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Abstract

A recent area of research in inverse scattering theory has been the study of monotonicity
relations for the eigenvalues of far field operators and their use in shape reconstruction for
inverse scattering problems. We develop such monotonicity relations for an electromagnetic
inverse scattering problem governed by Maxwell’s equations, and we apply them to establish
novel rigorous characterizations of the shape of scattering objects in terms of the correspond-
ing far field operators. Along the way we establish the existence of electromagnetic fields
that have arbitrarily large energy in some prescribed region, while at the same time having
arbitrarily small energy in some other prescribed region. These localized vector wave func-
tions not only play an important role in the proofs of the novel monotonicity based shape
characterizations but they are also of independent interest. We conclude with some simple
numerical demonstrations of our theoretical results.

Mathematics subject classifications (MSC2010): 35R30, (65N21)

Keywords: Inverse scattering, Maxwell’s equations, monotonicity principles, far field operator, inhomo-
geneous medium
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1 Introduction

We discuss an inverse scattering problem for time-harmonic Maxwell’s equations, where the
goal is to determine the position and the shape of a collection of compactly supported scat-
tering objects from far field observations of scattered electromagnetic waves. We extend the
monotonicity based approach to shape reconstruction for inverse scattering problems that was
established in [18, 30, 31| from scalar wave propagation described by the Helmholtz equation
to electromagnetic wave propagation governed by Maxwell’s equations. The main outcome
of this work is a new rigorously justified shape reconstruction technique for the electromag-
netic inverse scattering problem. This monotonicity method is formulated in terms of far field
operators that map superpositions of incident plane waves to the far field patterns of the cor-
responding scattered waves. Throughout we assume that the scattering objects are penetrable,
non-magnetic and non-absorbing, i.e., the magnetic permeability u is constant throughout R3,
while the real-valued electric permittivity € is constant outside the support of the scatterer but
may be inhomogeneous inside the scattering objects.

The first result of this work is a novel monotonicity property for the eigenvalues of the dif-
ference of two far field operators corresponding to two different scattering objects in terms of
the difference of the corresponding relative electric permittivities. This monotonicity property
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is interesting because it immediately yields an idea and a partial justification for a new charac-
terizations of the shape of an unknown scattering object in terms of its far field operator. The
resulting monotonicity based shape reconstruction technique consists in comparing a given (ob-
served) far field operator to certain probing operators to decide whether some probing domains
B C R? corresponding to the probing operators are contained inside the support D C R3 of
the unknown scatterer, or whether they contain the support of the scatterer. These probing
operators can either be simulated far field operators corresponding to the probing domains B,
or simulated linearizations of such far field operators.

To establish a complete theoretical justification of this monotonicity based shape charac-
terization we require another theoretical tool, which constitutes the second result of this work.
We show the existence of solutions to the direct scattering problem corresponding to suitable
incident fields that have arbitrarily large energy in some prescribed region B C R3, while at
the same time having arbitrarily small energy in a different prescribed region Q C R3, assuming
that R3 \ Q is connected and B ¢ €. Similar classes of solutions have recently, e.g., been stud-
ied for the Laplace equation [16], for the Helmholtz equation on bounded domains [31] and on
unbounded domains [18], and for Maxwell’s equations on bounded domains [27].

Combining the novel monotonicity relations with the newly developed localized vector wave
functions we give rigorous proofs for the new monotonicity based shape characterizations. This
is the main result of this work.

Monotonicity based shape reconstruction techniques have first been analyzed for the inverse
conductivity problem in [16, 32|, extending an earlier monotonicity based reconstruction scheme
that has been proposed in [48]. The method is related to monotonicity principles for the Laplace
equation which have been established in [34, 35]. It has been further developed in [28, 29, 33|,
and its numerical implementation has been considered in [13, 14, 15]. More recently, an extension
to impenetrable conductivity inclusions has been provided in [9]. The results from [32] have been
extended to an inverse coefficient problem for the Helmholtz equation on bounded domains in
[30, 31], and in [18] the approach has been generalized to an inverse medium scattering problem
for the Helmholtz equation on unbounded domains. Inverse obstacle scattering problems have
been considered in |1, 12|, and an inverse crack detection problem has been studied in [11]. For
further recent contributions on monotonicity based reconstruction methods for inverse problems
for various other partial differential equations we refer, e.g., to [5, 6, 25, 26, 43, 47, 49]. In
this work we generalize the concepts and the rigorous analysis from [18] to an inverse medium
scattering problem governed by time-harmonic Maxwell’s equations.

The theoretical underpinning of the new monotonicity based shape characterization is some-
what related to the linear sampling method (see, e.g., [8, 24]) and to the factorization method
(see, e.g., |36, 37, 38]). However, in contrast to these methods the monotonicity based char-
acterization of the support of the scattering objects is independent of so-called transmission
eigenvalues (see, e.g., |7, 10| for an account on the latter). On the other hand, there are con-
nections between the monotonicity relation for far field operators developed in this work and
monotonicity principles for the phases of the eigenvalues of the scattering operator, which have
been discussed in [42] to describe transmission eigenvalues in terms of far field operators (see
also [3, 40, 41| for further results in this direction). Another advantage of the monotonicity
based approach is that it also applies to a large class of indefinite scattering objects, i.e., when
the relative electric permittivity of the scattering object takes values larger and smaller than 1
inside the scattering objects.

Although the main focus of this work is on the rigorous theoretical justification of the mono-
tonicity based approach for the electromagnetic inverse scattering problem, we also present
numerical demonstrations of our findings. In particular we discuss an explicit example for the
radially symmetric case, we consider a sampling strategy for sign-definite scattering objects



(i.e., when the relative electric permittivity is either strictly larger or strictly smaller than 1
everywhere inside the scatterer), and we discuss a sampling scheme to distinguish well sepa-
rated components of indefinite scattering configurations, where the relative electric permittivity
is either strictly larger or strictly smaller than 1.

The outline of this work is as follows. After introducing some notation in the next section, we
briefly recall the mathematical formulation of the scattering problem in Section 3. In Section 4
we discuss a monotonicity principle for the far field operator, and in Section 5 we establish the
existence of localized vector wave functions for Maxwell’s equations on unbounded domains. We
combine the monotonicity principle and the localized vector wave functions to develop rigorous
characterizations of the support of sign-definite scattering objects in terms of the far field oper-
ator in Section 6. In Sections 7 and 8 we establish corresponding results for the indefinite case,
and in Section 9 we present numerical results.

2 Preliminaries

We start by introducing some notation (see, e.g., |10, 39, 44| for details). The boldface Latin
letters x, y refer to generic points in R3, -y and x x y denote the inner product and the vector
product of z and y, and || is the Euclidean norm of x. By Br(0) C R? we denote the ball of
radius R > 0 centered at the origin.

For a bounded smooth domain Q C R? we define

H(curl;Q) := {u € L*(Q,C?) | curlu € L*(Q,C?)},
Hioe(cur, R*\ Q) = {u € L} (R*\ Q,C%) | curlu € L{ (R*\ Q,C%)},

loc

where LIQOC(R3 \ ©,C3) is the space of complex-valued locally square integrable vector fields
on R\ Q. The unit outward normal vector field on 9 is denoted by v, and for smooth
functions on 9 the surface gradient Grad and the surface vector curl Curl may be defined
in the usual way via parametric representation. The dual operators of — Grad and Curl (with
respect to the duality pairing given by the L? bilinear forms) are the surface divergence Div
and the surface scalar curl Curl. Denoting by Ht_l/ 2(89, C?) the Hilbert space of tangential
H=Y2(09, C?)-vector fields, let

H'?(Div;09) := {¢ € H,; *(90,C) | Divep € H-/2(92,C)},
H™'2(Curl;09) := {¢ € H, *(0Q,C%) | Curlgp € H/2(00,C)} .
Then the space H~'/2(Div; Q) is naturally identified with the dual space of H~/2(Curl; 9Q).
Throughout we write the dual pairing between H~1/2(Div;dQ) and H~'/2(Curl; 9Q) as an
integral for notational convenience.

For any regular vector field uw on Q we define the tangential traces y:(u) := v X u|pg and
m(u) == (v X u|gq) X v. These can be extended to continuous linear, surjective operators

¢ : H(curl; Q) — H™Y2(Div; 8Q), 7« H(curl; Q) — H™Y2(Curl; 09), (2.1)

and for all u,w € H(curl;Q) we have the integration by parts formula
/(curlu) cw dx — / u - (curlw) de = / (vxu): ((vxw)xv)ds. (2.2)
Q Q Gi9)

Similarly, the map r, which is given by r(¢) := v x ¢ for any smooth vector field ¢ on 01,
can be extended to an isomorphism r : H~Y/2(Div;9Q) — H~'/?(Curl; Q). For the matter



of readability, we will use the classical notation v x - and (v x -) x v for the trace operators
in (2.1), and for the isomorphism r throughout this work.
The subspace of H(curl; Q)-functions with vanishing tangential traces is denoted by

Ho(curl; Q) := {u € H(curl;Q) ’ v X ulpgg=0}.

We also write v for the outward normal vector field on the unit sphere S2, and accordingly we
define
L7(S%,C%) == {u e L*(S* C% |v-u=0 ae. on S*}.

3 Scattering by an inhomogeneous medium

We consider the propagation of time-harmonic electromagnetic waves in non-magnetic media
in R3. Let k = wy/Eopto be the wave number at an angular frequency w > 0 in free space with
electric permittivity eg > 0 and magnetic permeability o > 0. An incident field (E*, H') is an
entire solution to Maxwell’s equations

curl ' —iwpugH® = 0, curl H® +iwegE" = 0 in R3. (3.1)

We suppose that such an incident field is scattered by an inhomogeneous medium with space
dependent electric permittivity e, and constant magnetic permeability u = uo. We denote by
g, 1= g/eq the relative electric permittivity of the inhomogeneous medium, and we assume that

g, 1 =1 — q for some real-valued contrast function

q€Vp = {f € L°R% | flp € Wh*(D,R), supp(f) = D, essinf(1 — f) >0},

where D C R3 is open and bounded of class CY. The total field (E,, H,) excited by an incident
field (E*, H') in the inhomogeneous medium satisfies

curl B, —iwpoH,; = 0, curlH,+iweE; = 0 in R?. (3.2)
Rewriting o
(Equq) = (ElaHl)—i_(E;’H;) (33)

as a superposition of the incident field (E*, H') and the scattered field (E;, HJ), we assume
that the scattered field satisfies the Silver-Miiller radiation condition

lim (yeox x Ej(x) — |z|\/uH;(z)) = 0 (3.4)

|| —00

uniformly with respect to all directions Z := z/|x| € S2.
It will often be convenient to eliminate either the electric field or the magnetic field from
(3.1)-(3.4) and to work with one of the second order formulations given by

curlcurl ' — k*E' = 0 in R?, curlcurl H' — k*H' = 0 in R3, (3.5a)
curlcurl £, — k2€rEq =0 inR?, curl(a;1 curl Hq) — kQHq =0 inR®, (3.5b)
E,=E+E, inR? H,=H'+H; R, (3.5¢)
‘ l‘im (z x curl E}(x) + ik|z|E}(x)) = 0, | llim (x x curl H; (x) + ik|z|H;(z)) = 0, (3.5d)
r|—00 |—00
respectively.



Remark 3.1. Throughout this work, Maxwell’s equations are always to be understood in a weak
sense. For instance, E,, H, € Hy,.(curl;R?) are solutions to (3.2) (or equivalently to (3.5b)) if
and only if either

/ (curl E, - curly — k%, E;- ) dz = 0 for all ¢ € Hy(curl; R?),
R3
or
/ (£;1 curl H, - curly — k2Hq . 1/)) de =0 for all 4 € Hy(curl;R?),
R3

respectively. Standard regularity results (see, e.g., [50]) yield smoothness of (E,, H,;) and
(E;, HJ) in R3\ Br(0), whenever Br(0) contains the scatterer D, and similarly the entire solu-
tion (E*, H') is smooth throughout R3. In particular the Silver-Miiller radiation condition (3.4)
is well defined.

Suppose that the incident field (E?, H") € Hyy(curl; R3) x Hy,.(curl; R3) satisfies (3.1). Us-
ing either a volume integral equation approach (see |38, pp. 113-118|) or a variational formulation
on Br(0) involving the exterior Calderon operator (see, e.g., [44, pp. 262-272]), Riesz—Fredholm
theory can be applied to show existence of a solution to (3.2)—(3.4), provided uniqueness holds.
Under our assumptions on the coefficients, uniqueness of solutions to (3.2)—(3.4) follows, e.g.,
from [4, Thm. 2.1].

Throughout this work we call a solution to Maxwell’s equations on an unbounded domain
that satisfies the Silver-Miiller radiation condition a radiating solution. O

The scattered field (E;, H;) has the asymptotic behavior

eik\m\ eilf|:z:|

Ey(z) = W(Eé"’(f’fHO(!w\_l)), Hj(z) = M(H?@Wr@(\w!_l)) (3.6)

as |x| — oo, uniformly in & = x/|x| (see, e.g., [44, Cor. 9.5]). The electric and magnetic far
field patterns E°, HX € L?(S?,C3) are given by

Il
8)

H*(z) X / (ik(v x H})(y) 4+ (v x curl H;))(y) x fc\)e*ikﬁ'y ds(y), (3.7a)
9BRr(0)

EX(x) = = x / (ik(v x E;)(y) + (v x curl E})(y) X ﬁ)e*iki'y ds(y), (3.7b)
0BRr(0)

(see, e.g., [38, p. 121]). In particular, H*(Z) = , /%:’ﬁ x E(z) for all £ € S2.

For the special case of a plane wave incident field

E'(x;0,p) == — 'Z—E(O X p) ek Hi(x;0,p) = pekoT, x e R3,

we explicitly indicate the dependence on the direction of propagation @ € S? and on the po-
larization p € C3, which must satisfy p - @ = 0. Accordingly we write (E,(-;0,p), H,(+;0,p)),
(E;(-;0,p),H;(-;0,p)), and (E°(-;0,p), H(;0,p)) for the corresponding scattered field, the
total field, and the far field pattern, respectively.

The magnetic far field operator is defined as

Fy: L3(S2,C%) — I3(5%,C%),  (Fyp)(@) = / HX(3:0.p(0) ds(8),  (3.8)
SQ



and it is compact and normal (see, e.g., [38, Thm. 5.7]). Moreover, the magnetic scattering
operator
ik
Sq : L?(S27C3> _>L§<S27C3)7 qu = (I—i_@Fq)pa (39)
is unitary. Consequently the eigenvalues of F; lie on the circle of radius 872 /k centered in 872 i/k
in the complex plane (cf., e.g., [38, Thm. 5.7]).
For any given p € LZ(S5?,C3) the tangential vector field Fyp € L?(S? C3) is the far field

pattern of the scattered magnetic field Hy due to the incident field
Bya) = - /2 /S (0xp(0))¢40% A5(60), Hy(a) = /S p(O)FT ds(0), w e EP. (3.10)

The latter is called a Herglotz wave pair with density p. We write (E, p, Hyp) and (E; ,, H; )

for the corresponding total field and the scattered field, respectively. By linearity we have

Byple) = | By(w:0,p(0)) ds(0), Hyp(w)= | H,(w:0.p(0)) ds(0), @R’ (311

4 A monotonicity relation for the magnetic far field operator

The following extension of the Loewner order will be used to describe relative orderings of
compact self-adjoint operators. Given two compact self-adjoint linear operators A, B : X — X
on a Hilbert space X, we say that

A<. B for some r € N,

if B — A has at most r negative eigenvalues. Similarly, we write A <g, B if A <, B holds for
some r € N, and the notations A >, B and A >4, B are defined accordingly.
The next lemma was shown in |31, Cor. 3.3|.

Lemma 4.1. Let A,B : X — X be two compact self-adjoint linear operators on a Hilbert
space X with inner product (-,-), and let v € N. Then the following statements are equivalent:

(a) A<, B
(b) There exists a finite-dimensional subspace V- C X with dim(V') <r such that

(B—A)v,v) >0 forallveV*,

Lemma 4.1 implies that <g, and >, are transitive relations (see |31, Lem. 3.4]). The
theorem below gives a monotonicity relation for the magnetic far field operator in terms of this
modified Loewner order. As usual the real part of a linear operator A : X — X on a Hilbert
space X is the self-adjoint operator given by Re(A) := %(A + A%).

Theorem 4.2. Let D1,Dy C R3 be open and bounded of class C°, and let ¢ € Vp, and
q2 € Yp,. Then there exists a finite-dimensional subspace V- C L?(S?,C3) such that

Re(/SQP "S5 (Fop — Fyy)p ds) > /RS(qQ —q)|curlHy, > dz foralpeV>:. (4.1)

In particular
a1 < q implies that Re(S,, Fy,) <sin Re(Sy, Fy,) - (4.2)



Remark 4.3. Recalling (3.9) and using that S; and S are unitary operators, we find that
* 87T2 * 87T2 * * * *
Sql(Frn - Fq1) = ESql (qu - Slh) = (Esqg(grn - Sq1)> = (ng(Frn - Fq1)) .

Accordingly Re(Sy, (Fy, — Fy,)) = Re(S,, (Fy, — Fy,)), and therefore the monotonicity relations
(4.1)-(4.2) remain valid, if we replace S;, by &7, in these formulas. O

Applying Remark 4.3 we may interchange the roles of ¢ and g2 in Theorem 4.2, except

for &;,, to obtain the following result.

Corollary 4.4. Let Dy, Dy C R? be open and bounded of class C°, and let ¢ € Vp, and
q2 € Vp,. Then there exists a finite-dimensional subspace V- C L?(S% C3) such that

Re(/szp - Sq (Fgy — Fyy )p ds) < /}1@3((12 —q)|curlHy, > dx foralpeV+. (4.3)

Before we establish the proof of Theorem 4.2, we discuss three preparatory lemmas. In the
first lemma we collect some integral identities for the magnetic field.

Lemma 4.5. Let D C Bp(0) be open and of class C°, and let ¢ € Yp. Then,
/ p-Fpds = / q curl Hzi, -curl H, ,, dy for all p € L?(S%,C?), (4.4)
52 Br(0)

and, for any v € H(curl; Br(0)),

/ (5;1 curl Hg’p -curley — k:QH;’p . 1/1) dx + / (V x curl H;,p) ~p ds
Br(0) OBR(0)

= / g curl H;, -curly dx. (4.5)
Br(0)

Moreover, if ¢ € Yp, and q2 € Yp, for some D1, Dy C Br(0) that are open and of class C°,
then
ik —_
H: . TH: )—H: - LH; ,)) ds = 5 | Fyup-Fyup ds (46
/BBR(0)< 4 (v xcurl H ) G (v xcurlHy L)) ds ) /52 0P Fyp ds (4.6)

for any j,l € {1,2}.
Proof. Let p € L?(S%,C3). Then the scattered field Hj, € Hy(curl; R3) satisfies

curl(s; ! curl H; ) - k2H;;p = —curl(e; ! curl HIZ,) + kQH;, = curl(q curl H;,) (4.7)
in R3. Multiplying (4.7) by @ € H(curl; B(0)) and integrating by parts using (2.2) yields

/ 5;1 curl H; , - curly dz = / q curl H;, -curly dx

Br(0) Br(0)

+ K H;, - dz — / (v x curl H ) -9 ds. (4.8)
Br(0) 9BRr(0)

This implies (4.5).



Likewise,

/ ;' curl Hé -curly doe = —/ q curlH;7 -curlvy dzx
Br(0)

Br(0)
+ K H} -4 dx — / (v x curl H}) -4 ds  (4.9)
Br(0) dBRr(0)
for any ¢ € H(curl; Bg(0)). Subtracting (4.9) with ¢ = from the complex conjugate

of (4.8) with 9 = HJ, shows that
0= / gcurl H, ,, - curlHé da
Br(0)
— / ((V X curng’p) ‘Hzi, — (u X curlHZ,) ‘Hgyp> ds.
0BR(0)
On the other hand, we obtain using (3.10) and (3.7) that
/ ((churlH;p)-H;—(churlH;)-ng) ds
OBr(0) ’ ’

/52 /chR(o uxcurle curl H; ) (x )—Fik((yxﬂi&))(m) xe))eike-m ds(x) ds(6)

~ [ pl6) H®) ds(0) = [ p-Fip ds.
S2 S2
This shows (4.4).

Now let 1 € Vp, and g2 € Vp, for some Dy, Dy C Br(0) that are open and of class C?, and

let r > R. Then, Hy ,, H3 , € Hyoc(curl; R?) fulfill

curlcurl Hy , — kQH;p =0 in B,(0) \ Bgr(0)
for ¢ € {gj, ¢i}. Thus, Green’s formula gives
/ ((1/ x curl HS p) H;j’,p - (V x curl ng,p) 5 p) ds
0BR(0)

= /83 ( )((y xcurlHp ) - H; ,— (v xcurlHy ) - Hg p) ds. (4.10)

Applying the Silver-Miiller radiation condition (3.5d) and inserting the far field expansion (3.6)
we obtain that

/ ((1/ x curl H ) - Hj ,— (v x curl ng,p) qz,p) ds
0B (0)
. ik N
= 2ik /613 o )H;]m H;  ds+o(1) = 52 /52 Fy,p- Fyp ds+o(1)

as r — oo. Together with (4.10) this shows (4.6). O

In the next lemma we establish an integral identity for the left hand side of (4.1) (see also
Remark 4.7 below).



Lemma 4.6. Let D1, Dy C Br(0) be open and of class C°, and let ¢ € Vp, and ¢z € YVp,.
Then,

- ik .
/ (p'qup_p'Fqlp) d5+82/ Fop- Fg,p d5+/ (Q1—CJ2)‘Cur1Hq1,p‘2 dz
S2 ™ Js2 Br(0)

= [ ey~ Hy )P~ R, Hy ) da (4.11)
Br(0)

+/ (H(;Q,p H p) . (I/ X curl(Hq Ht;,p)) ds
OBRr(0)

for any p € L2(S?%,C3).

Proof. Let p € L?(S%,C?). Using (4.6) with j = 1 and [ = 2 we find that

2Re(/ H;lp (uxcurlqup) ds)
OBR(0)
ik -
= / (H;hp (1/ x curl Hy p) —|—H5‘2 p (V x curl Hy| p)) ds + 82/ Fyp-Fypds.
aBR(O) T S2
Therewith, we deduce that
( —1’ I‘l(HS — H )| ]€2’ _ Hs ’2)
EralcU a2.p q1.p 42, 1,p
Br(0)

—I—/ (Hg,,— H; ) (v xcurl(H;, ,— H; ) ds
0BR(0)

q92,P q1,P q2, q1,p

= / (g5l curl H, > — K*|H, %) dw—i—/ (e, curl HY > — K*|H; ) de
Br(0) Br(0) ’
—2Re < / (5;21 curl HY -curlH; ,—k*H} - H; p) de
Bg(0) *
+/ H;LP (1/ x curl H p) ds)
0BRg(0)
—I—/ (Hgmp- (v xcurlH;, )+ H; - (uxcurnglp)> ds
0BRg(0)
871'2/ Flhp FQ2p ds.
Applying (4.5) gives
[ (b ennl G, = ) U, ) da
Br(0)

b Ty Hy ) (v x curl(H, - H;, ) ds
0BR(0)

:/ g2 curl Hi . curlH;;Mder/ g curl HY - curl H;, , da
Br(0) Br(0)

+/ (@1 — q2)| curl Hy, p|2 dm—ZRe(/ q2cur1H mdx>
BR(O) BR(O)

ik -
+87_‘_2/52FII1P'F(]2pd3-



Furthermore,

[ (bl H )P~ R2HG,, — ) da
Br(0)

+/ (ngm - Hgl IJ) ’ (V X Curl(qu D Hqshp)) ds
OBR(0)

= [ gewtH culTHy, de+2Re( [ (- ) curl Hy - curl iy, da)
Br(0) Bgr(0)
— / qicurl H HZ curlHy , dz +/ (@1 — q2)| curl Hy, p|2 dx
Br(0) Br(0) ’

87‘(2/ Fop- FQQP ds

= / g2 curl H;, -curl Hy, ,, do — / qicurl H, - curl Hy, ,, dz
Br(0) Br(0)
ik _
+/ (Q1_Q2)|cur1HQ1P|2 dm+8 2/ F(hp'qupds‘
Br(0)
Finally, applying (4.4) gives

/ (egé\curl(Hg% H;lp)] —kQ\H;;Q’ —Hslp\) T
Br(0)

b Ty, Hy ) (v x curl(H, - H;, ) ds
0BR(0)

= / (p -F,p—D- Fq1p) ds +/ (q1 — q2)| curl thp\zdx
S2 Br(0)

ik —
+8ﬂ_2/52Fq1p'qup ds.

Remark 4.7. Using (3.9) we find that

ik

Sgl(qu_FqJ:FqQ_Fm 872 (F*Fq2 F(ZFql),

and thus,
* k *
RG(S ( (I2_FfI1)) :RG(FQ2_FQ1_8 QFqu )

Accordingly, the real part of the first two integrals on the left hand side of (4.11) satisfies
ik _
Re( . (p-Fpop—DP- )ds+8 5 Fqlp-Fquds>

_ Re(/SQp- (Fq2—Fq1 8@1?;l qz)p d5> - Re(/ . Si (Fyy — Fy)p ds). (4.12)

Since Fy, and Fy, are compact, the operator Sy, (Fy, — Fy,) is compact as well, and using (3.9)
once more it is immediately seen that Sj, (Fy, — Fy,) is normal. O

Next we show that the right hand side of (4.11) is nonnegative if the density p € L?(S?,C?)
belongs to the complement of a certain finite dimensional subspace V' C L#(S%,C?). We consider

10



the exterior Calderon operator A : H~'/2(Div; 0Br(0)) — H~Y?(Curl; dB(0)), which maps
boundary data ¥ € H~'/2(Div; 9Bg(0)) to the tangential trace (v x curlw|yp,)) X v of the
radiating solution w € H(curl; Br(0)) to the exterior boundary value problem

curlcurlw — k*w =0 in R*\ Bg(0), vxw =1 ondBr(0),

(see, e.g., [44, pp. 248-250]). We note that this operator is invertible (see, e.g., [44, Lem. 9.20],
and we define the space

X = {u € H(curl; Br(0)) | divu = 0 in B(0)

and v - ulyp o) = k> Curl(A(v x u\aBRm)))}

equipped with the norm || - [[x := || - || #(cur; Br(0))- Then (X, |- [|x) is a Hilbert space (see, e.g.,
[44, Lem. 10.3]) and the embedding operator J : X — L?(Br(0),C3) is compact (see, e.g., [44,
Lem. 10.4]).

From (3.5b) we see that div(HS , — H? ) =0 in R? and

q2,P q1,P

v (Hg,p— H;1,p)|aBR(O) = kv curl curl(Hg, , — H[;l,p)‘aBR(o)
= k2 Curl((v x curl(H,, ,, — H{;,p)‘aBR(o)) XV)
= k72 Curl(A(v x (Hy, p — Hj, ) aBR(O))) :

This shows that H7, ,, — H7 , € X.
Using the Lax-Milgram lemma, we define for any ¢ = 1 — &' € Yp with D cC Bg(0)
open and bounded of class C? a bounded linear self-adjoint operator I, : X — X with bounded

inverse by

BRr(0) '

Furthermore, let K : X — & and K, : X — X be given by
Ku = J*Ju and Kg = J*(;'Jv),

(Igu, V) H(curl;BR(0)) = / et (curlu ~curlv +w - 'v) dx for all u,v € X'.

respectively. Then K and K, are compact self-adjoint linear operators, and for any v € &,
<(Iq—Kq—k:2K)'v,v>X = / (5;1|curlv\2—k‘2|v|2) de .
r(0)

For 0 < ¢ < R we denote by N. : X — H~'/?(Curl; dBg(0)) the compact linear operator
that maps v € & to the tangential trace (v x curlve|sp,(0)) X v of the radiating solution to
the exterior boundary value problem

curlcurlv, — k*v. = 0 in R3\ Br_.(0), vxv. =vxv ondBr.(0).
Given any v € X that can be extended to a radiating solution of Maxwell’s equations

curlcurlv — kv = 0 in R®\ Br_.(0),

we find that
Nov = (v x curlv[aBR(O)) X v and AN = v x V|9Bx(0) -
Accordingly,
wA—1 _ /a1l - _ T
<N€A NEU,’U>X = <A Nav,Ngv>L2(aBR(0)7C3) = /<93R(0)(V x curlv) - v ds,

and in particular this holds for v = H;, , — H ,, if the ball Bpr_<(0) contains D; U Ds.
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Lemma 4.8. Let D1, Dy CC Bg(0) be open and of class C°, and let q1 € Yp, and q2 € Vp,.
Then there exists a finite dimensional subspace V- C L?(S%,C3) such that

| (erbleug, , — H )P~ 121G, — 1, f7) de
Br(0)

+ Re(/ (Hg,,— H; ) (v xcurl(H;, ,—H; ) xv ds> >0 forallpe V%,
0BRr(0)

Proof. Let ¢1 € Yp, and g2 € YVp, for some D1, Dy CC Br(0) that are open and of class C?,
and let ¢ > 0 be sufficiently small, so that D; U Dy C Bg_-(0). Then

[ (ebleug, , — Hy )P — 11, — B, ) do
Br(0)

+ Re</8BR(0) (H;, , — Hg ) (v xcurl(Hy, ,— Hj ,) ds)
= <(L]2 - KQZ - kQK - Re(NE*A_lNE)) (A2 - Al)p7 (A2 - Al)p>Xa

where, for j = 1,2 we denote by A; : L?(S?,C3) — X the bounded linear operator that maps
densities p € L?(S?,C3) to the restriction of the corresponding scattered magnetic field H, jj P
to Bg(0).

We denote by W the sum of eigenspaces of the compact self-adjoint operator K, + KK +
Re(NXA~LN,) associated to eigenvalues larger than

. 1
Cmin = essinf e 5(x) > 0.
i 1= essinf (@)

The subspace W is finite dimensional and
(I — Kgy — K*K — Re(NJAT'N.))w,w), > 0 for all w € W+,
We observe that, for any p € LZ(S2%,C3),
(Ag—Ape W' ifandonlyif pe ((Ag— A)W)".
Since dim((A2 — 41)*W) < dim(W) < oo, choosing V' := (Az — A1)*W ends the proof. O

Proof of Theorem 4.2. We take the real part of (4.11) and use (4.12). Then Lemma 4.8 yields
the result. O

5 Localized vector wave functions

We establish the existence of localized vector wave functions, which are solutions to (3.5) that
have arbitrarily large energy in some prescribed region and arbitrarily small energy in another
prescribed region. This extends related results for solutions to Maxwell’s equations on bounded
domains from [27|. The localized vector wave functions will be used to justify the shape char-
acterizations for sign definite scattering objects in Section 6 below.

Theorem 5.1. Suppose that D C R? is open and bounded of class C°, let ¢ € Yp, and let
B,Q CR3 be open and bounded such that R3\ Q is connected.

If B € Q, then for any finite dimensional subspace V- C L?(S? C3) there exists a sequence
(Pm)men C V* such that

/ |curl H, p, |* dz — 00 and / lcurl H,p, > dz —0 asm — oo, (5.1)
B Q

where Hy p, € Hoc(curl; R3) is given by (3.11) with p = p,.

12



The proof of Theorem 5.1 combines the following three lemmas.

Lemma 5.2. Suppose that D C R3 is open and of class C°, let ¢ € Yp, and assume that Q C R3
is open and bounded. We define

Lga: L{(S%C% — L*(Q,C%), Lyap = curlHyplo = —iweEypla. (5.2)
Then, Ly q is a compact linear operator and its adjoint is given by
Lig:LX(Q,C%) — L3(S%,C), Ligf = /%33;(;/ x e%),
where e € L?(S?,C3) is the far field pattern of the radiating solution e € Hyy(curl; R3) to
curlcurle — k%c,e = iwef in R, (5.3)

Proof. The integral representation (3.11) shows that L, o is a Fredholm integral operator with
square integrable kernel, which implies the compactness (see, e.g., [10, p. 354]).

The existence of a unique radiating solution e € Hj,.(curl;R3) to (5.3) follows again by
combining the uniqueness result from [4] with Riesz—Fredholm theory (see, e.g., 38, pp. 113-118]
or [44, pp. 262-272]). Let R > 0 sufficiently large such that D UQ C Bg(0). Multiplying (5.3)
by ¥ € H(curl; Br(0)) and integrating by parts shows that

/ (curle -curlyp — k’ce - z,b) dx
Br(0)

:/ iwef - d:I:+/ (v x ) -curleds. (5.4)
Br(0) 9BR(0)

Combining (5.2), the complex conjugate of (5.4), and integrating by parts we obtain from (3.5)
that, for any f € L?(Q,C3) and p € L?(S?,C3),

/( 00p) - f dx = —/ iweE,p - f dzx
Q Br(0)

= / (curl E,p, - curle — k%, Eyp - €) dz — / (v x Eyp) - curle ds
BR(0) 9Br(0) (5.5)

= / (v x €) - curl E;, — (v x E;) -curle) ds
0BR(0)
—i—/ (v xe) curlE; , — (v x Ej_)-curle) ds.
0BRr(0) 7 ’

We discuss the two integrals on the right hand side of (5.5) separately. Using (3.10) we find for
the first integral that

/ (v x €) - curl Ezi, — (v x E;D) -curle) ds
0BR(0)

= /633(0) <(u(m) x e(x)) - (iwﬂo /52 (i ds(@))
) (\/273 [0 0(0)70 a50)) - (v(@) = curte(w) ) dste)
— /S 2 /a o lwuo v(z) \/7 ) x curle(z)) x 0)6““0'9 ds(zx) ds(0).

13




On the other hand, the representation formula for the far field pattern e> of e analogous to (3.7)
gives

Roxw @ = [ (0 (omtvo) <)) <o
0 (u(a) x curlefa)) x 0 )40 ds(a)

€0

for @ € S?, and thus

/BBR(O) (v x@)-curl B, — (v x B}) - curle) ds = \/QTE/S p(6)- (0 x &= (0)) ds(0). (5.6)

Next, we consider the second integral on the right hand side of (5.5) and apply the radiation
condition (3.5d) as well as the far field expansion (3.6). This gives, as R — oo,

/ (v x€) - curlE; ,— (v x E; ) -curle) ds
0BRr(0)

_/52/83R < (i) * curl Ej(@:0.p) - o(z)

+ E;(x;0,p) - (% X curle(w))) ds(x) ds(0)
- m/ / E:(x:0,p) - e(@) ds(z) ds(6) + o1)
52 JoaBr(0
= 2/ Eoo(ac 0,p) - e (z) ds(x) ds(0) + o(1).
8 S2 /52
Recalling that H.°(Z) = | /Z((’) Z x EX(z) for all Z € S, we obtain
00 (4 Ho =
| [ Er@o.p @ as@ dse) = \[™ [ (Fp)@) (@ x e5@) ds@).
S2 )92 €0 Jgs2
and the second integral on the right hand side of (5.5) becomes
/ (v x€) - curlE; ,— (v x E; ) - curle) ds
9BRr(0)

po ik N
\/; /32 (Z x e>(2)) ds(@) +o(1). (5.7)

Combining (5.5), (5.6), (5.7), and (3.9) we finally obtain that

/((Lgp j"da:—\/';T(()J/S2 S*mxeoo( ))ds()

Lemma 5.3. Suppose that D C R3 is open and of class C°, and let ¢ € Yp. Let B,Q C R3 be
open and bounded such that R®\ (B UQ) is connected and BN Q = (). Then,

O]

R(Lgp) NR(Lyq) = {0},

and R(L; ), R(L; o) € L?(S?,C3) are both dense.
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Proof. We assume that ¢ € R(L; ) N R(L; ). Then, we know from Lemma 5.2 that there
exist sources fp € L?(B,C3) and fo € L?(2,C3) such that

= /=S, (vxex)=,/—8wvxey),
¢ o q ( B ) o q ( Q )
where ep, eq € Hij(curl; R3) are radiating solutions to

curlcurl eg — kQETGB = iwefp and curlcurl eq — k2€TeQ = iwefo in R3.

Since S, is unitary, Rellich’s lemma (see, e.g., [44, Cor. 9.29]) and the unique continuation
principle (see [4]) imply that e = eq in R?\ (BUQ), and we may define e € H,.(curl; R3) by

ep=eq inR*\(BUQ),
e :=<ep in €,

eq in B.
Then e is a radiating solution to
curlcurle — sz—:re =0 in R?.

The uniqueness result [4, Thm. 2| shows that e must vanish identically in R3. In particu-
lar e = 0, and thus ¢ = 0.

To show that R(L(’;,B) C L7(S?,C3) is dense, we prove the injectivity of the operator Ly p.
Suppose that Ly gp = —ikeE,plp = 0. Then E, ,|p = 0, and unique continuation (see [4|)
implies that E,, = 0in R3. In particular, Ezi) = E; , is an entire radiating solution to Maxwell’s
equations (3.5a), and therefore E;', = H; = 0 in R3. Thus, [10, Thm. 3.27] gives p = 0. The
denseness of R(L; ) C L?(S?%,C3) follows analogously. O

In the next lemma we quote a special case of Lemma 2.5 in [31].

Lemma 5.4. Let X,Y and Z be Hilbert spaces, and let A : X —Y and B : X — Z be bounded
linear operators. Then,

AC > 0: ||Az|| < C|Bz| VreX if and only if  R(A*) CR(BY).
Now we establish the proof of Theorem 5.1.

Proof of Theorem 5.1. Let V. C L?(S?,C3) be a finite dimensional subspace. Without loss of
generality we assume that BN Q = () and that R?\ (B UQ) is connected (otherwise we replace
B by a sufficiently small ball BCB \ ,, where €2, denotes a sufficiently small neighborhood
of Q). We introduce the orthogonal projection Py : L?(S? C3) — L?(S?,C3) onto V. From
Lemma 5.3 we know that R(L; 5) C L?(S?,C3) is dense and therefore R(L; p) is infinite
dimensional. Together with the fact that R(L; 5) N R(L; o) = {0}, a dimensionality argument
(cf. [31, Lem. 4.7]) shows that

R(Lip) L R(Lig) +V = R([Lia | PY]) = Rqung])

From Lemma 5.4 it follows that there does not exist a constant C' > 0 such that

Lq,ﬂ ?
p, | P

|ILg,Pl 725 < C° = C*(|Lgapli2(q) + IPvPIZ2s2)

L2(Q)x L?(S?)
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holds for all p € L?(S?,C3). This means that one can find a sequence (P )men C L7(S?,C3)
such that

ILasbaliam — o0 and  |LoaBuliag + | PvBulless — 0
as m — 00. Setting Py, = Pm — PyPm € V* for all m € N yields

ILg,BPmllL2B)y = |1 Lg,BPmllLo(B) — | La,BIII[PVPm Il L2(s2) — 00 as m — 00,
[Lg.0Pmllr29) < [[LgoPmllr2) + | LaolllPvPmllp2(s2) — 0 as m — 00.
Recalling that L, ppm = curl Hy p, |p and L, opm = curl Hy p, |o, this ends the proof. O

Theorem 5.5. Suppose that D1, Dy C R? are open and bounded of class C°, let ¢ € Yp, and
@2 € Vp,, and assume that Q C R? is open and bounded. If q1(z) = go(x) for a.e. x € R3\ Q,
then there exist constants ¢, C' > 0 such that

c/ |curl Hy, ,|? dx </ |curl Hy, ,|? dz < C/ |curl Hy, ,|? dx
Q Q Q

for all p € L?(S?,C3).
Proof. Lemma 5.2 shows that, for any f € L?(Q2,C?),

* HO s * HO oy
Ly, of =\ /asql(u x e]°) and Ly, of = | /gSqQ(u x e3’), (5.8)

where e, j=1,2, are the far field patterns of radiating solutions to
curlcurle; — k‘25w-ej = iwef in R3.

Moreover, we observe that

2
. €1 k .
curlcurle; — k2€r72€1 = jweg (—f — —(er2 — Er,1)61) in R?,
g9 1WEeE9
2
. €2 k .
curlcurley; — k2€r71€1 = iweq (—_f — - (er1 — 87»72)62) in R3.
€1 1weq

Since by assumption €,1 — €, 2 vanishes a.e. outside of 2, this implies that

HO o * €1 . (6 2 — € 71)
A /gSq2 (vxel®) =Ly q (51" + 1k2¥el) , (5.9a)

wWe9
1O o o (€2, .o(Er1 —Er2)
VoS x ) = thg(afﬂk Teg). (5.9b)

Combining (5.8) and (5.9), we obtain that R(Sy, Ly, o) = R(Sg,Lj, o)- It remains to show that
R(Sq; Ly, 0) = R(Ly, o) for j =1,2. Then the assertion follows from Lemma 5.4.

Using (3.9) we find that for any f € L2(Q, C3),

ququ-7Qf = qu7ﬂf+ ?ququ7Qf. (510)

The definition of the far field operator Fy; in (3.8) together with our notation from (3.10)—(3.11)
shows that F, L;jjﬂf = quﬁp with p; ¢ == sz,Qf. Since (3.5) implies that the corresponding
scattered electric field Ej , is a radiating solution to

— k%, ;E = —k*(1—¢,,)E: in R3,

S
curl curl qu "y s

S
3. F 45,Pj,f
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we find using Lemma 5.2 that

€0 . 1— Erg ;

o] o * 5] 7

H = — VUV E: = (; . 1/ 1w E .
9:Pj.f \V 1o X 45,5 i %'752( €0 € s PN)

/r.7‘7

Substituting this into (5.10) and rearranging terms shows that, for any f € L?(Q, C3),

% % k 1-— Er,j ;
Lyl = Syl o(f + goem e Bpy):
ie., R(LE o) C R(S, LY, o) for j =1,2.
Similarly, using (5.8) we have that, for any f € L?(Q,C3),

* HO % 0o HO ox 0o ik 00
Syliaf = [0 8, (S v x ) = /22, (vx e+ g5F,wxer))  (5.11)

Writing pj y := v X €57 we obtain as before that
o0y — P _ L* . 1 —Erj E’L
F‘Zj (v x €; ) = 4P f S‘Jj q;,Q \ 1WE0 Pif) "

6"”7]

Accordingly, substituting this into (5.11) and applying (5.8) we find that, for any f € L?(, C3),

* _ T k Ho 1- Erj i
SqJ'qu,Qf = qu,Q (f - @\/g&l%igm Epjyf> )

ie., R(quL;jﬂ) C R(L;@) for j =1,2. O

Our first application of Theorem 5.1 is the following simple uniqueness result for the inverse
scattering problem. This should be compared to (4.2) in Theorem 4.2.

Theorem 5.6. Suppose that D1, Dy C R? are open and bounded of class C, let q1 € Yp, and
g2 € Yp,. If O C R3 is an unbounded domain such that

g < qo a.e. in O, (5.12)
and if B C O is open with
q < qg—c a.e. in B for some c >0,

then
Re(S;Fql) Phin Re(S(}"lFQQ) .

In particular, F,, # Fy,.

Proof. Suppose that there is a finite dimensional subspace Vi C L2(S?%,C?) such that

Re(/SQp-Sgl(FqQ—Fql)p ds) <0 for all p € Vi-.

Then, Theorem 4.2 shows that there exists another finite dimensional subspace Vo C L?(S?,C3)
such that

Re(/s2p <S4, (Fgp = Fay)p ds) = /R?)(QZ — q1)| curl I_Iq1,p|2 de for all p € V3" .
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Defining V := Vj + V4, we obtain from (5.12) that, for any p € V =+,

0> Re(/SQp-Sé‘l(Fq2 - F,))p ds) > /]RB(QQ - q1) ’CUI‘Iqu’pIQ dzx

— /(q2 —q1) ]curlthpl2 dx —1—/ (2 —q1) | curl thp|2 dx
o R3\O

> c/ leurl Hy, P de — (1] poges) + ||q2||Loo(R3))/ Jcurl H,, [ de.
B R3\O

However, this contradicts Theorem 5.1 with D = Dy, ¢ = ¢q1, and Q = R3\ O, which guarantees
the existence of (P )men € V* with

/ |curl Hy, | dz — 0o and / |curl Hy, p, > dz — 0 asm — oo.
B R3\O

Thus, Re(S:;l (Fq2 - Fth)) Zin 0. =

6 Shape reconstruction for sign definite scatterers

We discuss criteria to determine the shape of a scattering object D with permittivity contrast
g € Yp from observations of the corresponding far field operator Fj. In this section we consider
the special case when the contrast function ¢ is either strictly positive or strictly negative a.e.
on D. The general case will be treated in Section 8 below.

Let B C R3 be open and bounded. The Herglotz operator Hp : L2(S%,C3) — L*(B,C?) is
defined by

(Hpp)(y) = /52 curly, (eiky"’p(e)) ds(0) = ik . elkyo (60 x p(0)) ds(8), yeB.

Accordingly, the adjoint operator Hy, : L*(B,C3) — L2(S5?,C3) satisfies

(Hyf)(@) = ik x / Ry dy, e S,
B

and

(HyHop)(@) = 3 x ( [

y (/B kY (0-2) dy) (60 x p(8)) ds(O)) 7 Fes?.

In the following, we consider the probing operator T : L?(S?, C3) — L?(S?,C?) correspond-
ing to the probing domain B, which is defined by

TBp = HEHBP- (61)
This operator is compact and self-adjoint, and for all p € L?(S? C3) we have that
/ p-Tppds = / <1k/ VT (3 x p(2)) ds(@) : <1k/ ehy9 (6 x p(8)) ds(e)) dy
52 B 52 52

:/\cur H;\z de,
B

(6.2)

where HJ, is the incident magnetic field from (3.10). This should be compared to (4.4).
The theorem below considers the case when the contrast function ¢ is strictly positive a.e.
on D.
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Theorem 6.1. Let D C R3 be open and bounded of class C° such that R®\ D is connected, and
let ¢ € Yp. Suppose that 0 < qmin < ¢ < @max < 1 for some constants qmin, gmax € R, and let
B C Bgr(0) be open and bounded.

(a) If B C D, then
aTp <gn Re(Fy) for all o < gmin -

(b) If B Z D, then
aTp Zan Re(Fy) for any o > 0.

Proof. Let B C D and «a < ¢pin. Theorem 4.2 with ¢; = 0 and ¢ = g guarantees the existence
of a finite dimensional subspace V C L?(S52,C?) such that

Re(/ p-@ds) > /q|curlH§,|2 dex forallpe V>,.
S2 D
Since B C D and gpin > «, (6.2) yields
Re(/ p-@ds) > a/ ]curlH;,]2 de = a/ p-Tpp ds for all pe V*.
S2 B S2

Now applying Lemma 4.1 shows part (a).
Next we assume that B ¢ D and that there exists o > 0 with oT's <g, Re(F}). The latter
implies the existence of a finite dimensional subspace Vi C L?(S?,C3) such that

a/ p-Tppds < Re(/ p'@ds> for all p € V. (6.3)
52 S2

Moreover, Corollary 4.4 with ¢; = 0 and g2 = ¢ shows that there is a finite dimensional subspace
Vo C L?(S?,C3) such that

Re(/ p-Fyp ds) < / q|curl H,,|* dz < qmax/ |curl H, ,|*> de  for all p € V-, (6.4)
52 D D
We set V :=V; + V4. Combining (6.3) and (6.4) we obtain that
a/ \curlHi,]2 de < qmax/ |curl H, ,|* da for all p € V.
B D

To further estimate the right hand side we use Theorem 5.5 with g1 = 0, g2 = ¢, and Q = D,
and we find that

a/ |cur1H,;,|2 de < C’qmax/ |cur1HIi,|2 da for all p € V*
B D

with some C' > 0. However, this contradicts Theorem 5.1 with ¢ = 0 and €2 = D, which implies
the existence of a sequence (P, )men € V= such that

/ |curlHI’;m\2 dx — oo and / \curlHIi,m|2 dez — 0 as m — 00.
B D

O]

The next result is analogous to Theorem 6.1, but with contrast functions that are strictly
negative a.e. on D.
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Theorem 6.2. Let D C R3 be open and bounded of class C° such that R®\ D is connected, and
let ¢ € Yp. Suppose that —00 < @min < ¢ < qmax < 0 for some constants qmin, max € R, and
let B C Br(0) be open and bounded.

(a) If B C D, then there exists a constant C > 0 such that

aTp >g, Re(Fy) for all a > Cgmax -

(b) If B Z D, then
aTp #6n Re(Fy) for any o < 0.

Proof. Suppose that B C D. Applying Corollary 4.4 with ¢ = 0 and g3 = ¢ we obtain a finite
dimensional subspace V' C L?(52%,C3) such that

Re(/ p-mds) < / q|curl H,,|* dz < qmax/ |curl H, p|? dx for all pe V*+.
52 D D

Furthermore, Theorem 5.5 with ¢ = 0, g2 = ¢, and £ = D shows that there exists a con-
stant C' > 0 such that

Re(/ p-@ ds) < Cqmax/ |cu1rlH]f,|2 dz forallpe V=*.
S2 D

In particular,
Re(Fy) <gn aTp for all @ > Cqmax ,

and part (a) is proven.
For part (b) we assume that B Z D, and that there exists a < 0 with aTp >a, Re(Fy).
This means that there exists a finite dimensional subspace V3 C L?(S2,C?) such that

a/ p-TdeszRe</ p-%ds) for all p € V. (6.5)
S2 S2

On the other hand, Theorem 4.2 with g1 = 0 and g3 = ¢ gives a finite dimensional subspace
Vo C L2(S?,C3) such that

Re(/ p-mds) > / q\curlHI",\2 de > qmm/ \curlHIi,\2 dz. (6.6)
52 D D
Let V :=Vj + Va. Combining (6.5) and (6.6) we deduce that
a/ \curlHIi,\2 de > qmm/ \curlHIi,]2 dz forallpe V>,
B D
Applying Theorem 5.1 with ¢ = 0 and Q = D gives a sequence (P, )men C V' satisfying
/|curlH;‘)m|2 dx — oo and / |curlH;‘)m|2 de —0 asm — oo.
B D

Since a < 0, this yields a contradiction. O
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7 Simultaneously localized vector wave functions

To justify a shape characterization similar to Theorems 6.1 and 6.2 for indefinite scattering
objects, i.e., for the general case when the constrast function ¢ is neither strictly positive nor
strictly negative a.e. on D, we require a refined version of Theorem 5.1. In Theorem 7.1 we not
only control the energy of the total field H, 4, as was done in Theorem 5.1, but also the energy of
the incident field Hzi,. Similar results have been established for the Schrodinger equation in [26],
for the Helmholtz obstacle scattering problem in [1], and for the Helmholtz medium scattering
problem in [19].

Theorem 7.1. Let D C R? be open and bounded of class C°, and let ¢ € Yp with q|p € CY(D).
Let E,M C R? be open and Lipschitz bounded such that supp(q) € E UM, R3\ (EU M) is
connected, and EN M = (). Assume furthermore that there is a connected subset ' C OE \ M
that is relatively open and C*'-smooth.

Then for any finite dimensional subspace V. C L2(S% C3) there exists a sequence
(Pm)men € V* such that

/ |curl H,p, |* de — oo and / { curl H,,, >+ |cur1H;m|2) de — 0
E M

as m — oo, where H),  Hgyp, € Hyo(curl;R?) are given by (3.10) and (3.11) with p = pp,.

The proof of Theorem 7.1 relies on the following two lemmas. Lemma 7.2 extends the result
of Lemma 5.2. The goal is to allow for more general arguments for the adjoint L;Q.

Lemma 7.2. Suppose that D C R? is open and of class C°, let ¢ € Yp, and assume that  C R?
is open and bounded. We define

Lyo: Lf(52,(C3) — H(curl;Q), Lgop = curlH ,lqg = —iweE,plqo.

Then, Ly q is a linear operator and its adjoint is given by

* * * HO o« oo
Liq: H(eur;Q)* — L7(S%,C%), Liof = 1/gsq(u x %),

where H(curl; Q)* is the dual of H(curl;Q)), and e € L2(S%,C3) is the far field pattern of the
radiating solution e € Hy,.(curl; R3) to

curlcurle — k%c,e = iwef in R3 .
Proof. This follows from the same arguments that have been used in the proof of Lemma 5.2. O

Lemma 7.3. Let D C R3 be open and bounded of class C°, and let ¢ € Yp with q|p € CY(D).
Let E,M C R? be open and Lipschitz bounded such that supp(q) € EU M, R3\ (EU M) is
connected, and EN M = (). Assume furthermore that there is a connected subset ' C OFE \ M
that is relatively open and C*'-smooth. Then,

R(L; &) € R([Lyar | Lo.ar])

and there exists an infinite dimensional subspace Z C R(L;E) such that

ZOR([Lh | Loa]) = {0}.

21



Proof. Let h € R(L;E)HR( [L;M ’ LS’M}). Lemma 7.2 shows that there are f, p € H(curl; E)*
and fy v, fonr € H(curl; M)* such that the far field patterns € €g s €0 of the radiating

: .3
solutions ey g, €q, €0,m € Hioc(curl;R?) to

2 _ 3

curlcurle, p — k"c,eq p = iwefy in R?,
2 . <3

curlcurle, s — k%ereq v = iwefg m in R?,
curlcurleg s — k2eo,M = iwe fo,m in R3 ,

satisfy
5
J2h = Si(vxeXy) =vxegy+S(vxey).
MO k) bl I’

Here we used that Sp is the identity operator. Accordingly, recalling the definition of the
scattering operator in (3.9), we find that

— 8] oo )
0=vxep—vxey —S(vxely)

_ xeX. _uxe®, —uvxeX, ik F e

SVUXEE—VXeny—VXeyy 2 q€0,M

_ 00 00 00 00

=vxep— (Vxeytvxery+vxer),

where eg° is the far field of a radiating solution e} € Hjoc(curl; R?) to

curlcurle; — stre; = k*(1 —¢,)e’ in R?

for some entire solution e’ € Hy,.(curl; R3) of
curlcurle’ — k%e’ = 0 in R?.

Since supp(q) € EUM and R3\ (EU M) is connected, Rellich’s lemma and unique continuation
guarantee that

eqp — (egrr+eop+€) =0 iR\ (EUM)
(cf., e.g., |10, Thm. 6.10]).

Next we discuss the regularity of the traces of v x eq lr = v x (€41 + €01 + €;)|r at the
boundary segment I' C OE\ M. W.lLo.g. we may assume that I is bounded away from M. Since
supp(fy.n+ for) C M, regularity results for time-harmonic Maxwell’s equations from [50] show
that any point & € I' has an open neighborhood U C R? such that (egm +eon + €g)|Enu €
H*(ENU,C%) and (eq,mr + eonr + eg)ljng € H*(U \ E,C%), where e4 = €' + ej. Accordingly,
applying the trace operator on H2(U \ E,C3) and taking the cross product with v € CH1(I', R3),
we find that X

v X (equ + eo.nm + eq)‘r € HE(F NnU, (Cg)
(see [23, p. 21])
Since x € T’ was arbitrary and e’ is smooth this implies that

3
v X egplr = v x(equm + e +e))r € HE (I, C?)

To prove the lemma, we will construct a sufficiently large class of sources f € H(curl; E)*
such that L} o f ¢ R([L;M ‘ L@M]). Let g € H_%(Div; OF) such that supp(g) C I'. Accord-
ingly, let UT € Hy,(curl;R3 \ E) be the radiating solution to the exterior boundary problem

curlcurlUT — k%, UT =0 inR3\ E, vxUT =g ondE, (7.1)
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(see, e.g., [39, Thm. 5.64]). Similarly, we define U~ € H(curl; E) as the solution to the interior
boundary value problem

curlcurlU™ — k?(e, + 1)U~ =0 in E, vxU~ =g ondFE, (7.2)
(see, e.g., [39, Thm. 4.41]). Therewith we define U € L (R?) by
U o— U~ inkFE, B
Ut inR3\E,
and f € H(curl; E)* by
1 /. _ N -
f = @kaU — (1/ X curlU|;E -V X curlU‘aE)) ,

where 7} : H='/?(Div;dE) — H(curl; E)* denotes the adjoint of the interior tangential trace
operator m; : H(curl; E) — H~'?(Curl;dFE) with (V) = (v x V]gg) x v. Then U €
Hyoo(curl; R3) (see, e.g., [44, Lem. 5.3]), and the weak formulations of (7.1) and (7.2) show that

curlcurlU — k%, U = iwef inR3.

Accordingly, Lj o f = VHo/eo Sy (v x U™), where U™ € L?(S?%,C?) coincides with the far field

of the radiating solution U™ to the exterior boundary value problem (7.1). If g & Ht% (OFE,C?),
then our regularity considerations from above show that L;Ef ¢ R([L;M ‘ L(’S,M]).
Now let
X C {g € H %(Div; OF) | supp(g) C T}

3
be an infinite dimensional subspace of H~/?(Div;0E) such that X N HZ? (OE,C3) = {0}. Let
Gg : Hfé(Div; OE) — L?(S%,C?) be the operator that maps g € Hfé(Div;aE) to the far
field pattern of the radiating solution U™ of the exterior boundary value problem (7.1). Then
Rellich’s lemma and unique continuation show that G is one-to-one, and thus

7 = JES:aR(X) C L2(52,C?)
€0
is an infinite dimensional subspace as well. Furthermore, we have just shown that

Now we give the proof of Theorem 7.1.

Proof of Theorem 7.1. Let V. C L?(S? C?) be a finite dimensional subspace. We denote by
Py : L?(S%,C3) — L?(S?,C3) the orthogonal projection on V. Combining Lemma 7.3 with a
simple dimensionality argument (see [31, Lem. 4.7]) shows that

Z & R([Lyar| Loar)) +V = R Lyar | Lo e Pr]) s

where Z C R(L} ) denotes the subspace in Lemma 7.3. Thus,

R(L; &) € R([Lj s | Lo ae| Pr])
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and accordingly Lemma 5.4 implies that there is no constant C' > 0 such that

Lq,M 2
ILasplegs < o?H Loat|
Py L2(M)x L2(M)x L?(S2,C3)

= CQ(HLq,MpHQm(M) + HLO,MPH%?(M) + HPVPH%g(sa@))
for all p € L?(S?%,C?). Hence, there exists as sequence (P )men € L?(S?, C3) such that
||Lq,Eﬁm||L2(E) — 00 as m — o0,

| Lg,vPmll 2(ary + [ Lol 2 ary + 1 PvPmll 252,03y — O as m — oo.

Setting Py, := Pm — Pypm € V- C L2(S%,C3) for any m € N, we finally obtain
| Lg,EPmllL2(E) > ”Lq,EﬁmHB(E) - HLq,EHHPVﬁmHLg(s2,<c3) — 0 as m — o0,
and
| Lg,mePmllz2any + 1 LoaPmll 2oy < W LgmaPmllz2(ary + 1 LoD || L2(ar
+ (ILgpell + 1 Lo NPy Pmll 252,05y = 0 asm — o0,

Since Ly gpm = curl Hy . |g, Ly pyipm = curl Hy |1, and Loy pp, = curl H;,m\M, this ends
the proof. O
8 Shape reconstruction for indefinite scatterers

We consider the general case when the constrast function ¢ is neither strictly positive nor strictly
negative a.e. on the support D of the scatterer. While the criteria developed in Theorems 6.1
and 6.2 determine whether a certain probing domain B is contained in the support D of the
scattering object or not, the criterion in Theorem 8.1 characterizes whether a certain probing
domain B contains the support D of the scatterer or not.

Theorem 8.1. Let D C R? be open and bounded such that OD is piecewise C%1, and R3\ D
is connected. Let q € Yp with q|p € CI(E), and suppose that —o0 < Gmin < ¢ < @max < 1 a.e.
on D for some constants qumin, gmax € R. Furthermore, we assume that for any point x € 0D
on the boundary of D, and for any neighborhood U C D of  in D, there exists a connected
unbounded domain O C R3 with () # FE:=0ND CU such that

q/E > qE,min > 0 or  qlg < qBmax <0 (8.1)

for some constants QE min; 9E,max € R.
Let B C R? be open such that R®\ B is connected.

(a) If D C B, then there exists a constant C' > 0 such that

aTp <gan Re(Fy) <gn BT for all oo < min{0, ¢min}, B > max{0, Cqmax} - (8.2)

(b) If D € B, then

aTp £an Re(Fy) foranya € R or Re(F,) £an I for any B € R. (8.3)

24



Proof of Theorem 8.1. Let D C B. Using Corollary 4.4 and Theorem 5.5 with ¢ = 0 and g2 = ¢
we find that there exists a constant C' > 0 and a finite dimensional subspace V4 C L?(S?,C3)
such that, for all p € Vi* and any 8 > max{0, Cqmax },

Re(/ p-E,pds) < / gl curl Hypl|* dz < qmax/ | curl Hyp|* da
S2 D D

Cqmax/ |curlH;‘)|2 de < B/ \curlHIZ‘,]2 de.
D B

IN

On the other hand, Theorem 4.2 with ¢ = 0 and g2 = ¢ gives a finite dimensional subspace
Vo C L?(S5?,C3) such that, for all p € V5 and any o < min{0, gmin},

Re(/ p-Fqus> > / gl curl H|* da > qmin/ | curl H)? da > a/ |curl HL? de.
s2 D . ;

Thus, part (a) is proven.

Part (b) is shown by contradiction. Let D B, then U := D\ B is not empty. By assumption
there exists a point & € U N dD and a connected unbounded open neighborhood O C R? of &
with ON D C U and O N B = (), such that (8.1) is satisfied with £ := O N D. Let R > 0 be
large enough such that B, D C Br(0). Without loss of generality we suppose that O N Bg(0),
and Br(0) \ O are connected.

If gl > ¢Emin > 0 we assume that Re(F,) <g, BIp for some § € R. Applying the
monotonicity relation (4.1) in Theorem 4.2 with ¢; = 0 and g2 = ¢, we find that there exists a
finite dimensional subspace V3 C L?(S2,C3) such that, for any p € V3,

0> /Qp- (Re(Fq)p— BTBp) ds > / (g — BXB)|curlH;,\2 dx
S B

r(0)
~ [ - pxmlcant B det [ (g pxn)|curl Hyf? do
Br(0)\O Bgr(0)NO
> —(llqll Lo 3y + \5|)/ 7|curlH;|2 dac—l—qE’min/ \curlHIi,\2 dz .
BR(0)\O B

However, this contradicts Theorem 5.1 with B = E, Q = Bg(0) \ O, and ¢ = 0, which yields a
sequence (P )men C V- with

/ ]curlH;,m|2 dx — oo and / \curlHIi)m]2 de — 0 as m — 00.
E Br(0)\O

Thus, Re(F,) £an f1p for all B € R.

Now assume that ¢|g < ¢gmax < 0, and that aTp <g, Re(F;) for some o € R. Then the
monotonicity relation (4.3) in Corollary 4.4 with g1 = 0 and g2 = ¢ shows that there exists a
finite dimensional subspace V; C L?(S?,C3) such that, for any p € V;*,

0 < / p- (Re(Fy)p — aTpp) ds < / (q\curlHq,p\2 — aXB|curlei,\2) dx
S2 Br(0)
= / (gl curl Hyp|* — axp| curl H;,\Q) da
Br(0)\O
+/ (q| curl Hyp|* — axp| curlH;,P) dex
Br(0)NO

< qmaX/ _|curl H,|* dz + |« | curl Hy* da + qE,maX/ |curl H, ,|* dz.
Br(0)\O Br(0\O E
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Let M := Bg(0)\O. Since D is piecewise C?*! smooth, there is a connected subset I' C 9E\ M
that is relatively open and C*! smooth. Using Theorem 7.1 we obtain a sequence (p,)men C V-
such that

/ |curl H,p, |* dez — oo and / (| curl H,, |*+|curl H;Jm|2) de — 0
E Br(0)\O

as m — oo. However, since gg max < 0 this gives a contradiction. Therefore, aTp £a, Re(Fy)
for all @ € R, and this ends the proof of part (b). O

The following corollary is an immediate consequence of the proof of Theorem 8.1. We consider
the special case of an indefinite scattering object D = D; U Dy with contrast function ¢ such
that g1 := gq|p, is strictly positive on Dy while g2 := ¢|p, is strictly negative on Dy. The result
characterizes whether a certain probing domain B contains the postive part D of the scatterer
or its negative part Dy or none of them.

Corollary 8.2. Let D :7D1 U Dy C R3 be open and bounded such that Eﬂﬁg =0, D 1is
piecewise C*', and R® \ D is connected. Let q € Yp with q; = qlp, € CY(D;j), j = 1,2, and
suppose that

0< d1,min q1 q1,max < 1 a.e. on Dy,

<q <
—00 < @2min < @2 < @max < 0 a.e. on Dy,

fOT‘ some constants q1,mins 41,max; q2,min7£2,max € R.
Let B C R? be open such that R®\ B is connected.

(a) If D1 C B, then there exists a constant C > 0 such that

Re(Fy) <gn &Ip  for all o > C'qi max -

(b) If D1 € B, then
Re(Fy) £an oI for any a € R.

(c) If Dy C B, then
Re(Fy) >fn &I for all o < q2 min -

(d) If Dy € B, then
Re(Fy) Zfn &Ip  for any a € R.

At the end of the next section we will comment on a sampling strategy that implements the
criteria in Corollary 8.2 to geometrically separate positive and negative components of mixed
scattering configurations. Using techniques from [21, 22, 45| this information could be used to
obtain a full shape reconstruction of the unknown scatterers. A stable numerical implementation
of the monotonicity based shape characterization for the general indefinite case from Theorem 8.1
seems to require a better understanding of the dimensions of the finite dimensional subspaces
that are excluded in the monotonicity relations in (8.2)-(8.3).

9 Numerical examples

We discuss numerical examples for the shape characterizations developed in Sections 6 and 8.
The main issue here is that numerical approximations of the operators F, and T’p are necessarily
finite dimensional. Accordingly, the question, whether suitable combinations of these operators
are positive or negative definite up to some finite dimensional subspace (see Theorems 6.1, 6.2,
and 8.1) needs to be carefully relaxed.
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9.1 An explicit radially symmetric example

To illustrate the results from Theorems 6.1, 6.2, and 8.1 we consider the special case when the
scatterer D and the probing domain B are concentric balls.

Let D = B,,(0) be a ball of radius rp > 0 centered at the origin with constant electric
permittivity contrast ¢ < 1, i.e., the relative electric permittivity is ¢! =1 — ¢ > 0. We derive
series expansions for the incident magnetic field and for the corresponding magnetic far field
pattern to obtain explicit formulas for the eigenvalue decomposition of the magnetic far field
operator Fy from (3.8).

Let ", m = —n,...,n, n € N, denote a complete orthonormal system of spherical harmon-
ics of order n in L?(S?). Then, the vector spherical harmonics

1

U™0) := ———— Gradg2Y,"(0), V™) :=0xU™®6), 6¢cS?,
vn(n+1)
form = —n,...,n, n =1,2,..., form a complete orthonormal system in L?(S?, C?). Accord-

ingly, we define the spherical vector wave functions

M (@) = —ju(klz) V@),  Ni'(z) = -hD(klz)V"@), @R’ (9.1)
form = —n,...,n, n = 1,2,..., where j, and h,(}) denote the spherical Bessel and Hankel

function of degree n. We note that the normalization factors used in (9.1) differ from what is
used elsewhere in the literature (see, e.g., [10, Sec. 6.5]).
Given a tangential vector field

o0 n

p=> > (arUr+brV") € LA(S2,CP), 9.2)

we obtain from (3.10) and [10, Thm. 6.29| that

47r1

H(z) Z Z (a curl M"(z) — ik b M (z)), € R3.

Applying separation of variables a short computation shows that the corresponding scattered
magnetic field outside the support of the scatterer is given by

471'1

H; (z) Z Z cMeurl N7 (z) — ikd"N™(x)), xR\ D,

n=1m=-—n

m_ gm (krD)jn(krp) iy (krp) — (kD) jn(krD) s, (kD)

" (krp)jn(krp) (W) (krp) — (krp)hs (krp) iy (krp)
m Er Jn(kT'D)(Jn(WD) (krD)jn(krp)) — jn(krp) (jn(krp) + (krp)jy(krp))
" (krp)ja(rrp) (b)Y (krp) — (krp)er it (rkrp)h (krp) + ahl) (krp)ju(krp)

and s := k,/g,. Recalling that the far field patterns of the spherical vector wave functions N,
and curl N are given by

dy =b

n

mM\oo (7 47{(_i)n+1 m(s Mmoo (7 NN TM (5 = 2
(NZ)F(@) = —————V,"(@),  (eurlN;)*(2) = dr (-)"U,"(@), @€5,
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form=-n,...,n,n=1,2,... (see, e.g., [10, Thm. 6.28]), we find that

H(z) = 1k; Z Z (crUr(z) +drvir(z)), xSt

Accordingly, the eigenvalues and eigenvectors of the magnetic far field operator Fj, are given
by (AW, o), n>1, —n <m <n, j=st with

A\ _ @m)?  (5rp)jn(krp)jn(krp) = (krp)jn(srp)jn(krp) (9.30)
c (krp)jn(sr ) (WD) (krp) — (wrp)hi” (krp)j, (krp)
) _ (4m)? &, Y jn(krp) (jn(m" /{rp)j;l(/@rp))—jn(/-irD)(jn(k:rD) (krD)j;l(krD))
An' =T 0, 0 D » (9:3b)
W (krp)jn(krp)(hn) (krp)— (krp)er ' (kD) (krp)+qha’ (krp)jn (kD)
and
o8 (@) = Umz), ol (z)=V"@), =z (9.3¢)

Similarly, we consider for the test domain B = B, ,(0) a ball of radius rg > 0 centered at
the origin. Then the probing operator T : L?(S?,C3) — L?(S?,C3) from (6.1) satisfies

(Top) (@) = K /S A /B » O ay) (0 x p(0)) ds(0)) x &

" (9.4)
_ k2</52 (/0 Ao kpl0 — &) dp) (6 x p(9)) ds(0)) x &, @ e 5.

Here we used the integral representation of jy (see, e.g., [10, (2.45)]. Substituting the vector
spherical harmonics expansion (9.2) into (9.4) we find that

aap@) = 42> S (o [ [ doteslo - @V @) asio)s” o

n=1m=-—n

B
o [ ] otholo — @)Uz @) as(o) * dp) x 8
0 S2

n

_ i > (a (came? [ 20016% a0 )U@

w2 (n? [ (Galbo) + ko) + nln -+ D)) dp V(@) )

(see, e.g., [10, Thm. 6.29]). Accordingly, the eigenvalues and eigenvectors of the probing opera-
tor Tg are given by (ug),v%)n) n>1 -n<m<n,j=s,t with

4 2 krB.
o) = | Z) /0 Jn(p)p® dp, (9.6a)
4 krp . . .
uo = L [l 03200+ o) + 001 . (9.6b)
and
Wi, (@) = U@, o0,@) - Vi@, ses. (9.6¢)

Assuming that 0 < ¢ < 1, the criteria established in Theorem 6.1 and Theorem 8.1 show
that
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Figure 9.1: Number of positive eigenvalues (left) and number of negative eigenvalues (right) Re(A,(rp))
(dotted), pn(rp) (dashed), and Re(A,(rp)) + pn (rp) (solid) within the range n = 0, ..., 1000 as function
of rp.

(a) ifrp <rp,ie., when B C D, then 0 <g, Re(Fy) —aTp when a < ¢ but 0 25, Re(Fy)—aTlp
for any a € R. This means that Re(F;;) — oI'p has infinitely many positive eigenvalues for
any a € R but only finitely many negative eigenvalues when o < q.

(b) if rg > rp, i.e., when B € D, then Re(F,) — aTp <gn 0 when a > Cq with C' > 0 as
in Theorem 5.5, but 0 Zs, Re(Fy) — aTp for any a € R. This means that Re(F,) — aTp
has infinitely many negative eigenvalues for any o € R but only finitely many positive
eigenvalues when o > Clq.

A similar characterization for negative contrasts —oo < ¢ < 0 can be obtained from Theorems 6.2
and 8.1.

To illustrate this characterization, we choose ¢ = 0. 5, ., & = 2, and we evaluate the
eigenvalues Re()\g)(rp)) (])(TB) and Re()\(j)(rp)) Qufl; G) ( B), J = S,t, with wave number
k = 1, radius of the obstacle r = 5, a = 0.5, and n = 1,...,1000 for different values of the
radius rp € [0,25] of the test domain B using (9.3) and (9.6). In Figure 9.1 we show plots of
the number of negative eigenvalues (left plot) and of the number of postive eigenvalues (right

plot) Re()\%j)(rp)) (dotted), ug)(rB) (dashed), and Re()\g)(rp)) — a,ug)(rp) (solid), j = s,t,

within the range n = 0,...,1000 as a function of rp.
As suggested by Theorems 6.1 and 8.1 there is a sharp transition in the behavior of the
eigenvalues of Re(F,) — oIp at rg = rp = 5, which could be used to estimate the value

of rp. In these plots the contribution of the operator Re(Fj;) dominates in the superposition
Re(Fy) — ol as long as rg < rp (i.e., when B C D), while the contribution of the operator
oTp dominates when rg > rp (i.e., when D C B).

9.2 A sampling strategy for sign-definite scatterers

We discuss a numerical realization of the criteria established in Theorems 6.1 and 6.2. To
discretize the magnetic far field operator F, from (3.8) we use a truncated vector spherical
harmonics expansion. Let p € L?(S?,C?) as in (9.2), then applying F, gives

Fp =Y > (alFUN + 6P F V") € LH(S%,C). (97)

n=1m=-—n
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Studying the singular value decomposition of the linear operator that maps current densities
supported in the ball Br(0) of radius R around the origin to their radiated far field patterns,
it has been observed in [20] that for a large class of practically relevant source distributions
the radiated far field pattern is well approximated by a vector spherical harmonics expansion of
order N 2 kR. This study suggests to truncate the series in (9.7) at an index N that is at least
slightly larger than the radius of the smallest ball around the origin that contains the scattering
object. Accordingly, we use the matrix

2
F, = ‘ € COx@ (9.8)
1 <F U V >L2(S2 (C3) <F V V )L%(SQ (CS)
with @ = 2N (N + 2) as a discrete approximation of Fy.
Next, we consider an equidistant grid of sampling points
A = {zijo = (ih,jh,th) | —J <i,j,¢ < J} C [-R,R)? (9.9)

with step size h = R/J in the region of interest [-R, R]3. For each z;;y € /A we consider
a probing operator Tp,, as in (6.1), where the probing domain B;j; = Bj(2ij¢) is a ball of
radius h centered at z;;,. This probing operator satisfies, for any p € L?(S? C3) and z € S?,

(Tp,, p)(@) = k*( / elb=(0-2)( / v O=2) 4y) (6 x p(6)) ds(9)) x &
52 B}L(O)
_ k2@ (TBh(O) (eikZ'(-)p)> (7).

Combining this representation with the eigenvalue expansion of Tz, (o) that we have derived in

the previous subsection (see (9.5) and (9.6)), we find that T’g, , has the same eigenvalues u% ), ,u(t)

as T, (0), but the corresponding eigenvectors for T, ;, are
90, (@) = e *FPUM(@)  and  90),(@) = e FFEVM=E),  ze S

Accordlngly we find for A} € {U;"*,V,"} and B} = {UT’Z?,, Vnr,”/} with n,n’ > 1, —n <m <n,
and —n’ < m/ <n'/ that

(T, Ay By >L§(s2<c3)

=y Z ( ﬂkz'(')Uz%Lg(sm:i)<€7ikz()Ub , By >L2(52 C3)

b=1 a=— (910)

§ (AT OV 1o o e OV B >L2(SQC3)>

Truncating the series in (9.10) and applying a quadrature rule on S? to evaluate the inner
products (see, e.g., |2, Sec. 5.1]), we obtain a discrete approximation

Tg. ., =

(%4

€ Cox@ (9.11)

(Ts,;, Uy U )Lf(SQ,@) (Tp,;, V", Ut >L§(s2,<c3)
< ngU V >L§(52,Cs) < ZJZV V >L?(52,C3)

of Tp,,, for any —J < i,j,£ < J. The results from [20] suggest to truncate the series in (9.10)

at an index larger than k|z;j|. In the following we use the same truncation index N 2 V3kR
for Fy and T, for any —J <4, j,£ < J, and thus also the same ) = 2N(N +2).
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Figure 9.2: Visualization of exact shape of scattering object in Example 9.1 (left), visualization of
isosurface Iy = 2 of indicator function from (9.13) using simulated far field data without additional noise
(center), and visualization of isosurface Iy = 11 using simulated far field data with 0.1% noise (right).

To implement the criteria from Theorems 6.1 and 6.2 we compute for each grid point z;;, € A

the eigenvalues )\gij é), el )\gj g € R of the self-adjoint matrix
Ap,;, = sign(q)(Re(F,) — aTp,,) € C?,  1<ijl<J. (9.12)

For numerical stabilization, we discard those eigenvalues whose absolute values are smaller
than some threshold. This number depends on the quality of the data. If there are good reasons
to believe that Ap,, is known up to a perturbation of size § > 0 (with respect to the spectral
norm), then we can only trust in those eigenvalues with magnitude larger than § (see, e.g., [17,
Thm. 7.2.2]). To obtain a reasonable estimate for §, we use the magnitude of the non-unitary
part of S, := (I + (ik/(872)F,), i.e. we take § = [|55S, — Iq||a, since this quantity should be
zero for exact data and be of the order of the data error, otherwise.

Assuming that the electric permittivity contrast ¢ is either larger or smaller than zero a.e. in
supp(q), and that the parameter « € R satisfies the conditions in part (a) of Theorems 6.1 or 6.2,
respectively, we then simply count for each test ball B;;, the number of negative eigenvalues
of Ap,;,, and we define the indicator function I, : A — N,

Lu(zije) = #W9 |N0D < 5 1<n< N}, 1<ijl<J. (9.13)

Theorems 6.1-6.2 suggest that I, is larger on sampling points z;;, € A that are not contained in
the support supp(q) of the scattering object than on sampling points z;;, € A that are contained

in supp(q).

Example 9.1. We consider a scattering object D that has the shape of a torus as shown in
Figure 9.2 (left). We use ¢ = 0.5 for the contrast function (i.e., the relative electric permittivity
is €, = 2), k = 1 for the wave number, and N = 5 for the truncation index in the vector spherical
harmonics expansions (9.7) and (9.10) (i.e., @ = 70 in (9.8), (9.11) and (9.12)). We simulate
the far field matrix F, € C¢*? using the C++ boundary element library Bempp [46].

For the reconstructions we use the sampling grid A from (9.9) with step size h = 0.05 in
the region of interest [—3,3]3, i.e., we have 161 grid points in each direction. In Figure 9.3
we show color coded plots of the indicator function I, from (9.13) in the @1, zo-plane, i.e., we
plot the number of those eigenvalues of Ap, , from (9.12) that are smaller than —4 for all grid
points with vanishing third component. We use § = 1074 for the threshold parameter, and we
examine six different values for a, namely o € {0.01,0.1,0.5,1,10,20}. We observe that the
values of I, are smaller for grid points inside the scattering object than outside, and that this
number increases the farther away a grid point is from the scattering object, as we would expect
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Figure 9.3: Visualization of the indicator function I,, for a € {0.01,0.1,0.5,1, 10,20} in the @1, x2-plane
using simulated far field data without additional noise. The dashed lines show the exact boundaries of
the cross-section of the scatterer.

from Theorem 6.1. The condition & < gpin in the second part of Theorem 6.1 is satisfied only
for a € {0.01,0.1,0.5}. On the other hand the hole inside the cross-section of the torus becomes
visible in these reconstruction when « is chosen sufficiently large. For a = 20, we provide a
three dimensional reconstruction in Figure 9.2. Inspecting the middle picture in the bottom
row of Figure 9.3 suggests to plot the isosurface Isy = 2, which is shown in Figure 9.3 (center).
The position and the shape of the torus are nicely reconstructed. We note that it was observed
in [18] for the corresponding scalar scattering problem governed by the Helmholtz equation that
the quality of the reconstructions of this monotonicity based scheme increases with increasing
wave number also for smaller values of a.

To get an idea about the sensitivity of the reconstruction algorithm with respect to noise in
the data, we redo this computation but add 0.1% complex-valued uniformly distributed additive
error to the simulated far field data before starting the reconstruction procedure. The resulting
reconstruction is shown in Figure 9.2 (right). In these reconstructions the noise is only accounted
for via the threshold parameter ¢ in (9.13): We use 6 = 0.001. The result clearly gets worse,
but it still contains useful information on the location and the shape of the scatterer.

9.3 Separating mixed scatterers

We discuss a numerical realization of the criteria established in Corollary 8.2. Suppose that
D = D; U Dy is an indefinite scattering object with contrast function ¢ such that ¢; := ¢|p, is
strictly positive on D; and g2 := q|p, is strictly negative on Dy. While the algorithm for sign
definite scattering objects in the previous subsection determines whether a sufficiently small
probing domain B is contained inside the support D of the unknown scattering object or not,
the criteria from Corollary 8.2 describe whether a sufficiently large probing domain B contains
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the support D; or Dy of the component of the scattering object with stricly positive or stricly
negative contrast function, respectively. We develop an algorithm to determine upper bounds
By, By C R3 such that Dy C By and Dy C Bs. This is clearly less than full shape reconstruction
but our numerical results below confirm that we can separate the two components of the scatterer
with positive and negative scattering contrasts from far field data, at least when their supports
are sufficiently far apart from each other.

We work on an equidistant sampling grid A as in (9.9). For each z;j; € A we consider a
probing operator T, as in (6.1), where the probing domain B;jy = B,(2j¢) is a ball of radius p
centered at z;j,. Here we assume that p > po > 0, where 2pg is an upper bound for the diameters
of Dy and Ds.

To implement the criteria from Corollary 8.2 we compute for each grid point z;;, € A the

eigenvalues )\gij e), cee )\gj ) € R of the self-adjoint matrix

Ap = £Re(Fy) Falp,,) €C¥?, 1<ijl<J.
Then Corollary 8.2 says the following.

(a) If Dy C B, then AEW has only finitely many positive eigenvalues for all &« > Cgqi max-
(b) If Dy B, then A‘giﬂ has infinitely many positive eigenvalues for all a € R.
(c¢) If Dy C B, then AE,M has only finitely many positive eigenvalues for all & < g2 min.

(d) If Dy € B, then A;W has infinitely many positive eigenvalues for all o € R.

Accordingly, assuming that the parameter o > 0 is sufficiently large, we count for each test
ball B;;, the number of positive eigenvalues of A%iﬂ, and we define for any z € AN Byjy,

IE(2) = #0000 [ \00 > 5, 1< n< N},
where § > 0 is a theshold parameter that depends on the quality of the data as in Section 9.2.
Therewith we define the indicator function IF : A — N,

Ip(z) = min{l;,(2) | 1<i,j < J}, zeA. (9.14)

Corollary 8.2 suggests that I} and I, are smaller on sampling points z;;; € A that are close
to D1 and Dy than on sampling points away from D; and Do, respectively.

Example 9.2. We consider an indefinite scattering configuration with two scattering objects
that are supported on cubes as shown in Figure 9.4 (left). The contrast function of the scatterer
supported on the lower cube Dy is ¢ = 0.5 (i.e., the relative electric permittivity is e, = 2), and
the contrast function of the scatterer supported on the upper cube Dj is g = —1 (i.e., &, = 0.5).
We use k = 1 for the wave number and N = 5 for the truncation index in the vector spherical
harmonics expansions (9.7) and (9.10) (i.e., @ = 70 in (9.8), (9.11) and (9.12)). We simulate
the far field matrix F, € C¢*? using the C++ boundary element library Bempp [46].

For the reconstructions we use the sampling grid A from (9.9) with step size h = 0.05 in
the region of interest [—3, 3]3. In Figure 9.4 (center and right) we show horizontal cross sections
of color coded plots of the indicator function I* from (9.14), where the radius of the test balls
is p = 0.75. We use o = 0.5 (center) to recover the approximate position and size of the
component Dy, where the constrast function g is striclty positive, and o = —1 (right) to recover
the approximate position and size of the component Dy where the constrast function g is striclty
negative. For the threshold parameter we use § = 1074, We observe that the values of IOJT 5 are
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Figure 9.4: Visualization of the exact shape of the mixed scattering object in Example 9.2 (left), and
of the isosurfaces I 5 = 7 (center) and I~; =1 (right).

smaller for grid points inside the component D; of the scattering object than outside. Similarly,
the values of /~; are smaller for grid points inside the component Dy of the scattering object
than outside. These numbers increase the farther away a grid point is from the corresponding
component of the scattering object, as we would expect from Corollary 8.2. The two isosurface
plots I - = 7 (center) and I_; = 1 (right) in Figure 9.4 show that the components D; and Do
of the indefinite scattering configuration can be nicely separated by the algorithm.

Conclusions

In this work we have considered the inverse scattering problem to reconstruct the shape of a
scattering object from far field observations of scattered electromagnetic waves. We have estab-
lished new rigorous characterizations of the support of inhomogeneous non-magnetic scattering
objects in terms of the corresponding far field operator. These characterizations are based on
novel monotonicity relations for the difference of two far field operators corresponding to two
different permittivity contrasts. We have also established the existence of solutions to the direct
scattering problem that have arbitrarily large energy in some prescribed region, while at the
same time having arbitrarily small energy in a different prescribed region. This has been an
important theoretical tool in our analysis. We have provided some simple numerical demon-
strations of our theoretical results. A stable numerical implementation of the new monotonicity
based shape characterizations still requires a better understanding of the dimensions of the finite
dimensional subspaces that are excluded in the monotonicity relations. Corresponding results
have been established for a related inverse boundary value problem for the Helmholtz equation
in [30, 31]. Similarly, a combination of the new monotonicity relations with traditional regu-
larization methods, as done for electrical impedance tomography in 28], is an interesting open
problem.
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