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Abstract

Intrusive uncertainty quantification methods for hyperbolic problems exhibit spurious oscillations at shocks,
which leads to a significant reduction of the overall approximation quality. Furthermore, a challenging task is
to preserve hyperbolicity of the gPC moment system. An intrusive method which guarantees hyperbolicity
is the intrusive polynomial moment (IPM) method, which performs the gPC expansion on the entropy
variables. The method, while still being subject to oscillations, requires solving a convex optimization
problem in every spatial cell and every time step.

The aim of this work is to mitigate oscillations in the IPM solution by applying filters. Filters reduce
oscillations by damping high order gPC coefficients. Naive filtering, however, may lead to unrealizable
moments, which means that the IPM optimization problem does not have a solution and the method breaks
down. In this paper, we propose and analyze two separate strategies to guarantee the existence of a solution
to the IPM problem. First, we propose a filter which maintains realizability by being constructed from an
underlying Fokker-Planck equation. Second, we regularize the IPM optimization problem to be able to cope
with non-realizable gPC coefficients. Consequently, standard filters can be applied to the regularized IPM
method. We demonstrate numerical results for the two strategies by investigating the Euler equations with
uncertain shock structures in one- and two-dimensional spatial settings. We are able to show a significant
reduction of spurious oscillations by the proposed filters.

Keywords: uncertainty quantification, conservation laws, hyperbolic, intrusive, entropy, filtering,
realizability

1. Introduction

Conservation laws describe the behavior of a large number of physical applications; these laws can be
found in fields as diverse as fluid dynamics, radiation transport or plasma physics. Given the desire to
use computational simulations to predict the behavior of such systems, quantifying the effect of stochastic
uncertainties, such as measurement errors or modeling assumptions, is an important task. With this goal in
mind we consider a general conservation law

∂tu(t,x, ξ) +∇ · f(u(t,x, ξ)) = 0 in D, (1a)

u(t = 0,x,ξ) = uIC(x, ξ) (1b)

for the state variable u ∈ Rm at time t ∈ R+ and spatial position x ∈ D ⊆ Rd and also dependent on
the random variable ξ ∈ Θ ⊆ Rp with probability density function fΞ(ξ). Supplemented with adequate
boundary conditions, these equations can be solved using various techniques [1]. In this work, we focus on
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intrusive methods for the time evolution of stochastic quantities such as expected value or variance. These
quantities are more generally the moments∫

Θ

ϕi(ξ)u(t,x, ξ)fΞ(ξ)dξ (2)

of the random vector u with respect to the basis functions ϕi. In the sequel we use bracket notation for
integration over Θ against fΞ:

〈·〉 :=

∫
Θ

·fΞ(ξ)dξ (3)

and assume orthonormal basis functions. We use general polynomial chaos (gPC) polynomials [2, 3]. Hence
the basis functions ϕk : Θ→ R fulfill

〈ϕkϕk′〉 = δk,k′ for all k, k′. (4)

For simplicity of exposition, let us start with a one-dimensional uncertainty (p = 1) and consider polynomial
basis functions ϕi, where i corresponds to the degree of ϕi. Various intrusive methods can be used to
approximate the moments, and they all come with certain advantages and shortcomings. Generally, intrusive
methods specify a set of equations describing the time evolution of the moments, by first testing the original
equations (1) with a finite set of the basis functions ϕi, say i ∈ {0, . . . , N} leading to

∂t 〈ϕiu〉+∇ · 〈ϕif(u(t,x, ·))〉 = 0 in D, i ∈ {0, . . . , N}. (5)

This is not a closed system of equations because, due to the nonlinearity of f , 〈ϕif(u(t,x, ·))〉 in general
cannot be expressed in terms of the moments {〈ϕ0u〉, . . . , 〈ϕiu〉}. The system is closed by providing an ansatz
U(û0, · · · , ûN ) ' u for the solution inside the flux, where ûi ' 〈ϕiu〉 for each i. After inserting this closure
into (5) and collecting the moments and basis functions into the matrix û = (û0, . . . , ûN )T ∈ R(N+1)×m

and vector ϕ := (ϕ0, . . . , ϕN )T ∈ RN+1, we have the approximate system

∂tû+∇ · 〈ϕf(U(û))〉 = 0 in D, (6a)

û(t = 0,x) = 〈ϕuIC(x, ·)〉 . (6b)

Note that a similar need to construct a closure also appears in fields such as kinetic theory, which is closely
related to uncertainty quantification [4]. The choice of U crucially affects properties of the resulting moment
system. A straightforward closure choice makes use of the basis functions ϕi to represent the solution:

Uk =

N∑
i=0

ŵikϕi k ∈ {1, . . . ,m},

where ŵik ∈ R are expansion coefficients which are at this point free to choose and ŵ ∈ R(N+1)×m is
the matrix containing all the expansion coefficients. Assume that a given moment vector belongs to a
function uex ∈ Rm. First, we pick ŵ such that the L2 distance between this function and the polynomial
approximation is minimized, i.e., we solve

(ŵ0k, . . . , ŵNk) = arg min
w∈RN+1

Fk(w), where Fk(w) :=
〈
(wTϕ− uex,k)2

〉
, k ∈ {1, . . . ,m}. (7)

Since we are using orthonormal polynomials for basis functions, the resulting optimal expansion coefficients
are simply the moments, i.e., ŵ ≡ û. The resulting ansatz, which gives the stochastic-Galerkin (SG) closure
[5] is

USG(û) := ûTϕ.
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Compared to other intrusive methods such as the intrusive polynomial moment (IPM) method [6] or the
Roe transformation method [7], stochastic-Galerkin is computationally inexpensive, however suffers from a
possible loss of hyperbolicity [6]. This necessitates manipulating the solution to be able to run the method in
certain settings [8] or imposing a modification of the flux discretization [9]. Moreover, SG suffers from oscil-
lations when the solution is not sufficiently smooth [10], which is a common issue in hyperbolic conservation
laws where the solution tends to form discontinuous shocks [6]. These oscillations impair the solution quality
and lead to physically incorrect solution values, which is why different strategies to mitigate oscillations have
been developed. Oscillations dissolve when the number of chosen moments is increased [11, 12], which how-
ever adds computational costs. Additionaly, amplifying the numerical diffusion mitigates oscillations [12],
but at the same time leads to non-accurate solution approximations in deterministic regions. Furthermore,
the use of multi-elements in the stochastic domain reduces artifacts which stem from oscillations [13, 14].
In [27] multi-elements are used for the IPM method. The strategy reduces numerical artifacts in the IPM
solution while leading to a significant reduction in computational costs.

Another strategy for reducing oscillations in spectral methods is to apply a filter between time steps [15, 16].
Filters have for example been used in the context of kinetic theory [17, 18, 19, 20, 21] as well as spatial
discretization methods [22, 23]. A filtered stochastic-Galerkin method has been proposed in [24], yielding
a significant mitigation of oscillations. Just as the classical stochastic-Galerkin method, this filtered SG
method can potentially lead to non-physical solution values, leading to a failure of the method. One possible
strategy to derive a filter is to replace the SG cost function (7) by

F (λ)(wk; ûk) :=
〈
(wT

k ϕ− ûTkϕ)2
〉

+ λT (wk), (8)

for each k ∈ {1, . . . ,m}, where ûk is the k-th column of û and T is a function which penalizes oscillations
in the resulting ansatz wT

j ϕ. The parameter λ is a user-determined filter strength. As an example, the L2

filter for uniform distributions which has been investigated in [24] uses

T (w) =
〈(
L
(
wTϕ

))2〉
, with Lu :=

d

dξ

(
(1− ξ2)

d

dξ
u

)
. (9)

Note that for more general distributions with gPC polynomials Pi : Θ → R, the operator L should be
chosen to be the eigenoperator the chosen polynomial basis. I.e., we have LPi = µiPi, where µi are the
corresponding eigenvalues. With this choice of T the minimizer of F (λ)(wk; ûk) in (8) is given by the
components wik := gi(λ)ûik, where for uniform distributions, the filter function gi is

gi(λ) :=
1

1 + λi2(i+ 1)2
. (10)

Hence, the optimal expansion coefficients are dampened with increasing strength as the order i increases. A
more sophisticated filter function takes the form

g̃i(λ) := h(i/N)λ∆t, (11)

where ∆t is the time step size of the time discretization chosen to numerically solve the SG moment system
(6). Compared to (10), this filter adapts with the chosen time step size to ensure that increasing or decreasing
∆t will not heavily weaken or amplify the effect of filtering. When ∆t → 0, the filtered equations tend
towards a continuous limit [19]. Furthermore, a so-called filter order α can be introduced. This parameter
aims at preserving the approximation order for sufficiently smooth functions, see e.g. [25]. One example for
a filter of order of α is

h(ζ) = exp (cζα) (12)

where c = log(εM ) and εM is the machine accuracy. This filter choice leads to the exponential filter [26].
Another choice, which is called the Erfc filter [25] uses

h(ζ) =
1

2
erfc

(
2α1/2 (|ζ| − 1/2)

)
. (13)
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If we put the filter weights into the diagonal matrix L(λ) := diag{g̃i(λ)}Ni=0, we can write the solution as
α = L(λ)û.

Within the full algorithm, the filter is applied as follows. First, a finite-volume method with forward-Euler
time discretization for the moment equations (6) with the stochastic-Galerkin closure is given by

ûn+1
j = ûnj −

∆t

∆x
(F ∗(ûnj , û

n
j+1)− F ∗(ûnj−1, û

n
j )), (14)

where ûnj is the matrix of moment components for spatial call j and time step n and F ∗ is the numerical
flux function (see Section 3.2 below for details). The filtered method is then given by

unj = L(λ)ûnj , (15a)

ûn+1
j = unj −

∆t

∆x
(F ∗(unj ,u

n
j+1)− F ∗(unj−1,u

n
j )). (15b)

We call this the filtered stochastic-Galerkin (fSG) method [24], and it gives accurate, non-oscillatory results if
an adequate filter strength is chosen. Furthermore, the ability to analytically determine the minimizer of (8)
allows low computational costs and therefore fast runtimes. Unfortunately, as with the original stochastic-
Galerkin method, loss of hyperbolicity remains an issue, since the filter does not guarantee physically correct
solution values. When for example taking a look at the Euler equations, the filter does not guarantee
positivity of density and pressure. Hence, even though the filter tends to push the SG solution towards a
physically feasible state, filtered stochastic-Galerkin can still generate physically incorrect solution values.
This leads to a failure of the method, since various quantities such as the speed of sound will no longer be
real numbers. One possibility of preserving physically correct solution bounds of the SG solution is to apply
a hyperbolicity-preserving limiter to the SG method [8]. A strategy to combine the use of such a limiter as
well as filters has been presented in [27].

A generalization of stochastic-Galerkin, which can preserve hyperbolicity without the use of a limiter is the
intrusive polynomial moment (IPM) method [6]. The main idea is to close the system by minimizing a
mathematical entropy of the conservation law (1) while fulfilling a moment constraint. For a given convex
entropy s : Rm → R for the original problem (1), this constrained optimization problem reads

U(û) = arg min
u

〈s(u)〉 subject to û = 〈ϕu〉 (16)

where ϕu is an outer product, i.e., [ϕu]ik = ϕiuk. Using duality, this constrained optimization problem can
be transformed into the unconstrained finite-dimensional problem

min
ŵ∈R(N+1)×m

{〈
s∗(ŵ

Tϕ)
〉
− ŵ · û

}
, (17)

where s∗ : Rm → R is the Legendre transformation of s and

ŵ · û =
N∑
i=0

m∑
k=1

ŵikûik. (18)

If we let v̂(û) denote the minimizer of the dual problem (17), the minimizer of the primal problem (16) is
given by

U(û) = (s′)
−1

(v̂(û)Tϕ). (19)

Here we use that s′∗(v) = (s′)
−1

(v). It is important to point out that if the inverse of s′ only takes values in
a set Ru ⊂ Rm, the presented optimization problem is only solvable if the moments û lie inside the so-called
realizable set

R :=
{
û ∈ R(N+1)×m : ∃u = u(ξ) ∈ Ru for all ξ ∈ Θ such that û = 〈ϕu〉

}
. (20)
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A detailed discussion of realizability in the context of uncertainty quantification can be found in [28].

By construction, the IPM system is hyperbolic, and, depending on the entropy chosen, the ansatz stays
within certain physically relevant bounds [6]. These may be user-specified (through the choice of s) bounds
which enforce the maximum-principle or the bounds of the domain of hyperbolicity (for example, for the
Euler equations). While for scalar problems the solution is non-oscillatory [28], oscillations arise for systems
like the Euler equations [24, 29], where the choice of admissible entropies is limited. Furthermore, since the
optimization problem (16) can generally not be solved analytically, a numerical optimization method has
to be used whenever the closure needs to be evaluated. This heavily increases computational costs, though
these costs should be able to be alleviated by the use of multi-elements [27], high-order methods for the
temporal-spatial discretization as well as by taking advantage of parallel scalability [30].

The objective of this paper is to is to develop a method that suppresses oscillations in the solution while
guaranteeing hyperbolicity of the moment system. This goal is achieved by incorporating a filter into the
IPM closure. To extend the IPM method to filters, first we simply apply the filter to the numerical solution of
(6) (with the IPM closure) between time steps. But since an important property of the optimization problem
is that it is infeasible when the given moment vector is not realizable, we must consider two options: either
the filter must be chosen to preserve realizability or the optimization problem must be modified to become
feasible for nonrealizable moment vectors. We propose two methods which follow these two paths. First,
we design a filter which preserves realizability of the moments. Second, we change the IPM optimization
problem to ensure a unique solution even if the moments are not realizable, allowing the use of common
filters.

Parts of this work have been discussed in the PhD thesis [31]. To allow reproducing the numerical results of
this work, the source code of the IPM solver implementation is publicly available [32] together with scripts
which recompute all test cases from this paper. The implementation is an extension of the code framework
presented in [29].

Before proceeding, we note that there are other ways to enforce the physical bounds of the solution and
dampen oscillations in the closure. For example, one could enforce the physical bounds through constraints
in the optimization problem instead of using the entropy s in the objective function. Also, instead of filtering
the moment vector directly, oscillations could be dampened by penalizing them in the objective function.
These alternatives also likely merit investigation, but we leave this for future work.

The rest of this paper is structured as follows: First we discuss how applying a standard filter to a realizable
moment vector does not necessarily preserve its realizability and propose an alternate filter which does
preserve realizability in Section 2. Then in the following Section 2.3, we apply the regularization technique
from [33] to the optimization problem, thus making it feasible even for nonrealizable moment vectors and
allowing the use of standard filters. We discuss our implementation in Sections 3 and present numerical
results in Section 4. Section 5 draws conclusions and gives an outlook on future work.

2. Filtering and realizability

We consider two ways of incorporating a filter into the IPM method. First, we show that the filtered
moments L(λ)û are not guaranteed to fulfill the realizability condition (even when û does) and therefore
propose a modified filter which does preserve realizability. Second, we consider an alternative which modifies
the IPM optimization problem (16) instead of the filter so that the problem is feasible even for non realizable
moment vectors.

2.1. Effects of filtering on realizability

Before presenting the two novel approaches to include filters in the IPM method, we demonstrate the core
problem that comes with this task. I.e., we demonstrate that the filtered moments L(λ)û are not necessarily
realizable, even when the moments û are. Let us consider the scalar case, m = 1 and the entropy

s(u) = u log(u). (21)
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Now, a solution to the IPM optimization problem (16) is only available if the moment vector lies in the
realizable set R, which we defined in (20). The realizable set which corresponds to the entropy (21) is

R :=
{
û ∈ RN+1|∃u : Θ→ (0,∞) such that û = 〈ϕu〉

}
.

When N = 2 we have the more explicit form

R =
{
û ∈ RN+1 | û0 > û2 > 0 and û0û2 > û2

1

}
. (22)

We refer to [34, 35, 36] for more information. In Figure 1a we see that L(λ)û may be not realizable even
when û is. In this figure, we plot

L(λ)R|û0=1 = {L(λ)û | û ∈ R and û0 = 1}

and see that for λ ∈ {0.05, 0.1, 0.2, 0.3} we have L(λ)R|û0=1 6⊂ R|û0=1, i.e., there are realizable moments
which become nonrealizable after the filter is applied.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u1

4

2

0

2

4

u 2

original
exp, = 0.05
exp, = 0.1
exp, = 0.2
exp, = 0.3

(a)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u1

4

2

0

2

4

u 2

original
FP, = 0.05
FP, = 0.1
FP, = 0.2
FP, = 0.3

(b)

Figure 1: Images of the realizable set after application of filters. (a) Exponential filter with α = 7 and ∆t = 0.1, (b)
Realizability-preserving Fokker-Planck filter

On the other hand, in Figure 1b we see the image of the realizable setR after the application of a realizability-
preserving filter, F (λ), given below. Here one sees that F (λ)R|û0=1 ⊂ R|û0=1 for each λ. In the following,
we derive this realizability-preserving filter and discuss its properties.

2.2. A realizability-preserving filter

This section uses the Sturm-Liouville equation for orthogonal polynomials that we review in Appendix A for
sake of completeness. Let us start by defining the filter for a scalar problem in the following theorem.

Theorem 1. Assume that the chosen gPC basis is the solution to a Sturm-Liouville equation. I.e., a self-
adjoint eigenoperator L with eigenvalues µi for i = 0, · · · , N exists. Furthermore, we assume that ∂tu = Lu
fulfills a maximum principle. Let us define the filter function

gλ(i) = exp(µiλ). (23)
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Then, making use of the corresponding filter matrix which takes the form F (λ) = diag{exp(µiλ)}Ni=0, the
filtered moment vector F (λ)û = 〈ϕu(λ, ·)〉 lies in the realizable set

R :=
{
û ∈ RN+1|∃u : Θ→ (u−, u+) such that û = 〈ϕu〉

}
,

for scalar solutions (i.e., m = 1) if the original moment vector û is realizable.

Proof. The realizable moments, which we wish to filter can be written as û = 〈ϕuex〉, where uex(ξ) ∈
(u−, u+). Consider the Fokker–Planck equation for u = u(λ, ξ), where λ plays the role of time:

∂λu = Lu with u(λ = 0, ξ) = uex(ξ).

The operator L must be the eigenoperator (or Sturm-Liouville operator) to the chosen gPC basis. Since the
solution to the Fokker–Planck equation fulfills the maximum principle and uex(ξ) ∈ (u−, u+) for all ξ ∈ Θ,
we know u(λ, ξ) ∈ (u−, u+) for all ξ ∈ Θ and λ ≥ 0. Therefore the moments

〈ϕu(λ, ·)〉 (24)

remain in the realizable set R for all λ ∈ [0,∞). Furthermore, since L is self-adjoint, these moments are
straightforward to compute:

∂λ 〈ϕiu〉 = 〈ϕiLu〉 = 〈(Lϕi)u〉 = µi 〈ϕiu〉 , (25)

and thus

〈ϕiu(λ, ·)〉 = exp(µiλ) 〈ϕiuex〉 . (26)

Altogether with û = 〈ϕuex〉 and the definition of F (λ) = diag{exp(µiλ)}Ni=0, we can write the filtered
moment vector as F (λ)û = 〈ϕu(λ, ·)〉. The realizability of these moments is ensured by the maximum-
principle satisfied by u(λ, ξ).

When using uniform distributions, the chosen gPC basis are Legendre polynomials for which all assumptions
of Theorem 1 hold. In this case, the eigenvalues are given by µi = −i(i + 1), i.e. the filter matrix reads
F (λ) = diag{exp(−i(i + 1)λ)}Ni=0. Note that since µ0 = 0, the filtered zeroth order moment 〈ϕ0u(λ, ·)〉 is
constant in λ and furthermore, as λ → ∞, the solution u(λ, ξ) becomes constant in ξ. Thus λ indeed acts
like a filter-strength parameter.

Next we discuss how to extend this realizability-preserving filter to systems of conservation laws. First we
define realizability more precisely for systems. Let Ru ⊆ Rm be the set of admissible states of the system.
For example, above in the scalar case we took Ru = (0,∞) (although we could have just as easily taken
Ru = (umin, umax), where umin and umax bound the initial condition, in order to enforce the maximum
principle). In the case of the Euler equations, one would take

Ru =
{

(ρ, ρv, ρE) ∈ Rd+2 : ρ > 0, p > 0
}

=

{
(ρ, ρv, ρE) ∈ Rd+2 : ρ > 0, E >

1

2
‖v‖2

}
(27)

which is the set of u for which the Euler equations are hyperbolic. Here, ρ ∈ R denotes the density of the
gas, v ∈ Rd denotes the macroscopic gas velocity, p ∈ R is pressure and ρE ∈ R is total energy. For a
solution state u which depends on the uncertainty ξ, let û = (û0, û1, . . . , ûN ) be the vector of moments
with respect to the basis functions ϕ. We call û realizable when it belongs to the set

R :=
{
û ∈ R(N+1)×m : ∃u = u(ξ) ∈ Ru for all ξ ∈ Θ such that û = 〈ϕu〉

}
. (28)

We assume that the underlying admissible set has the form

Ru :=

{
u ∈ Rm : ∃f = f(v) ∈ I ⊂ R for all v ∈ V ⊆ Rd such that u =

∫
V

ψ(v)f(v) dv

}
(29)
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where ψ is a given set of m basis functions in v, and I is usually (0,∞) or (0, 1). For conservation laws
derived from kinetic equations, v plays the role of the velocity variable from the underlying kinetic equation.
This is the case for the Euler equations (where the f is the Maxwellian, ψ(v) = (1, v, 1

2 |v|
2), and I = (0,∞))

and more generally for entropy-based moment closures for kinetic equations [37]. Under this assumption, R
can be written as

R =
{
û ∈ R(N+1)×m : ∃f =f(ξ, v) ∈ I for all (ξ, v) ∈ Θ× V

such that û =

〈
ϕ

∫
V

ψ(v)T f(·, v) dv

〉T }
. (30)

Now, since we have defined realizability for systems, let us discuss how the derived filter behaves in this
case:

Theorem 2. Assume that all assumptions from Theorem 1 hold. Applying the filter F (λ) from Theorem 1
component-wise for systems of conservation laws preserves realizability. Hence, if ûi ∈ Rm collects the
moments of order i for all states k = 1, · · · ,m, the filtered moments eµiλûi for i = 0, · · · , N remain
realizable.

Proof. To filter a û ∈ R without destroying its realizability, let f be any distribution from (30) and then
apply L to its ξ-dependence to define g:

∂λg(λ, ξ, v) = Lg(λ, ξ, v), g(0, ξ, v) = f(ξ, v). (31)

Again, the maximum principle for L ensures g(λ, ξ, v) ∈ I for all (λ, v, ξ) ∈ [0,∞)× V ×Θ. Thus

û(λ) :=

〈∫
V

ψg(λ, ·, v) dvϕT
〉T
∈ R (32)

for all λ ∈ [0,∞). A practical expression for û is also straightforward to derive, since

∂λûi =

〈
ϕi

∫
V

ψ∂λg(λ, ·, v) dv

〉
=

〈
ϕi

∫
V

ψLg(λ, ·, v) dv

〉
=

〈
Lϕi

∫
V

ψg(λ, ·, v) dv

〉
= µi

〈
ϕi

∫
V

ψg(λ, ·, v) dv

〉
= µiûi,

i.e., ûi(λ) = eµiλûi. (This also confirms that ûi(λ) is independent of the choice of f in (31).) Thus we see
that we can simply apply the filter F (λ) component-wise for systems of conservation laws without destroying
realizability.

Note that the Fokker–Planck filter function (23) is closely related to the exponential filter (12) being applied
at order α = 2. Unfortunately, in uncertainty quantification high order filters appear to be a desirable
choice, since they commonly yield satisfactory variance approximations, whereas low order filters heavily
dampen the variance [27]. Therefore, we now turn to allowing the use of standard filters (with potentially
high order) by enabling the dual problem to cope with non-realizable moment vectors.
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2.3. Regularization

When faced with the potential infeasibility of the filtered moments, instead of modifying the filter to preserve
realizability, we can instead modify the optimization problem to guarantee feasibility even for nonrealizable
moment vectors.

A modification which achieves this is the regularization proposed in [38, 33], in which the equality constraints
are exchanged with a penalty term in the objective function. Specifically, the primal optimization problem
(16) defining the ansatz is replaced by

Uη(û) = arg min
u

{
〈s(u)〉+

1

2η
‖û− 〈ϕu〉‖2

}
, (34)

where η ∈ (0,∞) is the regularization parameter and

‖ŵ‖2 =

N∑
i=0

m∑
k=1

ŵ2
ik. (35)

This regularized problem is feasible for a larger set of moment vectors û, in particular when Θ is compact,
it is feasible for all moment vectors.

Just as with the equality-constrained problem, the dual problem to (34) is finite dimensional:

v̂η(û) := arg min
v̂∈Rm×(N+1)

{〈
s∗(v̂

Tϕ)
〉
− v̂ · û+

η

2
‖v̂‖2

}
, (36)

and the form of the primal minimizer is the same:

Uη(û) = uME

(
v̂η(û)Tϕ

)
, (37)

and the flux for the resulting system is

f(û) =
〈
ϕf̂(Uη(û))

〉
. (38)

This gives a hyperbolic system of conservation laws, and, when v̂η is defined for all û, we can implement
(15) directly with a numerical flux F ∗ based on (38).

One remaining question is how to choose the regularization parameter η. A discussion of this issue can be
found in [33], where the authors choose η according to the Morozov discrepancy principle, when interpreting
the numerical errors as noise. Hence, η is chosen such that the effect of regularization does not dominate
the numerical error.

Before discussing the space and time discretization as well as implementation of the IPM scheme, let us take
a look at the Fokker–Planck and exponential filter functions, which are given in equations (23) and (12).
To get a better impression of how both filters dampen moments, we plot both filter functions in Figure 2.
The chosen filter strength is λ = 0.04. The time step size ∆t for the exponential filter is chosen such that
the exponential filter at order two resembles the Fokker–Planck filter. It can be seen that Fokker–Planck
filtering (with a scaled filter strength) behaves like aa second order exponential filter. When increasing the
order of the exponential filter, the moment order i at which the filter starts to dampen gPC coefficients
increases. Note that this will especially affect the variance approximation, which (for a polynomial solution
ansatz) is given by a sum over the squares of moments higher than zero.

3. Implementation

In this section we discuss the implementation of our numerical scheme for solving the filtered system
(15).
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Figure 2: Fokker–Planck (FP) and exponential (EXP) filter functions for filter strength λ = 0.04. The exponential filter uses
a time step parameter of ∆t = 12.5 and varying orders α. The time step size is chosen such that the EXP filter for order 2
resembles FP filtering.

3.1. Solving the dual problem

The IPM method relies on solving the constrained optimization problem (16), or in the regularized case
the unconstrained problem (34). Both of these problems are infinite-dimensional, so we solve their dual
problems (17) and (36), which are finite-dimensional and unconstrained. In both cases we used Newton’s
method stabilized with the standard backtracking linesearch. Our stopping criterion is the norm of the dual,
i.e.,

‖
〈
ϕs′∗(v̂

Tϕ)
〉
− û‖ < τ or ‖

〈
ϕs′∗(v̂

Tϕ)
〉

+ ηv̂ − û‖ < τ (39)

for the original and regularized cases respectively, where τ ∈ (0,∞) is the user-specified tolerance param-
eter. The integrals needed to compute the dual objective function and its derivatives are computed with
quadrature.

The main challenge in the implementation of the IPM method (and minimal entropy methods in general)
is that the optimization problem is ill conditioned when the moment vector lies near the boundary of the
realizable set (or in the regularized case, when the regularization parameter is small and the moment vector
of the solution lies close to the boundary of the realizable set). In these cases the optimization algorithm
needs many iterations to converge or may be unable to find a solution satisfying the stopping criterion. More
information on this issue can for example be found in [28] for IPM and [39] for minimal entropy methods in
kinetic theory.

3.2. Spatial and temporal dicsretization

Let us now write down the implementation of the regularized IPM method including filters. In order
to discretize the closed moment system (6), we choose a spatial grid x1, · · · , xNx

and a time grid 0 =
t0, · · · , tNt

= tend. We then represent the dicretized solution by

ûnij '
1

∆x

∫ xj+1/2

xj−1/2

ûi(tn, x)dx, (40)

10



where i is the moment order and j is the spatial cell index. The moment vector is collected in ûnj = (ûnij)
N
i=0

for every spatial cell j and time step n. The corresponding dual state is denoted by

v̂nj := v̂(ûnj ),

when reguarlization is not used; when regularization is used, v̂ is replaced with v̂η (see (36)). Given a
numerical flux f∗(u`,ur) for the deterministic system, a flux for the moment system is constructed by

F ∗(û(v̂`), û(v̂r)) := G∗(v̂`, v̂r) :=
〈
ϕf∗(s′∗((v̂`)

Tϕ), s′∗((v̂r)
Tϕ))

〉
. (41)

We give this flux in terms of dual variables, since this more closely reflects the implementation. To compute
the integrals in this expression one commonly uses a Gauss–Legendre quadrature rule, which equals the
quadrature choice of the dual optimizer. This choice of the numerical flux is common in kinetic theory,
where it is called the kinetic flux [40, 41, 42, 43]. It is frequently used in the context of uncertainty
quantification, see e.g. [24, 29, 28, 44, 8, 45].

The basic strategy of the algorithm, as given in (15), is, in every time step, first to apply a filter to the
moment vector in each spatial cell, and then perform an update in time starting from these filtered moment
vectors. Some details of the implementation vary depending on which method we choose, so we present the
methods separately in Algorithms 1 and 2.

In Algorithm 1, we note that after the dual variables are computed numerically for the filtered moment
vector (using the Fokker–Planck filter), we compute in Line 7 the moment vector associated with these
approximte dual variables. This is done to ensure the realizability of the moment vector at the next time
step, ûn+1

j , see [28]. In Algorithm 2, this step is unnecessary.

Algorithm 1 Realizable Filtered IPM Method

1: û0
j ← setup Initial Conditions for all cells j

2: choose filter strength λ ∈ (0,∞)
3: for n = 0 to Nt do
4: for j = 1 to Nx do
5: unj ← F (λ)ûnj
6: ṽnj ← v̂(ūnj ) using Newton’s method with gradient tolerance τ

7: ũnj ←
〈
ϕs′∗((ṽ

n
j )Tϕ)

〉
8: end for
9: for j = 1 to Nx do

10: ûn+1
j ← ũnj − ∆t

∆x (G∗(ṽnj , ṽ
n
j+1)−G∗(ṽnj−1, ṽ

n
j ))

11: end for
12: end for

Algorithm 2 Regularized Filtered IPM Method

1: û0
j ← setup Initial Conditions for all cells j

2: choose filter strength λ ∈ (0,∞) and regularization parameter η ∈ (0,∞)
3: for n = 0 to Nt do
4: for j = 1 to Nx do
5: unj ← L(λ)ûnj
6: ṽnη,j ← v̂η(ūnj ) using Newton’s method with gradient tolerance τ
7: end for
8: for j = 1 to Nx do
9: ûn+1

j ← unj − ∆t
∆x (G∗(ṽnη,j , ṽ

n
η,j+1)−G∗(ṽnη,j−1, ṽ

n
η,j))

10: end for
11: end for
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4. Results

In the following we will present numerical results for the two proposed filtering techniques. All results
can be reproduced with the source code [32], which makes use of the intrusive UQ framework presented in
[29].

4.1. Effects of the Regularization

Before moving to filtering, we study the effects of the regularization for different regularization strengths
η. For this we investigate the following test case: We wish to solve the uncertain Sod shock tube problem,
which is given by

∂t

 ρ
ρv
ρe

+ ∂x

 ρv
ρv2 + p
v(ρE + p)

 = 0,

with the initial conditions

ρIC =

{
ρL if x < xinterface(ξ)

ρR else

(ρv)IC = 0

(ρE)IC =

{
ρLEL if x < xinterface(ξ)

ρRER else

Here, ρ is the density, u is the velocity and e is the specific total energy. For a given heat capacity ratio γ
which in our case has a value of 1.4, the pressure p can be determined from

p = (γ − 1)ρ

(
E − 1

2
v2

)
.

The random interface position is given by xinterface(ξ) = x0 + σξ with a uniformly distributed random
variable ξ ∼ U([−1, 1]). We use Dirichlet boundary conditions at the left and right boundary. A reference
solution is given by the analytic solution of the Sod shock tube test case. We approximate expected value
and variance of the analytic solution by using a 100 point Gauss-Legendre quadrature rule. The remaining
parameter values are

[a, b] = [0, 1] range of spatial domain
Nx = 2000 number of spatial cells
tend = 0.14 end time
x0 = 0.5, σ = 0.05 interface position parameters
ρL, pL = 1.0, ρR = 0.125, pR = 0.1 initial states
N = 10 polynomial degree
Nq = 30 number of quadrature points
τ = 10−7 gradient tolerance for IPM

The IPM method uses the entropy

s(ρ, ρv, ρe) = ρ ln

(
ρ−γ

(
ρe− (ρv)2

2ρ

))
.

One observes that this problem cannot be solved with SG or fSG, since negative densities ρ will show
up already in the first time iteration. We now run this test case using IPM with different values for
the regularization strength η. Hence, we run Algorithm 2 without applying the filter. Taking a look at
the resulting expected value and variance of the density ρ in Figure 3, one sees that a big regularization
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Figure 3: Expected value and variance of gas density for different regularization strengths.
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parameter will heavily affect the solution. As the regularization strength decreases, the solution will approach
the IPM solution and with η = 10−7 the regularized solution shows good agreement with IPM. When the
regularization parameter is not sufficiently small, we observe significant effects on higher order moments:
When looking at the variance of the rarefaction wave and the contact discontinuity, one notices strong
dampening. Note however that the variance in these regimes is very sensitive to the method used, see for
example [24, 8]. It is important to point out that commonly, a regularization strength of η = 10−7 is chosen
and we compare against high values of the regularization strength to demonstrate the effects a regularization
might have on the solution. For small regularization strength, the resulting numerical solution agrees well
with the classical IPM solution.

The regularized solution with a small regularization parameter as well as the original IPM method show
good approximation behavior in most parts of the solution. However, especially at the shock position, all
methods will yield a non-physical, step-like approximation of the expected value and oscillatory results for
the corresponding variance. Note that the step-like approximation of the IPM solution only becomes visible
when further zooming into the shock region. For a deeper study of these artifacts we refer to [27].

This work focuses on obtaining better approximations at the shock position through filtering techniques.
Note that the filter will further dampen the variance approximations at the rarefaction wave and the shock
discontinuity. One idea to mitigate these effects that we leave for future studies is choosing an adaptive
filter strength as done in [24].

4.2. Filtering for Sod’s shock tube
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(a) Exponential filter

10 5 10 4 10 3102

2 × 102

3 × 102

4 × 102

6 × 102

E

L2 error of 2nd order derivative

75

80

85

90

95

100

105

110

115

Va
r

(b) Fokker-Planck filter

Figure 4: δE (in black with dots) and δVar (in red with diamonds) for different filter strengths when using the exponential and
Fokker-Planck filter. The exponential filter uses a regularization strength η = 10−7 and order α = 10. Values for δE and δVar

without filters are added as a straight line.

Let us start with studying the effects of the filter strength on the solution quality. As a measure for
oscillations, let us investigate the error of second order derivatives. If the distance of a discrete numerical
solution u∆ := (u1, · · · , uNx)T to a reference density uex,∆ := (uex,1, · · · , uex,Nx)T is given by e∆ := uex,∆−
u∆, we wish to determine

δE :=

√√√√Nx∑
j=1

∆xj (∂xxE[ej ])
2
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Figure 5: Expectation and variance computed with IPM and filtered IPM (λ = 2, α = 10 for exponential filtering and λ = 5·10−5

for Fokker-Planck filtering) for Sod’s shock tube. The exact expected value is depicted in red, the exact variance in blue. (a)
Expected density. (b) Zoomed view on shock for expected density. (c) Variance of density. (d) Zoomed view on shock for
variance of density.

and

δVar :=

√√√√Nx∑
j=1

∆xj (∂xxVar[ej ])
2
.

The resulting curves for both variables when choosing varying filter strengths can be found In Figure 4.
Here and in subsequent uses of the exponential and erfc filter, we solve issues resulting from realizability
by picking a constant regularization parameter η = 10−7. In all of our numerical experiments, this choice
allowed solving the regularized dual problem. The filter order is here chosen to be α = 10. Let us point
out that the chosen measures δE and δE do not necessarily provide a comparison between different methods
and simply allows an idea of a meaningful range for the filter strength. Furthermore, we evaluate both error
measures only in the shock region x ∈ [0.7, 0.8] to remove dampening effects from the rarefaction wave. It
becomes clear that the optimal filter strength in terms of expectation and variance differs. Both filters reach
an optimal variance value at a smaller filter strength compared to the optimal expectation. This means that
while a bigger filter strength gives a good expectation approximation it heavily dampens out the variance,
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Figure 6: Expectation and variance computed with IPM and filtered IPM (λ = 2, α = 10 for exponential filtering and λ = 5·10−5

for Fokker-Planck filtering) for Sod’s shock tube. The exact expected value is depicted in red, the exact variance in blue. (a)
Expected momentum. (b) Zoomed view on shock for expected momentum. (c) Variance of momentum. (d) Zoomed view on
shock for variance of momentum.

i.e., yielding a significant error in the uncertainty. Therefore, let us in the following choose λ = 2 for the
exponential filter. Fokker-Planck filtering seems to be optimal for values around λ = 10−4 around the shock.
However, this choice leads to heavy dampening of the variance at the rarefaction wave, which is why we
slightly reduce this value to λ = 5 · 10−5. In this case, the Fokker-Planck filter shows a similar behaviour as
the exponential filter at the rarefaction wave.

Note that we fixed the filter order α = 10 for exponential filtering. Without going into detail, let us remark
that increasing the order of the exponential filter mitigates the dampening effect at the rarefaction wave
when increasing the filter strength. Thereby, a satisfactory value for λ, which improves the shock structure
while preserving the remainder of the solution is easier to find. Choosing the order α too large will however
require a significantly increased filter strength to obtain an improvement at the shock position. Since this
behavior is difficult to capture by an error measure, we do not show a detailed parameter study as done
for the filter strength. All remaining parameters are chosen as in section 4.1. Resulting expected values
and variances are depicted in Figure 5. Again, the reference solution has been computed from the analytic
solution of the Sod shock tube test case. As before, the expected value and variance of the analytic solution
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are approximated by a 100 point Gauss-Legendre quadrature rule.

We first examine the shock position: The expected value and variance of the density again show heavy
oscillations in the variance and a step-like profile at the shock if no filtering is applied. Using the exponential
filter leads to a smooth linear connection between the left and right shock state for the expected value, which
shows good agreement with the exact solution. The variance is slightly dampened, however its smooth profile
nicely captures the main characteristics of the exact variance. This behavior can be examined in detail
when zooming onto the shock position as done in Figures 5b and 5d. The Fokker-Planck filter appears to
be less effective. Compared to standard IPM, the filter yields an improved approximation at the shock at
the costs of dampening the variance at the rarefaction wave and contact discontinuity. When comparing
exponential and Fokker-Planck filtering, one observes that exponential filtering yields a more satisfactory
solution approximation, i.e., the shock region nicely captures the exact behavior while the variance at the
rarefaction wave is only slightly damped. A similar conclusion can be drawn when looking at the expected
momentum and its corresponding variance in Figure 6.

There are different strategies that can be chosen to mitigate non-physical dampening effects at the rarefaction
wave. One example is using an adaptive filter strength. This approach can be combined with adaptivity in
general [29]. In this work, however, we focus on mitigating oscillations at the shock and leave other open
questions to future work.

4.3. Filtering for high density shock

In the following, we keep the same parameter setting, but change the initial condition to verify if the
previous choice of the filtering parameters still yields a satisfactory result. The test case we investigate has
an increased density state of ρR = 0.8 on the right hand side. The remaining shock states are left untouched.
The resulting expected density and corresponding variance can be found in Figure 7.

Again, the reference solution has been computed with the analytic solution. Expected value and variance of
the analytic solution are approximated by taking a 100 point Gauss-Legendre quadrature. Compared to the
previous setting, the test case shows a large amount of density, which travels to the right hand side. In this
test case, the rarefaction wave becomes less dominant. One observes that using the standard IPM method
leads to heavy oscillations in the IPM solution of both, the expected value and the variance. Moreover, the
variance approximation of IPM is heavily dampened out, which is most likely an artifact from the artificial
viscosity of the finite volume method [46, Chapter 16.1]. Applying filters to this problem resolves oscillations.
Especially the exponential filter captures the behavior of the exact variance nicely. Oscillations in the
variance approximation are significantly mitigated, however the filter is not able to reduce the dampening
effect the finite volume scheme has on the variance. The Fokker-Planck filter improves the approximation
of the expected value. However, while oscillations in the variance are dampened, the Fokker-Planck filter
further reduces the value of the variance approximation.

4.4. Filtering for Euler 2D

In the following, we will move to the two-dimensional Euler equations

∂t


ρ
ρv1

ρv2

ρE

+ ∂x1


ρv1

ρv2
1 + p
ρv1v2

v1(ρE + p)

+ ∂x2


ρv2

ρv1v2

ρv2
2 + p

v2(ρE + p)

 = 0,

where the pressure is given by

p = (γ − 1)ρ

(
E − 1

2
(v2

1 + v2
2)

)
.

We will be interested in quantifying the uncertainty of a shock inside a two-dimensional nozzle. The nozzle
geometry is composed of a chamber on the left, a throat in the center and the main nozzle region on the
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Figure 7: Expectation and variance for the high density shock computed with IPM and filtered IPM (λ = 2, α = 10 for
exponential filtering and λ = 10−5 for Fokker-Planck filtering). The exact expected value is depicted in red, the exact variance
in blue. (a) Expected density. (b) Zoomed view on shock for expected density. (c) Variance of density. (d) Zoomed view on
shock for variance of density.

right. As in Sod’s shock tube experiment, the gas is initially at rest with an uncertain shock occurring inside
the domain. The initial condition is chosen to be

ρIC =

{
ρL if x < xinterface(ξ)

ρR else

(ρv)IC = 0

(ρE)IC =

{
ρLEL if x < xinterface(ξ)

ρRER else

and we pick the shock states as in Section 4.3, i.e., the density on the right hand side is set to ρR = 0.8. The
shock position xinterface(ξ) is distributed uniformly inside the throat. Here we make the choice xinterface(ξ) =
xth +σξ, where xth is the center x-coordinate of the throat. Since the throat has a length of 1, i.e., it ranges
from xth − 0.5 to xth + 0.5, we choose σ = 0.5 and again use a uniformly distributed ξ ∼ U([−1, 1]). A
reference solution, depicted on the top of Figures 8 and 9, has been computed using Collocation (see [47])
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Figure 8: Expected density with different methods. From top to bottom: reference solution, fIPM, IPM.

with 100 Gauss-Legendre quadrature points. The solution shows an uncertain shock wave which travels to
the right side of the nozzle.
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Figure 9: Variance of the density with different methods. From top to bottom: reference solution, fIPM, IPM.

In the two-dimensional setting IPM uses the entropy

s(ρ, ρv1, ρv2, ρE) = −ρ ln

(
ρ−γ

(
ρE − (ρv1)2 + (ρv2)2

2ρ

))
.

One can for example find the resulting IPM ansatz in [29, Appendix B]. The IPM solution, which is depicted
in Figures 8 and 9 on the bottom again shows a step-like approximation of the expectation. Furthermore, it
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leads to an oscillatory variance approximation at the shock position. Let us now apply the Erfc filter (13)
to mitigate the spurious artifacts. Since this filter does not preserve realizability, we again need to add a
regularization term with η = 10−7, i.e., we choose Algorithm 2. The chosen filter strength is λ = 0.9 and we
pick a filter order of α = 7. It can be seen that the resulting approximation shows a satisfactory agreement
with the reference solution. The filtered solution shows small artifacts in the shock region, however the
overall approximation quality is significantly improved. The exponential filter (12) shows a similar result
compared to the Erfc filter when choosing a filter strength of λ = 0.045 for the same order of α = 7.
Now, let us study all filters used in this work, namely the exponential, Erfc and Fokker-Planck filters when
changing the filter strength. In order to measure oscillations, we extend the measures δE and δVar to two-
dimensional spatial domains: If the distance of a discrete numerical density solution ρ∆ := (ρ1, · · · , ρNx

)T

to a reference density ρex,∆ := (ρex,1, · · · , ρex,Nx
)T is given by e∆ := ρex,∆ − ρ∆, we are interested in

determining the error of second derivatives, which is

δE :=

√√√√Nx∑
j=1

∆xj

(
(∂xxE[ej ])

2
+ (∂yyE[ej ])

2
)

and

δVar :=

√√√√Nx∑
j=1

∆xj

(
(∂xxVar[ej ])

2
+ (∂yyVar[ej ])

2
)
.

With this error measure, we intend to capture the error behavior while measuring oscillations. Note that this
measure only gives a coarse overview and minimal values in δE and δVar do not always guarantee obtaining
the optimal result when looking at the full expectation and variance plot. The resulting values of δE and
δVar for different filter strengths at a fixed filter order α = 7 (when using the EXP and erfc filters) are
depicted in Figure 10. Here, we added the values of δE and δVar of the classical IPM method without filters
as straight lines. Note that all filters require differently chosen filter strengths and we therefore study these
filters on different grids for λ. For the order 7 filters, these grids are chosen such that the effects of filtering
with each filter is plausible, i.e., the solution does not equal the standard IPM solution and the effects of
uncertainty is not completely dampened out. The Fokker-Planck filter in Figure 10c is very sensitive with
respect to the chosen filter strength and we can therefore observe the effect of filtering out the dependency
on ξ for large filter strengths. Note that in this case, the variance has a value of zero. Hence, δVar is simply
the second derivative of the reference solution. Since the reference solution is smooth, this value is small
compared to settings in which the filter is less dominant. However, the poor quality of the solution can be
read from δE which heavily increases. At intermediate filter strengths, the Fokker-Planck filter does show
improved results in terms of the chosen oscillation metric. It can be seen that both, the exponential filter
in Figure 10a and the Erfc filter in Figure 10b mitigate oscillations compared to the classical IPM solution.
However, the choice of the filtering strength affects the quality of the expected value and variance. While
the optimal filter strength differs for the expected value and the variance, we observe that the minimum in
the respective curves for δE and δVar is reached at similar points. Therefore, if we choose the filter such that
we obtain a good representation of the expected value, we can expect to also observe a satisfactory variance
approximation.

5. Summary and Outlook

The main task of this work is to develop a method which mitigates oscillations that arise in the solutions
of the IPM method. Applying a filter to the moments of IPM is challenging, since the filtered moments
need to remain realizable and it can be shown that standard filters violate this property. In this work,
we presented two different strategies to apply filtering to the IPM method. First, we proposed a new
filter, which we called Fokker-Planck filter. It is based on an underlying Fokker-Planck equation, whose
solutions obey the maximum–principle. We use this fact to guarantee realizability of filtered moment
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Figure 10: δE and δVar for different filter strengths when using the exponential, Erfc and Fokker-Planck filter. The exponential
and erfc filters have a regularization strength η = 10−7 and order α = 7. Values for δE and δVar without filters are added as a
straight line.

vectors. Furthermore, by investigating the filter on the kinetic level of the Euler equations, we are able
to show realizability for applications in fluid dynamics. Second, we proposed to modify the IPM closure
to be able to cope with non-realizable moments. This task is achieved by adding a regularization term
to the IPM optimization problem. The regularization then allows choosing standard filters, which do not
necessarily preserve realizability. We conduct numerical experiments to investigate the effectiveness of both
approaches. It turns out that the second approach, i.e., using a regularization strategy yields the best
results. I.e., the resulting approximations of expected value and variance show a significant reduction of
artifact which resulted from spurious oscillations. Unfortunately, the Fokker-Planck filter, despite being able
to improve the solution at the shock, heavily dampens the variance at the rarefaction wave.

Ideas to weaken this effect are the use of adaptive filter strengths, which yields the possibility to turn down
the filter strength at the rarefaction wave and contact discontinuity. Note, that the classical IPM method
without filters yields good results in theses regions, meaning that one could only turn on filtering at the
shock position. In this work, we focused on the exponential, Erfc and Fokker-Planck filter and one should
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try out more filter functions. Note that the Lasso filter [24], which adaptively picks the filter strength in
an automated fashion, unfortunately led to heavily dampened variance results. A method which is closely
related to IPM is the use of Roe variables [7, 48]. Applying the proposed filtering and regularization strategies
to Roe variables could potentially improve this class of methods. Furthermore, instead of regularizing the
moment system, one could apply the regularization on the Euler equations as done in [33]. Such a system
allows the use of non-physical quantities such as negative densities and pressures. In this case, one is able to
apply the standard stochastic-Galerkin method to the regularized Euler equations without having to preserve
positivity of certain physical quantities. The presented ideas are not restricted to uncertainty quantification
as they can for example be used in kinetic theory and other research areas which require the construction of
closures. Furthermore, one should further investigate the regularization, especially its effect on the run time.
The observed run time speedup when increasing the regularization parameter holds the potential of speeding
up standard IPM computations. However, one needs to keep in mind that the numerical experiments show
strong solution manipulations when the regularization is chosen too big.
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[10] OP Le Mâıtre, OM Knio, HN Najm, and RG Ghanem. Uncertainty propagation using wiener–haar expansions. Journal

of computational Physics, 197(1):28–57, 2004.
[11] Per Pettersson, Gianluca Iaccarino, and Jan Nordström. Numerical analysis of the burgers’ equation in the presence of

uncertainty. Journal of Computational Physics, 228(22):8394–8412, 2009.
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Appendix A. Sturm-Liouville equation of orthogonal polynomials

In the following, we provide a short summary of the Sturm-Liouville equation, following [49, Chapter 5].
The standard orthonorormal polynomials Pi : Θ→ R fulfill a Sturm-Liouville equation. This equation takes
the form LPi = µiPi, where L is a self-adjoint linear operator

LPi =
1

r(x)

d

dξ

(
p(x)

d

dξ
+ q(x)

)
.

I.e., the polynomials Pi are eigenfunctions to the operator L with eigenvalues µi. Furthermore, we have
that ∫

Θ

Pi(ξ)Pj(ξ)r(ξ) dξ = γiδij ,

where γi denotes the weighted L2-norm. The Legendre polynomials which are used throughout this work
fulfill this property, where

p(ξ) = 1− ξ2, r(ξ) = 1, q(ξ) = 0, µi = −i(i+ 1).

Further polynomials are

• Chebyshev : p(ξ) =
√

1− ξ2, r(ξ) = 1√
1−ξ2

, q(ξ) = 0, µi = −i2,

• Hermite: p(ξ) = e−ξ
2

, r(ξ) = e−ξ
2

, q(ξ) = 0, µi = −2i,

• Laguerre: p(ξ) = ξe−ξ
2

, r(ξ) = e−ξ
2

, q(ξ) = 0, µi = −i.
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