness, give the proof in Appendix A.

LEMMA 2.7 Let 92 € C!! and h < hy. Then, the solution operator A, ' satisfies
~1 ~1
14, " @nllz= S ll@nll 2 114, @nllwre < Nl @nlle
for o €V
A direct consequence of the above lemma for N = 2, 3, is the possibility to consider the maps
X, o L4 12 2 12 s g4 Iyl o (2.22)

which allow us to bound the maximum norm ||-||y1., ;- in terms of the energy norm |||y if we apply
the solution operator Tj, twice. We explain in Section 3 how to employ this observation. Note that in
fact, one could sharpen the result to show that A, . 12 — W' is bounded uniform in & as long as the
embedding H? < W7 is valid. For p > N, this then also implies the first estimate of the lemma.

We can finally state our first main result on the semi discretization. The proof is given in Section 3.
We let ) == 2 ((— A)é/z) and use the notation

k* = max{k,2}

in order to treat linear and higher-order finite elements simultaneously.

THEOREM 2.8 Let 9Q € CKL1 h < hy, and let Assumption 2.1 hold for some #yox € Nand k¥ = k+1.
Further, assume that the right-hand side f and the solution of (1.1) satisfy

ue C*([0,7],H* (2))nc*([0, 7], H* () nc' ([0, T], W T =(Q)),
fec'([0,7,H (@) nc((0,7],52)), (2.23)
MOEHk +2( )ﬂ%, VOEHk*-H(.Q)ﬂjZOAZ,

and the initial value y;,(0) is chosen as in (2.21). Then we have the error bound

[9(£) = Zayn(0)ly1.0 1 < CHE,

where C is independent of 5.
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2.2 Full discretization

We study the full discretization with the backward Euler scheme
ooyt = A (AL Fi(e"), n> 1, (2.24)

where T > 0 denotes the time step and the discrete approximation of the time derivative is for a sequence
(¢") given by

n__ nn—I
2eq" = %. (2.25)

. . T
For the fully discrete scheme, we use the same initial value and set y) = J;,y° = (£Y*u®, £Y*°)" as
in (2.21). Our second main result on the full discretization, which is proved in Section 4, then reads as
follows.

THEOREM 2.9 Let 9Q € C*tU1 b < hy, and let Assumption 2.1 hold for £ > 2 and k¥ = k+ 1.
Further, assume that the right-hand side f and the solution of (1.1) satisfy in addition to (2.23)
ue C([0,7],H'(2)) NC*([0,T],24) NC*([0,T],2#3) N C*([0,T], 543)
fec'(0.1],56 ) nc(0,7),25 ),
e %”Ak*+3, We ﬂ%ff”,

and the initial value y2 is chosen as in (2.21). Then, there is 7y > 0 such that for T < 7y we have the error
bound

[9(e") = Ly e g < CT 4 CRMI K max} gy > 9
where C is independent of 4 and 7, and 7y is independent of /.

We refer to Remark 5.10 below in order to explain the minimum in the convergence rate. Further,
we emphasize that the first two approximations do not enter the above error bound. However, we have
the following convergence result for the first approximations.

THEOREM 2.10 Let the assumptions of Theorem 2.9 hold. Then, we have
Y5 = Ly ||y e <C(2+H), £=0,1.

The proof is given in Section 5.

REMARK 2.11 Considering the strategy of the proof, we see that the same ideas can be applied by only
differentiating the error equations once and to exploit the relation

T
X,=H'xL* 1 xH".
Following the lines of the presented proof below, we obtain the very same estimates for the L™ x H'

norm. The gain in using the “weaker” norm are the decreased regularity assumptions as well as the
. . o T .
simpler choice of the initial value y§) = (£ *u®, 1,,°) ", where we save one computation of .} *.
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3. Analysis of the space discretization
3.1 Strategy of the proof

We now prove Theorem 2.8, i.e., we derive an error bound for the spatially discrete approximation
obtained by (2.20) in the maximum norm. To this end, we proceed as follows. We split the error in

Y(1) = Layn(t) = (1d — Ly y(t) + L (Iny (1) — yu (1)) =: e, (1) + Lhen(t) (3.
and derive an equation for the discrete error e;. With the solution operator T, we rewrite (2.2) as
TA(t)dy =y+TA(t)F (1), t€[0,T],

with initial value y(0) = y0. Correspondingly, we use the discrete solution operator T;, to obtain from
(2.20) the semi-discrete equation

TpAn(t)0yn = yu + TrnAn(t)Fu(t), t€[0,7], (3.2)
with initial value y;,(0) = yg. Thus, we conclude that the discrete error e; solves the evolution equation
ThAn(t)dren(t) = en(t) + &,r(t), 1 €10,T], 3.3)

with initial value e,,(0) = ) = J;yo —»" and the defect
8,7 (t) = (TwAn(0)Jh — IWTA(1)) 9ry(1) +JpIw TA () F (1) — Ty An(t) (1) (3.4

As illustrated in Figure 1, the proof of Theorem 2.8 mainly consists of two steps. First, in Lemma 3.1
we exchange the maximum norm of ey () for bounds of time derivatives of e;,(¢) in Xj,. To do so, we
use (3.3) and Lemma 2.7, i.e., we rely on the property of the solution operator to gain integrability as
sketched in (2.22). Note that we can view the error equation as an ordinary differential equation in a
finite-dimensional space with right-hand side, say g(t,ep,). Since the right-hand side g is smooth by
our assumptions, we obtain local existence. Since all norms are equivalent, the error bounds below
guarantee existence up to the final time 7.

Next, in Lemma 3.2 we trace back the time derivatives of e, (¢) to time derivatives of the initial error
e;,(0), which can be bounded due to the choice (2.21) of the discrete initial value yg. Here, we obtain
from (2.2) and (2.20) for the discrete error ey, the evolution equation

An(t)dren(t) = Apen(t) + Spalt), t€[0,T], (3.5
with the defect
S al(t) = (An(t)dn — JnA (1)) Oy (t) + (JnA — Apdy ) (1) +IpA () F (1) — Ap(0)Fy(1).  (3.6)

Note that we have the relation &, A = A;,0;, 7. Moreover, we emphasize that a similar defect was already
studied in the unified error analysis provided in Hipp et al. (2019). However, here we also have to bound
time derivatives of 5;17T and 5h7 A as well as a different choice of J,. We postpone the derivation of these
bounds as well as the estimates for the time derivatives of the initial error to Section 5.
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L 3.1 i L 3.2 i
(@)l — ([0 en(0)], — = [ en 0],
Lemma 5.6

Hathh.,T(t)lemem Hatjath(t)Hx,,

Lemma 5.2 Lemma 5.5

F1G. 1: Strategy of the proof of Theorem 2.8. The forked arrows indicate how the corresponding term
is estimated, and the lemmas below show where the term is bounded.

3.2 Proof of Theorem 2.8

Our first result shows how to bound the error in the maximum norm in terms of time derivatives of the
error in the energy norm.

LEMMA 3.1 Let the assumptions of Theorem 2.8 hold. Then, it holds
lenllzwreesr=) S H‘;tlehHLw(xh) + HatzehHLw(xh) + thvTHL“(Wl:“wa) + Ha’6haTHL°°(L°°><L4)'

Proof. From the representation in (3.3) we obtain with the properties of T, in Lemma 2.7 and (2.22),
and the bounds on Ay in Lemma 2.6

llen()llwiesre S [0ren(t)]] poon s + Hsh,T(t)le,ooxLoo-
For the derivative we compute using the same estimates
19ren(O)lposzs S || Thtn(0) 07 en(D)| o s + I ThO AR en(D) | s + || OO0 T ()] s pa BT
N H&,zeh(t)HXh + 9 An(t)en(t) lx, + |91 8, (0) | o

and, using Sobolev’s embedding ||&pll;4.,2 < [|8nllx, for & € Xp, concludes the proof. O
In the following lemma, we provide the bounds of the time derivatives appearing in Lemma 3.1 in
the X, norm using the initial errors and certain defects.

LEMMA 3.2 Let the assumptions of Theorem 2.8 hold. Then, there is a constant C > 0 independent of
h such that for j = 1,2 we have

) J
10/ enlz(x,) < e”; (197 en ()15, + 197 8n.a 7o )

Proof. In the following, we prove for j = 1,2 the estimate

. . , j-1
[0/ enllzo gy < (LTI (1|07 en(O) [, +1107 87, +[_Z:1H‘91Zehuiw(xh)) SN CRD

The result then follows from using this bound recursively. In the following, we often suppress the time
arguments to increase the readability.
To prove (3.8), we first obtain by taking the derivative of (3.5) with respect to time

J i . ) .
Y (é) o M0 ey — Andlen = 9/ Sy,
=0
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for j =0, 1,2. Taking the inner product with 19,j ey, gives
(Ahatheh | azjeh) = (Ahatjeh \ 3zjeh) + (3/511.A | 3zjeh>
X X X

h
-1/
N (I (it h A+, g 5
Zb@ (at A, eh|(9,eh>x

h

Since Ay, is skew-symmetric with respect to the inner product of X, we obtain with the triangle inequal-
ity and Young’ inequality the bound

. . 4 L =l . :
2 (Ah3zj+leh | 3/6’11))(, < H<9/5h,AH)2(h +2’H3/€hH§h +Y (é) Harj_[/\hazHleth(h-
h (=0

In particular, due to the boundedness of A, by Lemma 2.6 and the corresponding time derivatives, we
conclude

. . , , _ il
2 (M0 en | 3er) <10/ 8ually, +Cilldenlly, +C X |3 enly, (3.9)
h (=1
with the constants
Ci=2+ jllaA; G= max (7 10/~ A7
J TN 2= (£ (x)) I g\ ) 119 L= (206,

Note that these constants are bounded independently of j < 2 by C; and 52, respectively.
We rely on (3.9) to bound the first term on the right-hand side of

d 1 S o
Sllodenlls, =2 (Aha/ en | a,feh)xh + (alAhage,, | a,feh)x

h

Moreover, integration in time, using the boundedness of d,;A;, for the second term, and the norm equiv-
alence (2.18) yields

. . ) j—1 t
!Iaz’eh\!ih<,> S Harjeh(o)Hih(o) +’Hat15h7AHiw(xh) +f€_ZIH<9fehHiw<xh> +/0 Hatjeh(s)Hihm ds.

Finally, the Gronwall inequality implies for all ¢ € [0, 7]

. . . Jj—1
Hatjeh(t)Hih(z) e (H‘;tjeh(())Hih(o) +tHat15h7AHiw<xh) +Z_Z‘,1H9f€hHiw(Xh>)7

and (3.8) follows with (2.18). [l
With these preparations we can prove our first main result.

Proof of Theorem 2.8.  Using the decomposition (3.1) and the stability of the lift in (2.7), we estimate

with the approximation property derived in (2.16)

—<ZhVh Wlhexre X [1€J, Wleex L= Z 11€h Wlhex[®
OESANG] < les, @)l +Cag, llen(?)|l
S CIM[y() a1 spisr + Cgy len(t) o=

and apply Lemmas 3.1 and 3.2. The remaining defects and errors in the initial values are bounded in
Lemmas 5.2, 5.5, and 5.6. ]
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L ™
\ \ Lemma 5.7
10787t [ y100 1 19787 4,
Lemma 5.2 Lemma 5.5

F1G. 2: Strategy of the proof of Theorem 2.9. The forked arrows indicate how the corresponding term
is estimated, and the lemmas below show where the term is bounded.

4. Analysis of the full discretization

In this section, we establish the proof of Theorem 2.9. The strategy is very similar to the one in Section 3,
see Figure 2, where we replace the continuous by discrete derivatives. Hence, after introducing some
useful calculus, we explain the adapted strategy.

4.1 Calculus for discrete derivatives

We first need some auxiliary results for the discrete derivatives defined in (2.25). A straightforward
calculation yields the following.

LEMMA 4.1 It holds the discrete product rule
I (@"y") = (0:0")W" + "' (9:y")
and also the more general discrete Leibniz rule
- L (0N (2=t nty (0
ey = X (1) @1 e kv, >0
=0

In order to mimic the strategy of the proof of Theorem 2.8, we state the well-known discrete version
of the fundamental theorem of calculus and a direct consequence of a discrete Gronwall lemma.

LEMMA 4.2 Let (¢") be a sequence in a Hilbert space with inner product (- | -), and let ky € N.
(a) For any M > ko, it holds

1 1 M S
sleIF<slloo I+ ¥ (a0 | 97).
J=ko
(b) If there are constants o, 31, B> > 0 such that

(2:07 | ¢7) < &2+ B ||| + B |07 |”, > ko, @1

1
holds, then for 7 < BB and M > ky we have

o]} < (VIF 2B |+ anvar) et
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Proof. Part (a) is for example shown in (Hochbruck & Pazur, 2017, Lemma 4.2). Inserting (4.1) in (a)
yields
N2 ko—1][2 & 2 1112 ill?
le"I <l I +2e Y (o +Bullo" |+ Ballo’])
J=ko
ko—11]]2 2 y 112
< (1+22f1) || |" + 2tnve® +2(B1 + B2)T Z | o/||
J=ko

and by a Gronwall argument, see, e.g., (Linz, 1969, Lemma 1), we obtain
0|17 < ((1-+22B1) o> +-2mv@? B

Taking roots yields the assertion. (|
We conclude with a useful bound which relates the discrete derivatives to their continuous limit.

LEMMA 4.3 Let Z be some Banach space, j > 1 and x: [0,T] — Z be j-times differentiable with
bounded derivatives, then

Joix)l, < s [~
te(rn=J 1"
Proof. This simply follows from an iterative application of the fundamental theorem of calculus. [

4.2 Proof of Theorem 2.9
As in (3.1), we are interested in bounds on the discrete error
€y =Jay(t") = i,
and derive for the exact solution inserted in the numerical scheme similar to (3.2)
ThAn(t")In0ey(t") = Jpy(t") + TpAn(t") F (") + Sy
with a defect of the form, using the representation of 5;17T in (3.4),
Sy = Onr (") + ThAn(t") I ey (1") = Ay (")) (4.2)
From this we obtain the fully discrete error equation
TpAR(t")dcey = e + Oyt 4.3)

For the estimates in the energy we need the equivalent formulation involving the operator A;. To
this end, we insert J,y into (2.24) and obtain

Ap(t")Indey(t") = Apduy(t") + Fp(t") + 6 o

with the defect, using the representation of Sh, A in (3.6),

Oyt = On.a (") + An(t") I (Iey(t") — Iy(e")) (4.4)
This gives us the second version of the error recursion
An(t")zel, = Apej + G .- 4.5)

Starting from (4.3), we obtain the following bound as a discrete counterpart to Lemma 3.1.
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LEMMA 4.4 Let the assumptions of Theorem 2.9 hold. Then, there exists a constant C > 0 independent
of h, 7, and n such that

lenllwror= S ||arleZ||X,, + H(?TZeZHXh +||8;

,T||W1-,°°Xy° + ||81}512T||L°°

x L4

holds forn > 2

REMARK 4.5 From this lemma it becomes clear that this technique does not provide bounds forn =0, 1,
since we can evaluate 93 e; only forn > j.

Proof of Lemma 4.4.  Asin (3.7), we obtain from (4.3) and Lemma 4.1
Orely = =07 8 p + ThAy(t" )07 el + Td  Ay(t"); €],

and the proof follows along the lines of Lemma 3.1. g
The next step is to establish the discrete analogue to Lemma 3.2 where the discrete derivatives are
bounded in terms of discrete derivatives of the initial error and defects.

LEMMA 4.6 Let the assumptions of Theorem 2.9 hold. Then, there is 7y > 0 such that for 7 < 7y

J
||<9]€;1HX c(1 +T)eCT[; (H‘?reesz;th + ||‘91€5/77A||§w(x,1))7

forj=1,2andn > j+1.

Proof. As in the proof of Lemma 3.2, we provide the bound
‘ - , J=1
Jodeq, < -+ (Jabel , + 10480l + EI06EIR, ). @
(=1

cf. (3.8). Using this estimate recursively directly yields the assertion.
To do so, we apply the bounds from Lemma 4.2 for ¢" = A, 1/2 ()0 €. In particular, we first study
the term

(00" | 9"y, = ()27 ey 2dey)  + (9 ()ake "),

where we used Lemma 4.1 and the fact that A,} 2 s self-adjoint in X,. Due to Assumption 2.1 and
Young’s inequality, this implies

(0c0 | )y, < (M1227 11 33er) B, o, @

For the first term, we obtain with Lemma 4.1 applied to (4.5)
. . . =1/ .
Ah(tn)a‘g-kleﬂ — A;ﬁ{eﬁ + 8{6,21\ - Z (2) (&g_é/\h(t’lfé)) (a{va]ez) ]

=0

Thus, taking the inner product in Xj, with 8] i yields as in (3.9) the estimate

. . -l
2 (a2t 651 04y) | <043, +lo’l, +C X ot
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Using this bound in (4.7) together with the discrete Gronwall lemma in Lemma 4.2, we obtain (4.6) for

7 sufficiently small. (]
Hence, we conclude our second main result.

Proof of Theorem 2.9. Using a decomposition analogous to (3.1), we estimate as in the proof of

Theorem 2.8

e, () lwrexr +C lepllwron

(") = Zayillwie = <
S CRIY (") s ot +Cg, 1€l

and apply Lemmas 4.4 and 4.6 for n > 2. The remaining defects and errors in the initial values are
bounded in Lemmas 5.2, 5.5, and 5.7. O

5. Bounds on the defects and initial conditions

In this section, we provide all bounds missing in the proofs of Sections 3 and 4. Throughout this section,
we mostly omit the time dependency for the sake of readability and assume h < hy. Further, we take
the assumptions of Section 2 as given, but will be precise about the regularity of the solution u and the
right-hand side f.

5.1 Estimates of the defects

We first provide certain approximation properties in the maximum norm which are used for the defects.
We recall the notation k* = max{k,2}.

LEMMA 5.1 Let & = (@,y) € H'(Q) x H*1(Q) and A, f € C'([0,T],H*'(Q)). Then, the discrete
operators introduced in Section 2 satisfy the bounds

| (Thdh = InT)E ||y 10, o SH g (5.1a)
| (Tadn =TT & o ps SE W e (5.1b)
| (Andh = InA)E]| o o S HENW Il - (5.1¢)
For j = 0,1 we further have
1107 (A = InA)E [tz SN W e (5.22)
107 AnFyy — w0/ AF || o S B0 (AS)|| s - (5.2b)

Proof. Using the identity %V*A_l y=A 1_2”,{'1 *y, we compute

(Tpdn— IT)E = (Ahl (‘ghv*o_ L) l//) .

Using Lemma 2.7, we obtain

14, (A" =Ll - S 1A =4 vl
1y (4 = L)l S 17 =) vy,
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and the bound (5.1a) and (5.1b) follow from (2.10) and (2.11). For the bound on (5.1c) we exploit the
bounds in (2.8), (2.10), (2.11), (2.13), and (2.14) to obtain

1 Andn = InA) &l g AW = 3 (Aw)
Sl (B2 v =27 Gw) [+ | (m 2y = L7 Aw)

(5.3)
(" =4 A
SH (Wl 1AW i),
and in the same way for j =0, 1
10/ (A = I A) & || g1 o2 S HE Wl + 1O/ A) W e ) -
Similarly, (5.2b) follows from
10/ APy~ AP < S = ) 19 (2 =Y e

(L =40 ()] 14

by (2.8), (2.10), (2.11), (2.13), and (2.14). O
From these approximation properties we conclude the bounds on the defects appearing in Lem-
mas 3.1 and 4.4.

LEMMA 5.2 Let the solution u € C3([0,T], H* () NC?([0,T],H*' (2)) and A, f € C' ([0, T], H*'(Q)).
(a) The defect &, 1(¢) introduced in (3.4) satisfies for t € [0, 7]

||611;T(t)||wl«y°°xv° + Hafah T(r ||L°°><L4 it

(b) If in addition u € C*([0,T],W'=(2))NC*([0,T],H' (R)), then the defect §/' introduced in (4.2)
satisfies forn > 2 '
||5’ZT||W1-°°><L°° + Hafsi:l.,THmeL4 i~ T+ hE

Proof. (a) We decompose the defect 8,1 = 8 + 87 introduced in (3.4) with
Srr = (ThAnln — I TA)dyy, 821 = I, TAF — T)AvF),,
and first consider §, . We write
19y 1 < 1T (AR = InA) I3 [y oo+ | (T = S T) AOY i1
S (AT = InA) i3 | o o+ |40 g
S 1102ull e + (1202 ul| e

where we used Lemma 2.7 together with (5.1a) and (5.1c¢). Differentiating and taking norms, gives with
Lemma 2.3

||8’6hT||L°°xL4 HTh(Ath*JhA)arZyHLm »t HTh(afAth*Jh&l )a’y||L°°><L4
[ (Tad = i) 9 (AGY) | o
<[ Ani = IuA) 35 1 ,cp2 + 1 (ORI =S A) 3 [ 112
+ [ (Tids = I T) A (AGY) | o
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such that (5.1b) and (5.2a) together imply
19080l o cpa S 07wl yee + (107 e + 19 (RAw) )
With similar arguments, we obtain for j = 0,1 with (5.1a), Lemma 2.7, and (5.2b)
167t 1o < [N HT = Tadi) 7 (AWVF 0) [yrce oo+ [T (107 (AOF (1)) = 0 (AW Fu()) 1
< |07 (M) [ s

and thus the claim.
(b) Thanks to Lemma 4.3, the estimate from part (a) extends to this case, and we only have to provide
the following bound for the additional defect

[ ThAw (") (Fey(e") = Ay(t")) 1o e S (|0 (E") = Oy (T ||yt
19 TaAR (") (9e3(t") = y(1") | g S (192" = Iy (1) | + 192 (ey(1") = Ay (E™)) [y cp

We note the identity
1
dey(") — Ay(") = T / (—$)2y(e" ! + 15)ds, (5.5)
0

and conclude the assertion. (]
In the next step, we consider the time derivatives of the error which we estimate in the energy norm,

and provide some more approximation properties. We first characterize the inverse of A;,, which plays a

crucial rule in the subsequent error analysis. We define the inner product (@ | ¥),, == (A @n | Wh)12(0,)»

and the corresponding L?-projection Qy, for y € L*(£;,) via
(On¥ [ Wi)a, = (W W)y, Wi €V
This leads us to the following result, which is proved in Appendix A.
LEMMA 5.3 (a) For ¢ € H**1(Q) and v € H'(£},), we have the bounds
1002 o =270 20, S Kl ), 1o, S Ik o, -

(b) The inverse of A, is given by A, '@, = 0y, ((I;,?L)_1 (ph) for @, € V.

We further make use in the following of the operators
~ A" 0
ny .__
A(t") = < 0 Id) (5.6)

and analogously defined, Ay, ("), A, (t") !, and A (")~

LEMMA 5.4 Let & = (@,y) € H'(Q) x H¥ () and A, f € C'([0,T],H* (2)). Then, the discrete
operators introduced in Section 2 satisfy for j = 0,1 the bounds

H(Xth—Jhx)ngh SH @l g (5.7a)
(A = A )Ely, SH @l (5.7b)
|97/ AnFy — Jnd/ AF || % S (|07 (Af) | e - (5.7¢)
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IfE=(p,y) e (H3(Q)N2(A%) x (HE2(Q)NP(A)) and f € C([0,T],H*1 ()N 2(A)), then

[A4F, = hAF [y, S KNS e (5.82)
[ (Andi = TnA) &y, S HNIA @]l (5.8b)
(AR =I1A%) & Ly, S B NE N s cpgees2 - (5.80)

Proof.  The same computation as in (5.3) yields (5.7a) and with Lemma 5.3 also (5.7b), and the
representation in (5.4) implies (5.7c). We obtain

[AnEy = IuAF ||y, = [1nf =2 ]y,
and thus with (2.11) and (2.8) the claim. We use the identity A,.%)* = .Z["* A to derive

_ . 0 2, ng (%H*—%V*)A(p
(Ath JhA)é - ((%H* ghv*)A(P> ; (Ath JnA )g = ((gf*—fh‘/*)AV’ .

We employ (2.10) and (2.11) to obtain (5.8b). Together with the inverse estimate (2.17), this further
implies (5.8¢). [l

With these approximations at hand, we can finally provide bounds for the defects from Lemmas 3.2
and 4.6.

LEMMA 5.5 Let the solution u € C*([0,T],H* (2))NC2([0,T],2(A)) and A, f € C*([0,T], H* (Q)).
(a) The defect defined in (3.6) satisfies for j = 1,2 and ¢ € [0, 7]

10/ 8 A ()|, S 5
(b) Ifin addition u € C3([0,T],H" (L)), then the defect defined in (4.4) satisfies for j = 1,2 and n > j
10485 ly, S T+

Proof. (a) We estimate the defect with the help of Lemma 5.4. We employ Lemma 2.6 and the bounds
(5.2a), (5.7¢) and (5.8b) to obtain

. 4 ) .
107 8. (1) ], < CHE (Y 110 ull e + 1107 A el e + 1107 )| e )-
(=2
(b) Thanks to Lemma 4.3, it remains to show for j = 1,2

Harj/\h(fn)Jh (Iey(t") — (1)) Hxh S ‘L'H8,4y||H1 xH!*

Using the continuity of J, in H! x H' and the identity (5.5) immediately yields the claim. O

5.2 Errors of the differentiated initial values

The last part to prove Theorem 2.8 and Theorem 2.9 is to bound the initial error in Lemma 3.2 and
Lemma 4.4. We recall the preconditioned initial values defined in (2.21) where y2 =y,(0) = Jiy°. The
aim of this section is to prove the following bounds.
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LEMMA 5.6 Under the assumptions of Theorem 2.8 it holds for £ = 1,2
l k
10/ en(0) ][, <Ch".
LEMMA 5.7 Under the assumptions of Theorem 2.9 it holds for £ = 1,2
||a£e§,||xh <C(r+H).

In order to conclude the desired assertion, we proceed in a series of lemmas and introduce the
notation A" = A(t"), F(t") = F(t"), Aj} = Au(t"), Fy(t") = F,(¢") and also

1 1

Z"= (A" —1A)"", R = (A} —TA) (5.9)

We provide a detailed proof of Lemma 5.7 first and explain afterwards how to conclude the assertion of
Lemma 5.6. In order to keep the notation simple, we assume without loss of generality in the following
that the spatial order satisfies

K < lax (5.10)

with ¢p.x defined in Assumption 2.1. This induces the restriction fpx > 2. In a first step, we find a
suitable representation for the discrete and exact solutions.

LEMMA 5.8 The numerical solution can be expanded via

ouyh = A Anyy ' + G, " — FIANF]
02V = B ARy Ay + (0. %)) Ay 2 + B ARGy + 0: Gl

The same holds for dLy(t"), £ = 1,2,3, with h formally set to zero and
h— G =R"A"(F"+8"), 8" = dry(t") — Iy(t"). (5.11)
Proof. Starting from (2.24), we multiply by A;' and reorder the terms to obtain
(A7 —TARY, = Al TALE
Using the resolvent, this further gives
Y=V TR ALY + T RALFY,

which implies the representation for dry}. The remaining identity is deduced from the product rule in
Lemma 4.1. The results for the exact solution can be derived from the representation

A"Ay (") = Ay(t") + A"F" + A"S"

and the same computations as above. (I
In order to bound the expressions in Lemma 5.7, we subtract the representations for the exact and
the numerical solution. Let us for example consider the first term in 92¢7 = J,02y(t?) — 92y2 given by

(02e7), = (Jh%ﬂAﬂ’] A—ZB2ANLB) Ahjh) N
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where we used the initial value (2.21) with yg = J»°. In order to bound the difference, we proceed in
two steps. First, we move the operators A and A, to the right. Therefore, we employ the identities

AZ"A" = A"Z"A,  AA" = A"A, (5.12)

with A defined in (5.6). The corresponding equalities are also valid for the discrete objects and the
inverse A(A")~! = (A")~'A. Hence, we can write

I RAR A = TN B (AT AZYO

and similarly for the discrete counterpart. A reformulation of Lemma 5.8 according to the above strategy
is given in Lemma A.1. The differences of A and A, as well as F' and Fj, are bounded by (5.8). The
remaining differences in front of them are treated by the following abstract estimate. As a shorthand
notation, we set

m . m .
[IB =B"..B", m>1, and [1B :=1d, m<1.
j=1 j=1

LEMMA 5.9 Let % C X be a Hilbert space, m € N, and consider operators Bi € L(X,)and B/ € L(X),
j=1,...,m, with the following properties:

(187 = B i)x]ly, < (2 +4") lxly

. (5.13)
[B7x]| 5 < 1]l -
Then, the product is bounded by
m X m . L
| (o (TU87) = (TUB]) )| (21 Dl
j=1 j=1 Xy
Proof. Using the telescopic sum
m . mo . m , , =1 .
(Jh(n BJ) — (n B{,)Jh) - Z( 1 BJ) (JuB’ — BLJy) ( 1 Bf)x,
Jj=1 Jj=1 =1 Nj=t+1 j=1
we immediately conclude the assertion. g
With these preparations, we finally conclude the bounds for the initial values.
Proof of Lemma 5.7. We estimate the differences of the continuous and discretized operators in

Lemma A.1. We split the proof in two parts. First, we compare the products of bounded operators
involving

Bl € {A",0;A" (A", %"} (5.14)

and the discrete counterparts using Lemma 5.9 with % = @(Ak*). In the second step, we deal with
the powers of A and Ay, applied to the initial value, the right-hand side and the defects. Because of
2Q € C*11 | we several times use the embedding Z(AF) — H*1(Q) x H¥(Q), see, e.g., (Grisvard,
1985, Rem. 2.5.1.2).
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(1) We first consider the operators involving A. Under Assumption 2.1 for k¥ = k+ 1 and with
Lemmas 2.3, 2.6, and 5.3 and the bounds (5.7a) and (5.7b), the properties (5.13) are satisfied. For the
resolvent Z" , we directly employ Lemma A.2 to compute with (5.2a) and (5.8b)

| (a2 = Zdn)|lx, < T||20(Ints = Andn) 23|y, + (|22 (TnA — Andn) ],
< CherAk*“%yHX] +Chk||Ak*%y||Xl

<O A%,

and hence Lemma 5.9 is applicable.
(i) We employ Lemma A.1 and denote any product of operators from part (i) by IT and the discrete
counterpart IT,. Then, we have to compare expressions of the form

JII(x+ 8) — yxy, = (J,I1 — ILyJy)x + Iy (Jpx — xp) + R I16

with
xe {A AW FL o F2AFYY,  x, € {Andiy’, AZ0° FL L 0.FF AWF; Y}, (5.15)

and § € {§',0,8%,A8'} with ¢ given in (5.11). Then, the first part is covered by part (i), provided that
|A¥ x||x < C holds for all x in (5.15), which follows from the assumptions of the theorem. The second
part is bounded due to (5.7¢), (5.8a), (5.8b), and (5.8c). Lastly, the estimate

IJaTT8[x, S [|AS]x
together with (5.5) yields
1aT18]lx, < T(|A202¥]| o) + |AG Y]] o))

and hence the desired bound. O

REMARK 5.10 The restriction £p,x = k* in (5.10) is necessary in order to guarantee (2.5) for £ = k*
which is needed in the estimates above to transport the regularity past A.

We now prove Lemma 5.6 and observe that formally setting T = 0 in (2.24), we obtain the spatially
discretized equation (2.20). This observation drives the following proof.
Proof of Lemma 5.6.  Several steps in the proof simplify, and we mainly explain why we can neglect
the assumption on £,,x. First note, that compared to the proof above we replace due to T =0

R — (A°)7, By — (A7
and the most delicate term is given by
(atzeh (0)) 1= (Jh (Ao)ilA(AO)ilA - (Al?)ilAh(A}(z))ilAh)JhyO
= (A" AY) T A= (AN AT AR )Y,
Further, the terms in (5.14) reduce to B/ € {A?,3,A° (A%)~'}. In contrast to above, we may employ

Lemma 5.9 with # = HX +1(Q) x H*' (), and thus obtain no restriction on /p,,. Then, we proceed
along the lines of Lemma 5.7. ]
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5.3 Bounds on the first approximations

This section is devoted to the proof of Theorem 2.10, i.e., we provide bounds for the first two approxi-
mations of the fully discrete scheme (2.24), which are not covered by Theorem 2.9.
Proof of Theorem 2.10. (i) For ¢ = 0, the assertion directly follow from Theorem 2.8.

(i) For £ = 1, as before, we decompose the error using (3.1) and estimate by (2.7), (2.8) and (2.11)

HY(I]) _ghyfltHWl»“wa < H (1d _‘Z’l]’l)y(’l ) le-waw +CHJ;1y(t1) _y111HW1~°°xL°°
ORIy = Vil
Hence, we only have to prove by Lemma 2.7 the bound
AL Iy =) [y, SClr+RY). (5.16)
We expand
A (") = 1) = AR (I (t°) = yp) + T(ARdey (1) — ARdey;,)
and note that the first summand vanishes by (2.21), and it holds with (2.10) and (2.12)

DipH* A uO
A3 nde)ly, = | ( _g’;mmo) [y, S 148+ 1437

For the last term, Lemma 5.8 gives d;y} = 2} ApJiy° + %L AL F)| . We treat the terms separately, using
ALLARIY = ML (AL An(AY) T AR,
exploiting (5.12), we are by Lemma 2.6 left to bound
1an(A) AL I, < (1" AV, + (|42~ (LT AW)]| o
The first term is bounded by (2.12) for v0 € Z(A?). We first note that for any ¢ € Z(A), we have
|18nh@ll 2 < [|8n-L5 0| 2 + | Ak =L )0 | 2 S 1L A @l o+ 17 [t =2 )0l S 1AL,

where we used the inverse estimate (2.17) together with (2.11) and (2.8). Along the same lines we show
4L ||, S |A @]l 2. This implies with Lemma 5.3

14020~ (L 0) 2 <[40 (A1) || o + |4 (LT = 0127 (A7 0) |2
i (4 (o)~ () 2 ) )
S[a( o),
and thus the second term is bounded if u’ € 2(A%) NH*(Q). Similarly, we have
AENALE = MM (A AGE

and taking norms gives
1835, = 14utafll2 S 1A 1Lz
and with this we established (5.16). O
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6. Numerical experiments

To illustrate our theoretical findings, we present some numerical experiments. Let 2 = B (0) C R? be
the two-dimensional unit sphere and consider equation (1.1) with data given by

ud(x) = % sin(nr?)7 V(x) = % sin(nr?)7
A(t,x) =2+ (1—1")?(x1€ + (1 — *)xzcos(t)),

where > = |x|. The right-hand side f is chosen such that the exact solution is given by

1
u(t,x) = %e’ sin(zr?)’.

A simple calculation shows, that the regularity assumptions of Theorems 2.8 and 2.9 are satisfied with
k=3 and /. = 4. The scaling by a factor 20 is used to approximately normalize the W !**-norm of the
solution u.

6.1 Discretization

To discretize in space, we multiply (1.1) with A (z,x) and obtain the equivalent formulation
A(t,x)dqu(t,x) = Au(t,x) + A(t,x) f(¢,X).
Using the mass and stiffness matrix defined by
(Mi(0)), ;= (IA)0i | 0)1200,)  (Ln); ;= (VO I V) 200, 5
where we denote by (¢;); the nodal basis of V},, the discrete solution in (2.20) satisfies
My (t) Oy (t) = —Lpup(t) + My (1)1 f (1),

by abusing the notation for the coefficient vectors and their corresponding function in Vj,. The fully
discrete method in (2.24) is then given for n > 2 by

M;,(t") (uz — ZMZ’I + u;fz) = —’L'ZL;,MZ + Tth(t”)Ihf(t”),
and for n = 1, we have to solve
My (t") (uh — ) — ©V)) = — P Lyu), + T My (e ) f ().
Further, we have v} = dyuj for n > 1. We implemented the numerical experiments in C++ using the
finite element library deal.IT (version 9.4) Arndt et al. (2022); Bangerth et al. (2007). A precise
description of the implementation can for example be found in (Leibold, 2021, Ch. 6.5.1). The codes

written by Malik Scheifinger to reproduce the experiments are available at https://doi.org/10.
5445/IR/1000157919.
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FIG. 3: Left: Error E(0.8) of the implicit Euler method (with time step size Tt = 8- 107) combined
with finite elements of order k = 1,2, 3 plotted against the mesh width 4. The dashed lines indicate order
h* for k = 1,2,3. Right: Error E(0.8) of the implicit Euler method combined with finite elements of
order k =3 (hyes = 1.52-1072) plotted against the time step size 7. The dashed line indicates order 1.

6.2 Numerical results

For the problem described above, we performed experiments for the time and space discretization. To
this end, we used finite elements of order k = 1,2, 3. Since the computation of the lift of a finite element
function is very laborious, we do not compute the full error in the form .Z,u — u;,. Instead, in our
numerical examples we consider the error

E(t) = [lun(t) = (1) w10, + [Va(0) = 1u0u() = (q,) -

which is of the same order by the standard interpolation estimates. In the left part of Figure 3, the
convergence of the error with respect to the spatial mesh width % is shown when using the implicit Euler
method with T,.f = 8- 107. We observe that for finite elements of order & the error converges with order
k in space as predicted by Theorem 2.8 until the error for kK = 3 is dominated by the error of the temporal
approximation. In the right part of Figure 3, we consider the convergence of the error with respect to
the time step size 7. In space, we discretized with finite elements of order 3 and hf = 1.52 - 10~2 such
that the spatial error is negligible. Aligning to Theorem 2.9, we observe convergence of order 1 in time.
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A. Appendix

In this appendix, we provide the proof of Lemma 2.7, properties (2.12) and (2.13), and the postponed
calculations from Section 5. The following proof is adapted from the conforming case presented in
(Bramble et al., 1977, Lem. 4.1), and Dorich (2022).

Proof of Lemma 2.7.  We first recall the solution operators A~! and Ay ! defined in (2.6) and (2.19),
respectively. We further define the modified solution operator Sp = %V*A_lfh, and use it to expand

Ay l= §h +(4, - §h) For the first term, we use Sobolev’s embedding, the stability of the Ritz map in
whr 2 < p < oo, (which is interpolated from (2.11) and (2.15)), as well as Theorem 2.4 to obtain

th(PhHL“(.Qh) S th(PhHWL“(_Qh) S HAilfh‘PhHWH(Q) S ’|A71"gh¢hHH2(9) S ||(PhHL2(.Qh)7
and similarly using the same steps
th(thWL“(Qh) S HAilgh‘PhHWLw(g) S “A71%¢h”W2~4(Q) N th‘/’huﬁ(g) S H‘PhHL4(Qh)'
It remains to bound the difference, stemming from the nonconformity, by the inverse estimate (2.17) via
15001~ 47" 4l ) < CH 21 So0 - 4

=Ch™ sup (§h<Ph—A;fl<Ph \ llfh)v
il =1 i

:Ch_N/ZH Silp 1(((Ph W) 12(a,) — (Zhn | ZaWi) 12(a))
Yy Vh=

where we used (2.6), (2.9), and (2.19) in the last step. Finally, we employ (Elliott & Ranner, 2021,
Lem. 8.24) to obtain

(o | W) 200 — (Zh0n | L) 2y | S22 onll 2 Wil »
which yields the assertion. (]

Next, we show the stability and convergence properties for .th * and my,.
Proof of (2.12) and (2.13). Let ¢, € V}, and estimate with (Elliott & Ranner, 2021, Lem. 8.24)

1L 0 — il 2 S H N ullz + 19 — Lol 2
and thus obtain with the inverse estimate (2.17)
||-=5ﬂhH*(PHVh Slenlly, +27 L 0 —oull 2 Slloully, +27" 1@ — Zagull 2 -

We now use the quasi-interpolation from (Bernardi, 1989, Thm 5.1), which is stable in H Land converges
linearly in L?, and hence gives (2.12).
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Employing again (Elliott & Ranner, 2021, Lem. 8.24), for ¢ € H*(Q) we compute

(72 o =L 0 1 W) 120, | = 1 (L 0 1 W) 1200, — (@ | Z0W) 120 |
<CH 10l 2w, 1 %Wl 2 )
<CH )l 10wl 2 ) »

where we used (Dérich, 2022, Appendix B) in the last step, and (2.13) is shown. 0
Further, we verify the properties in Lemma 5.3 of the (weighted) L>-projection Qj, and the formula

for the inverse of A,,.

Proof of Lemma 5.3.  (a) By the definition of Qj,, we have

(= v L=ty ), = (G-t I L= ),

and thus the equivalence of norms together with (2.8) and (2.10) gives the first claim. The stability in
H' is shown as for (2.12).
(b) One easily verifies the identities for @y, y, €V},

(M2 n) | Vi) 20, = (00 | ¥i)12(q,)» (2™ () [ W), = (o0 | W),

which gives the last statement. 0
Next, we give an extension of Lemma 5.8. We do not provide a proof here, since the expressions are
derived by an iterative application of the identities (5.12).

LEMMA A.1 It holds the representation
0oy = HpAniy’ + By At Fy
O2xh = T My Ay (M) LI — T 0N Ry ATy + R A Ry A
+ RN OF} + RO AL, — R ALRLALFL
The same expansion holds for d%y(r*), £ = 1,2, with h formally set to zero and
F —F"4+ 9", 0" = doy(t") — Iy (t").

Since, in the case A # Id, the operator A does in general not commute with the resolvent, we provide
the bounds which are still available under Assumption 2.1.

LEMMA A.2 Let Z be the resolvent defined in (5.9) and ¢, given in Assumption 2.1. Then, for
0 < £ < lax there are constants C; such that

18"y < Cellal
e ATy < G| AY -
for all y € (Almax),

Proof. By the skew-adjointness of A and (2.4), we derive

123]lx < Cllylx
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which is the first equation for £ = 0. For 0 < ¢ < fiax — 1, we compute

|41y = [|a"A22(A) " Ay
S HAH@(Aé)e@(Af)H‘@H@(Af)e@(Af)H<A)7l H@(AZ)eQ(A[)HAZJFIyHX
and the claim follows by induction. The second estimate is due to the resolvent identity

’L'AKH%’y = AKA%’y — Agy

and an application of the above bound. (]
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