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ON THE ITERATIVE REGULARIZATION OF
NON-LINEAR ILLPOSED PROBLEMS IN L*™

LUKAS PIERONEK AND ANDREAS RIEDER

ABSTRACT. Parameter identification tasks for partial differential equations are non-
linear illposed problems where the parameters are typically assumed to be in L°°. This
Banach space is non-smooth, non-reflexive and non-separable and requires therefore
a more sophisticated regularization treatment than the more regular LP-spaces with
1 < p < co. We propose a novel inexact Newton-like iterative solver where the Newton
update is an approximate minimizer of a smooth Tikhonov functional over a finite-
dimensional space whose dimension increases as the iteration progresses. In this way, all
iterates stay bounded in L°° and the regularizer, delivered by a discrepancy principle,
converges weakly-x to a solution when the noise level decreases to zero. Our theoretical
results are demonstrated by numerical experiments based on the acoustic wave equa-
tion in one spatial dimension. This model problem satisfies all assumptions from our
theoretical analysis.

1. INTRODUCTION

We consider the numerical solution of non-linear illposed and inverse problems where
the underlying non-linearity ' maps from a possibly multi-component version of L* into
a normed space Y. This scenario appears quite naturally in many parameter identification
tasks for partial differential equations.

For instance, in electrical impedance tomography (EIT) one wants to identify the
conductivity distribution in a body. To this end, electric currents are applied through
electrodes and the resulting voltages are measured. In the quasi-static regime, an adapted
version of the Laplace equation connects the currents with the voltages, see, e.g., [23].
Another application is full waveform inversion (FWI), the most advanced inversion tech-
nique in seismic imaging, see, e.g., [8, 34]. Depending on the used mathematical model for
wave propagation (acoustic, elastic, or visco-elastic regime) the searched-for parameters
include bulk density, pressure and shear wave velocities, and corresponding relaxation
times. Here, a wave field is initiated by a source (explosion or earthquake) and the parts
of the wave field that are reflected from the Earth’s internal structure are then picked up
by receivers on the Earth’s surface or by hydrophones in the ocean.

From an abstract point of view, in both examples we have to solve an equation

(1) find u € D(F) such that F(u) ~ 1°
where the non-linear operator

(2) F:D(F)c L®(D)" =Y
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2 L. PIERONEK AND A. RIEDER

maps ¢ parameter functions u located on some domain of interest D to the respective
measurements. Further, y° are the (noisy) measurements satisfying ||y° — F(ut)|ly < 6
for one u™ € D(F).

Newton-like regularization schemes are well-established iterations for getting a mean-
ingful approximate solution of non-linear inverse problems. In this work we explore the
Newton-like solver REGINN> which extends REGINN of [26, 19] to a non-linear inverse
problem with generic operators F' as in (2). Here, F' is required to fulfill a few specific
properties which are satisfied by EIT and, except for one, also by FWI in all regimes.
This not yet verified property of FWI is a structural assumption known as tangential cone
condition (TCC), see (3) below and consult [6] for a first promising result. Apart from
establishing the non-linearity constraint, the main challenge about regularization in L*>°
is its non-reflexive and non-smooth nature. As this space is further non-separable, con-
vergence of discretization schemes in the strong topology, which is desirable for practical
implementations, cannot be achieved, see [25]. Instead, using the well-known limit

||UHLoo(D)£ = qll)IEo HUHL‘I(D)Z for all u - LOO(D>Z,

for bounded D, our idea is to make use of the weak-x topology and semi-discrete approx-
imations to F based on a family {X"},, of finite dimensional nested subspaces of L>(D)*
which are equivalently furnished with the L (D)*topology for properly chosen g, < oo
such that ¢, — oo as n — oo. This then implies that the Newton update for the n-th
iterate is obtained as an approximate minimizer of a smooth (provided Y is smooth) and
convex Tikhonov functional over X". In particular, the underlying minimizing procedure
can be easily implemented numerically.

There is a wealth of literature on the analysis of Newton-like regularization schemes,
mainly in a Hilbert space but meanwhile also in a Banach space setting; we refer only to
the monographs [14, 29] for a first reading. However, most of the Banach space methods
are formulated in abstract spaces requiring smoothness and reflexivity at least as they
rely heavily on duality mappings to mimic the Riesz isomorphism. To the best of our
knowledge, regularization schemes applicable to non-reflexive spaces are only considered
in [4, 10, 11, 12, 13, 25, 30]. The first six of these publications consider iterative schemes
on the basis of proximal point methods, Morozov, Ivanov, or Tikhonov regularization,
respectively. However, all of them require norm-related minimization whose implemen-
tation in the context of L calls for non-smooth or constrained optimization techniques.
We will compare our scheme with the somewhat similar IRGNM-Tikhonov method of
[11] in Remark 2.6 below.

Our material is organized as follows: In Section 2 we introduce and analyze two versions
of REGINN*® which differ in what information about the smoothness of the ground truth
is available a priori. Under reasonable assumptions both algorithms are well defined
and terminate with a regularized solution wy;, € D(F) of (1). Further, we prove the
regularization property, that is, weak-x convergence of {uy }s~0 to an exact solution
of F(-) = F(u") as the noise level ¢ tends to zero. Our hypotheses are reasonable in
fact as they are met by EIT as well as FWI with exception of the TCC (Section 3) as
mentioned above. For FWI in the acoustic regime we are even able to validate the stronger
assumption about the ground truth which enters the second version of REGINN*. Finally,
Section 4 contains some experiments to identify two parameters (density and pressure
wave velocity) in the acoustic wave equation. Here, all our assumptions including TCC
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in a semi-discrete setting actually hold. Some technical details that would otherwise
interrupt the flow of reading have been moved to three appendices.

2. REGINN®®

For some bounded domain D C R? let F': D(F) C L*(D)* — Y be Fréchet-differen-
tiable and satisfy the tangential cone condition (TCC) at u™, i.e., there are a positive
constant w < 1 and a ball B,(u*) C D(F) with radius r > 0 such that

(3) [1F(w) — F(a) = F'(u)(u—a)lly <w||F(u) - F@)ly
for all u,u € B,(u™").
Here, F': D(F) C L>(D)" — L(L>*(D)",Y) denotes the Fréchet-derivative of F and

L>(D)* is endowed with || - ||%°°(D)Z where
ullZocpye = (s, - - ue)[Zagpye = Z il Zacpy: € [1,00)]-

For w < 1/2 we can equivalently restate the TCC as
(4) 1F(u) = F(a) = F'(u)(u —u)lly < L|F'(u)(u—u)ly,

with L = w/(1 —w) < 1. Since our method will be explicitly based on discretizing
L>*(D)*, we impose the following assumptions on corresponding spaces X"

(S1) {X"},en is a sequence of nested subspaces of L®(D)* i.e., X® C X"t C L>(D)*
for all n € N.

(S2) For each X™ there exists a linear projection operator P": L>®(D)* — X", that
is, P'u = u for all u € X", satisfying ||P"u|pe(py < Cpllul|re(p)y: where the
constant C'p > 1 is independent of n.

(S3) For any fixed C, > 1 we can find a positive increasing sequence {¢,}nen such
that

|u]| oo (pye < Cool|tt]| pan(pye  for all u € X™.

Note that the L°°(D)*norm is always stronger than the L (D)‘norm, hence the mag-
nitude of C, > 1 in (S3) determines how tight the norm equivalence of || - || je(pye and
| - [ an (pye s, restricted to X™. We emphasize that C is independent of n. A family
{x» }neN enjoying (S1)-(S3) is constructed in Appendix A.1 on the basis of tensor product
B-splines.

To ensure that our discretizations do indeed approximate the actual inverse problem
in L>(D)* sufficiently well, we require a compatibility condition for F' of the form

(5) lim inf || F(u) (7 — P"a)||y =0

for all u € D(F) and all @ € L>(D)*. This extra condition is necessary since, in gen-
eral, one cannot expect lim, ,o, P"u = U in L>®(D)* strongly (which would yield (5)
by continuity of F') because the union of X" is countable while L>(D)* is not separa-
ble. However, as a consequence, the closure of the range of F’(u) must be separable, in
contrast to Y itself, for all u € D(F).

Additionally, to prove the regularization property of our scheme (Algorithm 1), we will
require either the weak-x closedness of F' or the range inclusion

(6) R(F'(u*)") € LY(D)*
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where F’'(u)*: Y* — (LOO(D)*)Z denotes the adjoint operator.

In Sections 3.1 and 3.2 below we will verify (5) as well as (6) for the forward maps
belonging to EIT and FWI, respectively.

As motivated in the introduction, the guideline for designing our regularization algo-
rithm is to generate easily-computable and uniformly bounded iterates u,, in L>(D)*
which give sufficiently small residuals

(7) by, =y — Flum),

where y° € Y is the perturbed datum at hand. To address all three aspects at once,
we build on an inexact-Newton framework and find the updates from the linearization
approximately via Tikhonov regularization with special adaptive discretization. The
latter refers to minimizing Tikhonov functionals on X" which are linked in a pre-defined
manner. Note that, thanks to assumption (S3), the penalty term can be reduced to the
L% (D)*norm while still controlling the corresponding L>(D)*norm of actual interest
which is difficult to cope with numerically. Hence, given an initial guess uo € D(F') and
an initial space X,,,, we iterate

(8) U1 = Uy + S, m=0,1,2,...,
where n,, € N with n,,, > n,,_1 and s,, € X" are chosen such that
(9) T (m) < 1 100,115

Here, the Tikhonov functional J,, ,,: X,, — [0, 00) is

(10) Jnm(8) = [|F" (um)s — 0l + mlls + (uwm — uO)HQLQn(D)Z
with penalty parameters set a posteriori by

b(S 2

v

So far, the parameters 7, {fim tmen are restricted to fulfill 0 < p,, < 1 and v # 0.
While p,, serves as a stopping criterion in the spirit of an inexact Newton condition
to set the m-th update s,,, v will be responsible for keeping the resulting iterate w,, 1
sufficiently close to u*: the larger v is chosen, the better the initial guess has to be. The
effect of the initial discretization level ng on the iterates is demonstrated in Section 4 by
numerical experiments. We stop the Newton iteration (8) by a discrepancy principle with
constant 7 > 1. The resulting inversion scheme REGINN* is summarized in Algorithm 1.
It is well defined under reasonable assumptions according to the following theorem. Its
regularization property is then specified in Theorem 2.3.

Theorem 2.1 (Well-definedness and termination of REGINN*). Let F': D(F) C L*(D)* —
Y be as above satisfying (3) withw < 1/3 in B,(u™) C int(D(F)) and (5), where { X"} en
and {P"}nen fulfill assumptions (S1)-(S3). Let y° be given such that |F(u®) — ||y <6
for one 8§ > 0. Let A € (£5,1) and set

Pmax = (1 —w)A —w.
For

T
e (o)
Ooo,umax



ON THE ITERATIVE REGULARIZATION IN L 5

Algorithm 1 REGINN*
Input: F; uo; ¥°; 6; {fim }m; 75 75 Coo; Mo
Output: uy with [|y° — F(uy)|ly < 76
m:=0
B o= 1 — F(uy,)
while |6 ||y > 76 do
o = 8,12/
find (smallest) n > n,, € N such that J,, ,,(sm) < p2,]|6%,]|3 for some s, € X"
Umt1 = U + Sm
m:=m+1

Ny, (= N,
b = o — Flun)
end while
M :=m
and
ro € (0, min {r =V Coo fmaxs X w2 — w2})
Cp
choose

1+ w
> )
Vs — Cp15/7? — w

1+w)? r2
min - — CQ_O
8 \/(w+ T ) T

Restrict all tolerances {pm} t0 (fimin, fmax) and start with some arbitrary ng € N and
up € By (ut). Then, there exists an Ms € N such that all iterates {u,...,un,} of
REGINN™ are well-defined and stay in B,(u™). Moreover, |03, 1]y < A||B2,|ly for m =
0,...,Ms—1, ||y, lly <76, and Ms = O(|logd|) as 6 \, 0.

T

Further, define

Proof. Before we begin with the proof we discuss our assumptions on the parameters.
First, observe that the open interval for choosing A is non-empty by w < 1/3. The lower
bound for A guarantees that piy.c > w. Together with the upper bound on ~ this yields
a positive upper bound for ry. Further, the radicand and the denominator of the lower
bound for 7 are positive. Finally, ptmin < ftmax-

We use an inductive argument and assume therefore that ||b2 ||y < A™||3||y as well
as |lu; — ut||peo(pye < r for @ < m, which holds in particular for m = 0 because of
Juo — ut || poo(pye < 10 < 7. If |09, |ly < 76, REGINN™ stops with u, := u,, and nothing
else needs to be shown. Otherwise, ||b°, ||y > 76 and we next show that a Newton update is
well defined by (9). Let sy, := arg minge xn Jy, 1 (s) which exists as the unique minimizer
of a strictly convex functional over a finite dimensional space. Then,

Jn,m(sn,m) < Jn,m (Pn(u+ - Um))
= [|F ()P (0 = ) — by [

+ [P (u" = ) + (i — ) [ 700 (-
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Recursively, we get u,, —ug = sg + 81 + ... + Syu_1 from which we deduce that u,, — ug
is in X™m-1 as the spaces are nested by (S1). Hence, by (S2),

(12) P (U — ) = Upm — g
for n > n,,_1 and by linearity of P" we may simplify

Jn,m<3n7m) < ||F/(um)73n(u+ — Up) — bfn“%f + am||73n(u+ - uO)Hiqn(D)‘Z
2
< F () P (ut — ) — 0, |3 + vold(D)Q/q"C’%r—ZHb%@-

In the last step we additionally used (11), Holder’s inequality and ||P™(u™ —ug)|| oo (pye <
Cp||[u™ —uol| o (pyr < Cpro, see (S2). We continue by splitting the residual term accordlng
to

1F" () P" (™ = i) = by lly < 1 F () (0™ = ) = F(u™) = F(u) ||y
+IF @) —y'lly
+ {1 () (P (0" = ) = (0 = u)) [y
<N () (" = ) = F(u™) = F(tm) ||y +0
+ {1 () (P (1 = o) = (" = wo)) [y,

employing again (12) to get the bottom line. Since ||ty — u™||ze(pye < r by induction,
TCC (3) yields

1 (utn ) P" (" = ) = (4" = F(um)) lly
< w|[F(u) - ( m)lly 40+ [1F" () (P (" = o) — (u" —uo))lly
and with [|[F(u*) = F(un)lly < [IF(u®) =3’y + bl < 6+ |5y, [ly we deduce further
1F" () P" (" = ) = (y° = F () lly
< w(0+ [1Bmlly) + 0+ F () (P™ (" = wo) — (u™ = o)) Iy

Taking into account that ||, ||y > 76, we get

|F (P (" = ) = (5 = F () Iy
< 85l (10 + T 22) I () (P — 0) = (™ = o))y
and finally

(13) Jun(nn) = (10l (1 52) 1 () (PP = 00) = (0 = ) ||y)2

+volg(D)*C3, Ollb‘S I220)

Since volg(D)?% — 1 as n — oo and in view of (5), we find that

n—oo

1 2 2
1) tmint don(snn) < D005 ( (o 252) 4 RIS ) = sl
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Consequently, condition (9) with p,, > pmn is feasible for n,, large and appropriate
$m € X™\{0}, where s, # 0 follows by J,.,,(0) > [|6%,]|%. Hence, tyi1 = Uy + Sy 18
well defined and, relying on (S3) as well as (11), we proceed with

Jnm,m(sm)
[ UOH%OO(D)[ = |5 + (um — UO)“%oo(D)t’ SO

m

2 bé 2
S CooumH mHY < Coo,u?n/YQ ]
m
Hence,
i1 = u Loyt < a1 = voll Lo (ye + lu™ = woll L~ ()

< V Ooo,umax’y +ro<r

by the upper bound of ry, yielding u,,+1 € B.(u") C int(D(F)). Finally, we estimate on
the basis of (4) and (9)

105 lly = (0, = F'(wm)sim) = (F (1) = F(um) = F'(wm)sm)lly

w
< b, = F' () smlly + ———1F' () sumlly

1—w
w
< Jmm(sm) +E<||b£n”Y+ HF/(um)Sm_banY)
w
(15) S#m||bfn||y+E(lﬂLum)Hbany

_ d 5
= (bt 0t ) 18

w
< (b 204 ) ) < AL -

Having thus proven the induction part, REGINN* is forced to terminate for any 6 > 0

due to ||b,|ly < A™||B3|ly < 76 for m sufficiently large. From this estimate, we may even
deduce Ms = O(|logd]) as 6 \, 0. O

Remark 2.2. a) The name REGINN™ for Algorithm 1 is justified by the stopping condition
(9) for determining the Newton update which is, in view of (10) and (11), equivalent to

|F" ()5 = U l13 15m + (= w0) [0 o
AR 72 =t

In particular, s, satisfies the stopping condition of REGINN [26], i.e., the above condition
without penalty term.

b) Recall that REGINN fulfills in the Hilbert space setting (and likewise for smooth reflexive
Banach spaces) the error reducing property for the iterates of many inner linear solvers,
keeping thus u,, € B,(u") if the initial guess was chosen so. However, this does not hold
any longer for our L°°-tailored REGINN® in general. Therefore our parameters need to be
controlled in terms of both w and r, whereas standard REGINN only requires the knowledge

of w for defining admissible tolerances p and stopping constants T, see Theorem 3.1 in
[18].

In case that F is linear, i.e., F(u) = Au for some A € L(L>®(D)* Y), the TCC holds
with w = 0 and » = co. Some observations are in order:
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» Although 7y can be arbitrarily large now, to still ensure a finite and uniform
L*°-bound on the iterates, 7y < 7 < co needs to be chosen compatibly.
» Because of

1F" () sm — byl = 1 Asm — (4 — Au) [} = | Atinir — 9|3
the iterate wu,,,, satisfies
52 2 2 118 12
[ Aty = 901y + amlltms = ol Lanm () <t |0l
Hence, u,,,1 can be considered an approximate minimizer of the Tikhonov func-
tional u — || Au — y°[|% + am||u — uol|2an., (py in the set ug + X" Put differently:
in the linear case, REGINN® can be viewed as a cascading Tikhonov regularization

iterating over nested finite-dimensional spaces where the penalty term is deter-
mined a posteriori by the previous iterate.

Theorem 2.3 (Regularization property of REGINN™). Adopt all assumptions and nota-
tions from Theorem 2.1 with B,(ut) C D(F) and set F(u") = y. Additionally, assume
that F'(u™) fulfills (6) or that F is weakly-« sequentially closed, that is, w, — w in
L>*(D)* and F(w,) — z imply that F(w) = z. Let {J;}ien be a positive zero sequence
and let up,, be the output of Algorithm 1 with respect to perturbed data v° .

Then the set of weak-* accumulation points of the sequence {uMéi}ieN 1S non-empty

and consists of solutions to F(-) =y. If u™ is the only solution in B,.(ut), then even the
whole sequence {uMéi}ieN converges weakly- to ut in L>°(D)".

Proof. By construction in Theorem 2.1 we know that {u M(si}iEN yields
(16) ly — F(ung;,)

and is uniformly bounded in L>(D)*, so there exists weak-x accumulation points in
B,(u") by sequential weak-x-compactness. Take representatively uy;, - u. In case
'k

vy <lly =%y + ||b§\25i||y <(1+7)d — 0.

that F' is weakly-x sequentially closed, we can directly deduce F(u) = y, hence any weak-
* accumulation point solves the equation. In case that (6) holds, we first note that the
TCC (3) implies by the reverse triangle inequality for any u € B,(u") that
(17) (L =w)|Fu’) = Fu)lly < [[F'(u")(w" —u)ly
< (I+w|F”) = Fu)ly.
With (6) we then obtain for any g € Y*
(F'(u")i, g)y,y~ = (U, F'(u")"g) Loo(Dye.L1 (D)
= i (ot ) oo
= Tim (F'(ut)upg, 5 9)yye
k—o00 K

= (F'(u")u™, gy,
where the last equality above follows by the second inequality in (17) with u = u My,
and F(upy, ) — y in Y. We deduce that F'(u")(ut — u) = 0 and combining this

3

relation now with the first inequality in (17) using u = u, we may again conclude F'(u) =
y. Finally, if u™ is the only solution to F(-) = y in B,(u"), the weak-* convergence

of the whole sequence {uMgi}ieN follows by a standard subsequence argument, see [35,
Prop. 10.13(2)]. O
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Remark 2.4. If F'(u") is injective, ||ul|, := ||F'(u")ul|| constitutes a norm on L>®(D)*
with respect to which {upg, }o=o then converges strongly to u™ according to (17) and (16)
at the rate ||ut — upg |l = O(9) as 6 — 0. Howewver, this norm is generally weaker than
| - || oo (pye with equivalence if and only if F'(u*) is boundedly invertible. However, for
locally illposed problems F(-) = y we expect its linearization to be illposed as well.

Remark 2.5. We discuss how the statements of the theorems from above carry over to a
semi-discrete situation as it appears under an implementation of Algorithm 1. Typically,
one X"max represents the finest possible or finest chosen resolution for the sought-for
quantity ut € X™= and models the implementation from a mathematical point of view.'
Here, X™= s equipped with the L*>-topology. Now, Theorems 2.1 and 2.3 apply to

F,. . :DF)NnX"™>C [*®(D) =Y, u— F(u),
where (5) can be omitted due to

F’ (u)((u+ —ug) — P (ut — uo)) =0

Mmax

since both ug and ut are assumed to be in X" Further, (14) then reads

1 2 2
T (Srmasm) < 1100113 ((w + #) + VOld(D)C%%)

and as the only consequence the constant Cp needs to be replaced by volg(D)Y?Cp in the
definition of corresponding REGINN™ parameters.

We emphasize that the underlying semi-discrete inverse problem is: given y® € Y find
u® € Xm™max such that F,,, (u®) =~ y° where y° now incorporates measurement noise and
discretization error.

Remark 2.6. At first glance the IRGNM-Tikhonov method of [11] and REGINN™ seem to
be quite similar, but they are separated by significant structural differences: In IRGNM-
Tikhonov the penalty parameter is determined a priori and is assigend to a fixed reqular-
ization term, whereas for REGINN® the reqularization term is explicitly n-dependent and
relies on an the posteriori parameter choice (11). Further, the Newton update for the
IRGNM-Tikhonov method has to be an exact minimizer of the Tikhonov functional. In
contrast, the Newton update for REGINN®> only requires an approrimate minimizer, see
(9), which is especially convenient when it comes to practical realizations. At this point we
again emphasize that solving the (approrimate) minimization problem numerically does
not even require sophisticated optimization techniques as long as'Y is smooth. Note also
that the discrete spaces X™ are an integral part of REGINN™ and its theory, so numer-
ical effects are included in a very natural way: the discrete reqularizers U, € XM,

of Theorem 2.3 converge to the continuous limit ut € L>®(D)¢. A similar connection of
the discrete with the continuous world is (to our knowledge) still pending for the method
in [11].

The previous version of REGINN® requires the determination of successive discretization
levels n,, > n,,_; for possibly many n and corresponding (almost) minimizers s € X"
of (10) need to be computed before meeting the given pi,,-criterion in (9). As this can

'Recall that Theorem 2.1 in its original version requires an initial guess ug € By, (ut). Since L>®(D)*
is not separable, however, there might be no element in X™ for any n € N which satisfies this closeness
condition. As remedy we may even enlarge the parameter space for the semi-discrete problem to Uy +
Xnmax where Uy C L>(D)* is a proper finite dimensional subspace such that uy € Up. In this case, we
assume ut € Uy + X ™max,
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be numerically expensive, we want to present an alternative version which directly links
n to m. A closer look at the proof of Theorem 2.1 reveals that n,, actually depends on
the decay of ||F”(up)(P™(ut — ug) — (u™ — wg))||y. Hence, if we have a concrete upper
bound for this discretization residual in terms of n, feasible choices of n,, can be found
by simple algebraic manipulation. Such upper bounds can be deduced on the basis of
better initial guesses which are governed by some stronger norm. For this purpose we
state the following refined version of assumption (5):

If X C L*°(D)*is an embedded normed space such that

(18) @] Lo (pye < Cx||ullx for all w € X,
then for any u™ such that Br(u") C int(D(F)), u € Br(u™) and u € X we assume that
(19) 1 (u) (@ — P"a) [ly < C* @]l xB(n),

where C™ > 0 and g fulfills S(n) \, 0 with 5(0) = 1. We think of 5 as being rather
independent of u € D(F) once X and {X"},en are set while the magnitude of CT is
strongly Br(u™)-dependent. We will verify in Section 3.3 below that (19) is satisfied, for
instance, by the modeling assumptions of FWI in the acoustic regime. The next theorem
shows that we can indeed determine n,, conveniently for successive Newton steps of
REGINN™ when replacing condition (5) by (19).

Theorem 2.7. Adopt all assumptions, notations and parameters from Theorems 2.1 and
2.3, and assume that (19) holds — without loss of generality with 7™ = r by shrinking one of
the radii otherwise. Start with ug € L>°(D)* such that ||u™ — ug||x < min{ro/Cx,1/C*}
and restrict {pm} to (1S, Pmax), where

1 ? 2
(20) Hrin -= \/<w + % + 6) + max { voly(D)¥ ), I}C%% < fmax

for some € > 0 sufficiently small and g, large with ny € N. Further, let n,, be successively

defined by
(21) Ny, := min {n >ng: fB(n) < eHbany}.

Then we can find s, € X" satisfying (9). In particular, REGINN® also terminates in
this case and the reqularization property still holds.

Proof. First, n,, according to (21) is well defined since lim,,_,~, 5(n) = 0. Besides, since
|2 ||y is monotonously decreasing in m, we get that n,, is non-decreasing, too. Using
S = arg Minge xrm Jp,, m($), we may compute with (13) and by (19)

(o) < (Wil (0 52) 4 1) (P0* )~ 0 = w) )

2
.
+ volg(D)?/tm 7—20%||52|@2(D)

14+w 2
< (18l o+ 252) 4 Pl ~ ol ) )
T . 4

v~

<1 <ello, lly

2
 mas{vola(D)? 0, 1CR 1012
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Algorithm 2 REGINN* for improved initial guesses

Input: F; ug; y°; 6; L ym; 7575 Coos Mo 5 € B
Output: uy with [|y° — F(uy)|ly < 76
m:=0
bfn =y - F(up,)
while ||6° ||y > 76 do
= (10,115 /7°
Ny, 1= min{n >ng: B(n) < €||b§n||Y}
determine s, € X" Jp, m(Sm) < Mﬁqllbfnlli
U4l 1= Uy + Sy
m:=m-+1
v o=y’ — Fluy,)
end while
M:=m

€ §
< (/’Lmin)QHbmH%Z(D)'
The fact that REGINN® still terminates and also admits the regularization property follows
by Theorem 2.1, Theorem 2.3 and [jug — u™ || peo(pye < Cxllug — u™||x < 7o. O

For convenience, we restate REGINN® in Algorithm 2 subject to ut —ug € X for which
we need to provide € and [ as additional input. This version is especially of interest if
the regularity u* € X is known a priori so that uy € X ensures u™ —uy € X, as desired.

3. APPLICATIONS: PARAMETER IDENTIFICATION TASKS IN PDES

In this section we will verify our abstract assumptions (5) and (6) in the concrete set-
tings of electrical impedance tomography and time domain full waveform inversion (FWI)
in the visco-elastic regime which is the state-of-the-art imaging modality in exploration
geophysics, see, e.g., [8, 34]. Both inverse problems are locally illposed. We will even
show that (19) is satisfied in the acoustic regime. Moreover, our results for FWT carry
over to parameter identification tasks for other hyperbolic evolution equations, such as
an inverse problem in electromagnetic scattering.

For all applications we rely on the discrete B-spline spaces constructed in Appendix A.1.

3.1. Electrical impedance tomography under the complete electrode model.
Electrical impedance tomography (EIT) entails the determination of the electric conduc-
tivity distribution of an object by applying electric currents at the boundary through
electrodes and measuring the resulting voltages at the boundary as well. Potential appli-
cations are, for instance, medical imaging and non-destructive testing.

Let 0: D — [0umin, ©), Omin > 0, be the searched-for conductivity distribution in the
simply connected Lipschitz-domain D C R2. Further, the p electrodes are denoted by
E,, ..., E, and are assumed to be open subsets of 9D, the boundary of D, having positive
surface measure: |Ej| > 0, j = 1,...,p. Moreover, let the electrodes be connected and
separated: F; N Ej =0, i # j. To this electrode configuration we associate the electrode
space

&y == span{xp,,..., x5} N L2(0D) C L2(dD)
where yg, is the indicator function of the ith electrode and L2(9D) is the space of L*-
functions on the boundary of D having vanishing mean.
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The forward problem of impedance tomography under the complete electrode model
(CEM) in the weak formulation is based on the bilinear form a: Y, x Y, = R, Y], :=
Hl (D) D 8107

a((0, V), (w0, W) = / VoV de + 1/aD(v CV)(w — W) ds.

D z

Given an electrode (mean) current I € €, and a contact impedance z > 0, find a voltage
potential uw € H'(D) and an electrode voltage U € &, such that

(22) a((u, U), (w,W)) = /8D1st for all (w, W) € Y,,.

The vanishing mean of I and U can be interpreted as conservation of charge and grounding
the potential, respectively. CEM (22) is the most accurate mathematical model for EIT
currently in use and has a unique solution for o € LY (D), where

LE(D):={o € L*(D): 0 > Omin >0 a.e. in D} .

The latter follows from the Lax-Milgram theorem, see [31].
The nonlinear forward operator F' describing CEM is

F: L¥(D) C L®(D) = L(E,), o+ {I— U}.

In other words: F(o) maps the current I to the voltage U of the solution of (22). Its
Frechét derivative F'(0) € L(L>(D), L(€,)) is given by

F'(o)[h]I =U'

where (v',U’) € Y, uniquely solves

(23) a((W,U"), (w,W)) = —/ hVu(I) - Vwdz for all (w,W) €Y,
D

with u = wu(I) being the first component of the solution of (22) with respect to the
current I, see, e.g., [17]. We will similarly use U(I) for the second component of the
solution of (22) and /(1) for the first component of (23).

We equip £(€,) with the Hilbert-Schmidt inner product: (A, I')ys = ;’;i (AL;,T1;) r29p)
where {y,...,1,_1} is an orthonormal basis of £,. This inner product is independent of
the chosen orthonormal basis.

Lemma 3.1. The adjoint operator F'(c)*: L(E,)* — L>*(D)* is given by

p—1

F'(o)T ==Y _ Vu(TL) Vu(I})

j=1
where w(I'l;) and u(l;) denote the solutions of (22) with respect to I =T'I; and I = I;,
respectively. As a sum of products of two L*-functions, F'(c)*T is even in L'(D) C
L>(D)*.
Proof. Set A = F'(0)[h], A; = Al;, and I'; =T'I; for one I € L£(&,). Then,

H
3
L

.
(M Tyus = > (A, 1) r200)

1 j=1

@2

=
—
g
—
—
<
=
—
r1
<.
=
e
~
e
=

<.
I



ON THE ITERATIVE REGULARIZATION IN L 13

9 p1
23 _/ hZVu(Fj) -Vu(l;) ds = (h, F'(0)"T) oo (D) x Lo (D)
oD

j=1
which settles the argument. U
Lemma 3.2. Let X" = X} (D), n € N, be the tensor product spline space of Appendiz A.1
with progector P™ defined in (52). Then, for any o € LE(D),

lim ||F'(o)[h —P" =0 for any h € L=(D).

n—o0

Proof. We start with

Ml

p—1
7= Pl = 2Nk =P AL e
=

The bilinear form a is bounded and elliptic on Y,. Hence, it follows from (23) that
| P (@) =PRI ooy < N[5 = P BT o

D) ~

Since P"h =% h pointwise a.e. (Appendix B), the norm on the right tends to zero as
n — 0o by the dominated convergence theorem. U

So we have validated (5) and (6) for the forward operator of EIT. Moreover, TCC
(3) holds for the semi-discrete version F, . of F' (Remark 2.5) provided the number of

Mmax

electrodes is sufficiently large [17, Theorem 4.5].

3.2. Full waveform inversion. Wave propagation in realistic media can be modeled by
a visco-elastic wave equation which accounts for dispersion and attenuation [8, Chapter 5.
Here, we consider the formulation introduced in [36]: Let D C R? be a Lipschitz domain.
Using L € N damping tensors a;: [0,7] x D — R3X3 [ =1,..., L, the evolution of the

sym?
particle velocity field v: [0, 7] x D — R® and stress tensor oq: [0, 7] x D — R3%? reads
L
(24a) pov = div (Do) + f in [0,7] x D,
1=0
(24b) Qoo =C(p,m)e(v) in [0,7] x D,
(24c) Tl 01O = C(Ts,u, Tpﬂ') e(v) — oy, l=1,...,L, in [0, 7] x D,

with zero initial conditions”

(24d) v(0) =0 and o04(0)=0,[=0,...,L.

Above, f: [0,T]x D — R3 is the volume force, which initiates the wave, and the functions
,7Ts: D — R are scaling factors for the unrelaxed bulk modulus 7: D — R and shear

modulus p: D — R, respectively. Further, p: D — R is the mass density. The linear
map C(m,p), m,p € R, is Hooke’s tensor

C(m,p): R¥3 - R33, C(m,p)M = 2mM + (p — 2m) tr(M)I,
where I € R?*3 is the identity matrix and tr(IM) denotes the trace of M € R3*3. Finally,

e(v) = %[(va)T V]

is the linearized strain rate.

2Zero initial conditions are not a general restriction. We use them here only to ease the presentation.
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Wave propagation is frequency-dependent and the numbers 7,; > 0, [ = 1,...,L,
model this dependency about the center frequency wy, see [2, 3]. Introducing the frequency-
dependent phase velocities of P- and S-waves,

L 2,2
2 s 2 ,u . wOTO'l
vp = —(1 4+ m7par) and v§ = =(1 + 75) with a = E —_—
T S — 1+ Wi,

full waveform inversion entails the identification of the five spatially dependent parameters

u = <p> U577—87/UP77-P)

from partial wave field measurements. For a physically meaningful open subset D(F') C
L>°(D)?, the full waveform forward operator

F:D(F)c L*(D)> — L*([0,T],H), u~y:=(v,00,...,0L),

is well defined with

_ 72 3 2 3x3\1+L
H=L*(D,R®) x L*(D,R¥)

where y is the unique classical solution of (24) with source f € W1i([0,T], L*(D,R?)),

see [16] (of course y satisfies boundary conditions, whose concrete formulations we have

omitted for simplicity).

Remark 3.3. Actually, the operator modeling seismic imaging is ® = M o F where
M: L*([0,T),H) — S denotes the measurement operator (S is the space of seismograms).
We can reasonably assume that M is linear and bounded. If F' satisfies (5) and (6), so
does ®.

For suitable w = (w, %y, ...,%) € H we define operators A, B, and ) mapping into
H by

e b 0
v (Zz:o T,bl) C’(,u, 7T)1/J0 0
Aw = — 5@ B lw= | Clsmmem)$n |, Qu=| o |,
e(w) C(7sp, p7) %y, o YL

so that (24) collapses to

Bowy(t) + Ay(t) + BQy(t) = f(t) in [0,T],

(25) 4(0) = 0.

Note that only B: D(F) C L*(D)®> — L(H) depends on the parameters to be identified:
B = B(u). It is Fréchet-differentiable with
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pPW
. ~ fi
—2C(p, m)apo + p C'(p, ) ﬂ Yo
A% ™
e N i .
(26) B'(u)[u] e —£C(T3M, e )1 + p C'(Tsp, TpTT) - P
Y
—gé(TsM,TPW)%/)L + pC'(Tsp, 7o) ; Y
where u = (p, Vs, 7s, Up, Tp) and
~ 2us . avi - 2up avp
= Vg — T T = Up — 7
a 1+msa © (L+ma)? L+mpa  (L+mpa)?
- 2Tg Vs . vg - - 2TpUp . v%_, -
= 0 T T =
F=97 Tsa (1 + 750)? > 1+ mpa (14 mpa)?
Further,
~ 1 p—m
C =C t=C— —.
(m, p) (m, p) (4m, (3= 4m))
and
7 &mp) ] = ~Cmp) o €7 0 Clm.

Both, C(y, ) and C(rsp, p7) are well defined for u € D(F), see [16, Section 4.1] for the
involved definition of D(F).

Lemma 3.4. Let {Uy}nen C L®(D)® be bounded and be convergent to u € L*(D)?
pointwise a.e. Then, for any u € D(F),

(28) lim ||B'(u)[@, —alh|, =0 foranyh € H.

n—oo

Proof. The L%-space H has inner product

L
<(V70'07-'-;0'L)a<wa¢07---7¢l)>H:/ <V'W+Zﬂzi¢z> dx
D 1=0

where the colon indicates the Frobenius inner product on R3*®. Now, in view of (26)
and (27) we see that the integrand of ||B’(u)[4, — u]h||%, converges to zero pointwise
a.e. Furthermore, as {, }ney is bounded in L°°(D)?, the absolute value of integrand
is bounded by an integrable function (as a matter of fact, the integrand is the sum of
products of two L2-functions with an L°-function). The assertions follows from the
dominated convergence theorem. U

For completion, we quote a result from [16, Theorem 4.4] which we will need below.

Lemma 3.5. Under the assumptions from above, F is Fréchet-differentiable at any u €
D(F). Foru € L>®(D)® we have § := F'(u)u € C([0,T], H) given as the unique weak
solution of

Boy(t) + Ay(t) + BQy(t) = —B'(u)[u] (Giy(t) + Qy(t)) ,
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y(0) =0,
with y = F(u). Further, for any t € [0,T],
(29) 170l < CIIB (W) [l (G + Qu)llr(0.0),1);

where C depends continuously on the operator norms of B, B~*, Q, and on T.

We define
(30) X" =X} x---x Xk (5 factors)

as well as

P L®(D)’ = X", P"u= (Prui,..., Prus),
where X7} and P} are given by the cardinal B-spline spaces in (50) and (52), respectively.
We point out that also heterogeneous choices for the factors in X™ are possible as long as
X" keeps nested with respect to n. The convergence properties of {P"},,, see Appendix B,
then guarantee (5) according to the next lemma.

Lemma 3.6. Let X™ and P" be as above. For the full wave form forward operator F
with f € WH1([0,T), L*(D,R?)) we have that

Yim [|F(w) (@ = P"@) | 2(o,r1,00) = O
for any u € D(F) and all u € L>(D)5.
Proof. The function 3, := F'(u)(@ — P"a) is the unique weak solution of
BOG,(1) + AT,(t) + BQF (1) = —B'(w)[a - P"a] ((t) + Qu(1)).
yn(O) =0,
which according to (29) satisfies for all 0 <t < T
15 (w) (@ = P"0) ()l < CI[B'(w) [@ — P"a] (O + Qu)ll 2 (o7).10)-

Since C([0,T], H) < L*([0,T], H) is continuous, the assertion of the theorem follows
if we can show that the right-hand side of the above stability estimate goes to zero as
n — oo. Applying Proposition B.1 componentwise, we deduce that P™u — u pointwise
a.e. for a subsequence {ny}ren. Using ||P™ | popys < Cpl|t]|po(pys and (28), we can
apply the dominated convergence theorem for integration in time which yields || B'(u)[@—
Pt (Opy + Qy) |l pr (o, — 0 as k — oo. By uniqueness of the pointwise limit @ the
latter convergence even holds for the whole sequence, see [35, Prop. 10.13(2)]. O

Unfortunately, the TCC, which is the remaining condition for the rigorous applicability
of REGINN®®, is subject of current research in the context of FWI and only special cases
are known to hold. For example, the TCC has recently been shown for a semi-discrete
setting in the acoustic regime which does, however, not meet our requirements, see [6].
To conclude our discussion about the rigorous scope of REGINN*°, we mention that the
crucial condition (6), which guarantees the regularization property (Theorem 2.3), was
proven for the visco-elastic case in [16, Theorem 4.5 and Remark 4.6].

Remark 3.7. The findings for the full waveform forward operator in this subsection, that
is, (5) and (6) hold true, carry over to parameter identification tasks for other hyperbolic
evolution equations of the form (25). Examples are the parameter-to-state maps with

respect to the acoustic and elastic wave equations (which are in fact simplifications of the
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visco-elastic model). A further ezample is the Mazwell system where the components of
y = (E,H) are the electric and magnetic fields, respectively. The involved operators are

old —curl eld O —J.
A_(curl 0 )’ B_(O ,uld)’ @=0, andf—<Jm)
where e, pu,0: D — R are the (electric) permittivity, the (magnetic) permeability, and the

conductivity. Further, Jo,Jm: [0,00) x D — R3 are the current and magnetic densities.
See [15, Section 5] for the details to verify (5) and (6) for the map F: (e,u) — y.

3.3. A stronger result for FWI in the acoustic regime. Setting p = 0, 7,; = 0,
7 = 7s = 0 in (24) and introducing the hydrostatic pressure p = tr(o)/3, we can
formally derive the acoustic wave equation as first order system,

(31a) pov—Vp=fi in [0, 7] x D,
1

(31b> — 8tp — divv = f2 in [O, T] X D,
pv

where we allow two source terms and where v = wvp is the compression wave speed.
In our abstract formulation (25), it is represented by y = (v,p) € L*([0,T],H), H =
L*(D,R%) x L*(D), and the operators

B 0 V C(pld 0 B
(32) A__<div o)’ B‘(o pLVQId)’ @=0.
Further, A is defined on
(33) D(A) = {(v,p) € L*(D,R?) x H)(D) : divv € L*(D)}.

If f = (f1,f2) € WH([0,T], H) then (31) has a unique classical solution in C*([0, 7], H)N
C([0,T],D(A)), see [15] (recall that we have zero initial conditions (24d)).
The parameter-to-state map here is

(34) F:D(F) C L®(D)* = L*([0,T], H), u=(p,v)—y=(v,p),
with domain of definition
(35) D(F) = {(p,v) € L®(D)* : 0 < pmin < p < Prmax < 00 and

0 < Vpmin < V < Vpax < 00 a.e. in D}.

As explained in Remark 3.7, F satisfies (5) and (6). In this part we even verify the
stronger compatibility condition (19), that is, for a special choice of X™ and X, see (18),
we will specify the decay function  in Theorem 3.8 below. For this purpose, we restrict
ourselves to the discretization space X™ = X7' x X} with X7 = X7*(D) from (50) with
N = 1. Thus, X" consists of piecewise constant functions in the sequel. The associated
projector onto X" then reads

(36) P L®°(D)* — X", P"u= (Pluy, Pl'us),

whose components are given by

Pru, = Z ond (/n u;(z) d$> ]lmg

kel, k
for j € {1,2} according to (52). Here,
(37) 0P .= 27"([0,1]* + k)



18 L. PIERONEK AND A. RIEDER

is the translated and dilated unit cube. Further, Z,, = {k € Z¢ : (0} C D}, see (51).

We are left to determine X C L*°(D)? where the subspace X is governed by a stronger
topology measuring some kind of smoothness. Intuitively, X should be large enough
to still contain a wide class of discontinuous profiles, on the other hand we need some
minimal a priori regularity such that its X™-projections facilitate a common decay rate
in (19). For s > 0 fixed we set

X = L=(D)?
whose component spaces are characterized by
w(-—h) —w|2pr
(38) L¥(D) = {w € L>®(D) : sup o ) Iz < oo}
h#0 |h|®

with D" := {x € D: 2 — h € D} for any h € R%. We assign the norm
[

where [|ps (p) is a semi-norm given by the numerical value of the supremum in (38).

E]

10 = || - lze(p) + []B35 (D),

Originally, [-|s _(p) emerges from the definition of Hilbertian Besov-Nikolskii spaces

B —
ot =) vl )

B (D)= {w € L*(D) : su

h£0 |h[*
with || - [|s () = [| - [l22(p) + []B; (). see [33]. We set
(39) Jull% == llp %gO(D) + [lv %gO(D)

and obviously have that ||u||pe~(py: < ||ulx for all v € X.

Theorem 3.8. Let D C R, d € {1,2,3}, be a domain with C' boundary and assume
that f = (f1. f2) € W2I([0,T], H) with f(0) = 8,£(0) = 0 and f; € C([0,T], L(D,R?)
for some q € (2, qmax), where quax only depends on D and the ratio pmax/pPmin < 00 of the
parameters from the definition of D(F). Let P" be as in (36) and let X = L°(D)? be as
above for some 0 < s < 1/2. Then, there is a neighborhood U of u™ € D(F') such that
(40) [[F"(u) (@ — P™@) || 12 0,21,m) < O[] x (2751072 =4

forallueU
and any u € X.

To prove the theorem, some preparation is required. We start with the observation
that L3°(D) C B; (D) and X7 C L°(D) if s < 1/2. The latter inclusion can be seen as
follows: Let h = (hy,..., hq) with |h| < 27". Without loss of generality we may assume
that h; > 0. Now, thanks to the symmetry of the cubes, we estimate

1L-nsop — Logll72om

< 2voly ([0,27]N[0,27 = ] x -+ x [0,27" B )

_ 2(2*”61 _ lj (27" - hi))

S 2<2—nd o (2—71 . |h|)d> S d2—n(d—1)+1|h|

for all k € Z,,, where we used the mean value theorem in the last step.
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Lemma 3.9. Let D be a bounded Lipschitz domain and let P™ be as in (36). Then, for
anyu € X and 0 < s <1/2,
||U — PnU||L2(D)2 S C||U||X2_ns/d,
where C' only depends on D and the dimension d.

Proof. In view of (39) it suffices to prove the assertion for each component Pj of P" and
for any w € L°(D). Let O C R? be a sufficiently large rectangle containing D. According

to [27] there exists w € B3 ([J) such that w|p = w and ||w|[p; @) < 5Hw|]35w(p), where
Bs _(p) can be replaced by the stronger norm ||w||ze(py. Using a dyadic partition of

]
[0 at level n based on the cubes {{0}}x (for which we restrict O to have integer side
length), we have

1@ — Pyl o) < [@]ps 02",

see [1], where ﬁi is defined as in (36) but with respect to the larger index set Z,,(0) =
{k e z®:0¢ c O}. Setting

D= |J O
keZ,(D)

we conclude that Prw|p, = Pra|p, and Pl p\p, = 0. The latter implies

|w — Plwl|2(p\p,) = lwl|2(p\p,) < v/ Vola(D\Dy) w2 (D)
< V/vola(D\Dy,) ||wl|ze (D)

for which we can estimate for some Cp < oo
vol(D\D,,) < CpH* (0D)2™"

according to the inclusion D\D,, C Ugepp(z + 27"[—1,1]%]), where H*"*(0D) denotes
the d — 1-dimensional Hausdorfl measure of 0D. Altogether, we obtain for s < 1/2 that

|w —Prw|| 2y < |lw — Plwl|2p,) + |lw — Piwl|L2(p\p,)
< (C27ms/ 4 \/CpHEL(DD)27?) ||w
< Cllwllpge(my2 ™/

Lge(D)

which proves the lemma. O

Lemma 3.10. Under the assumptions of Theorem 3.8, there is a qumax > 2 such that for
any ut = (pT,v") € D(F) there exists a neighborhood U of u* such that

sup {HatyHLl([o,T},Hq)i y=(p,v)=F(u), u=(p,v) € U} < 00
for any q € (2, gmax) where
(41) H?:= [9(D) x LY(D,R%).
Here, Gmax only depends on D and the 1atio pmax/pmin < 00 of the parameters from the
definition of D(F).

Proof. The proof makes use of converting higher time regularity to higher spatial integra-
bility. By Theorem 2.6 of [15], we know that for ut € D(F') we have dyy = (Op, Opv) €
C([0,T],D(A)) N CY([0,T), H), in particular d;p € L'([0,T], H}(D)). By Sobolev em-
bedding, see [7], we obtain at least d;p € L'([0,T], L%(D)) for d € {1,2,3}. Again by
Theorem 2.6 of [15], since the constant of the stability estimate depends continuously
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on B and thus on u, we can actually conclude ||0:p||L1(j0,7),26(p)) < 0o uniformly in a
neighborhood of u. Concerning 9;v, we only have integrability information about its
divergence. Therefore, we first note that by (31) we have

_ div (lvp> — div (ﬁ> _ divav = div (ﬁ) (@f2 agp)
p p p pv?

in the sense of distributions. As (p,v) € D(F) is bounded away from zero uniformly,
the parameters do not affect the integrability of the right-hand side terms. Now Meyers’
estimate, see [22, Thm. 1], implies for fixed ¢ € [0,7] and any g € (2, ¢max) that

1 fillzapr 102p]|22(p
IVpllLapre) < C (—) + (18 foll 2y + L)

min minYmin

where ¢uax depends on D and puax/pmin < 00, while C' additionally depends on g.
Since ||97p||12(py can be bounded in terms of [|07 f||11(o7,m) and a constant which
depends continuously on B, that is, on u, see Theorem 2.6 of [15], we concude that
Vol L1 (o.1,09(p,rey) < 00 uniformly in a neighborhood of u*. Comparing with (31), we
finally get that also ||9,v| 11 (jo,r],a(p,re)) < 00 locally uniform in u. This completes the
proof. O

Finally, we can prove the main result.
Proof of Theorem 3.8. The proof uses a more elaborate analysis of the stability estimate
1 (w) (@ = P"@) ()| 220,000 < ClIB'(w) (@ = P"@) Oyl p10,7), )

compared to Lemma 3.6. Recall that the constant C' depends continuously on the operator
norm of B(u), B~*(u) and on T according to (29). Since also B ~ B! is (locally)
continuous, we can assume without loss of generality that the above inequality holds for
some fixed C' = Cp+ > 0 for all ||u — u||geo(p)2 < 7’ by shrinking the original " > 0
otherwise. Then, for any 0 > 0,

| B’ (u) [ﬂ - Pn@] atyHLl (0,7),H)

= ’ B'(u) { Tl } (Oey(Lga—prasyalxy + Lga—pra<sialx)))

< 1B ()]l £(noe(y2,c(m)

LY((0,T),H)
x ||l x

|l — P"u|| oo (py2

Tl 10y a—prarzatait | 1 oy,
X ||ullx
+ 1B ()l om0 6 10 L a—pmat<sian o | o oo 1l

Due to ||t — Pt popy2 < (14 Cp)||Ul|z(pyz < (1 + Cp)|[u]|x by (S2) and Cx =1 in
(18), we obtain, by dropplng the complementary indicator function in the bottom line
above, that

HB/(U) [a— Pna]atyHLl ((0,7),H)
< (14 Cp)IIB' ()| cqa (pye. i [0y L ya—praizataiiot | s oz, 1811
+HB( ey 5H3tyHL1 or.m) 18l
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The middle line here can also be directly expressed in terms of §. To this end, we apply
Holder’s inequality with exponent ¢/2 > 1 in view of (41) to get

Haty(ﬂ{lﬁ—P”QIZtsHﬁHx}HLl ((0,T),H)

1/2
/ (/ |0y (1) | (2) 1 fja—prazapal ) (@ )d:v> dt

S/ (”@y(t)Hin vol ({m_'pnm Z5”a||x})(q—2)/(2q)>1/2dt
= HatyHLl ((0,T),H4) vol ({‘u_r])na’ > 5HUH }) (4—2)/q

2

1@ — P"al| 72 pye o

< 19wyl (0,1),m9) 62||al|3 |
X

where we additionally employed Tschebyscheft’s inequality in the bottom line, see e.g.,
[9]. With Lemma 3.9 we can further estimate

@ = Praliewye _ Clallk (2-“?)"  c(2t/)"
cluly  — Sulk 02
Altogether, we get with a similar Holder-inequality argument for
(¢=2)/q

10y L1 0,1,y < |0 10,1, E9) VOla(D)
that

1B (w) [t — P"a] 0yl L2 o), er) < Ml x | B (w)|| ceroe (py2,e0e 10yl 1 0., 119y

(a—2)/q
C(2—(s/d)
X ((1 + Cp) <%) + 5V01d(D)(q_2)/q)

which holds for all 6 > 0. Optimization in ¢ then yields § oc (2 *s<qf2>/<3dqf4d>)" By
Lemma 3.10 and the continuity of B’, we can indeed find C* < oo such that (40) holds
true. U

4. NUMERICAL RESULTS

We present numerical experiments® on a two-parameter reconstruction to demonstrate
the operation of REGINN™ in a test scenario where all assumptions required for our analysis
in the previous sections are satisfied.

Recall from Theorem 2.3 that, in general, the regularization property holds only in the
weak-*x topology permitting a kind of strange convergence behavior. Therefore, we test
Algorithm 1 as the noise level approaches zero and also how it behaves under different
initial spaces X"°. We will start with a rather low dimensional X™ such that n,, increases
successively in the course of the Newton iteration (while-loop) and in contrast also

3For the reader’s own experiments we provide our MATLAB code on http://www.math.kit.
edu/ianm3/~rieder/media/reginn_infty_fig2.m. Executed in MATLAB (R2021a) on an Intel(R)
Core(TM) i5-1035G4 CPU under Windows 10, the code produces the output shown in Figure 2. In
our program we use a routine by John D’Errico (2021): Piecewise functions (https://www.mathworks.
com/matlabcentral/fileexchange/9394-piecewise-functions), MATLAB Central File Exchange.
Retrieved November 29, 2021.


http://www.math.kit.edu/ianm3/~rieder/media/reginn_infty_fig2.m
http://www.math.kit.edu/ianm3/~rieder/media/reginn_infty_fig2.m
https://www.mathworks.com/matlabcentral/fileexchange/9394-piecewise-functions
https://www.mathworks.com/matlabcentral/fileexchange/9394-piecewise-functions
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with some large dimensional X™ which corresponds to a more static use of Tikhonov
regularization throughout all iterations.

Our experiments rely on the acoustic wave equation in one spatial dimension, d = 1,
where D = (0,1) and 7' = 1:

1
W atp — axv = f1 in (O, 1) X (0, 1),

(42) p@tv — &Cp = fg in (O, 1) X (0, 1),
v(0,-) =p(0,) =0 on (0,1),
p(-,0)=p(-,1)=0 on (0,1).

The source components fi, fo: [0,1] x [0,1] — R are

filt,x) = fi(x) = 100(1‘(3: - 1)m - gcos (g:c> >,

(43)
LT
fo(t,x) = 100( —t(2x — 1) +sin (537) p(x)),
where
1 1
(44) p(r) =1+ H Lj7/30,07/30) (%) and  v(z) =1— T 1113/30,23/30) ()

The corresponding exact data, that is, the solution of (42) and (43), are given by
(45) p(t,x) = 100tz(z — 1) and wo(t,x) = 100t¢sin <gw> ‘

We solve the appearing wave equations during inversion for the parameters by the FEM-
based MATLAB (R2021a) command pdepe with 300 spatial and 100 temporal grid points.
Both sets of points are distributed equidistantly in [0, 1].

Our discrete parameter spaces X™ = X7 x X{ are generated by the piecewise constant
cardinal B-spline as explained in Appendix A.1. So, conditions (S1)-(S3) are fulfilled.
Note that the dimension of X7 is 2". In view of Remark 2.5 we set ny.x = 8 yielding the
semi-discrete parameter-to-state map

: D(F,

Mmax

(46) F,

T'max

) € L=®(D)* = L*([0,1], H), (p,v) = (p,v),

where (p,v) € L*([0,1], H), H = L*(0,1)2, solves (42) with (43) and (p,v) € D(F,,..) =
XmmaxD(F), see (35) for D(F). Within our computations, ||- || z2(0,1],z) is discretized by
the corresponding space-time Euclidean norm and denoted by || - ||. Since F,, . satisfies

the TCC (3), see Appendix C, Theorem 2.1 guarantees termination of REGINN* applied
to the inverse problem

(47) find (p,v) € X" F, . (p,v)~ (p°,0°).

To simplify notation we use the same symbols for the continuous and the discrete versions
of functions such as p, v, p, v, etc.

We apply REGINN*> (Algorithm 1) to (47) where we choose ¢, = n/log, C for J, m
from (10) in accordance with the lower bound in (53) below. For each m the computation
of Newton update candidates s,, € X" is realized — benefiting greatly from the smoothness
of the Tikhonov functionals — by a steepest descent routine with Armijo stepsize rule in a
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loop over n until (9) is met. We adapt p,, during iteration according to the rule proposed
in [26]: we start with gy = po and set

{min{l —Im=2(] gy 1),0999), Gimet > Gmz,
/‘Lm — m—1

) m > 2
0.9pm—1, otherwise,

Y

where o € (0,1) is user-supplied and j,, denotes the number of gradient decent steps
needed to compute the update s,,. Complementary, the underlying discretization level n
will be increased if the gradient descent loop stagnates on X", which we consider to occur
if the ratio of two successive gradient step evaluations does not exceed a fixed threshold
close to 1, say 0.99999. We stop the algorithm either by the discrepancy principle or
if n > nunae happens, that is, if the discretization of X™ would become finer than the
computational grid used in the pdepe-routine for solving the wave equation. In the latter
case, we still perform u,, 1 = u,, + S, with the last update candidate s,, € X™=x before
abortion. We emphasize that s, is not a Newton update in the sense of (9), but the
corresponding wu,, 1 might still fulfill the discrepancy principle unlike ,,,.

In our experiments we especially want to detect the jump regions [7/30,17/30] and
[13/30,23/30], where the parameters differ from the homogeneous background material
(po, o) = (1,1) € X™max respectively, that we take as initial guess. Note that no grid
point of X™ coincides with either of the jump discontinuity points for all n so that the
error of any reconstruction of p and v will always be at least (maxp — minp)/2 = 1/10
and (maxv —minv)/2 = 1/20 with respect to the L>-norm, respectively.

First, we investigate the case of ‘exact’ data, that is, (p°,v°) = (p,v) with (p,v) from
(45). Despite of 6 = 0 our data might still be contaminated by some discretization error
with respect to F), .. since the corresponding analytical solution (p,v) given by (44) is
not contained in X™»x. Choosing pg = 0.7, v = 0.8, Cx = 1.1, we run Algorithm 1 for
different ng to observe how its choice affects the outcome. Note that setting 7 is redundant
here because termination is solely forced by n exceeding n,.x. Figure 1 displays the exact
parameter functions p and v (red) and the corresponding outputs py; and vy, (blue) of
Algorithm 1 when starting with ng € {2,5,8}, respectively. We see that the larger ny
is, the smoother the output becomes, while the points of discontinuity are more sharply
located for smaller ng. Hence, for the reconstruction of jump discontinuities, ng shall be
chosen large enough to locate discontinuity points sufficiently precise while at the same
time it should not be too large to prevent oversmoothing. Figure 2 shows a more detailed
convergence history in the case ng = 2 and confirms that the majority of Newton steps
is indeed undertaken with n,, < 4.

Next, we study the case of noisy data. For this purpose we generate noise vec-
tors ¢ as random samples from a centered Gaussian distribution and scale it such that

I<]] = d]|(p,v)||. Since ¢ is a relative perturbation here, the discrepancy principle must
be adjusted accordingly. As before, we employ Algorithm 1 with pg = 0.7, v = 0.8,
Csx = 1.1, 7 = 1.1. Using the insights from our exact data case we set nyg = 5 as

initial value to balance the aforementioned effects of globally smooth and locally oscil-
lating reconstructions. The corresponding results for py; and vy, are shown in Figure 3
for & = 5%, 6 = 2%, and 1%. We see that the reconstructions’ profiles approach the
correct jump height of the exact solution as § becomes smaller. In all three cases, termi-
nation occurs by reaching the discretization limit, however, each last update fulfills the
discrepancy principle afterwards. Altogether, the plots are in agreement with the weak-x
regularization property of REGINN™ (Theorem 2.3).
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FIGURE 1. Approximate solutions pys (blue, left column) and vy, (blue, right
column) by Algorithm 1 with initial spaces X2, X°, and X® (top to bottom).

5. CONCLUSION

We have investigated a novel iterative regularization algorithm tailored for non-linear
illposed problems between L>(D)‘ and a normed space Y. The main focus was on
generating uniformly bounded iterates relying on a Tikhonov-like regularization term.
Due to the non-smooth structure of L>(D)*, a straightforward implementation would
require non-smooth or box-constrained calculus which we could circumvent by using
discretization in combination with equivalent LP(D)*norms for p < co. Under reasonable
assumptions on the input parameters, our algorithm REGINN* terminates after finitely
many steps. Further, it fulfills the regularization property in the weak-x topology as the
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FIGURE 2. Left: Convergence history for exact data case ng = 2 from Figure 1.
Peaks for j,,, arise whenever the discretization level n,, is increased as cumulative
contribution. Right: Graphical presentation of the values j,, (blue) and ppm,—1
(black dashed) as functions of m € {11,...,17} where n,, = 4. Moreover, we
have included the quotient ||b2,|/][6%, ;|| (red) which is always below fi,,,—1. This
illustrates that (15) holds for a tiny w.

noise level of the Y-data tends to zero. Depending on the non-linearity, this convergence
can be reformulated as convergence with respect to a norm. Numerical experiments with
a model problem illustrate the theoretical findings.

Future research may include a convergence rate analysis under higher regularity as-
sumptions as in (19) or under more general variational source conditions with respect to
a Bregman distance [12]. We could even incorporate a metric to overcome that L>(D)*
is non-separable; an approach proposed in [25]. Concerning the data space, especially the
task of finding proper measures for the misfit in seismograms, the Kantorovich-Rubinstein
(KR) norm has recently proven advantageous in exploration geophysics, see, e.g., [20, 21].
This fact suggests an implementation of our method under the KR-norm on Y. In fact,
our theory also allows more general distance functions on Y. For instance, any distance
concept is admissible which is convex in one of its two arguments (e.g. Bregman dis-
tances). Such a concept can in particular be learned within a predefined set of admissible
distance functions in practice, see [32].

APPENDIX A. A FAMILY OF ADMISSIBLE SUBSPACES

In this appendix we give a concrete construction for a family {X™},cn of subspaces
of L>=(D)* which satisfies our assumptions (S1)-(S3) of Section 2 for D an open and
bounded subset of R?. Using Cartesian products in case of £ > 1, cf. (30), we restrict our
attention to ¢ = 1 here.
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FIGURE 3. Regularized solutions pys (blue, left column) and pys (blue, right
column) by Algorithm 1 for relative noise levels of 5%, 2% and 1% (top to
bottom).

A.1. The discrete subspaces used in this work. We will rely on the cardinal B-spline
¢n: R — R of order N € N which is recursively defined by

1
on(t) == on_1xpi(t) = / pn-1(t—s)ds, 1 =T
0

It obeys the scaling relation

(1) () =2 Ny (],f ) (2t —F).
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Further properties are

» Supp N = [07 N]? ()ON|]O,N[ > 07 PN € CNiQ,
» for each k € Z, ¢n|p,k+1] is a polynomial of degree N — 1,
» for all t € R,

(49) 1= ot —m)

see, e.g., [28].
Using the tensor product B-Spline ®(z) := H?zl on(ry), v = (21,...,24)" € RY and
the notation ®,, ,(r) = 22 ®(2"x — k), n € N, k € Z?, we define

(50) X" = X} (D) :=span{®,4|p : k € Z,(D)}
with
(51) Z,=Z7,D):= {k‘ e Z% : supp D, C E}.

These spaces are nested due to (48), so that (S1) holds. Note that Uez, supp ®,,x C D
which is a proper inclusion in general.
Next we demonstrate (S2). To this end we set

(52) P'u = Pyu = Z (u, Ef’n,k>L2(D)¢’n,k for u € L*(D)

k€T,
where ® is a compactly supported dual function to ® satisfying the biorthogonality
(D(), ®(- — k) r2(e) = o

The existence of such functions has been shown in [5]. The biorthogonality yields
Pry®ni = Py, for all k € Z,,. Hence, the required projection property holds: Pyu = u
for all u € X3 (D). We proceed with

||PNU||L°° - SUP‘ Z Uu, q>nk L2 nk ‘ - ‘ Z nk L2(D nk:(x*)
kel, keT,
<D [ @) 2oy (@) < lufloe(py Y | Pnillzi o) Pos(a).
Since
||(I)nk||L1 )y <27 "d/Q/ |®(z)|dz and Z(I)nk Zq)nk (“ ond/2
kel, kezd

we have established (S2) with Cp < H&DHLl(Rd). Observe that H&;HU(W) > 1 as ® has
mean value 1 just as ®.
It remains to validate (S3). Let u € X} (D) with ||u||pe(py = 1. Then,

|u|lLa(py > 0g >0

for
0, = gélﬁ ull Loy where M = {u € X{(D) : |lull L~y = 1}.

This minimum is non-zero and exists as M is compact in the finite dimensional space
X%(D). Since 84 = ||ug||za(py for one u, € M and as 6, — 1 for ¢ — oo (see below), we
find a ¢ with 6, > 1/Cy for any fixed Co > 1. Hence, 1 < Cu ||uf|zq(py for all uw € M
and (S3) follows by the homogeneity of norms.
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We finish with proving lim, ;. d, = 1. Obviously, 8, = |luylzep) < volg(D)Y7 —
1 as ¢ — oo. Therefore {d,} is bounded and admits a convergent subsequence, say,
lim; o0 04, = 0* < 1. For each g let 2} € D with |uy(z)| = 1. If N = 1, u, must be equal
to unity in a whole cube of length 2~ n as a subset of D containing xj. So we can estimate

ndn 1
(53) lgllzo) = (27 =1
as ¢ — oo which proves the assertion in this case. If N > 1, we can still find for any
¢ > 0 sufficiently small a 6 > 0 such that |uq|36(x;)np| > 1 — ¢ for all ¢q. This follows

by uniform equicontinuity ensured by the Arzela-Ascoli theorem since M is compact in
C(D) as a bounded, closed, and finite dimensional set. Further, we have that

voly(Bs(zy) N D) > ¢ >0

for all q. This follows by the more general observation that the union over m € N of
1
V= {u € R%: voly(Bs(z) N D) > —}
m

is an open cover for D, so we can find a maximal m such that D C V}, by compactness
of D. Altogether, we can again deduce a lower bound of the form

||uq||Lq(D) Z (1 — 8) VOld(Bg([Ez) N D)l/q Z (1 — 5)01/‘1 — 1 —€
as ¢ — 0o. We conclude 0* = 1 since £ > 0 can be chosen as small as we wish. Finally,

any subsequence of {d,} contains a subsequence which converges to 1. So, the whole
sequence must converge to 1, see, e.g., [35, Prop. 10.13(2)].

A.2. A different approach. The functions of X} (D) from the above construction van-
ish on the set A = D\ Ugez, supp @, which is non-empty in general. Thus, PRu is a
poor approximation of u near to the boundary of D in general: Plu|an = 0. Here we
present briefly an alternative approach to overcome this drawback. Basically, we extend
the preimage-space of the map F' of Section 2 while keeping all its necessary properties
to carry over Theorems 2.1 and 2.3 to the extension.

Let D be an open superset of D: D C D. We will need two operators: the extension
operator E: L*®(D) — L*(D), which extends a function by zero, and the restriction
operator R: L*°(D) — L>(D), which multiplies a function by the indicator 1p.

We define F: D(F) € L¥(D) — Y by D(F) = ED(F) and F(a) = F(Ru). This Fis
Fréchet-differentiable just like F'. Moreover, the TCC holds in B,(Eu™) C D(F ). Indeed,
let w € B,(Eu") then ||[Ru — u'||ze(p) = HRu — REuY|[po(p) < [[t — Eut|| ooy < 7y
that is, Ru € B,.(u%) C D(F). Thus, for u,u € B.(Eu"), we get

|F(u) = F(@) = F'(@)(u—a)lly = | F(Ru) - F(Ra) — F'(Ra)(Ru — Ra)|ly
< w||F(Ru) = F(RD)|ly = w | F(u) = F@ly-
Further, (6) is also satisfied by Fas R*=E.

For this F' we can define spaces X" = X7 (D) as above but with respect to D rather

than D. Now, the union of the supports of ®,,, for k € Z,(D) covers D when n is
large enough. Unfortunately, condition (5) does not transfer immediately to the new
construction. One must prove it for the concrete case, for example, as follows: for
u € D(F) and u € L*>®(D) we have that

(54) [|F'(@) (@~ PRa)lly < |F'(Ra)(Ra — PRRa)lly + [|F'(Ra)(Py R — RPya)lly



ON THE ITERATIVE REGULARIZATION IN L 29

where Py L>*(D) — X3 (D) and ﬁﬁ, L>®(D) — X7 (D) are the corresponding projec-
tion operators in accordance with (S2). The left norm on the right hand side of (54) tends
to 0 for n — oo by (5). The right norm converges to 0, for instance, if F'(u): L>*°(D) - Y
is weak-x continuous for all u € D(F): both sequences {P% R}, and {RP%4},, converge

to Ru pointwise a.e. This convergence can be verified by standard arguments, see e.g.,
[28, Chap. 12.3] and [24, Chap. 2]. Further, both sequences are uniformly bounded due

to (S2). Hence, Py Ru — RPRu — 0 weakly-x.
APPENDIX B. AN APPROXIMATION RESULT

Proposition B.1. For v € L*(D) and {P"}, as in (52) we have that P"u — u in
Li(D) for all ¢ < 0.

Proof. Let [ be a rectangular superset of D and Oa superset of L. Further, extend u by
zero outside of D. The convergence results of Section 12.3 from [28] yield that P"u — u
in L9(O) for any g < oo where P" is defined as in (52), however, with respect to Z,(0)

and X"(0). Hence, for any = € D we have that P™u(z) = P™u(z) for n large enough
such that x € D,,, where we set

D, = {g:eD: Z@n,k(x)=1},

kely,

in particular volg (D\D,,) — 0. Because of ||P"u| r~p) < Cpllu| rp) by (S2), we can
estimate

|u — P"ul|La(py = |lu — P"ul|pa(p\n,) + [[u — P"u| La(p,)

< vola (D\D.)"* (Cp + Dllull o0y + llu = P"ul|a(p,)

< voly (D\D)"* (Cp + V)|t oe(py + lu — P™ul| pacy

and the assertion follows. O

APPENDIX C. ON THE TANGENTIAL CONE CONDITION FOR THE OPERATOR IN (40)

Here we argue that the semi-discrete non-linear operator F), . defined in (46) satisfies
the TCC (3).

The underlying abstract system is (25) with the concrete settings (32), ug = 0, and
(33) where D = (0,1), T =1, that is, d = 1 and u = (p,v) € L*([0,1], H), H = L*(0,1).
Thus, we obtain the acoustic system (42) which has a unique classical solution under
(p,v) € D(F,,..) and for the sources (43). In view of Lemma 3.5, F, . is Fréchet-

Mmax max

differentiable and we have F,  (p,v)(p,V) = (p,v) where (p, ) weakly solves

ax

max

1
W 3@ - &ﬁ = —ﬁ@tp in (0, 1) X (0, ].),

(55) p 0T — 0,p=—vow in (0,1) x (0,1),
v(0,-) =p(0,-) =0 on (0,1)
u(-,0)=p(,1)=0 on (0,1).

In a first step we validate injectivity of F,  (p,v) for any (p,v) € D(F,,...
assume F  (p,v)(p,v) = (0,0). From (55) we get

0=pdp and 0=v0w in (0,1)x (0,1).

). To this end,
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Assume 0 # p € X™ax_ Then, there is a non-empty interval [a,b], a = 27"k b =
27mmax(k 4+ 1), k € Np, where p does not vanish. Hence, 0;p = 0 in [0, 1] X [a,b]. By the
first equation in (42), —0,v = f1 in [0, 1] X [a, b], that is,

v(t,r) =v(t,a) — /90 filt,y)dy, (t,z) € (0,1) x [a,b].

Recalling the zero initial value v(0,-) = 0 we get the contradiction 0 = f; f1(0,y)dy <0
for x € [a,b] according to (43). So, p =0 in (0,1). One argues analogously to validate
v =01in (0,1). Hence, F, (p,v) is one-to-one which implies the TCC at any interior

point of D(F, .. ) due to Lemma C.1 of 6].
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