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ERROR ANALYSIS OF MULTIRATE LEAPFROG-TYPE METHODS
FOR SECOND-ORDER SEMILINEAR ODES*

CONSTANTIN CARLEf AND MARLIS HOCHBRUCK!'

Abstract. In this paper we consider the numerical solution of second-order semilinear differential
equations, for which the stiffness is induced by only a few components of the linear part. For such
problems, the leapfrog scheme suffers from severe restrictions on the step size to ensure stability.
We thus propose a general class of multirate leapfrog-type methods which allows to use step sizes
which are independent on the stiff part of the equation and also very efficient to implement. This
class comprises local time-stepping schemes [5, 7] but also locally implicit or locally trigonometric
integrators. Our main contribution is a rigorous error and stability analysis with special emphasis on
explicit multirate methods, which are based on stabilized leapfrog-Chebyshev polynomials introduced
in [4].
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1. Introduction. In this paper we consider the numerical solution of second-
order differential equations in R? of the form

(1.1) M4(t) = —La(t) + Mg(t,a(t)),  a(0) =qo,  a(0) = po,

where L € R%*? is a symmetric, positive definite or positive semidefinite matrix,
M € R%*9 is symmetric, positive definite, and ¢ is a sufficiently regular function.
This equation serves as a model for various applications, e.g., Hamiltonian equations
of motions occurring in astronomy or in molecular dynamics, as well as spatially
discretized wave-type partial differential equations.

The method of choice for approximating the solution of (1.1) is the leapfrog (LF)
scheme, also known as Stérmer or Verlet scheme. It is explicit, easy to implement, very
efficient, of order two and it also has nice geometric properties such as symplecticity
and symmetry; cf. [9, 10] for many more details on its properties.

However, for stability the LF scheme requires step sizes which are smaller than
the period of the fastest oscillations arsing in the system (1.1). To be more precise,
for g = 0, we need step sizes 72 < 4/||M~Y/2LM~'/2?||. Hence, in the past decades,
several variants of the LF scheme have been proposed to overcome this limitation.
Most of them are designed and motivated for particular applications such as multiple
time scales in molecular dynamics; cf., for example, the monographs [10, Chapters
VII1.4, XIII.1], [14, Chapter 4], and [15, Chapter 10].

Here, we are interested in situations where only a few components of the solution,
or, equivalently, a small principal submatrix of L is responsible for the high frequen-
cies. Then the step-size restriction of the classical LF method causes a significant
loss of efficiency. Such situations appear for instance for spatial discretizations of
wave-type equations on meshes, where only a small part of the mesh consists of tiny
elements whereas the majority of the mesh elements are significantly larger. For such
applications, local time-stepping schemes were invented in [5] for linear, homogeneous
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2 C. CARLE AND M. HOCHBRUCK

wave equations. A closely related situation appears in inhomogeneous materials if
there is a scale separation in the material coefficient such that the main stiffness is
induced only by few mesh elements.

Recently, we proposed and analyzed leapfrog—Chebyshev methods (LFC) [4] which
rely on a splitting of the right-hand side of (1.1) into the “stiff” part Lq and the
“nonstiff” part g(¢,q). The method is applicable to splittings where L is symmetric
and positive semidefinite.

However, if we want to split the components of the solution vector q, it seems
more appropriate to split L into

(1.2) L=LR+L(I,-R),

where I; denotes the identity matrix and R is a diagonal matrix with diagonal entries
being either zero or one, where the ones refer to the stiff components; cf. [5]. Here
we present a general class of two-step methods for semilinear problems which is based
on a splitting of the form (1.2), where the second term L(I; — R) is “nonstiff” and
treated together with the nonlinear part g. The general class comprises a variety of
options to deal with the “stiff” part LR of the operator L, ranging from local time-
stepping schemes to locally implicit or locally trigonometric integrators; cf. Section 2
for details. In particular, for g = 0, the method contains the one by [5] as a special
case.

Our main contribution is to rigorously analyze the whole class of methods, al-
though we are mostly interested in methods based on Chebyshev polynomials. For
linear, homogeneous wave equations, such methods have also been analyzed in [7]
using discrete semigroup techniques. By using generating functions as a main tool we
are able to weaken their CFL condition and regularity assumption on the exact solu-
tion (1.1). Moreover, our analysis includes the case of positive semidefinite matrices
L, to which the technique in [7] does not apply.

Outline of the paper. In Section 2 we introduce a general class of two-step meth-
ods for (1.1) based on the LF scheme and the matrix splitting of L in (1.2). Sections 3
and 4 are devoted to the stability and error analysis of these schemes, respectively. In
there, we prove stability under a step-size restriction and second-order convergence
of the scheme. In Section 5 we show that the LFC polynomials from [4] satisfy the
abstract assumptions made beforehand and give explicit formulas for all occurring
constants. Moreover, we discuss the implementation of these schemes and their ef-
ficiency compared to the LF scheme. We conclude our paper with some examples
in Section 6. After an analytical example illustrating the necessity of our abstract
assumptions for obtaining stability, we numerically show the benefit of the schemes
for two realistic examples.

2. General multirate leapfrog-type two-step schemes. We start by stating
the well-known LF scheme for the semilinear problem (1.1). For a step size 7 > 0 we
denote by q,, the approximation of the exact solution q(t,) at time ¢, = n7. Then,
the LF scheme is given as two-step method by

(213) An+1 — 2qn +qn-1 = _T2M_1an + ngnv n= 1; 27 ey
(2.1b) a1 = qo+ 7po — s7°M " 'Lqq + 17°go,

where n = g(t'm qn)'
For the sake of presentation, in the following we restrict ourselves to the case of
M = 1, since the general case can be transformed to this one; cf. Remark 2.5 below.
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With (-,-) we denote the standard Euclidean inner product in R? and with ||| the
corresponding (matrix) norm.

ASSUMPTION 2.1. Let L be symmetric, positive semidefinite, and (possibly after
permutation) be partitioned as

(2.2) L— (IS{ KNT) 7

where the norms of the “nonstiff” and “stiff” submatrices N € R(@=9)x(d=35) gpnq
S € R**%, respectively, satisfy ||S| = r||N|| with r > 1 and d > s. For the coupling
matriz K € RUU=)%s it holds | K|| = s||N| with 0 < k < r'/2.

With this assumption we guarantee that the stiffness of (1.1) is only induced by
the submatrix S. Clearly, the symmetry and positive semidefiniteness of L transfers
to the matrices S and N. The assumption £ < r/? originates from the positive
semidefiniteness of L. Note that the reordering of L in (2.2) is only for the ease of
representation and not necessary for the implementation.

Further, due to (2.2) we define the restriction matriz R € R%? occurring in
(1.2), which maps to the “stiff” part of L, by

I 0 ~ (s 0
(2.3) R(O 0> and SRLR(O 0).

In order to propose a scheme with a step-size restriction depending only on N
and x but not on S, we now modify the LF scheme by multiplying the right-hand side
by a suitable matrix function ¥(72LR):

(2.4a) Ant1l — 29n + Qn-1 = TQ\/I}(T2LR)(—an + gn), n=1,2,...,
(2.4b) q1 = qo + 7po + 372U (7°LR) (~Lao + ).

Our interest is mainly in choosing T as a polynomial, a rational, or a trigonometric
function, since then the scheme results in an explicit, a locally implicit, or a locally
trigonometric integrator, respectively. N

The consistency order two of the LF scheme is preserved if ¥ fulfills the following
assumption.

o~

AssuMPTION 2.2 (Consistency). W: [0,00) = R is sufficiently smooth and sat-
isfies U(0) = 1.

This assumption implies that for R = 0 or ¥ = 1 the scheme (2.4) reduces to the LF
scheme (2.1).

DEFINITION 2.3. For ¥ satisfying Assumption 2.2 we define functions ¥, X as

T(z)—1

(25) W(z)=20(2) and X(2)= —— >0, X(0)= T'(0).
Obviously, Assumption 2.2 implies
(2.6) T(0) =0, v'(0) = 1.

Below, we will prove that

~ _{ U(r28) 0
W(r°LR) = <T2KX(TQS) Ids> :
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Hence, the analysis and also the implementation rely only on matrix functions acting
on the small symmetric submatrix S. The actual implementation of this scheme
depends on the choice of W; cf. Section 5.2 for a specific case. For the analysis,
working with ¥ turns out to be more convenient.

The modification (2.4) of the LF scheme is motivated by LF-based local time-
stepping schemes [5, 7] and locally implicit schemes, where the LF and the Crank-
Nicolson (CN) scheme are combined [11, 16]. However, it is worth mentioning that
the application of these schemes is not restricted to problems arising from spatially
discretized partial differential equations with local mesh refinements; cf. Section 6.2.

Remark 2.4. A variant to (2.4) is given by
(2.7a) An+1 — 20pn + Qn-1 = 772@(72LR)an + g, n=12...,
(2.7b) d1 =do + TPo — %72@(72LR)LQO + %ng(),

where ‘:I\/(T2LR) is only applied to the linear part but not to g. The analysis of this
scheme can be done analogously and leads to similar results under similar assumptions.

Remark 2.5. If the matrix M in (1.1) is not the identity but some arbitrary sym-
metric and positive definite matrix, then its Cholesky decomposition M = CpCi,
exists. In this case, we rewrite (1.1) in terms of the transformed variable y = CI q
equivalently as

§(t)=-Ly(t) +g(t.y(t)),  y(0)=Ckao,  ¥(0) = CLpo,

where L = CK/IlLCK/IT is again symmetric and positive semidefinite. Hence, one can
apply scheme (2.4) to this equation and transform the approximations back to the
original variables. This yields

(2.8) M (dnt1 — 20 + dn—1) = 720 (r2LCy RCyf ) (—La,, + Mg,

for n > 1, and analogously for the starting value q;. Note that the structure of the
Cholesky factor yields

Tl (Mg' 0 (Mg ML
CMRCM—< 0 0 for M= My My )’

which makes the implementation of (2.8) very efficient. In particular, the evaluation
of U only requires the small dimensional matrix M§1 and not the full Cholesky factor
of M.

We would like to emphasize that our analysis also applies to this more general
situation, if the standard norm ||-|| is replaced by ||-[[3; = (-, M- ).

In this paper we pay special attention to ¥ being the LFC polynomials from [4]
given by

2 z T, (v)
(2.9) \P(z):\ll(z):2—7T(y——), a, =227
? T, (v) ? Qp ? Tp(v)
where T}, denotes the pth Chebyshev polynomial of first kind (p € N) and v > 1. Ob-
viously, ¥,, is a polynomial of degree p > 1 and satisfies Assumption 2.2 for arbitrary
v > 1. We abbreviate the combination of the general scheme (2.4) and the polyno-
mials (2.9) with sLFC schemes. We note that for ¢ = 0 the scheme (2.4a) equipped
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with (2.9) coincides with the stabilized local time-stepping scheme proposed in [7]
(with n2/2 replaced by 7). Further, for R = I the variant (2.7a) coincides with the
multirate LEC scheme in [4].

Other choices for ¥ fitting into the setting but not considered in this paper are
the rational functions

2.10 U(z) = . ov>1,
(2.10) ©=1rz
or the trigonometric functions
2 2 h 2 2\1/2 0< 2 .
" cosh(n) Cos (77 - E) ’ S z<an SthC(T])
(2.11) W(z) = ) ) o 1/2 ) , a= cosh()
2- cosh(n) COS((&*U ) )7 zZan n

where sinhc(z) = sinh(z)/z and n > 0. Note that the choice (2.10) in (2.4) leads to a
scheme, which is implicit on the stiff and explicit on the nonstiff components of (1.1).

We conclude this section by stating the general scheme (2.4) in an equivalent
one-step formulation and some geometric properties. The one-step scheme of (2.4) is
given by
(2'123“) Pn+1/2 = Pn + %T\IJ(TQLR) (_an + gn)7
(212b) qn+1 :qn+7pn+1/27 TL:O,].,27...,
(212C) Pn+1 = pn+1/2 + %T‘I’(T2LR)(—an+1 + gn+1)-

Here, p,, can be interpreted as an approximation to q(t,).

COROLLARY 2.6. The scheme (2.4a) and thus also the equivalent one-step version
(2.12a)—(2.12¢) are symmetric and symplectic.

Proof. The scheme (2.4a) is equivalent to the LF scheme (2.1a) applied to the
modified equation

4= Y(r’LR)(-Lq +g(-,q)).
Hence, it inherits the properties of the LF method. 0

3. Stability analysis. In this section we show stability of the scheme (2.4) for
linear and semilinear problems under some general conditions for the function V.

3.1. Properties and further assumptions on V. So far, the only restrictions
on U are the consistency conditions (2.6). For stability, it was already shown in [4]
that 0 < U(z) < 4 for z in a suitable interval [0, 5] is not sufficient to ensure stability
for multirate methods. In fact, we need ¥(z) € (0,4) for z € (0,8). The precise
conditions are stated in the following definition.

DEFINITION 3.1. For given my,mi,me € (0,1) with m1 < 1 — my we define
B\ = B(ml, m1,msa) € (0,00) as the maximal value such that

(3.1) min{msgz,4m1} < ¥U(z) < 4(1 —mq) for all z € [0, 3%,

and 3 = o0, if (3.1) holds for all z > 0. Moreover, we define mg as the smallest
constant such that for X defined in (2.5) holds

~

(3.2) |X(2)] < Ltmy for all z € [0, B*] NR.



6 C. CARLE AND M. HOCHBRUCK

The existence of such a 3 > 0 and ms is guaranteed by (2.6) and (2.5), respectively. If
B is finite, the lower bound in (3.1) can be replaced by W(z) > sz for all z € [0, 32].

In practice, the values for the constants my,m,ma for a specific function ¥ are
chosen such that § is as large as possible, since § (but also m1) will enter the step-size
restriction for the scheme (2.4). Moreover, m; also enters the error constant. For the

polynomials (2.9) explicit values for mq, m1,ms, and B are given in Section 5.
As a direct consequence of (3.1) we have

~

(3.3) U(z) > min{mg,4m;/z} >0 for all z € [0, 2] NR.

Hence, the inverse W(z)~! exists for all z € [0, 32 NR and the following bound holds.
LEMMA 3.2. There exists a constant c.s > 0 such that

(3.4) |W(2) ' X(2)| < ces  forall z €0, NR.

Proof. The statement follows directly from (3.3) and Definition 2.3. d
Additionally to the consistency conditions (2.6) we assume for ¥ the following.

ASSUMPTION 3.3. For U satisfying (2.6) we have
(3.5) U(z) <z for all z € [O,BQ] NR.
From this assumption we immediately obtain with (2.5)
(3.6) 1T(z)| <1, X(z2)<0 forall z € [0,°]NR.

We note that Assumption 3.3 could theoretically be weakened to ¥(z) < ¢,z for all
z € [0, 52] NR and a constant ¢, > 1. However, this would lead to a stronger step-size
restriction, since then |¥(z)| < ¢, for all z and X > 0 for some z; cf. the proof of
Lemma 3.6. In particular, (3.5) is fulfilled for the polynomials (2.9); see Lemma 5.1.

In the remaining part of this paper, let Assumptions 2.1, 2.2, and 3.3 hold without
mentioning it explicitly everywhere. Moreover, we define

(3.7) Ly, = U(7’LR)L,
and, if L is positive definite, we have a constant cj,, > 0 such that

(3-8) L™ < e

mv’

3.2. Stability estimates. In this section we show some bounds on the matrix
Ly, under a step-size restriction which are necessary for proving stability of the
scheme (2.4). More precisely, our step-size restriction depends on S, N, x defined in
Assumption 2.1, and m; given in Definition 3.1.

DEFINITION 3.4 (CFL condition). For fized ¥ € (0,1] let TcpL(9) be the mazimal
step size T > 0 such that the step-size restriction(s)

(3.92) 2|s| < B2,
_ 2
T 14 (1 +4r2my 2]

(3.9b) 72N < 49992, y

hold for all 0 < 7 < 7cpL(9). Further, we define tcrr, = TorL(1).
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Observe that v < 1 for all k and my > 0. Further, the second CFL condition
(3.9b) becomes stronger with increasing x. On the other hand, for k = 0 (implying
K = 0) we have v = 1. In this case, (3.9b) corresponds to the (standard) CFL
condition for the LF scheme applied to (1.1) with S = K = 0 as one would expect.
We emphasize that in our numerical experiments the CFL condition (3.9b) turns out
to be rather pessimistic; cf. Section 6.

We start by deriving an explicit block formula for Ly ~. In there we make use of
the following identity

(3.10) f(’LR)LR = f(7’LR?)LR? = LR f(°RLR) R = LR f(7*S)R

with S defined in (2.3), which holds for a sufficiently smooth function f due to R = R2.
LEMMA 3.5. For Ly, defined in (3.7) with L defined in (2.2) we have
U(7S) 720 (728)K”
3.11 Ly, = 5 )
(8:11) T <T2K¢(TQS) 72N + KX (r28)K”
Moreover, Ly ; is symmetric.
Proof. The symmetry immediately follows from the definition of Ly ». Further,

we get from Definition 2.3 and (3.10)

U(r’LR) = I; + 72X (r°LR) LR = I; + 72LR X(72S)R

12 =L+’ <IS< 8) (X(BQS) 8) = (#?{f(EQS) Ido_s)'

Using (3.7) and again Definition 2.3 completes the proof. d

We emphasize that the symmetry of Ly - is crucial for our stability analysis and
used at several points in the following. For the polynomials (2.9) a different proof
of (3.11) was given in [7]. In there, similar estimates as in the following lemma are
shown for k = 1, however, under a stronger step-size restriction than ours.

LEMMA 3.6. Let 9 € (0,1] and 7 < 7crL(9). Then we have for all q € R?
(3.13) 0 < 7*(Ly,rq,q) < 4(1 —mq + m19?)|q.
In particular, we have 72| Ly .|| < 4(1 —my + m1192) < 4.

Proof. We start with the upper bound. For this we write

(3.14) q= (22) eR?Y  with qg€R®, qy € R*.

By Lemma 3.5 we then have

T2 (L‘Ifﬂ'qa q) = (\II(T2S)q57 CIS) + T2 (\/I}(T2S)KTqNa QS)

(3.15) -
+ 77 (K‘I’(T2S)QS, QN) + 72 ((N + 72 KX (m28)K ) qy, qN).

For the first term, the CFL condition (3.9a) together with (3.1) yields

(¥(r*S)as, as) < 4(1 —m1)llas]’.
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For the second and third term in (3.15) we have ||¥(72S)| < 1 because of As-
sumption 3.3 under the CFL condition (3.9a). Hence, we get with the Cauchy-Schwarz
inequality, the scaled Young’s inequality and Assumption 2.1

?(U(7°S)K"an, as) < 7°|K|/av|[as]
< 372RIIN (v llan [ + 75 Hlas)

with a parameter v, > 0, which is yet to be determined.
The last term in (3.15) can be bounded by

7?(Nawn, an) + 7 (X(7*S)K an, K an) < 7°|N|l[lan|?,
since by (3.9a) the second bound in (3.6) holds.
Combining these estimates yields with v, = kmy 'y and (3.9b)
7 (Ly,rq,q) < 4(1—my +m19?)|as|® + (1 + £*m; 'y)4y9?||qu|?
< 4(1=my +mi9?) (las|® + llan|?)
=4(1 —mqy +m19%)[|q|?,
where we used that 1+ k*m; 'y =~ and 9> <1 —my +m92.

For the lower bound in (3.13) we exploit that a symmetric, positive semidefinite
matrix L admits a block decomposition of the form

Sz 0
L == T i h = 1 1
CC wit C (KS+S2 A2> ,

where ST denotes the Moore-Penrose inverse of S, A = N — KSTKT7 is a positive
semidefinite matrix, and KS*S = K; see [1] and also [12, Theorems 1.19, 1.20]. Then
we obtain

Ly, = U(r2CCTR)CCT = C¥(r2CTRC)CT = CU(28)C”.
Thus, we get with (3.3) and the CFL condition (3.9a) for all q € R?

7?(Ly,rq,q) =77 (@(72§)CTq, CTq) >0,

which finishes the proof. 0

Remark 3.7. If 2 > 4 and 72||L|| < 4, which is the step-size restriction of the LF
scheme (2.1), we have with (3.6)

7%(q, Ly,-q) = 72(CTq, ¥(72S)CTq) < 7%(CTq,C"q) = 7%(q,La) < 4//q|?,

where L = CC7 is given as in the previous proof. Thus, with a sensible choice of ¥
the scheme (2.4) is stable for at least all step sizes for which the LF scheme is.

Further, we need properties of \TJ(TQLR) for the stability of the scheme (2.4) and
for proving the positive definiteness of Ly ., if L is positive definite. Note that we
cannot directly employ (3.6) because LR is non-symmetric.

LEMMA 3.8. Let 9 € (0,1] and 7 < 7crL(¥). Then the inverse of U(72LR) ezists
and

(3.16) [(r2LR)|| < cg,  cg =1+ 2mgryd?.
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Proof. By (3.3) and the CFL condition (3.9a) all eigenvalues of ¥(72S) are posi-
tive. Hence, the inverse exists by the block structure of (3.12).

For the estimate of W(72LR.) we use (3.12), the Cauchy-Schwarz inequality, the
CFL condition (3.9a), (3.6), and Young’s inequality to obtain for all q € R?

|U(r2LR)q||” = ||¥(r2S)as]||” + || *KX (rS)as]|”
+2(r*KX(7°S)as,an) + llan|®
<llasl® + *llas|? + 2ollas | lan || + [lax|?
< (1+p)?|al?,
where p < 2m37?| K| < 2mgry9? by (3.9), (3.2), and Assumption 2.1. d

With this lemma we are able to show the positive definiteness of Ly , for a positive
definite L.

LEMMA 3.9. Let 7 < 7cpr, and L be positive definite. Then the inverse of Ly -
exists and we have

(3.17) (Ly,rq,q) > (G + 72(:CS)_1||q||2 for all q € R,

Proof. The existence of the inverse of Ly , follows from positive definiteness of L
and Lemma 3.8. Further, we obtain with the definition of X in (2.5) and (3.10)

Ly, =L LR) " = L7 + L7 (¥(~*LR) ' ~ 1)
=L ' - °L~'¥(7’2LR)"' X(7*LR) LR
=L~ - R U(r2S)~! X(r?S) R.

Using this identity we get with (3.8) and (3.4) under the CFL condition (3.9a)

(Lyha,q) = (L7'q,q) +7° (=7 (+°S) X(*S)Rq, Rq)
S CanHqH2 +7 CCS||Rq||2
< (G + 7ces) all?
which yields (3.17). O

3.3. Stability of the scheme. After we have shown estimates for Ly ; in the
last section, we will use these for showing stability. We first start with a representation
formula of the numerical solution of the scheme (2.4).

THEOREM 3.10. Let 7 < 7¢pr,. Then the approzimations of (2.4) are given by

n—1 .
~ sin(k®)
3.18 "= ® S, 2 S,V (T’LR) g, Sp = ,
(3.18a) q, = cos(n®)qo + 7S,po + T g Xe (T ) ge k D
orn = ..., where xo = 5 and x¢ = > and the symmetric matrix
f 0,1,2,..., where x 1 and x 1, £ > 1, and the sy j '

& c R with spectrum in [0, 7] is uniquely defined by

(3.18b)  cos® =T;— 1%Ly,  and  sin® = 7(Ly, (I, — ir’Ly )"
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Proof. The proof can be done as in [4, Theorem 3.3], since Ly , is symmetric
and the spectrum of Ly , is contained in [0,4] under the CFL conditions (3.9) by
Lemma 3.6. Hence, we obtain for the two-step scheme (2.4a)

n—1
(3.19) qn = cos(n®)qo + Sp (a1 —cos®qo) +7° Y S,_¢V(m’LR) g.
=1
Inserting the definition of the starting value (2.4b) leads to (3.18a). d

Finally, in order to prove stability of the numerical solution q,, n € N, we have
to provide bounds for the trigonometric functions occurring in (3.18a).

LEMMA 3.11. (a) Let 7 < 7cpr. Then we have for n € N
(3.200) Jeosn®)|| <1,  [sin(n@)| <1, [|S.] <.
(b) Let ¥ € (0,1) and 7 < 7cpL (). Then we have for L positive definite

2 2 1/2
Cinv+T CCS) /

(3.20b) 7| (sin @) 7| < st with csgp = <m1(1 — )

For 9 =1 or L positive semidefinite we formally set cq, = 00.

Proof. (a) Since the spectrum of ® is in [0, 7] and [sin(n¢)/sin(| < n for ( € R
and n € N, the estimates follow immediately.
(b) From (3.18b) and the symmetry of Ly , we obtain with (3.17), (3.13) for q € R?

[(sin®) ql|” = (FLu - (I — 37%Ly 1 )a,q) > 72 (A + T2ces)  ma(1—9%)|al®.

Hence, the inverse of sin ® exists for 7 > 0 and replacing q by (sin ®)~'q completes
the proof. ]

We are now in the position to state the stability results. For the semilinear case
this additionally requires Lipschitz continuity of the function g.

ASSUMPTION 3.12. The function g: [0,T] x RY — R? is (globally) Lipschitz con-
tinuous in the second argument, i.e.,

(3.21) lg(t.a) = g(t.Q)|| < Lglla—al|  for allq,GeR?, t€[0,T).

It is well-known that under this assumption the exact solution of (1.1) is unique
and exists for all t > 0.

Remark 3.13. Tt is sufficient to require that g is locally Lipschitz continuous in
a strip around the exact solution, i.e., in a neighborhood of {q(¢) : 0 < ¢t < T} with
T smaller than the maximal existence time of the exact solution. This can be seen
from the error bounds in Theorem 4.4 below. For the sake of presentation we omit
the details.

THEOREM 3.14. Let Assumptions 2.1, 2.2, and 3.3 and Assumption 3.12 on g
hold. Further, let ¥ € (0,1], 7 < 7crL(9), and denote by q, and Q, the approz-
imations obtained by (2.4) with initial values qo, po and Qo, Po- Then we have for
t, <T

~ ~ . —~ o~ 1/2
(822)  llan = @ll < (llao — Goll + min{T, e} o — Boll)elcx 50T,
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Clearly, for ¥ = 1 or L positive semidefinite we have min{¢,, cstp} = t,, since then
Csth = 00; cf. Lemma 3.11.

Proof. From the representation formula (3.18a) and the Lipschitz condition (3.21)
we obtain

1an = @nll < [[cos(n®@)|[llao — Goll + 7| SnllllPo — Poll

n—1

+72Ly Y ||Sn—el|[(T*LR) | e — Gell-
=0

Employing Lemmas 3.8 and 3.11 yields
n—1
lan = @nll < llao — ol + min{tn, s }HIPo — Boll + 7*Lycg Y (n = O)lac — G,
£=0
which finishes the proof by using t,, < T and applying the Gronwall-type inequality
in [4, Lemma 3.8]. O
In the linear case, i.e., g(t,q) = g(t), we obtain the following result.
THEOREM 3.15. Let Assumptions 2.1, 2.2, and 3.3 hold as well as g(t,q) = g(t).

Further, let 9 € (0,1] and 7 < 7cpL(¥). Then we have for the approximation q,
obtained by the scheme (2.4)

n—1

(3.23) lanll < llaoll +min{ta, csen }HIpoll + min{tu, csen} egr Y llgell-
£=0

Proof. Similarly to the proof for the semilinear case, we obtain the assertion by

the representation formula (3.18a) and Lemmas 3.8 and 3.11. |

4. Error analysis. The aim of this section is to provide an error analysis for
the scheme (2.4). More precisely, we will show a convergence result in the standard
norm ||-|| for the linear as well as for the semilinear problem.

Let us denote the error of the scheme (2.4) by

(41) e, = an —Qn, an = q(tn)a

where q(t) is the exact solution of (1.1) at time ¢t. We denote bounds on the kth
derivative of q by

(4.2) B = max g™ (1)].

0<t<tn

Moreover, it is well-known that for q € C*([0,T]) the remainder terms

tnt1
(43) ok =7 / mas (a0 dt, kL) = (e — ) /(07°),
t

n

of the (k — 1)st-order Taylor expansion of q,+1 at t,, are bounded by

k k
(44) 82 <, max a® @ el <7y, max (o™ (@)

tn <t<tn4 n—1<t<tn

As for the stability analysis, we will utilize a representation formula for e,, to show
the error bounds. For this we first derive an error recursion for the scheme (2.4).
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LEMMA 4.1. For q € C*([0,T]) the error e, of the scheme (2.4a) satisfies for
n > 1 the recursion

(4.52) ent1 — 2e, + e, 1 = U(r°LR)(~7"Ley, +1,) + dy,
where

(45b) d,=A,+6%, A, =-T'X(LR)LRE(L,), &P =687, +60)

n,—

and
(4.50) r, = TQ(Q(tnaan) _g(tn7qn))'

Proof. Inserting the exact solution q, into the scheme (2.4a) yields
(4.6) Ant1 —2qn +Qn-1 = 7'2(1\/(7—2LR)(_Lan + g(tn, an)) +d,

with a defect d,,. Subtracting the recursion (2.4a) from (4.6) leads to (4.5a). In order
to determine d,, we use Taylor expansion to obtain

1 — 2 + Gn1 = 77(E) + 8 + 00
Subtracting this relation from (4.6), using the differential equation (1.1), and the
definition (2.5) of X completes the proof. |
Next, we compute the error of the starting value q; defined in (2.4D).
LEMMA 4.2. For q € C3([0,T]) the error ey of the scheme (2.4b) satisfies

(4.7) e =520+ 657,

-2
with Ag given in (4.5b) and 6(()‘?1 in (4.3).

Proof. Similarly to the previous lemma we first insert the exact solution into
(2.4b) and obtain

d1 =dqo +7Po + %TQ‘T’(TQLR)(—LQO +go) +do=qi +do
with a defect dg = e;. A Taylor expansion of q; shows (4.7) with the same arguments

as before. 0

With the previous two lemmas we are now in the position to state a representation
formula for the error e,, n € N. Assume 7 < 7¢pr,. Then we can show for (4.5a) as
in the proof of Theorem 3.10, cf. (3.19),

n—1
e, = cos(n®)eg + S, (e1 —cos P eo) + Z S,._¢ (@(TQLR) r,+ d[).
(=1
Since eg = 0, we have with (4.7)
n—1 N n—1
(48) en=3 Su (\IJ(T2LR) re + ag‘”) + 8,00 + 18,80+ SusiAr.
(=1 (=1

Before we continue with the error analysis, we first have a closer look at A,
defined in (4.5b). We obtain ||A,|| < 7c|[LR §(t,)||, since similarly to the proof of
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Lemma 3.8 we have ||X(72LR)|| < c. However, to avoid the loss of consistency if L is
a discretized differential operator, we want the bounds to depend only on derivatives
of q or Lq; cf. [11, Lemma 2.8].

This can be achieved by combining the defects A, of three successive time steps. A
similar trick is used in the error analysis of one-step methods for (spatially discretized)
partial differential equations; see, e.g., [3] or [13, Lemma II.2.3]. In the context of
locally implicit schemes this approach was employed in [11, 16] for Maxwell’s equation.

LEMMA 4.3. Let 7 < 1cpy,. Then we have

n—1 n—1

38,40 + Z SntAy = Z Sn¢ (32+1 —2A,+ 3@-1)
(4.9) P =1
— A, + Sn(ﬁl — 30) + cos(n@)&o
with
(4.10) A, = T?RU(72S) X (2SR §(t,).

Proof. Let £ € {0,1,...,n—1}. For Ay given in (4.5b) we have with Lemma 3.8,
(3.10), and definition (3.7) for Ly .

A, = 7 U(72LR) U(r*LR) ' X (7’LR) LR §(t,)
= —r* U(r’LR)LRU(r?S) "' X (r2S)R (L)
= —TQL\I,,T&@
Hence, we obtain with (3.18b)
(4.11) 18,80 = —8,1 7Ly, Ag = S, cos ® Ay — S, A
Further, again (3.18b) and a trigonometric identity yield
SntDr=8,-02(cos® —13) Ay = (Sp_r41 — 28n—t + Sp_v—1) Ay,

which implies

n—1 n—2 n—1 n
Z Sn—tAr = Z Spn—tApy1 —2 Z AV an—€A€—1
=1 £=0 =1 £=2
n—1 _ N N _ N N
= Z Sn—t(App1 =280+ Ap1) — Ay + S8, A1 — S, A,.

=1
Combining this equation with (4.11) and applying a trigonometric identity finishes
the proof. 0

We can now state the error bound for the semilinear problems.

THEOREM 4.4. Let Assumptions 2.1, 2.2, 3.3, and 3.12 hold and let ¢ € (0,1],
7 < 7crL(9). Further, the solution q of (1.1) satisfies q € C*([0,T]). Then we have
for the error e, = q, — q(t,) of the scheme (2.4) and t,, <T

(4.12) len|| < (min{T, cu }(C1 T + Cs) + Cg)elLoca)*T 72,
with
C; = (% + CCS)B#), Cy = (% + CCS)B?)’ C3 = CCS(HQ(O)” + HQ(tn)”)
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Proof. With Lemma 4.3 the representation formula (4.8) can be written as

n—1
e, = Z Sn_[ (\/I}(TQLR) ry + 5;4)) —+ Sn(sé?_);’_
(4.13) -
+ Z S,y (&@4»1 — 2&@ + 34,1) — En + Sn(ﬁl — 30) + COS(?’L@)&O .
=1

Lemmas 3.8 and 3.11, (4.5¢), and the Lipschitz continuity of ¢ then give

n—1 n—1
. 4 3
leall < Ly 3" (n — O)cg el +mm{tn,c3tb}(z 1169 + i||66,>+||)

=1 (=1
n—1 » » " » " " »
+ min{tn,cstb}<z L|Ap1 —2A,+ A, || + 1A, - A0||) Ao + | A
(=1

We bound the single terms separately.
s

(a) The remainder terms of the Taylor expansion arising in (4.5b) and (4.7) can be
bounded with (4.4) by

n—1

4 3 3
D I+ 18T < PPt s B + 5By,
=1

(b) For Ag and A, defined in (4.10) we have by (3.4) and the CFL condition (3.9a)
1ol + [[An] < Tecs (10| + [[&(En)]])-

(¢c) For the central difference quotient of A, we first use again (3.4) and (3.9a) and
afterwards Taylor expansion to obtain

n—1 n—1
D AIAG =280+ Ap ] < Y recs|ld(tern) — 2a(te) + Gt
=1 {=1

n—1
< 3 (4)
< ;T ces, max Jla ()]

< 72¢e tnB,(f).

(d) Finally, with the same arguments as in the previous step we have

LA, — Ay| < 72ceBY.
Collecting the estimates and using the Gronwall-type inequality from [4, Lemma 3.8]
finishes the proof. 0

For linear problems we have L, = 0 (and rp = 0 for all  =1,...,n), which leads
to the following result.

COROLLARY 4.5. Let Assumptions 2.1, 2.2, and 3.3 hold and let ¥ € (0,1], 7 <
TcrL(9). Further, let g(t,q) = g(t) and the solution q of (1.1) satisfies q € C*([0,T]).
Then we have for the the error e, = q, — q(t,) of the scheme (2.4) and t,, <T

(4.14) lenll < (min{t,, csin}(Citn + Ca) + 03)7'2,
with Cy, Cy, and Cs defined as in Theorem 4.4.
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5. sLFC schemes — constants, implementation, and efficiency. After we
have derived abstract stability and error results for the scheme (2.4) in the last two
sections, we now focus on the sLFC scheme, i.e., scheme (2.4) equipped with the
polynomials (2.9). We first show that these polynomials satisfy Assumption 3.3 and
state explicit values for the constants arising in Section 3.1. Afterwards we show how
the sLFC scheme can be implemented efficiently and make a heuristic comparison of
the efficiency with the LF scheme.

5.1. Constants for sLFC schemes. For the polynomials (2.9), most of the
constants have already been computed in [4, 7] for a specific choice of 5. Adopting
this choice yields the following.

LEMMA 5.1. For the LFC polynomials (2.9) we have for v > 1 and

e _1 1 ~ 47711 o Tp(y)_l
(5.1a) my = = *(1 - m) T av-1) T -1)

2
that BQ = Bz = a,(v + 1) < 4p?. Moreover, Assumption 3.3 is satisfied and we have

T”(l/) 1
5.1b my = —0(0) =22 =
( ) 3 p( ) OZ%TP(V)

dmy

Proof. Assumption 3.3 and the constants for my, mg arising in Definition 3.1 are
proven in [4, Theorems 5.1 and 5.2(b)].

Next, we show the lower bounds in (3.1) and abbreviate o,, = a,(v —1). For
opy < 2 < B2 the constant m; in (3.1) can be shown similarly to mq; see also

[7, Lemma A.4]. For 0 < z < 0,, the function ¥, is concave and monotonically
increasing. Thus, we have

Vp(opw)

1 >
p(2) Tpo

Z=Mmaz.

It remains to show (3.4). First, we note that @(2)_1X(z) <0 for z € [0,32].
Further, we have for 0,, < z < 2
1 1 1 1

VR TXE) = -G T 2

4my
For 0 < z < o, a tedious calculation shows that U(-)~1X(+) is monotonically de-
creasing. This yields

_1 > -1 > — = -
V()" X(2) > W(op,) X(op,) > U(op) dmy’

which concludes the proof. ]

If we set v = 1+1?%/(2p?) with a parameter > 0, then all constants in Lemma 5.1

except 32 can be chosen independent of the polynomial degree p. The choice is

motivated by stabilized/damped Runge-Kutta—Chebyshev methods [13, 17], where a

similar scaling of the parameter also leads to bounds which are independent of p.
COROLLARY 5.2. If v = v, = 1+ n?/(2p*) with n > 0, we have for the LFC

polynomials (2.9)

2 2 1

22 2 o~ _ 1N ~
SB <4p fOT ml—ml—m7 m2—m,

4p
cosh(n)

(5.2a)
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and

(5.2b) s — cosh(n) cosh(n) — sinhc(n) 24

2 72 ’
Note that the bounds hold for all n > 0 and p € N.

Proof. The proofs of these constants rely on Lemma 5.1 and the estimates

d* x d*
T3 (1) = TP (1) + TV (1) (v, - 1), @Tp@ + Tpg) S 9k cosh(v/x)
for p e N, k € Ny, and = > 0, which can be seen by Taylor expansion. ]

5.2. Implementation. Next, we turn towards the implementation of the sLFC
scheme. For the sake of readability we focus on the implementation of the two-
step scheme (2.4). The same strategy can be applied to the corresponding one-step
formulation (2.12). Moreover, the dominant parts of the computational cost coincide
for both schemes. We emphasize that the algorithm can be easily adapted to the case
M # 1, if we are in the setting of Remark 2.5.

An efficient implementation of one time step of the sLFC scheme is based on the
representation (3.12) for U(72LR). Details are given in Algorithm 5.1, in which the
notation from (3.14) is used, i.e., for b € R? we denote by bg € R® and by € R%~* the
subvectors of b belonging to the stiff and the nonstiff part of the differential equation.
The starting value (2.4b) can be computed via a similar strategy.

Algorithm 5.1 One time step of the SLFC scheme ((2.4a) with (2.9))
b =—-La, +8n

bs = X(TQS)bS

ES =bg + T2SB§

by = by + 7°Kbg N

An+1 = 2dp — Qn-1 + 72b

For the computation of X (Tzs)bs one can employ the recurrence relation in
Lemma 5.3, because X = &}, ,,. This is advantageous over a computation via Horner’s
method, since it is more stable and the factors of the polynomial X (which change
with varying p and v) need not to be precomputed. Only the scalar values Ty (v),
T, (v), and oy, for k = 1,...,p have to be known in advance, but they are easy to
compute. An algorithm for the computation of X (T2S)bs can be derived from [4,
Algorithm 6.1], in which a similar recursion is computed.

LEMMA 5.3. The polynomials

Rk, z
Hiple) = BBy —a - 2

satisfy the recursion

igle) =0 Hay(e) =~
Tt (1) Xir1(2) = =2T0(0) 55 +2(v = = ) T(0)Xip(2) = Timt () Kem1,(2),

fork=2,...,p—1.
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Table 5.1: Effort in matrix-vector multiplications (MVM) and evaluations of g for the LF
scheme (2.1a) with M = I and the sLFC scheme (2.4a),(2.9). p denotes the degree of the
polynomial ¥,

LF scheme (2.1a) | sLFC scheme (2.4a) + (2.9)

1 MVM with L 1 MVM with L

1 evaluation of g 1 evaluation of g
p—1 MVMs with S

1 MVM with K

Proof. The result follows from the recursion of Chebyshev polynomials and its
derivatives. O

5.3. Efficiency. The efficiency of the sLFC scheme (Algorithm 5.1) is now com-
pared to the classical LF scheme (2.1). The main cost in terms of matrix-vector
multiplications and evaluations of g for one time step of each of the schemes are given
in Table 5.1. As one observes, the additional (main) effort for the sSLFC scheme con-
sists of p — 1 matrix-vector multiplications with S and one with K. For s < d this is
comparatively cheap.

For the total cost we now compare the maximal step sizes for which the schemes
are stable. Under Assumption 2.1 we have for the LF scheme

4 4 4

2
- =~ = :
e T AT

For the step-size restriction of the sSLFC scheme we recall (3.9) with ¢ =1

B2
2 B? 2
7_ _— 4 = .
N S et e v e e
With Corollary 5.2 we then obtain for k = 1
2 . 2
(5.3) mln{rcosh(n), n+\/9n +16} < ppsurcl NI < min{ *2-, 2}

If we now choose p € N such that p? ~ r we get a step-size restriction which depends
only on n and the submatrix N but is independent of the stiff part. Hence, with an
appropriately chosen 7 we can use almost as large step sizes as for the LF scheme
applied to the nonstiff problem (1.1) with S =K = 0.

Remark 5.4 (Choice of 7). For p? = r the maximal value of the lower bound in
(5.3) is attained for 7 = 1.556 and takes an approximate value of 1.6. However, our
numerical experiments indicate that the choice n € [0.4,1] is sufficient if k < 1. For
smaller values of 7 instabilities can occur for certain step sizes; cf. Section 6.1. If n
is chosen too large, the value for ﬁ deteriorates rapidly; see Corollary 5.2 and also [4,
Fig. 5.2].

We finally note that in our applications we observed the following weaker step-size
restriction

(5.4) T(23FL,SLFC||N|| ~ min{ 4} ~ mln{ p Cosh(,]) ) 4},
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if n € [0.4,1]; see, e.g., Sections 6.2 and 6.3. Besides the fact that x is often smaller
than 1 (which increases ), the influence of the coupling matrix K to the (largest)
eigenvalues of S, N is often — although not neglectable — rather small.

6. Examples. In this last section we present some examples confirming our
theoretical results and showing possible applications. We start with a simple example
for d = 2 verifying the necessity of the bounds (3.1) in Definition 3.1 and, hence, the
use of stabilization parameters in (2.9). Afterwards we turn towards more realistic
numerical examples. The codes for reproducing the numerical results are available on
https://doi.org/10.5445/IR,/1000133907.

6.1. A two-dimensional problem. We consider the simple linear problem

(6.1) ) = -Latt) =~ ([ 1) a)

withr>1and 0 < xk <72 ie.,S=r, N=1, and K =  in (2.2).
Applying the scheme (2.4) yields with Lemma 3.5 and the definitions of ¥ and X

U(r2r) U(r2r)p

2 _ _ —1 —1/2
(6.2) T L\I],T = <\I/(7'27“)p T2(1 B /ﬁ‘/p) + \I/(TzT)p2> 5 p = KT S [077' ]

For the eigenvalues of TQL\I;’T

Ae = BU(E(1 4+ 0% + 2731 — kp)
£ (W4 ) = 201 - )1 = p) 71— rp)?)

an easy computation shows that the larger eigenvalue is bounded by

1+ p?

AL > U(72r) (1 4 p?) if 72 < W(r?r) T rp’

Hence, the existence of a 3 > 8 such that W(z) < 4 for all z € [0, 3] is in general not
sufficient to guarantee A\, < 4 for 72 < min{3?/r,4} as it would be true for K = 0.
This confirms that condition (3.1) with m; > 0 is indeed necessary to ensure Ay < 4
and, thus, at least linear stability. A similar behavior occurs for (multirate) LFC
schemes; cf. [4]. Moreover, note that the stronger the coupling, i.e., the greater &,
the greater A, can become, since p = k/r.

In Figure 6.1 we illustrate this by plotting the eigenvalues of (6.2) with the LFC
polynomials (2.9) for different stabilization parameters > 0. We choose k = 2, r = 9,
and, hence, p = 3 as polynomial degree for the LFC polynomial; cf. Section 5.3.

As one can clearly see the eigenvalues A\, with the unstabilized polynomial W3
are larger than 4, if the polynomial is equal or too close to 4. At the roots of W3 the
polynomial leads only to a linear growth of the approximations q, in time, whereas
the exact solution is uniformly bounded for all ¢ > 0. We further observe that with a
sufficiently large 1 the eigenvalues are bounded away from 0 and 4. The price to pay
is a slightly smaller /3, hence, a (slightly) stronger step-size restriction.

6.2. A modified Fermi—Pasta—Ulam—Tsingou problem. As a second ex-
ample we choose a modification of the famous Fermi-Pasta—Ulam-Tsingou (FPUT)
B-problem [6], where a chain of d 4+ 2 mass points (with mass 1 for all points) are
connected via nonlinear springs. The first and the last point at the end are fixed.
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)\i (T2L\p,7)

\113(7'27”)

Fig. 6.1: Eigenvalues /\i of (6.2) with r =9, kK = 2, and ¥ = ¥, (LFC polynomials)
plotted over step sizes 72. For ¥, we use polynomial degree p = r'/2 = 3 and stabilization
parameters 7 = 0, 7 = 0. 2 ,n = 0.8, and 77 = 1. The dash-dotted lines indicate, where
the polynomials \113(7'21") leave the interval [0, 4].

In contrast to the original problem we choose springs whose elastic constants can be
different for each spring. By ¢; we denote the displacement of the ith mass point
from its equilibrium and with p; = ¢; the velocities, ¢ = 1,...,d. The Hamiltonian
describing the motion of the mass points is then given by

d d d
1 1 Brpu
H(p,q) = =3 Z i + T3 sz'2+1(%‘+1 —a4:)* + 1 Z(Qi+1 —ai)’,
=1 i=0 1=0
where q = (¢1,.--,94), P = (P1,---,P4), and go = gg+1 = 0. Deriving the differential

equations leads t (1.1) Wlth M = 1,4, a tridiagonal matrix

L= tridiag(w*7w+vw7) € Rdde W = (_w?)g:% Wy = ((.%2 +w2’2+1)(ij:1’

and g = (¢1,...,94) With

9i(q) = Breu ((git1 — @) — (@ — ai-1)?), i=1,...,d

In our example we set d = 100, SBppy = 2,

w; =110, i=1,2,3, w; =20, i=4,....d+1,

as well as the starting values

0.25, i€ {1,8}, 0.1, ie{1,8),
S

0, else, 0, else.

By choosing S = (L; ;)7 ,—; we have [|S]| ~ 39332, |N| ~ 1599.6, and ||K| = 400.
Thus, we obtain r &~ 24.6 and x ~ 0.25.

In Figure 6.2 we apply the LF scheme (2.1) and the sLFC scheme (2.4), (2.9) with
n=0.5 and p = 3,5,6 to the FPUT fS-problem. As reference solution for computing
errors we apply the LF scheme with step size 7 = 1072 to the problem.
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(a) Error for t = 1.2. (b) Relative error of H for 7 = 0.001.

Fig. 6.2: Error (left) and relative error of Hamiltonian (right) for the numerical solution of
the FPUT p-problem. For ¥ = V¥, we use polynomial degrees ,p=25,p=>0 and as
stabilization parameter 7 = 0.5. The blue lines represents the LF scheme. In the left plot the
dash-dotted line indicates order two, the dotted lines correspond to the "maximal stable”
step size for the LF scheme applied to the stiff system (1.1) and to the the nonstiff problem
(1.1) with S = K = 0. In the right plot the relative error of the Hamiltonian is plotted only
at every 200th time step for the sake of clarity.

In the error plot on the left one can observe that with the sLFC scheme the step
size can be chosen approximately p times larger than for the LF scheme until p = 5. A
further increase of the polynomial degree has no positive effect on the step size, which
is consistent with Section 5.3 since /2 ~ 5. Moreover, for the same step size the error
for the sLFC scheme is significantly smaller than the error for the LF scheme. This is
due to the fact that the polynomials (2.9) are for small z a better approximation to
the exact solution than the LF scheme; cf. [4]. In general, the difference in the errors
of the LF and sLFC schemes strongly depends on the initial values and in many cases
there is no visible difference between them.

The plot on the right confirms that the Hamiltonian is nearly conserved for long
times, which is due to the symplecticity of the scheme (2.4); cf. Corollary 2.6. The
relative error of the Hamiltonian is defined via

_ [H(Pn,an) — H(Po, q0)|

erry(n) H(po. o)

6.3. Wave equation. Last, we consider a differential equation stemming from
the spatial discretization of the inhomogeneous wave equation with homogeneous
Dirichlet boundary conditions on the unit square = (0, 1)2,

i(t,z) = V- (c(z)Vq(t,z)) + f(t,x), =x€Q, te[0,T],

(6.3a) q(t,z) =0, x €0, te|0,T],
q((),:c) = qO(x)v Q(va) = QO(‘T), x €,
with
= 85 e, 12,
ar 0.73, = €[0,1]2\[0.75,1]2
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As initial data and for the inhomogeneity we choose the smooth functions
(6.3b) qo(z) = h(2;3,0.25,(§4)), do(x) =0,  f(t,2)=h(w;4,0.1,(§578)) e,

where

-1
h(il?;a,’/’o,xo) = ]]'Hw—wOHSTo a CXp(—(l — ||1‘ — [E()”Q/T'(Q)) )

For the spatial discretization of (6.3) we employ a symmetric interior penalty
discontinuous Galerkin method [2, 8] using piecewise polynomials of degree three on
the unstructured mesh illustrated in Figure 6.3(a). This results in (1.1) with g only
depending on time ¢ and a symmetric, positive definite L. The mass matrix M is
block diagonal, where the blocks contain the degrees of freedom (dofs) of one mesh
element. Thus, solving with or inversion of M can be done at low cost. For the
implementation, we used (2.8) instead of (2.4a); cf. Remark 2.5.

The stiffest part of the differential equation consists of these dofs belonging to
the mesh elements, where c is larger, and its adjacent elements because of the flux
terms at faces; cf. dotted area in Figure 6.3(a). Hence, after a possible reordering, S
corresponds to the part of L with the dofs belonging to the dotted area. A numerical
computation of the largest eigenvalues yields r ~ 9.036 and x =~ 0.215.

In Figure 6.3(b) we apply the LF scheme (2.1) and the sSLFC scheme (2.4), (2.9)
with p = 2,3,4, n = 0.5 as well as p = 3, n = 0.1 to this equation. The errors are
computed at time ¢ty = 2.7, where we use the LF scheme with step size 7 = 107°
on the same mesh as reference solution. We clearly observe second-order convergence
for all applied schemes. Moreover, if stable, the errors between the LF scheme and
the sLFC schemes are almost identical. Further, one can observe that, in accordance
with Section 5.3, p = 3 &~ r'/2 is optimal in the sense of efficiency, since p = 4 leads
to (almost) no further increase of the maximal step size, where the scheme is stable.
In the magnified image section we again see that an insufficient stabilization leads to
a stricter step-size restriction than for a larger value for 7.

Acknowledgments. We thank Benjamin Dérich for his careful reading of this
manuscript.
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