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ERROR ANALYSIS FOR SPACE DISCRETIZATIONS
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ABSTRACT. In this paper we study space discretizations of a general class of first- and second-order quasi-
linear wave-type problems. We present a rigorous error analysis based on a combination of inverse estimates
with semigroup theory for nonautonomous linear Cauchy problems. Moreover, we provide refined results
for the special case that the nonlinearities are local in space. As applications of these general results we
derive novel error estimates for two prominent examples from nonlinear physics: the Westervelt equation
and the Maxwell equations with Kerr nonlinearity. We conclude with a numerical example to illustrate our
theoretical findings.

1. INTRODUCTION

Wave-type problems cover a wide range of applications in physics. This includes for instance the
Maxwell equations and the acoustic wave equation to describe the propagation of light and sound waves,
respectively. To take the surrounding media into account, these equations are equipped with material
models. Due to their simplicity, the consideration of linear wave-type problems based on linearized
material models is very appealing. However, this is not reasonable if waves with high frequency or
intensity occur. Thus, nonlinear material models have to be considered, which yield quasilinear wave-
type problems. With respect to the previous examples, this includes the Maxwell equations with Kerr
nonlinearity and the Westervelt equation as a basic model for the propagation of ultrasound.

Concerning the analysis of these problems, Kato (1975) proved wellposedness for a general class of
quasilinear wave-type problems on the full space using semigroup theory. In subsequent papers these
ideas were also applied to quasilinear wave-type problems on bounded domains with sufficiently regular
boundary. Additionally, as Kato’s framework is restrictive with respect to boundary conditions, also al-
ternative techniques have been developed. For instance, based on energy techniques, Spitz (2019) proves
wellposedness of the quasilinear Maxwell equations with perfectly conducting boundary conditions.

In contrast, the analysis of numerical approximations for the space discretizations of quasilinear
wave-type problems is much less developed. Up to our knowledge, the discretization of quasilinear
first-order wave-type problems was not analyzed before. However, at least for second-order problems
there are a few results: For the conforming space discretization of quasilinear elastic wave equations
with finite elements, Makridakis (1993) proves an error estimate using Banach’s fixed-point theorem
and inverse estimates. Based on this result, Ortner & Süli (2007) provide a corresponding result for the

E-mail address: marlis.hochbruck@kit.edu, bernhard.maier@kit.edu.
Key words and phrases. quasilinear wave-type equations; abstract error analysis; a priori error estimates; Westervelt equation;

Maxwell equations; Kerr nonlinearity.

1



ERROR ANALYSIS FOR SPACE DISCRETIZATIONS OF QUASILINEAR WAVE-TYPE EQUATIONS 2

nonconforming discretization of these equations with discontinuous Galerkin finite elements. For the
Westervelt equation with strong damping, error estimates for the space discretization with continuous
and discontinuous Galerkin finite elements were derived by Nikolić & Wohlmuth (2019) and Antonietti
et al. (2020), respectively.

Moreover, there are some results considering the full discretization of quasilinear second-order wave-
type problems: Based on conforming space discretizations, Ewing (1980), Bales (1986, 1988), Bales &
Dougalis (1989), and Makridakis (1993) analyzed the full discretization of quasilinear wave equations
with various time integration schemes. More recently, the full discretization of specific quasilinear
wave equations in 1D was considered by Gerner (2013) and Gauckler et al. (2019) using a continuous
Galerkin discretization and the Fourier spectral method, respectively.

In the present paper we analyze space discretizations of quasilinear wave-type problems in a very
general abstract framework, i.e., we consider

(1.1)

{
Λ(y(t))∂ty(t) = Ay(t) + F (t, y(t)), t ∈ [0, T ],

y(0) = y0,

in a suitable Hilbert space X . Here, Λ is a nonlinear operator, which is locally Lipschitz continuous and
bounded in X , whereas A is linear but unbounded in X . The nonlinear right-hand side F is assumed
to be sufficiently regular. Note that (1.1) covers both first- and second-order quasilinear wave-type
problems and hence includes both the Maxwell equations with Kerr nonlinearity and the Westervelt
equation.

Up to our knowledge, all previously obtained results concerning the analysis for space discretizations
of quasilinear wave-type equations rely on fixed-point arguments, where wellposedness and the error
estimate are proven simultaneously. In contrast, we provide an alternative approach based on semigroup
theory. More precisely, our analysis consists of the following three steps:

(1) We exploit that the discrete quasilinear wave-type problem is finite dimensional to prove well-
posedness. This only yields a non-optimal lower bound for the maximal time of existence,
which may degenerate if the mesh parameter associated to the spatial grid tends to zero.

(2) By using semigroup theory for linear, nonautonomous Cauchy problems, we derive a rigorous
error estimate for the quasilinear wave-type problem.

(3) Based on a consistency assumption and inverse estimates, we show that the maximal time of
existence of the continuous problem is a lower bound for its discrete counterpart.

Thus, compared to the other results, which are based on fixed-point arguments, our approach allows for
a better insight into the various contributions to the error.

Hipp et al. (2019) and Hochbruck & Leibold (2020) provided a unified error analysis for linear and
semilinear wave-type equations, respectively. In this paper, we extend it to quasilinear problems. Note
that the original framework allows for very general nonconforming space discretizations including do-
main approximations. This is relevant in the quasilinear setting, where wellposedness results in general
rely on severe regularity assumptions on the spatial domain. However, for the sake of readability we
only consider discretizations where the discrete function space is a subset of X here. For the analysis
of general nonconforming space discretizations, we refer to Maier (2020), where all details are given.

Outline. In Section 2 we present the abstract framework including basic assumptions. Correspond-
ingly, we introduce the spatially discrete framework in Section 3 and discuss properties of the discrete
operators. In Section 4 we prove the main results of this paper: wellposedness of the discrete prob-
lem and a rigorous error estimate within the abstract framework. For the special case of nonlinearities
which are local in space, we refine these results in Section 5. In Section 6 we apply the abstract results
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to specific examples. First, we analyze the Maxwell equations with Kerr nonlinearity in Section 6.1.
We further derive an error estimate for the Westervelt equation in Section 6.2. Finally, we validate the
theoretical results by a numerical experiment for the Westervelt equation in Section 7.

Notation. For normed spaces X and Y we denote the space of bounded linear operators from X to
Y by L(X,Y ). The corresponding norm is given by

‖A‖L(X,Y ) := sup
x∈X\{0}

‖Ax‖Y
‖x‖X

, A ∈ L(X,Y ).

We denote by BX(R) the open ball of radius R > 0 in X centered around 0. Finally, we use C > 0 as
a generic constant, which may have different values on any occurrence.

2. ANALYTICAL SETTING

In this section, we collect the basic assumptions on the quasilinear wave-type problem (1.1). More-
over, since there is no wellposedness result which applies to this quite general problem, we also assume
wellposedness and justify this assumption in Section 6 for specific examples.

Let (X, (· | ·)X), (Y, (· | ·)Y ), (Z∂ , (· | ·)Z∂
), and (Z, (· | ·)Z) be Hilbert spaces with dense and con-

tinuous embeddings Z ↪→ Z∂ ↪→ Y ↪→ X . We denote the induced norms by ‖·‖X , ‖·‖Y , ‖·‖Z∂
, and

‖·‖Z , respectively. Moreover, |·|Y denotes a seminorm on Y with

|ξ|Y ≤ CY ‖ξ‖Y , ξ ∈ Y,
for a constant CY > 0.

ASSUMPTION 2.1 With a radius RY > 0 the operators appearing in (1.1) satisfy the following proper-
ties.

(Λ) {Λ(ξ) | ξ ∈ BY (RY )} ⊂ L(X) is a family of symmetric operators, which are uniformly
positive definite and bounded, i.e., there are constants cΛ, CΛ > 0 such that

cΛ‖ϕ‖2X ≤ (Λ(ξ)ϕ | ϕ)X , ‖Λ(ξ)‖L(X) ≤ CΛ, ϕ ∈ X, ξ ∈ BY (RY )(2.1)

holds.
(A) Let A ∈ L(D(A), X) with Y ⊂ D(A) ⊂ X , where D(A) denotes the domain of A.
(F ) F : [0, T ]×BY (RY )→ X is continuous in time and bounded, i.e., there is a constant CF > 0

such that

‖F (t, ξ)‖X ≤ CF , t ∈ [0, T ], ξ ∈ BY (RY ).

We emphasize that all our results can be generalized to bounded domains instead of spheresBY (RY ).
Moreover, they remain valid if the nonlinear operators in (Λ) additionally depend on time, i.e., for an
operator family {Λ(t, ξ) | t ∈ [0, T ], ξ ∈ BY (RY )} ⊂ L(X). However, we refrain from considering
the most general case here for the sake of readability.

Due to (2.1), the family of inverse operators {Λ(ξ)−1 | ξ ∈ BY (RY )} ⊂ L(X) exists. Thus, (1.1)
implies

(2.2)

{
∂ty(t) = A(y(t))y(t) + F(t, y(t)), t ∈ [0, T ],

y(0) = y0,

with

A(ξ) := Λ(ξ)−1A, F(t, ξ) := Λ(ξ)−1F (t, ξ), t ∈ [0, T ], ξ ∈ BY (RY ).

Our analysis then relies on the following assumption.
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ASSUMPTION 2.2 Let RY > 0 be a given radius such that Assumption 2.1 holds. The quasilinear
Cauchy problem (2.2) has a unique solution y with maximal time of existence t∗(y0) > 0, which
satisfies

y ∈ C1([0, T ], Z∂) ∩ C([0, T ], Z ∩BY (RY ))

for T < t∗(y0). Moreover, there exist radii R∂t , RA > 0 such that

‖∂ty(t)‖Y < R∂t , |A(y(t))y(t)|Y < RA

hold uniformly in [0, T ].

We further introduce the state-dependent inner product

(ϕ | ψ)Λ(ξ) := (Λ(ξ)ϕ | ψ)X , ϕ, ψ ∈ X, ξ ∈ BY (RY ),

and the state-dependent norm

‖ϕ‖2Λ(ξ) := (ϕ | ϕ)Λ(ξ) , ϕ ∈ X, ξ ∈ BY (RY ),

which is equivalent to the norm in X due to (2.1).
If Assumption 2.2 is satisfied, then the weak formulation of (1.1) considered on (X, (· | ·)X) is

equivalent to the weak formulation of (2.2) considered on (X, (· | ·)Λ(y)). Hence, we only focus on
(2.2).

3. SPACE DISCRETIZATION

The space discretization of (2.2) is based on spaces Xh and Yh with

Xh = (Vh, (· | ·)X) ⊂ X, Yh = (Vh, ‖·‖Yh
),(3.1)

where Vh is a finite-dimensional function space and ‖·‖Yh
corresponds to the norm induced by the inner

product of Y . Furthermore, we also introduce a seminorm |·|Yh
corresponding to |·|Y , which satisfies

for a constant CYh
> 0 the bound

|ξh|Yh
≤ CYh

‖ξh‖Yh
, ξh ∈ Yh.(3.2)

The subscript h > 0 denotes the space discretization parameter; e.g., for the discretization with finite
elements, h represents the diameter of the mesh elements.

We emphasize that we only consider space discretizations with Xh ⊂ X for the sake of simplicity
of presentation. Nevertheless, all our results can be generalized to more general nonconforming space
discretizations, in particular, where Xh 6⊂ X . This is of interest, as wellposedness of quasilinear wave-
type equations in many cases depends on smoothness of the boundary of the domain, which will not
necessarily be available in the framework considered here. The detailed analysis for the nonconforming
discretization can be found in (Maier, 2020).

Since Xh and Yh are finite dimensional, the norms of these spaces are equivalent for h > 0 suffi-
ciently small, i.e.,

1

CXh,Yh
(h)
‖ξh‖Xh

≤ ‖ξh‖Yh
≤ CYh,Xh

(h)‖ξh‖Xh
, ξh ∈ Yh,(3.3)

for constants CYh,Xh
(h), CXh,Yh

(h) > 0 which may depend on h. For the specific examples in
Section 6, we have CYh,Xh

(h) ∼ h−
d
2 , where d ∈ N is the spatial dimension. Moreover, we have

CXh,Yh
(h) ∼ h−1 for the Westervelt equation, whereas CXh,Yh

(h) is independent of h for the Maxwell
equations.
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With discretizations Λh, Ah, and Fh of Λ, A, and F , respectively, a variational formulation leads to
the discrete system

(3.4)

{
Λh(yh(t))∂tyh(t) = Ahyh(t) + Fh(t, yh(t)), t ∈ [0, T ],

yh(0) = yh,0,

where yh,0 ∈ Xh is the discrete initial value.

ASSUMPTION 3.1 With a radius RYh
> 0 the discrete operators appearing in (3.4) satisfy the following

properties uniformly in h > 0.
(Λh) {Λh(ξh) | ξh ∈ BYh

(RYh
)} ⊂ L(Xh) is a family of symmetric operators, which are uniformly

positive definite and bounded, i.e., there are constants cΛh
, CΛh

> 0 such that

cΛh
‖ϕh‖2Xh

≤ (Λh(ξh)ϕh | ϕh)Xh
, ‖Λh(ξh)‖L(Xh) ≤ CΛh

, ϕh ∈ Xh, ξh ∈ BYh
(RYh

)(3.5)

holds. Moreover, there are constants LXh

Λh
, LYh

Λh
> 0 such that

‖Λh(ϕh)− Λh(ψh)‖L(Xh) ≤ LXh

Λh
‖ϕh − ψh‖Yh

, ϕh, ψh ∈ BYh
(RYh

),(3.6a)

‖
(
Λh(ϕh)− Λh(ψh)

)
ξh‖X ≤ LYh

Λh
‖ϕh − ψh‖X |ξh|Yh

, ϕh, ψh ∈ BYh
(RYh

), ξh ∈ Yh(3.6b)

hold.
(Ah) Ah : Xh → Xh is dissipative in Xh, i.e.,

(Ahξh | ξh)Xh
≤ 0, ξh ∈ Xh

holds.
(Fh) We have Fh : [0, T ] × BYh

(RYh
) → Xh, which is continuous in time and bounded in Yh, i.e.,

there is a constant CFh
> 0 such that

|Fh(t, ξh)|Yh
≤ CFh

, t ∈ [0, T ], ξh ∈ BYh
(RYh

)

holds. Furthermore, Fh is Lipschitz continuous in the second argument, i.e., there is a constant
LFh

> 0 such that

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh
≤ LFh

‖ϕh − ψh‖Xh
, t ∈ [0, T ], ϕh, ψh ∈ BYh

(RYh
)(3.7)

holds.

Due to (3.5), the family of discrete inverse operators {Λh(ξh)
−1 | ξh ∈ BYh

(RYh
)} ⊂ L(Xh) is

well defined. Thus, (3.4) yields

(3.8)

{
∂tyh(t) = Ah(yh(t))yh(t) + Fh(t, yh(t)), t ∈ [0, T ],

yh(0) = yh,0,

with

Ah(ξh) := Λh(ξh)
−1
Ah, Fh(t, ξh) := Λh(ξh)

−1
Fh(t, ξh), t ∈ [0, T ], ξh ∈ BYh

(RYh
),(3.9)

cf. (2.2). We also introduce for ξh ∈ BYh
(RYh

) the discrete state-dependent inner product

(ϕh | ψh)Λh(ξh) := (Λh(ξh)ϕh | ψh)Xh
, ϕh, ψh ∈ Xh,

and the state-dependent norm

‖ϕh‖2Λh(ξh) := (ϕh | ϕh)Λh(ξh) , ϕh ∈ Xh,
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which is equivalent to the norm of Xh due to (3.5), i.e., we have

cΛh
‖ξh‖2Xh

≤ ‖ξh‖2Λh(ζh) ≤ CΛh
‖ξh‖2Xh

, ξh ∈ Xh.(3.10)

Again, if the solution yh of (3.8) satisfies

yh ∈ C1([0, T ], Xh) ∩ C([0, T ], BYh
(RYh

)),

then the weak form of (3.4) considered on Xh = (Vh, (· | ·)X) is equivalent to the weak form of (3.8)
considered on (Vh, (· | ·)Λh(yh)).

In the next lemma, we prove that the state-dependent norm depends continuously on time.

LEMMA 3.2 Let RYh
, R̂∂t > 0 be given radii such that Assumption 3.1 is satisfied and

zh ∈ C1([0, T ], Yh) ∩ C([0, T ], BYh
(RYh

))

holds with ‖∂tzh‖Yh
< R̂∂t . Then, we have

‖ξh‖Λh(zh(t)) ≤ eC
′|t−s|‖ξh‖Λh(zh(s)), s, t ∈ [0, T ], ξh ∈ Xh(3.11)

with C ′ = 1
2L

Xh

Λh
c−1
Λh
R̂∂t .

Proof. Let s, t ∈ [0, T ] and ξh ∈ Xh. The Lipschitz continuity (3.6a) of Λh, the norm equivalence
(3.10), and the fundamental theorem of calculus yield

‖ξh‖2Λh(zh(t)) = (Λh(zh(s))ξh | ξh)Xh
+
((

Λh(zh(t))− Λh(zh(s))
)
ξh | ξh

)
Xh

≤ ‖ξh‖2Λh(zh(s)) + LXh

Λh
‖zh(t)− zh(s)‖Yh

‖ξh‖2Xh

≤ e2C′|t−s|‖ξh‖2Λh(zh(s)). �
Based on assumptions (Λh), (Ah), and (Fh), we show in the following lemma that the operators

appearing in (3.8) are Lipschitz continuous.

LEMMA 3.3 Let RYh
> 0 be a given radius such that Assumption 3.1 is satisfied. There are constants

LAh
, LFh

> 0 such that

‖
(
Ah(ϕh)−Ah(ψh)

)
ξh‖Xh

≤ LAh
|Ah(ϕh)ξh|Yh

‖ϕh − ψh‖Xh
, ξh ∈ Xh,(3.12)

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh
≤ LFh

‖ϕh − ψh‖Xh
, t ∈ [0, T ],(3.13)

is satisfied for all ϕh, ψh ∈ BYh
(RYh

).

Proof. Let t ∈ [0, T ], ξh ∈ Xh and ϕh, ψh ∈ BYh
(RYh

) be chosen arbitrarily. The first estimate in
(3.5) implies

‖Λh(ξ)
−1‖L(Xh) ≤ c−1

Λh
.(3.14)

Hence, we obtain from the definition (3.9) of the discrete operators

‖
(
Ah(ϕh)−Ah(ψh)

)
ξh‖Xh

≤ c−1
Λh
‖
(
Λh(ψh)Ah(ϕh)−Ah

)
ξh‖Xh

≤ c−1
Λh
‖
(
Λh(ψh)− Λh(ϕh)

)
Ah(ϕh)ξh‖Xh

.

Thus, the Lipschitz continuity (3.6b) of Λh yields (3.12).
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Z Z∂ Y X

Yh Xh

↪→ ↪→ ↪→

=

Ih ⊂ Πh

Jh

FIGURE 1. Overview of discrete and continuous spaces and operators. Note that each
vector space is equipped with the corresponding norm specified above.

For (3.13), we deduce from (3.9), (3.6b), and the Lipschitz continuity (3.7) of Fh

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh
≤ c−1

Λh
‖Λh(ψh)

(
Fh(t, ϕh)− Fh(t, ψh)

)
‖Xh

≤ c−1
Λh
‖
(
Λh(ψh)− Λh(ϕh)

)
Fh(t, ϕh)‖Xh

+ ‖Fh(t, ϕh)− Fh(t, ψh)‖Xh

≤ c−1
Λh

(LYh

Λh
CFh

+ LFh
)‖ϕh − ψh‖Xh

.

This completes the proof. �
Finally, we introduce operators relating the continuous to the discrete setting. These relations are

illustrated in Figure 1.

(Jh) Let Jh : Y → Xh be a bounded linear operator with

‖Jhξ‖Xh
≤ CJh‖ξ‖Y , ξ ∈ Y.(3.15)

(Ih) Let Ih : Y → Yh be a bounded operator with

‖Ihξ‖Yh
≤ CIh‖ξ‖Y , |Ihξ|Yh

≤ CIh |ξ|Y , ξ ∈ Y.(3.16)

Note that this condition is stronger than (3.15), as the norm of Yh is in general stronger than the
one of Xh.

(Πh) Let Πh : X → Xh be the projection with respect to the standard inner product of X , i.e.,

(ϕh | ψ)X = (ϕh | Πhψ)X , ϕh ∈ Xh, ψ ∈ X.(3.17)

In our specific examples, Ih is a nodal interpolation operator and the reference operator Jh relates the
continuous solution to the discrete framework. For first-order wave-type equations, we simply choose
Jh = Ih. However, for second-order wave-type equations, one has to incorporate the projection Πh in
order to obtain the expected order of convergence. For further details, we refer to Section 6.2.

4. ERROR ANALYSIS

We now analyze the error of the solution of the discrete quasilinear Cauchy problem (3.8). Usually,
the first step would be to show wellposedness, followed by a rigorous error estimate. However, this
approach is not suitable here, as wellposedness and convergence are intertwined: On the one hand, we
rely on Assumption 3.1 to prove the existence of a unique solution of (3.8) in Xh. On the other hand,
Assumption 3.1 is only valid if we also ensure that this solution stays bounded in Yh, which is obtained
as a consequence of the error estimate. To resolve this dilemma, we proceed as follows.
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(W )(Wh) (Eh)

(Ch)

FIGURE 2. Relations between the main steps for the analysis of the abstract space discretization.

Roadmap for the analysis of the abstract space discretization.
(W ) Assumption 2.2 yields wellposedness of the continuous quasilinear Cauchy problem (2.2). In

particular, for all T < t∗(y0) we have ‖y‖Y < RY uniformly on [0, T ].
(Wh) In Lemma 4.2 we prove wellposedness of the discrete quasilinear Cauchy problem (3.8) based

on Assumption 3.1. More precisely, we show the existence of maximal time t∗h(yh,0) such that
for all Th < t∗h(yh,0) the solution satisfies ‖yh‖Yh

< RYh
uniformly on [0, Th]. However, at

this point, t∗h(yh,0) might deteriorate for h→ 0.
(Eh) Based on (W ), (Wh), and semigroup theory, we derive a rigorous estimate for the error ‖y −

yh‖X in Theorem 4.3 on a common time interval J̃ = [0,min{T, Th}].
(Ch) Using an inverse estimate and the consistency from Assumption 4.5, we prove in Theorem 4.7

that ‖yh − Ihy‖Yh
→ 0 holds uniformly on J̃ for h→ 0. Thus, we conclude t∗h(yh,0) > T for

h sufficiently small, which closes the analysis.
These steps are illustrated in Figure 2. The results which are proven in this section are highlighted by
the blue ellipse.

Preliminary to the analysis, we fix the radii RY , R∂t , RA, RYh
introduced in the previous sections

for the rest of this paper.

ASSUMPTION 4.1 First, let RYh
> 0 be a given radius such that Assumption 3.1 and yh,0 ∈ BYh

(RYh
)

hold. Moreover, the radii RY , R∂t , RA > 0 are chosen such that Assumption 2.2 and

CIhRY < RYh
(4.1)

are satisfied. Finally, we define RAh
> 0 with

max
{
CIhRA, |Ah(yh,0)yh,0|Yh

}
< RAh

.(4.2)

We now start the analysis of the discrete quasilinear Cauchy problem (3.8) by proving (Wh), i.e.,
wellposedness of the discrete quasilinear Cauchy problem (3.8). To do so, we use that Xh is a finite-
dimensional space and hence there is a constant CAh

(h) > 0 such that

‖Ah‖L(Xh) ≤ CAh
(h)(4.3)

holds. We emphasize that CAh
(h) might deteriorate for h→ 0.
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LEMMA 4.2 If Assumption 4.1 holds, then there exists a maximal time of existence t∗h(yh,0) > 0 such
that for all Th < t∗h(yh,0), the discrete quasilinear Cauchy problem (3.8) has a unique solution yh with

yh ∈ C1([0, Th], Xh) ∩ C([0, Th], Yh)

and

‖yh(t)‖Yh
< RYh

, |Ah(yh(t))yh(t)|Yh
< RAh

, t ∈ [0, Th].

Proof. Let ϕh, ψh ∈ Yh such that for ξh ∈ {ϕh, ψh}
‖ξh‖Yh

< RYh
, |Ah(ξh)ξh|Yh

< RAh

holds. The triangle inequality yields

‖Ah(ϕh)ϕh −Ah(ψh)ψh‖Xh
≤ ‖(Ah(ϕh)−Ah(ψh))ϕh‖Xh

+ ‖Ah(ψh)(ϕh − ψh)‖Xh
.

Thus, the Lipschitz continuity (3.12) yields for the first term

‖
(
Ah(ϕh)−Ah(ψh)

)
ψh‖Xh

≤ LAh
RAh
‖ϕh − ψh‖Xh

.

For the second term, (3.9) and the bounds (3.14) and (4.3) for Λh(ϕh)
−1 and Ah, respectively, imply

‖Ah(ϕh)(ϕh − ψh)‖Xh
≤ c−1

Λh
CAh

(h)‖ϕh − ψh‖Xh
.

Morover, we get from (3.13)

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh
≤ LFh

‖ϕh − ψh‖Xh
, t ∈ [0, T ].

Collecting these results and due to the inverse estimates (3.3) we obtain

‖Ah(ϕh)ϕh + Fh(t, ϕh)−Ah(ψh)ψh − Fh(t, ψh)‖Yh

≤ CCYh,Xh
(h)(1 + CAh

(h))CXh,Yh
(h)‖ϕh − ψh‖Yh

,

with a constant C > 0 depending on RAh
and the constants from Assumption 3.1. Finally, the local

version of the Picard–Lindelöf theorem yields the result. �
We emphasize that the previous proof only yields a lower bound for t∗h(yh,0), which deteriorates for

h→ 0. Nevertheless, this turns out to be sufficient for the derivation of an error estimate.
Motivated by the unified error analysis proposed by Hipp et al. (2019) and Hochbruck & Leibold

(2020) for linear and semi-linear wave-type problems, respectively, we now derive an estimate for the
error between the solution y of the continuous problem (2.2) and the solution yh of the discrete problem
(3.8). To do so, we define the following remainder terms.

RΛ(ξ) := Λh(Ihξ)Jh −ΠhΛ(ξ), ξ ∈ BY (RY ),(4.4a)

RA := AhJh −ΠhA,(4.4b)

RF (t, ξ) := Fh(t, Ihξ)−ΠhF (t, ξ), t ∈ [0, T ], ξ ∈ BY (RY ).(4.4c)

Note that due to the boundedness (3.16) of Ih and the relation (4.1) ofRY andRYh
, the remainder terms

RΛ(ξ) and RF (t, ξ) are well defined.

THEOREM 4.3 Let Assumption 4.1 be true and T̃ < min{t∗(y0), t∗h(yh,0)}. Then, for t ∈ [0, T̃ ] we
have

(4.5)

‖y(t)− yh(t)‖X ≤ ‖(Id−Jh)y(t)‖X + C(1 + t)eCt
(
‖Jhy0 − yh,0‖X + sup

[0,t]

‖(Ih − Jh)y‖X

+ sup
[0,t]

‖RΛ(y)∂ty‖X + sup
[0,t]

‖RAy‖X + sup
[0,t]

‖RF (·, y)‖X
)
.

The constant C > 0 depends on t∗(y0), R∂t , and RAh
, but is independent of h and T̃ .
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Proof. Let t < min{t∗(y0), t∗h(yh,0)}. We first split the error into

‖y(t)− yh(t)‖X ≤ ‖(Id−Jh)y(t)‖X + ‖eh(t)‖X ,
with the discretization error

eh(t) = Jhy(t)− yh(t).

As the first term appears in the right-hand side of the estimate (4.5), we focus on the second term.
By (1.1) and (3.8), eh satisfies for T̃ < min{t∗(y0), t∗h(yh,0)} the linear, but nonautonomous Cauchy
problem {

∂teh(t) = Ah(Ihy(t))eh(t) + gh(t), t ∈ [0, T̃ ],

eh(0) = Jhy0 − yh,0,
where

gh =
(
Ah(Ihy)−Ah(yh)

)
yh + Fh(Ihy)− Fh(yh) + Λh(Ihy)

−1
(
RΛ(y)∂ty − RAy − RF (y)

)
.

Note that we omit the dependency on time whenever possible for the ease of presentation. The bound
(3.14) for Λh

−1 and the Lipschitz continuity (3.12) and (3.13) of Ah and Fh, respectively, yield

(4.6)
‖gh‖X ≤

(
LAh

RAh
+ LFh

)(
‖(Ih − Jh)y‖X + ‖eh‖X

)
+ c−1

Λh

(
‖RΛ(y)∂ty‖X + ‖RAy‖X + ‖RF (y)‖X

)
.

As discussed in detail in the proof of (Maier, 2020, Thm. 4.20), we apply (Kato, 1970, Thm. 6.1) to
prove existence of a unique evolution family

(
Uh(t, s)

)
T̃≥t≥s≥0

such that the discrete error is given by

eh(t) = Uh(t, 0)eh(0) +

∫ t

0

Uh(t, s)gh(s) ds.

Moreover, we have

‖Uh(t, s)‖L(Xh) ≤
(
CΛh

cΛh

) 1
2

e2C′(t−s),

where the constant C ′ is given in (3.11). Thus, we obtain

‖eh(t)‖X ≤
(
CΛh

cΛh

) 1
2

e2C′t‖Jhy0 − yh,0‖X +

(
CΛh

cΛh

) 1
2
∫ t

0

e2C′(t−s)‖gh(s)‖X ds.

Hence, we get with (4.6)

e−Ct‖eh(t)‖X ≤ C‖Jhy0 − yh,0‖X + C

∫ t

0

e−Cs‖eh(s)‖X ds+ tC sup
[0,t]

‖(Ih − Jh)y‖X

+ tC
(
sup
[0,t]

‖RΛ(y)∂ty‖X + sup
[0,t]

‖RAy‖X + sup
[0,t]

‖RF (·, y)‖X
)
,

with a constant C > 0, which is independent of h. With the Gronwall inequality, we finally obtain

‖eh(t)‖X ≤ C(1 + t)eCt
(
‖Jhy0 − yh,0‖X + sup

[0,t]

‖(Ih − Jh)y‖X
)

+ sup
[0,t]

‖RΛ(y)∂ty‖X + sup
[0,t]

‖RAy‖X + sup
[0,t]

‖RF (·, y)‖X
)
,

which concludes the proof. �
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Yh

Ihy0

Ihy

yh,0

yh

CIhRY

1
2(CIhRY+RYh

)

RYh

(A) Balls for the solutions y and yh.

Yh

IhA(y0)y0

IhA(y)y

Ah(yh,0)yh,0
Ah(yh)yh

CIhRA

1
2(CIhRA+RAh

)

RAh

(B) Balls for the differential operators A and
Ah applied to the respective solution y and
yh.

FIGURE 3. Illustration of the different balls centered at the origin with the radii spec-
ified in Assumption 4.1. Additionally, the concept of the proof of Theorem 4.7 is
depicted.

In the rest of this section, we use the error estimate to improve the wellposedness result from
Lemma 4.2. More precisely, for T < t∗(y0) and h sufficiently small we show t∗h(yh) > T , i.e., we
prove that the discrete approximation exists at least as long as the continuous solution.

In Figure 3 the basic idea for the analysis is illustrated. The interpolation Ihy (blue) of the solution of
(2.2) and the discrete solution yh (green) of (3.8) are shown in Figure 3a for t ∈ [0, T ]. Correspondingly,
the application of the differential operators A and Ah to the respective solution are depicted in Figure 3b.
Lemma 4.2 yields that for t ∈ [0, t∗h(yh,0)) the green curves stay in balls centered in the origin with radii
RYh

and RAh
, respectively. As we see in the following, these bounds are not sharp. More precisely,

we show that for t ∈ [0, T ] the green curves are even bounded by the intermediate radii indicated by
the dashed lines. To this end, we use the error estimate from Theorem 4.3 together with a consistency
argument based on Assumption 4.5 below to bound the differences illustrated by the red arrows. This
finally implies t∗h(yh,0) > T .

As the first step, we define the constant CAh,Yh,Xh
(h) > 0 such that

|Ah(ξh)ζh|Yh
≤ CAh,Yh,Xh

(h)‖ζh‖X , ξh ∈ BYh
(RYh

), ζh ∈ Xh,(4.7)

holds for h > 0 sufficiently small. Moreover, we introduce

Cmax(h) = max{1, CYh,Xh
(h), CAh,Yh,Xh

(h)}.(4.8)

In general, this constant deteriorates for h→ 0.

EXAMPLE 4.4 For the Maxwell equations discussed in Section 6.1, we get

CYh,Xh
(h) = Ch−

3
2 , CAh,Yh,Xh

(h) = Ch−
5
2 .

For the Westervelt equation studied in Section 6.2, we have

CYh,Xh
(h) = Ch−

d
2 , CAh,Yh,Xh

(h) = Ch−1− d
6 ,

where d = 2, 3 is the dimension of the spatial domain Ω. In both cases, C > 0 is a constant independent
of h.
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We now assume consistency of the space discretization in terms of the constant defined in (4.8).

ASSUMPTION 4.5 Let Assumption 4.1 be satisfied. For h→ 0 it holds

(A1) ‖(Id−Jh)ζ‖X → 0,
(A3) Cmax(h)‖(Ih − Jh)ζ‖X → 0,
(A5) Cmax(h)‖RΛ(ξ)ζ∂‖X → 0,

(A2) Cmax(h)‖Jhy0 − yh,0‖X → 0,
(A4) Cmax(h)‖RAζ‖X → 0,
(A6) Cmax(h) sup[0,T ]‖RF (·, ξ)‖X → 0,

uniformly for ζ∂ ∈ Z∂ , ζ ∈ Z, and ξ ∈ Z ∩BY (RY ).

Preliminary to the final theorem of this section, we prove the following lemma. Since it is also
relevant for the analysis of fully discrete schemes, which will be studied in a follow up paper, we
provide a more general version than necessary for the framework considered here.

LEMMA 4.6 Let Assumptions 4.1 and 4.5 be satisfied and ξ ∈ Z ∩ BY (RY ) with A(ξ)ξ ∈ BY (RA).
Furthermore, let ξh,1, ξh,2 ∈ BYh

(RYh
) such that

Cmax(h)‖Jhξ − ξh,i‖X ≤ Cconv(h), i = 1, 2,(4.9)

where Cconv(h) may depend on RY , but is independent of ξ. If Cconv(h) → 0 holds for h → 0, then
there exists an h0 > 0 with

‖ξh,1‖Yh
< 1

2 (RYh
+ CIhRY ), |Ah(ξh,2)ξh,1|Yh

< 1
2 (RAh

+ CIhRA), h < h0.(4.10)

Proof. First, the inverse estimate (3.3) and (3.16) imply

‖ξh,1‖Yh
≤ ‖ξh,1 − Jhξ‖Yh

+ ‖(Jh − Ih)ξ‖Yh
+ ‖Ihξ‖Yh

≤ CYh,Xh
(h)‖ξh,1 − Jhξ‖X + CYh,Xh

(h)‖(Jh − Ih)ξ‖X + CIhRY .

Due to (4.9) and Assumption 4.5, we obtain for h→ 0

CYh,Xh
(h)‖ξh,1 − Jhξ‖X + CYh,Xh

(h)‖(Jh − Ih)ξ‖X → 0.

Hence, (4.1) yields the existence of an h1 > 0 such that the first bound in (4.10) holds for all h < h1.
For the second bound in (4.10), we have

Ah(ξh,2)ξh,1 = Ah(ξh,2)(ξh,1 − Jhξ) + (Ah(ξh,2)−Ah(Ihξ))Jhξ + Ah(Ihξ)Jhξ.(4.11)

For the first term, we further get with (4.7) and (4.9)

|Ah(ξh,2)(ξh,1 − Jhξ)|Yh
≤ CAh,Yh,Xh

(h)‖ξh,1 − Jhξ‖X ≤ Cconv(h).

Due to (3.2), (3.3), and the Lipschitz continuity (3.12) of Ah, the second term is bounded by

|
(
Ah(ξh,2)−Ah(Ihξ)

)
Jhξ|Yh

≤ CYh
CYh,Xh

(h)LAh
|Ah(Ihξ)Jhξ|Yh

(
‖ξh,2 − Jhξ‖X + ‖(Jh − Ih)ξ‖X

)
.

Thus, (4.9) and Assumption 4.5 imply the existence of a constantC0(h) > 0 withC0(h)→ 0 for h→ 0
such that

|
(
Ah(ξh,2)−Ah(Ihξ)

)
Jhξ|Yh

≤ C0(h)|Ah(Ihξ)Jhξ|Yh
.

Using these estimates in (4.11), we obtain

|Ah(ξh,2)ξh,1|Yh
≤ Cconv(h) +

(
1 + C0(h)

)
|Ah(Ihξ)Jhξ|Yh

.(4.12)
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Further, we get from the definitions (4.4a) and (4.4b) of the remainder terms

Ah(Ihξ)Jhξ = Λh(Ihξ)
−1

RAξ − Λh(Ihξ)
−1

RΛ(ξ)A(ξ)ξ + (Jh − Ih)A(ξ)ξ + IhA(ξ)ξ,(4.13)

where we again consider each term separately. For the first term, we obtain with (3.2), (3.3), and (3.14)

|Λh(Ihξ)
−1

RAξ|Yh
≤ CYh

CYh,Xh
(h)c−1

Λh
‖RAξ‖X .

With the same arguments, we get for the second term

|Λh(Ihξ)
−1

RΛ(ξ)A(ξ)ξ|Yh
≤ CYh

CYh,Xh
(h)c−1

Λh
‖RΛ(ξ)A(ξ)ξ‖X .

Finally, (3.3) yields

|(Jh − Ih)A(ξ)ξ|Yh
≤ CYh

CYh,Xh
(h)‖(Jh − Ih)A(ξ)ξ‖X .

Using these bounds in (4.12) and (4.13), we hence obtain

|Ah(ξh,2)ξh,1|Yh
≤ Cconv(h) + CCmax(h)

(
‖RAξ‖X + ‖RΛ(ξ)A(ξ)ξ‖X + ‖(Jh − Ih)A(ξ)ξ‖X

)
+
(
1 + C0(h)

)
|IhA(ξ)ξ|Yh

,

with a constant C > 0 independent of h. Thus, Assumption 4.5 and (4.2) imply the existence of an
h2 > 0 such that the second bound in (4.10) holds for all h < h2. Finally, we set h0 = min{h1, h2}. �

We conclude the analysis of the abstract space discretization with the following theorem, where we
provide wellposedness of (3.8) on the time interval [0, T ] from Assumption 2.2. In addition, we show
convergence of the discrete solution yh to the solution y of the continuous problem (2.2).

THEOREM 4.7 Let Assumptions 4.1 and 4.5 be satisfied. For all T < t∗(y0), there is an h0 > 0 such
that Lemma 4.2 and Theorem 4.3 hold with t∗h(yh,0) > T for all h < h0. Moreover, we have for h→ 0

‖y(t)− yh(t)‖X → 0, t ∈ [0, T ].(4.14)

Proof. We prove the statement by contradiction, i.e., we assume that t∗h(yh,0) ≤ T holds for h > 0
arbitrary small. In particular, this implies t∗h(yh,0) <∞. Since t∗h(yh,0) is the maximal time of existence
of the solution yh of (3.8), we have

lim
t→t∗h(yh,0)−

‖yh(t)‖Yh
= RYh

or lim
t→t∗h(yh,0)−

|Ah(yh(t))yh(t)|Yh
= RAh

.(4.15)

Then, Theorem 4.3 together with Assumption 4.5 yield that (4.9) is satisfied with ξ = y(t) and ξh,i =
yh(t), i = 1, 2. Hence, due to Lemma 4.6 there is h0 > 0 such that

sup
[0,T ]

‖yh(t)‖Yh
< 1

2 (RYh
+ CIhRY ), sup

[0,T ]

|Ah(yh)yh|Yh
< 1

2 (RAh
+ CIhRA),

for all h < h0. However, this yields

lim
t→t∗h(yh,0)

‖yh(t)‖Yh
≤ 1

2 (RYh
+ CIhRY ), lim

t→t∗h(yh,0)
|Ah(yh(t))yh(t)|Yh

≤ 1
2 (RAh

+ CIhRA)

for all h < h0, which is a contradiction to (4.15) due to CIhRY < RYh
and CIhRA < RAh

.
Finally, (4.14) is a direct consequence of Assumption 4.5 and the error estimate (4.5), as all terms on

the right-hand side tend to zero. �
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5. DISCRETIZATION OF LOCAL NONLINEARITIES

We investigate the remainder terms RΛ and RF defined in (4.4a) and (4.4c), respectively, under the
additional assumption that Λ and F are local in space. More precisely, we provide bounds in terms of
the operators introduced at the end of Section 3.

To this end, we narrow down the abstract framework to the space discretization of partial differential
equations: For some d, dr ∈ N let X , Y and Z be function spaces consisting of functions defined on a
bounded domain Ω ⊂ Rd with values in Rdr . Correspondingly, Xh and Yh are function spaces from a
bounded domain Ωh ⊂ Rd to Rdr .

ASSUMPTION 5.1 The interpolation operator Ih and the nonlinearities Λ and F satisfy the following
properties.

(λ) For ξ ∈ BY (RY ) let Λ(ξ) ∈ L(Y ). Further, Λ is local in space, i.e., there is λ : Ω × Rdr →
Rdr×dr such that for every ξ ∈ BY (RY ) and ϕ ∈ X the identity(

Λ(ξ)ϕ
)
(x) = λ(x, ξ(x))ϕ(x), x ∈ Ω,

holds in X .
(f) The nonlinearity F is local in space, i.e., there exists f : [0, T ]×Ω×Rdr → Rdr such that for

every ξ ∈ BY (RY ) and t ∈ [0, T ] we have(
F (t, ξ)

)
(x) = f(t, x, ξ(x)), x ∈ Ω,

in X .
(Ih) The operator Ih is a nodal interpolation operator, i.e., for some M ∈ N there are interpolation

points ΩIh = {x0, . . . , xM} ⊂ Ω ∩ Ωh and basis functions {φ0
h, . . . , φ

M
h } ⊂ Yh with

Ihξ =

M∑
m=0

ξ(xm)φmh , Ihξ(x) = ξ(x), ξ ∈ Y, x ∈ ΩIh .

We define the discrete operator Λh corresponding to Λ by

Λh(ξh)ϕh = IhΛ(ξh)ϕh(5.1a)

=

M∑
m=0

λ(xm, ξh(xm))ϕh(xm)φmh ,(5.1b)

for ξh ∈ BYh
(RYh

) and ψh ∈ Xh. We emphasize that (5.1a) has to be interpreted as a short notation
for (5.1b), but does not yield a well-defined operator on its own, since in general ξh 6∈ BY (RY ) and
Λ(ξh)ψh 6∈ Y . Nevertheless, we use (5.1a) for the sake of readability, keeping (5.1b) in mind.

Similarly, we define Fh via

Fh(t, ξh) = IhF (t, ξh)(5.2a)

=

M∑
m=0

f(t, xm, ξh(xm))φmh ,(5.2b)

for t ∈ [0, T ] and ξh ∈ BYh
(RYh

). Again, (5.2a) is only well defined in the sense of (5.2b).
We now bound the remainder terms.
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LEMMA 5.2 Under Assumption 3.1 and Assumption 5.1, we have for t ∈ [0, T ], ξ ∈ Y , and ζ ∈
BY (RY )

‖RΛ(ζ)ξ‖X ≤ ‖(Id−Ih)Λ(ζ)ξ‖X + CΛh
‖(Ih − Jh)ξ‖X ,(5.3)

‖RF (t, ζ)‖X ≤ ‖(Id−Ih)F (t, ζ)‖X .(5.4)

Proof. Let t ∈ [0, T ], ξ ∈ Y , and ζ ∈ BY (RY ) arbitrary. Using the definition (4.4a) of RΛ and the
short notation (5.1a) for Λh we obtain

RΛ(ζ) = IhΛ(Ihζ)Jh −ΠhΛ(ζ)

= IhΛ(Ihζ)(Jh − Ih) + Ih(Λ(Ihζ)Ih − Λ(ζ)) + (Ih −Πh)Λ(ζ).

We further get from (3.5) the bound

‖IhΛ(Ihζ)(Jh − Ih)ξ‖X = ‖Λh(Ihζ)(Jh − Ih)ξ‖X ≤ CΛh
‖(Jh − Ih)ξ‖X .

Due to the definition (5.1b) of Λh, we have

Ih
(
Λ(Ihζ)Ihξ − Λ(ζ)ξ

)
=

M∑
m=0

(
λ(xm, ζ(xm))ξ(xm)− λ(xm, ζ(xm))ξ(xm)

)
φmh = 0.

Finally, the definition (3.17) of Πh yields

‖(Ih −Πh)Λ(ζ)ξ‖X = sup
‖ξh‖Xh

=1

((Ih − Id)Λ(ζ)ξ | ξh)X = ‖(Ih − Id)Λ(ζ)ξ‖X ,(5.5)

which proves (5.3).
Similarly, we obtain with the definition (4.4c) of RF and the short notation (5.2a) for Fh

RF (t, ζ) = IhF (t, Ihζ)−ΠhF (t, ζ)

= Ih
(
F (t, Ihζ)− F (t, ζ)

)
+
(
Ih −Πh

)
F (t, ζ).

Again, due to (5.2b) the first term vanishes, i.e., we have

Ih
(
F (t, Ihζ)− F (t, ζ)

)
=

M∑
m=0

(
f(t, xm, ζ(xm))− f(t, xm, ζ(xm))

)
ξ(xm)φmh = 0.

Since the second term can be bounded as in (5.5), this proves (5.4). �
To conclude this section, we state the following refined version of Theorem 4.7 for nonlinearities

which are local in space.

COROLLARY 5.1 Let (A1)–(A4) of Assumption 4.5 as well as Assumption 4.1 and Assumption 5.1 be
satisfied. Then, Theorem 4.7 holds and for T < t∗(y0) the error satisfies

‖y(t)− yh(t)‖X ≤ ‖(Id−Jh)y(t)‖X + C(1 + t)eCt
(
‖Jhy0 − yh,0‖X + sup

[0,t]

‖(Ih − Jh)y‖X

+ sup
[0,t]

‖(Ih − Jh)∂ty‖X + sup
[0,t]

‖(Id−Ih)Λ(y)∂ty‖X

+ sup
[0,t]

‖RAy‖X + sup
[0,t]

‖(Id−Ih)F (·, y)‖X
)
,

with a constant C > 0 independent of h.
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6. APPLICATION TO SPECIFIC EXAMPLES

We conclude the theoretical part of this paper by showing that important classes of applications fit into
our abstract framework and by providing more specific bounds for them. In particular, we investigate
two specific examples from physics: the Maxwell equations with Kerr nonlinearity and the Westervelt
equation. We emphasize that these examples are discussed in detail in Maier (2020), where Sections 3.3
and 5.2 are devoted to the Maxwell equations and Sections 3.2 and 5.1.2 to the Westervelt equation,
respectively.

6.1. Maxwell equations. The Maxwell equations with Kerr nonlinearity are for a final time T > 0 and
a bounded domain Ω ⊂ R3 with boundary ∂Ω given as

(6.1)


∂tH = −∇×E, on [0, T ]× Ω,(

(1 + |E|2χ) Id +2(E⊗ E)χ
)
∂tE = ∇×H, on [0, T ]× Ω,

H(0) = H0, E(0) = E0 on Ω.

Here, ∇× is the curl operator, ⊗ denotes the Kronecker product, and χ ∈ L∞(Ω) is the nonlinear
susceptibility. We consider these equations with given initial values H0,E0 : Ω → R3 and subject to
homogeneous perfectly conducting boundary conditions.

Introducing for y = (H,E) the operators

Λ(y) =

(
Id 0
0 (1 + χ|E|2) Id +2χ(E⊗ E)

)
, A =

(
0 −∇×
∇× 0

)
, F (y) =

(
0
0

)
,

we observe that the Maxwell equations with Kerr nonlinearity (6.1) fit into the abstract framework (2.2).
Then, Assumption 2.1 is satisfied for spaces

X = L2(Ω)3 × L2(Ω)3,

Y = H2(Ω)3 × {ϕ ∈ H2(Ω)3 | ϕ× ν = 0},
Z∂ = Hp(Ω)3 ×Hp(Ω)3,

Z = Hp+1(Ω)3 ×Hp+1(Ω)3,

equipped with the standard inner products and |·|Y = ‖·‖Y . Here, × denotes the cross product and ν
is the outer unit normal of Ω. Moreover, Assumption 2.2 follows from (Spitz, 2019, Thm. 5.3) if ∂Ω is
sufficiently smooth. However, since we only consider Xh ⊂ X and thus particularly that both spaces
are based on the same spatial domain Ω here, Ω is assumed to be a polyhedron. Thus, we require that
Assumption 2.2 is also valid in this case.

We use the discontinuous Galerkin finite element method to discretize in space. More precisely, we
introduce the discrete function space Vh ⊂ L2(Ω)6 consisting of piecewise polynomials of degree at
most p ∈ N and define the discrete spaces (3.1) with

‖·‖Yh
= ‖·‖L∞(Ω)3×L∞(Ω)3 , |·|Yh

= ‖·‖Yh
.

Then, Assumption 3.1 is satisfied for RYh
< (9‖χ‖L∞(Ω))

− 1
2 . Moreover, the inverse estimate (3.3) and

the bound (4.7) hold with

CXh,Yh
(h) = C, CYh,Xh

(h) = Ch−
3
2 , CAh,Yh,Xh

(h) = Ch−
5
2 .

Finally, we choose Ih to be the Lagrange interpolation operator and Jh = Ih. Up to our knowledge,
Corollary 5.1 then yields the first rigorous error estimate for quasilinear Maxwell equations.
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THEOREM 6.1 Let Assumption 4.1 be true, χ sufficiently smooth, and p ≥ 3. For T > 0, let the
solution y = (H,E) of (6.1) satisfy

y ∈ C1([0, T ], Z∂) ∩ C([0, T ], Z).

Then, there is h0 > 0 such that for all h < h0 the discrete approximation yh = (Hh,Eh) satisfies

yh ∈ C1([0, T ], Xh) ∩ C([0, T ], BYh
(RYh

)).

Further, we have for t ∈ [0, T ]

‖H(t)−Hh(t)‖L2(Ω)3 + ‖E(t)− Eh(t)‖L2(Ω)3 ≤ CH,E,χ(1 + t)eCthp,

where CH,E,χ, C > 0 are constants independent of h, t, and T , but CH,E,χ depends on H, E, and χ,
including their derivatives.

To conclude, we emphasize that Maier (2020) also considers more general nonconforming space
discretizations, including the caseXh 6⊂ X . In particular, this allows for an approximation of the spatial
domain Ω using discontinuous isoparametric finite elements. Thus, (Spitz, 2019, Thm. 5.3) is applicable
to prove Assumption 2.2. However, note that in this case we have to use piecewise polynomials of degree
p + 1 for the discrete space for the electric field Eh. This is due to the fact that the boundary condition
for E is not exactly true but has to be approximated with the corresponding order of convergence in h.

6.2. Westervelt equation. In nonlinear acoustics, the Westervelt equation (Westervelt, 1963) is a basic
model for the propagation of ultrasound. For a finite time interval [0, T ] and a bounded domain Ω ⊂ Rd,
d = 1, 2, 3, the pressure u : [0, T ]× Ω→ R satisfies

(6.2)

{
(1− κu)∂2

t u = ∆u+ κ(∂tu)2 on [0, T ]× Ω,

u(0) = u0, ∂tu(0) = v0 on Ω,

with given initial values u0, v0 : Ω → R and subject to homogeneous Dirichlet boundary conditions.
The parameter κ ∈ R models the nonlinearity of the medium.

With the operators

Λ(y) =

(
Id 0
0 1− κu

)
, A =

(
0 Id
∆ 0

)
, F (y) =

(
0

κ(∂tu)2

)
,

for y = (u, ∂tu), the Westervelt equation (6.2) fits into the abstract framework (2.2). Moreover, As-
sumption 2.1 is satisfied for

X = H1
0 (Ω)× L2(Ω),

Y =
(
H2(Ω) ∩H1

0 (Ω)
)
×
(
H2(Ω) ∩H1

0 (Ω)
)
,

Z∂ =
(
Hp(Ω) ∩H1

0 (Ω)
)
×
(
Hp−1(Ω) ∩H1

0 (Ω)
)
,

Z =
(
Hp+1(Ω) ∩H1

0 (Ω)
)
×
(
Hp(Ω) ∩H1

0 (Ω)
)
,

equipped with the standard inner products and

|ξ|Y = ‖ξv‖H2(Ω)∩H1
0 (Ω), ξ = (ξu, ξv) ∈ Y.

Then, (Dörfler et al., 2016, Thm. 4.1) yields existence of a unique solution of (6.2) for ∂Ω being suffi-
ciently smooth. Thus, Assumption 2.2 is justified.
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For the discretization in space we use finite elements of order p ∈ N to define the approximation
space Vh ⊂ C(Ω)2. We then define the discrete spaces as in (3.1) with

‖ξh‖Yh
= ‖ξh‖L∞(Ω)×L∞(Ω), |ξh|Yh

= ‖ψh‖L3(Ω), ξh = (ϕh, ψh) ∈ Vh.

Then, Assumption 3.1 is satisfied for RYh
< |κ|−1, where we follow the arguments of (Maier, 2020,

Lem. 5.1), but now present an improved estimate for the Lipschitz continuity (3.6b) of Λh using the
seminorm in Yh, Hölder’s inequality, and the Sobolev inequality, i.e., we have

‖
(
Λh(ϕh)− Λh(ψh)

)
ξh‖X = ‖κ(ϕuh − ψuh)ξvh‖L2(Ω)

≤ |κ|‖ϕuh − ψuh‖L6(Ω)‖ξvh‖L3(Ω) ≤ C‖ϕh − ψh‖X |ξh|Yh
,

for ϕh = (ϕuh, ϕ
v
h), ψh = (ψuh , ψ

v
h) ∈ BYh

(RYh
) and ξh = (ξuh , ξ

v
h) ∈ Yh. Moreover, for (3.3) we

obtain with inverse estimates

CXh,Yh
(h) = Ch−1, CYh,Xh

(h) = Ch−
d
2 .

With the discrete Laplace operator ∆h : Vh → Vh defined by

(∆h ϕh | ψh)L2(Ω) = (ϕh | ψh)H1
0 (Ω) , ϕh, ψh ∈ Vh,

we further obtain the bound

|Ah(ξh)ζh|Yh
= ‖(1− κξuh) ∆h ζ

v
h‖L3(Ω)

≤ C‖1− κξuh‖L∞(Ω)h
− d

6 ‖∆h ζ
v
h‖L2(Ω)

≤ Ch−1− d
6 ‖ζh‖X ,

for ζh = (ζuh , ζ
v
h) ∈ Xh and ξh = (ξuh , ξ

v
h) ∈ BYh

(RYh
) with RYh

< |κ|−1. This yields (4.7).
Finally, we choose Ih as the Lagrange interpolation operator. With the representations

Ih =

(
Iuh 0
0 Ivh

)
, Πh =

(
Πu
h 0

0 Πv
h

)
,

we further define the reference operator by

Jh =

(
Πu
h 0

0 Ivh

)
.

The abstract result from Corollary 5.1 then yields the following.

THEOREM 6.2 Let Assumption 4.1 be true, p ≥ 2, and T > 0. If

(u, ∂tu) = y ∈ C1([0, T ], Z∂) ∩ C([0, T ], Z)

is the solution of (6.2), then there exists h0 > 0 such that for all h < h0 the discrete approximation
satisfies

(uh, vh) = yh ∈ C1([0, T ], Xh) ∩ C([0, T ], BYh
(RYh

)).

Further, we have for all t ∈ [0, T ] the estimate

‖u(t)− uh(t)‖H1
0 (Ω) + ‖∂tu(t)− vh(t)‖L2(Ω) ≤ Cu(1 + t)eCthp,(6.3)

where Cu, C > 0 are constants independent of h, t, and T , but Cu depends on u including derivatives.
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FIGURE 4. Space discretization error Eh(1) defined in (7.2) for different polynomial
degrees p = 2, 3, 4 and various space discretization parameters h.

We emphasize that due to the introduction of the seminorms |·|Y and |·|Yh
we obtain a more relaxed

constant Cmax(h) here. Eventually, this yields that the result stated above is also valid for p = 2,
whereas only p ≥ 3 is allowed in (Maier, 2020, Thm. 5.9).

Note that in (Maier, 2020, Sec. 5.1) also the one-dimensional case (d = 1) as well as nonconforming
space discretizations including domain approximation with isoparametric finite elements are considered.
As for the Maxwell equations, this allows to close the gap with respect to the wellposedness result, which
is only applicable for spatial domains with smooth boundaries.

In the literature, the term “Westervelt equation” also refers to a refined version of (6.2) with strong
damping, i.e., {

(1− κu)∂2
t u = ∆u+ b∆ ∂tu+ κ(∂tu)2 on [0, T ]× Ω,

u(0) = u0, ∂tu(0) = v0 on Ω,

with the sound diffusivity b > 0. Due to this additional damping term, the refined problem behaves
rather parabolically than hyperbolically. The space discretization of this model was considered by
Nikolić & Wohlmuth (2019) and Antonietti et al. (2020) using continuous and discontinuous Galerkin
finite elements, respectively. Based on a rigorous error analysis, which is tailored for the presence of
strong damping, they obtain stronger convergence rates than in Theorem 6.2. However, these results
deteriorate for b→ 0.

7. NUMERICAL EXPERIMENT

We finally present numerical results based on an implemenation with the C++ finite element library
MFEM (2018). The code to reproduce the computational results of this experiment is available on
https://doi.org/10.5445/IR/1000128712.

In order to validate the error estimate (6.3), we consider a modified variant of the Westervelt equation
(6.2) with a right-hand side f : [0, T ]× Ω→ R, i.e.,

(7.1)

{
(1− κu)∂2

t u = ∆u+ κ(∂tu)2 + f on [0, T ]× Ω,

u(0) = u0, ∂tu(0) = v0 on Ω.



ERROR ANALYSIS FOR SPACE DISCRETIZATIONS OF QUASILINEAR WAVE-TYPE EQUATIONS 20

Note that contrary to the original equation (6.2) we can easily construct solutions of the modified variant
by choosing f accordingly. We further emphasize that for f sufficiently regular, Theorem 6.2 is also
valid under this modification.

For the numerical example, we fix κ = 1 and choose the initial values u0, v0 as well as the right-hand
side f such that

u(t, x) = x1x2 sin
(
2πx1

)
sin
(
3πx2

)
cos
(
π
2 t
)
, t ∈ [0, 1], x = (x1, x2) ∈ [0, 1]2,

solves (7.1) with T = 1 and Ω = [0, 1]2. For the space discretization, we use continuous finite elements
of order p = 2, 3, 4 on an unstructured triangular grid. For the discretization in time, we apply a
linearized variant of the leapfrog scheme which is discussed in detail in (Maier, 2020, Sec. 7.2) including
a rigorous error analysis. The time-step size τ = 10−4 is chosen sufficiently small such that the space
discretization error dominates.

In Figure 4, the error

Eh(T ) = max
t∈[0,T ]

{
‖u(t)− uh(t)‖H1

0 (Ω) + ‖∂tu(t)− vh(t)‖L2(Ω)

}
(7.2)

is depicted for various space discretization parameters h. Corresponding to Theorem 6.2 we observe
convergence of order at least p for all computations.
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