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5

SUMMARY6

2D full waveform inversion (FWI) of shallow seismic Rayleigh waves has become a pow-7

erful method for reconstructing viscoelastic multiparameter models of shallow subsurface8

with high resolution. The multiparameter reconstruction in FWI is challenging due to the9

potential presence of crosstalk between different parameters and the unbalanced sensitiv-10

ity of Rayleigh-wave data with respect to different parameter classes. Accounting for the11

inverse Hessian using truncated Newton methods based on second-order adjoint meth-12

ods provides as an effective tool to mitigate crosstalk caused by the coupling between13

different parameters.14

In this study, we apply a preconditioned truncated Newton method (PTN) to shallow-15

seismic FWI to simultaneously invert for multiparameters near-surface models (P- and16

S-wave velocities, attenuation of P and S waves, and density). We firstly investigate scat-17

tered wavefields caused by these parameters to evaluate the coupling between them. Then18

we investigate the performance of PTN on shallow-seismic FWI of Rayleigh wave for19

reconstructing all five parameters simultaneously. The application to spatially correlated20

and uncorrelated models demonstrate that PTN helps to mitigate the crosstalk and im-21

proves the resolution of the multiparameter reconstructions, especially for the weak pa-22
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rameters with small sensitivity such as attenuation and density parameters. The compari-23

son with the classical preconditioned conjugate gradient method highlights the improved24

performance of PTN and thus the benefit of accounting for the information included in25

the Hessian.26

Key words: Inverse theory; Waveform inversion; Surface wave27

1 INTRODUCTION28

The reconstruction of shallow-seismic models plays an important role in lithological and geotechnical29

site investigation to characterise the composition and stability of the sediments. Shallow-seismic wave-30

fields are dominated by Rayleigh waves, which have relatively high signal-to-noise ratio compared to31

body waves. The inversion of Rayleigh waves is attractive due to their high sensitivity to S-wave ve-32

locity. Dispersion-based methods (Xia et al. 1999; Socco et al. 2010; Pan et al. 2016a) are widely33

used for subsurface imaging. However, they might fail when strong lateral heterogeneities exist (Pan34

et al. 2019). Secondly, they are limited by the uncertainty in the correct estimation and identification35

of multi-modal dispersion curves (Gao et al. 2014, 2016).36

Full-waveform inversion (FWI) has the potential to estimate high-resolution subsurface models by37

minimising the differences (or the residuals) between recorded and synthetic seismic seismographs.38

The implementation are described in the time domain (Tarantola 1986), the frequency domain (Pratt39

1999; Brossier et al. 2009), or the Laplace-Fourier domain (Shin & Ho Cha 2009). Successful appli-40

cations of FWI are reported across different scales (Fichtner et al. 2008; Métivier et al. 2013; Warner41

& Guasch 2016; Malinowski et al. 2011).42

Nowadays, 2D FWI at a near-surface scale has become a novel way to reconstruct shallow subsur-43

face models (Romdhane et al. 2011; Tran et al. 2013; Groos et al. 2014; Pan et al. 2016b, 2019; Köhn44

et al. 2019; Xing & Mazzotti 2019). However, the previous studies neglect the effects of attenuation45

or simply implement a passive-viscoelastic FWI approach in which a fixed prior estimation of the46

attenuation model is used in the forward solver to account for the viscoelastic effects. Pure elastic and47

passive-viscoelastic FWI approaches are generally valid when the attenuation is weak and the atten-48

uation model is laterally homogeneous. However, strong spatial variation of strong attenuation may49

exist in shallow subsurface due to its high level of heterogeneity. In this situation, simply neglecting50

the viscoelastic effect might deteriorate the reconstruction of S-wave velocity (Groos et al. 2014; Gao51

et al. 2020).52

One of the main trends in FWI is to account for more realistic parameters, such as the velocity,53

attenuation, density and anisotropic parameters. However, multiparameter FWI is complicated and54
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challenging due to the strong interparameter crosstalk effect in the conventional gradient-based FWI55

approach (Virieux & Operto 2009; Operto et al. 2013). Suitable parametrization of the subsurface and56

appropriate hierarchical approach in FWI are helpful to mitigate parameter trade-offs (Köhn et al.57

2012; Prieux et al. 2013; Kamei & Pratt 2013; Pan et al. 2018). Another strategy to mitigate the58

trade-offs between parameters is to account for the Hessian operator (Pratt et al. 1998; Operto et al.59

2013). However, the calculation of Hessian and its inverse requires expensive storing memory and60

is unaffordable in a large-scale problem. Métivier et al. (2013, 2015) apply the truncated Newton61

method to the 2-D acoustic FWI problem in the frequency domain. It only requires working in matrix-62

free formalism and computing Hessian-vector products based on second-order adjoint state methods.63

The Hessian-free Newton method algorithm has two loops: an outer loop for Newton update and64

an inner loop to search for the Newton direction by solving Newton’s equation. Yang et al. (2018)65

implement the truncated Newton method to visco-acoustic multiparameter FWI. They demonstrate66

that considering the Hessian into the inversion can improve the multiparameter reconstruction based67

on a realistic 2D synthetic case.68

In this paper, we present a time-domain viscoelastic shallow-seismic FWI by using a precondi-69

tioned truncated-Newton (PTN) algorithm for the reconstructions of five parameters (P- and S-wave70

velocities, attenuation of P- and S-wave and density) simultaneously. The paper is organized as fol-71

lows. In section 2, we begin with a brief introduction to the forward problem. Then we describe the72

inverse problem and the time-domain preconditioned truncated Newton algorithm scheme in section73

3. In section 4, we analyse the scattered wavefields caused by the different parameters and show the74

complicated coupling effect among them. Finally, we use spatially uncorrelated and correlated syn-75

thetic models to investigate the efficiency of preconditioned truncated Newton FWI approach, and76

compare the performance of PTN to a preconditioned conjugate gradient method (PCG) in section 5.77

2 THE FORWARD PROBLEM78

In order to consider the attenuation into time-domain modelling, the generalized standard linear solid

(Liu et al. 1976) is widely applied. The viscoelastic wave equation in the velocity-stress formulation

is written as (Robertsson et al. 1994; Bohlen 2002):

ρ∂tv = divσ + f ,

∂tσ = C ((1 + Lτs)µ0, (1 + Lτp)π0) ε (v) +

L∑
l=1

ηl,

− τσ,l∂tηl = C (τsµ0, τpπ0) ε (v) + ηl, l = 1, ..., L,

(1)



4 Lingli Gao,Yudi Pan, Andreas Rieder, Thomas Bohlen

where v is the velocity vector; σ is the stress vector; ηl is the memory variable corresponding to79

the stress tensor σ; τσ,l is the stress relaxation time of the lth Maxwell body; L is the total number80

of Maxwell bodies; τs and τp are attenuation levels of S and P waves, respectively. Further, f is81

the external force; µ0 and π0 denote the relaxed S- and P- wave moduli which are calculated by82

µ0 =
ρV 2
S

(1+ατs)
and π0 =

ρV 2
P

(1+ατp) , where VS and VP are the S- and P-wave velocities, respectively.83

The parameter α is used to ensure that the waves travel with the model phase velocity at the reference84

frequency ω0 (Bohlen 2002). It can be calculated as α =
∑L

l=1

ω2
0τ

2
σ,l

1+ω2
0τ

2
σ,l

, where ω0 is set as the peak85

frequency of the source wavelet or the observed data.86

The linear maps C are defined as C (µ0, π0) ε (v) = 2µ0ε(v) − (π0 − 2µ0) tr (ε(v)) I , where

ε (v) = 1
2

[
(∇xv)T +∇xv

]
. When we consider viscoelasticity in time-domain FWI, the viscoelastic

wave equation based on velocity-stress formulation is not self-adjoint. Yang et al. (2016) and Fabien-

Ouellet et al. (2017) present different strategies to compute the gradient by the adjoint state methods.

Here, we introduce a new transformation proposed by Zeltmann (2019) and Kirsch & Rieder (2019):

v

σ0

σ1

...

σL


=



v

σ +
∑L

l=1 τσ,lηl

−τσ,lηl
...

−τσ,lηL


. (2)

Then the forward problen (equation 1) is reformulated as

∂tv =
1

ρ
div

(
L∑∑∑
l=0

σl

)
+

1

ρ
f ,

∂tσ0 = C (µ0, π0) ε (v) ,

∂tσl = C (τsµ0, τpπ0) ε (v)− 1

τσ,l
σl.

(3)

By considering this equivalent transformation, we can symmetrize the operators and get their self-87

adjoint operators (Zeltmann 2019; Kirsch & Rieder 2019). The corresponding adjoint equations are88

given in the appendix.89

3 THE INVERSE PROBLEM90

FWI estimates the subsurface parameters from the observed seismic data, which is a well-known

iterative technique used for minimizing the nonlinear objective function

min
m

J (m) =
1

2
‖φ(m)− dobs‖22. (4)
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where m is the vector of model parameters (such as velocity, attenuation, density and anisotropy)

of the subsurface, which belongs to the model space M (m ∈ M). Further, dobs is the vector of

observed seismic data, and φ (m) is the vector of modelled data. In the framework of local nonlinear

optimization methods, an iterative sequence mk is built from an initial guess m0 with a descent

direction ∆mk:

mk = mk−1 + αk∆mk (5)

where αk is the step length, which can be estimated via a line search (Nocedal & Wright 2006). Within

Newton optimization framework, the search direction ∆mk is usually computed by the solution of the

Newton linear equation:

H (m) ∆mk = −∇J. (6)

where∇J is the gradient vector (the first derivative of the misfit function) andH is the Hessian opera-

tor (the second-order derivative of the misfit function). In a multiparameter reconstruction framework,

we are interested in the reconstruction of several classes of parameters mi with i = 1, . . . , N , where

N is the number of parameter classes to be reconstructed. The gradient of the misfit function with

respect to the parameter class mi is given by

∂J

∂mi
(m) =

∂φ

∂mi

†
(φ(m)− dobs) (7)

where the ∂φ
∂mi

is the partial Fréchet derivative of the full waveform forward operator φ with respect91

to the model parameter mi. The symbol † denotes the adjoint operator. From equation 7, we see that92

if two parameter classes have similar scattering responses, the gradient of the misfit function cannot93

distinguish two parameters classes, which will cause trade-off or crosstalk between them.94

We also look at the expression of the Hessian matrix, the ijth block is given by

Hij = ∇2Jij =
∂φ

∂mi

† ∂φ

∂mj
+

∂2φ

∂mi∂mj

†
(φ(m)− dobs) . (8)

The Hessian matrix can be computed as the zero-lag cross-correlation of the signals scattered by95

perturbations of parameter classes mi and mj (first term on the right-hand side in equation 8) and the96

cross-correlation between the second-order derivative wavefield and the data residual (second term on97

the right side in equation 8). The off-diagonal blocks (i 6= j) of the Hessian matrix operator reflects the98

coupling between parameter classes. Here, we give an example to explain the role of Hessian through a99

simple synthetic example. Two anomalies (VS and VP ) are overlapped to a homogeneous background100

model (first row in Figure 1). We compute the gradient (second row in Figure 1) of the misfit with101

respect to VS and VP , respectively. By repeatedly sampling the rows or columns of the Hessian-vector102

product with an input vector as a Dirac delta function, we can explicitly build the Hessian matrix103
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Figure 1. Example for the significant advantage for applying the inverse Hessian to the gradient. The first

row represents the perturbations of VS and VP anomalies overlapped to a homogeneous background model

(VP = 800 m/s and VS = 400 m/s), respectively. We calculated gradients (second row) for VS and VP . By

applying the inverse Hessian to the gradients (∆m = −H−1∇J), we can get the model updates for VS and VP

(third row), respectively. The sources are located from X = 18 m to 48 m with an interval of 5 m. The receivers

are placed on the surface from X = 20 m to 50 m with an interval of 1 m.

(left, Figure 2), which has a 2 ∗ 2 block structure. We can see that the S-wave velocity is a dominant104

parameter while the P-wave velocity is a secondary parameter that might be contaminated by the105

crosstalk produced by the S-wave anomaly (right, Figure 2). We can calculate the inverse Hessian106

by applying a singular value decomposition (SVD) to the Hessian and build an approximate inverse107

based on the truncation of the operator for a given number of singular values. By multiplying the108

inverse Hessian to the gradient, we can obtain the model updates which are shown in Figure 1.109

As shown in the third row, after applying the inverse Hessian, the final model updates can correctly110

locate VS and VP anomalies at different positions and bring the true orders of the magnitudes. The111

ambiguity produced by the crosstalk in the gradients of misfit with respect to VS and VP is mitigated112

and the updated results are more focused on the actual location of the anomaly which will lead to113

improving spatial resolution in the final reconstruction. This indicates that the inverse of the Hessian114

matrix acts as a refocusing and decoupling operator which can help to mitigate the crosstalk effect.115

However, the explicit computation of the Hessian or its inverse is unfeasible for large-scale FWI.116

The truncated Newton method has been proposed to calculate the Hessian-vector product using the117

2nd-order adjoint state method. In this paper, we use the adjoint state equation presented in Kirsch118

& Rieder (2019) to calculate the gradient and Hessian-vector product. The explicit expression of the119

misfit gradient with respect to parameters (ρ, VP , τp, VS , τs) and the Hessian-vector product are given120

in the appendix.121
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Figure 2. The 2 ∗ 2 block structure Hessian (left) and a zoom panel for the left and right down blocks of the

whole Hessian (red rectangle, right). The diagonal elements of the diagonal blocks account for the geometrical

spreading; the off-diagonal elements of the diagonal blocks represent the spatial correlations for the same phys-

ical parameter; the diagonal elements of the off-diagonal blocks represent the interparameter coupling at the

same position; the off-diagonal elements of the off-diagonal blocks represent both spatial and interparameter

trade-offs.

3.1 Preconditioning with parameter scaling122

A suitable preconditioning is of importance to improve the convergence rate when solving the Newton

equation with the linear CG method (Métivier et al. 2013, 2015; Yang et al. 2018). In multiparame-

ter reconstruction, different parameter classes may be observed with different orders of magnitudes,

which will increase the condition number of the Hessian matrix and cause problems when simulta-

neously updating different parameters. Yang et al. (2018) present an unity-based normalization and

an additional user-defined scaling of the preconditioning to promote the weak sensitivity for specific

parameters. In our five-parameter case, the scaled pseudo-Hessian preconditioning for the truncated

Newton method becomes,

P =



s1s1diagH̃11 s1s2diagH̃12 s1s3diagH̃13 s1s4diagH̃14 s1s5diagH̃15

s2s1diagH̃21 s2s2diagH̃22 s2s3diagH̃23 s2s4diagH̃24 s2s5diagH̃25

s3s1diagH̃31 s3s2diagH̃32 s3s3diagH̃33 s3s4diagH̃34 s3s5diagH̃35

s4s1diagH̃41 s4s2diagH̃42 s4s3diagH̃43 s4s4diagH̃44 s4s5diagH̃45

s5s1diagH̃51 s5s2diagH̃52 s5s3diagH̃53 s5s4diagH̃54 s5s5diagH̃55



−1

. (9)

The scaling factors si, i ∈ {1, 2, 3, 4, 5}, are associated with a priori estimate of the variance of the123

parameter mi ∈ M (Yang et al. 2018; Kamei & Pratt 2013). The block entries H̃ij are constructed124

by autocorrelation of the sensitivity kernels (i = j, diagonal block) or by the correlations between125

the sensitivity kernels corresponding to different parameters (i 6= j, off-diagonal block) at the same126
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gridpoint (Yang et al. 2018). The general formulation of the time-domain viscoelastic preconditioned127

truncated Newton method algorithm is summarized in Algorithm 1.128

Algorithm 1: Time-domain preconditioned truncated Newton method FWI (PTN)

Input: Given starting pointm0, ε ;

Output: Solutionm;

while J(mk+1)
J(mk) > ε do;

compute∇J(mk); %Gradient with equation 10

set r0 ← ∇J(mk);

set y0 ← Pr0 ; %P is calculated by equation 9

p0 ← −y0, k ← 0;

while ‖H(mk)pk +∇J(mk)‖ > η‖∇J(mk)‖ or k < kmax do

compute H(mk)pk; %Hessian-vector product with equation 13

β1 ← (H(mk)pk,pk);

if β1 < 0 then

stop the inner iterations;

else

β2 ← (rk,yk);

xk+1 ← xk + β2
β1
pk;

rk+1 ← rk + β2
β1
H(mk)pk;

yk+1 ← Prk+1;

βk+1 ←
rTk+1yk+1

rTk yk

pk+1 ← −yk+1 + βk+1pk;

end

k ← k + 1;

end

compute α with a line search;

mk+1 ←mk + αxk;

update the η according to Eisenstat and Walker forcing-term formula (Métivier et al. 2015);

end

129

4 SCATTERED WAVEFIELDS130

The gradient in equation 7 is viewed as the zero-lag cross-correlation between the data residuals and131

the partial derivatives of wavefields. For two-parameter classes mi and mj , if we have ∂φ
∂mi
≈ ∂φ

∂mj
,132
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the model perturbation provided by gradients cannot decipher numerically between these different133

parameter classes. This is referred as crosstalk between parameters.134

Different from body waves, the seismogram of the near-surface case is dominated by Rayleigh135

waves, whose particles move elliptically. For a homogeneous half-space model, at the surface and shal-136

low depths, this motion is retrograde. At the greater depths, the particle motion becomes prograde. The137

transition from retrograde to prograde occurs at the depth where the horizontal displacement becomes138

zero, which is referred as critical depth. We display the horizontal and vertical displacements for three139

different frequencies in the fundamental mode of a depth-dependent background model (background140

model in the synthetic example), which indicates that critical depths are located at around 0.4 m in141

the model among the frequency range of interest. Figure 4 shows the scattered wavefields of Rayleigh142

wave which are computed by subtracting the simulated wavefields in the same model with and without143

a diffracting point perturbations of five different parameters (VS , VP , τs, τp, and ρ) at three different144

depths (z = 0, 0.4 and 0.8 m, red dots in Figure 4) at the location of X = 60 m, respectively. These145

scattered wavefields, also referred as radiation patterns, are good visual proxy to evaluate the term146

∂φ
∂mi

.147

For the depth z = 0 m, we notice that the scattered wavefields caused by P- and S-wave perturba-148

tions are similar. With the depth increase, scattered wavefields caused by VS and VP can be decoupled149

in the backward direction but still coupled in the forward direction. It implies that we are not able to150

distinguish VS and VP anomalies if they are located above the critical depth. While it gives us a hint151

that we have a higher chance to distinguish them with an appropriate acquisition system if they are152

located at deeper depth, thanks to their different back-scattered wavefields. The scattered wavefields of153

the Rayleigh waves have a 180-degree phase change along the backward direction, which is related to154

the change of Rayleigh-wave particle motion of horizontal displacement at the depth where the critical155

point exists (where the particle motion changed from retrograde to prograde, Figure 3). The VS per-156

turbation radiates higher energies compared to the VP perturbation at a deeper depth. The attenuation157

parameters are always coupled with the corresponding velocities (τs to VS , and τp to VP ) for the same158

scattering direction but with a phase difference of about 90-degree (Kamei & Pratt 2013; Yang et al.159

2018). The scattered wavefield of ρ perturbation appears to be more complicated. We can observe160

that the density perturbation radiates higher energy at a deeper part and mainly along the ’backward’161

direction. The scattered wavefields caused by VS perturbation and ρ perturbation are similar in the162

backward direction at the deeper depth, while they both can be decoupled in the forward direction.163

The VP perturbation is decoupled with ρ perturbation in both directions. Additionally, we observe that164

forward and backward scattered wavefields are always symmetric in VP and τp, which is not the case165
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(a)

.

(b)

.
Figure 3. The critical-point depth for three frequencies (f = 25, 35, 45Hz). (a) The amplitude of the observed

data of the depth-dependent model in the synthetic example. (b) Eigen displacements of vertical (blue line)

and horizontal (red line) component calculated from Chen (1993). The vertical and horizontal components are

normalized by the maximum of the vertical component, respectively. The critical depths are located around 0.4

m in this case.

in the other parameters. Here we only consider the scattered wavefields of Rayleigh wave due to the166

dominance of it in the shallow-seismic wavefields.167

Overall, we can see that S-wave velocity perturbations can produce relatively strong contamina-168

tions into other parameters. Velocities can produce positive contamination into attenuations. And con-169

taminations from S- and P-wave perturbations make density structures highly under- or overestimated.170

The coupling between different parameter classes is depth-dependent and will introduce interparame-171

ter crosstalks to the model updates.172

5 SYNTHETIC EXAMPLES173

In this section, we perform two synthetic examples to demonstrate the validity of our preconditioned174

Newton method viscoelastic FWI approach to reconstruct multi parameters of the subsurface. The175

inverted models using preconditioned conjugate gradient (PCG) approach are also shown for compar-176

ison, in which the preconditioner P is calculated by an approximated inverse of the Hessian matrix by177

using its diagonal term (Plessix & Mulder 2004). We perform a multi-stage inversion with a progres-178



Viscoelastic 2D full waveform inversion 11

Figure 4. Scattered Rayleigh waves for parameters of VS ,VP ,τs,τp, and ρ. The perturbation points are located in

depths of 0, 0.4, and 0.8 m (red solid dots). The constant number in parantheses denote the amplification factors

applied to the scattered Rayleigh waves.

sive frequency band of 0-25, 0-35, 0-45, 0-60, 0-80 Hz. For simplicity, the source time function is set179

as known information in the synthetic examples.180

5.1 A spatially uncorrelated model181

We build a true model which consists of a depth-dependent 1-D background model (Figure 5). Two182

rectangular anomalies are superimposed on each parameter at different depths and positions. Each183

rectangle is 5 m wide with two different depth (1 m and 4 m, see Figure 5). Eight shots are triggered184

with a horizontal interval of 10 m, starting from X = 20 m to 90 m. The vertical-force source is185

generated with a delayed Ricker wavelet with a central frequency of 30 Hz. A total of 71 receivers186

(recording both horizontal and vertical components) are distributed along the surface with an interval187

of 1 m, starting from X = 20 m to 90 m. We use the background models as initial models. We188

perform a multiparameter viscoelastic FWI on this synthetic data in which five parameters are updated189

simultaneously during the inversion. A minimum of 10 iterations is performed at every inversion stage.190

The inversion will move to the next stage when the relative improvement of the misfit becomes less191

than 1%.192
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Figure 5. The true model for synthetic example on a spatially uncorrelated model. The red inverse triangles and

green dots placed on the surface represent the source and receiver locations, respectively. The black solid boxes

overlapped on the results represent the locations of VS , VP , τs,τp, ρ anomalies.

Figure 6. Multiparameter reconstruction example on a spatially uncorrelated model. Three rows represent the

true perturbation models, viscoelastic FWI results with preconditioned conjugate gradient method (PCG) and

preconditioned truncated Newton method (PTN), respectively. The black solid boxes overlapped on the results

represent the locations of VS , VP , τs,τp, ρ anomalies.

Figure 7. The comparison between the final synthetic data and the observed data. The residuals between the

synthetic data and observed data is magnified by 10 times.
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Figure 8. The comparison of the data misfit (a) and model misfits for VS (b), VP (c), τs (d),τp (e), ρ (f),

respectively. The red and blue represent the PCG and PTN FWI, respectively.

In the PCG results (second row, Figure 6), the shallow high VS anomaly can be reconstructed193

well due to the high sensitivity to S-wave velocity, while the deep low VS anomaly is hard to be194

reconstructed due to limited penetrating depth of Rayleigh waves. Moreover, the final VS model is195

affected by the crosstalk from the density anomalies. The low VP perturbation can only be retrieved196

roughly. The reconstruction of τs underlies strong crosstalk from the VS anomaly and weak crosstalk197

from secondary parameters like VP and density. In the inverted τp model, the anomalies cannot be198

identified and the result is contaminated by a strong influence from the VP anomaly. This observation199

is mainly caused by the low sensitivity of Rayleigh wave with respect to τp. The rectangle density200

anomaly at shallow depth can be reconstructed in the PCG result, but it suffers strong crosstalk from201

the VS anomalies.202

We perform multiparameter FWI using the PTN approach with the same setup. The reconstructed203

multiparameter models (third row, Figure 6) show a nice agreement with the true perturbation mod-204

els, which is more accurate than the PCG results. It can be seen that the deeper part of VS is better205

reconstructed compared to the PCG results and the crosstalk projected from the density anomaly is206

mitigated. The inverted VP results delineate clear boundaries and nicely reconstruct the true values of207

the low-velocity anomalies. Concerning the τs results, the reconstructed model contains less crosstalk208

which are projected from the VS perturbations. In both PCG and PTN method, the τs anomalies in the209

deeper part are poorly reconstructed. This might be caused by the inaccurate approximation of the Q210
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Figure 9. The true model for synthetic example on a spatially correlated model.

in the low-frequency range because we only take one relaxation mechanism (L = 1) during the mod-211

elling and inversion (Gao et al. 2020). For the inverted density model, the crosstalk effect projected212

from the VS anomalies is mitigated and the deeper part of the density anomaly is better reconstructed213

than by the PCG. Nevertheless, the final synthetic shot gathers in both the PCG and PTN FWIs show a214

nice agreement with the observed data (left, Figure 7). This can be interpreted either as low sensitivity215

of the synthetic data to the secondary-order parameters or as the artefacts in the models compensate216

for the differences between modelled and observed data. However, the magnified waveform residuals217

(green and pink solid lines) in the PTN FWI results are hardly visible and smaller than the PCG FWI218

results (right, Figure 7). Plots of data misfit and model misfits also confirm that PTN outperforms PCG219

in reducing data and model misfits (Figure 8).220

Overall, the reconstructed models demonstrate that incorporating the Hessian during the inversion221

can refocus the deeper part and mitigate the crosstalk between different parameters.222

5.2 Spatially correlated models223

In the previous synthetic model, we deliberately choose parameters spatially uncorrelated to each224

other, so that crosstalk between the parameters classes can be easily recognized and analysed. In225

realistic geological cases, different parameter classes somehow are often spatially correlated or anti-226

correlated. Here, we conduct two spatially correlated models to investigate the performance of simul-227

taneously inverting five parameters with PCG and PTN FWIs. All parameter perturbations are located228

at the same positions (Figure 9). The same acquisition geometry, initial models, and inversion strategy229

as in the first example are used. Similarly, we also perform both viscoelastic PCG and PTN FWIs on230

the same dataset for comparison.231

The shallow VS and ρ anomalies are well reconstructed in the PCG results, while the deeper part232

of the anomalies cannot be identified clearly (Figure 10). The τs anomalies are also well reconstructed,233

which is partially supported by the crosstalk from the VS anomaly. Similarly, the shallow ρ anomaly234

might also benefit from crosstalk from the VS anomaly. VP and τp models are roughly reconstructed235
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Figure 10. Multiparameter reconstruction example on a spatially correlated model (Figure 9). Three rows rep-

resent the true perturbation models, viscoelastic FWI results with preconditioned conjugate gradient method

(PCG) and preconditioned truncated Newton method (PTN), respectively.

in the PCG results. PTN reconstructs VS , VP and ρ better with a more accurate estimation of values236

compared to PCG. For brevity, we do not show the comparison for shot gather and misfit. But similar237

to the previous example, the final synthetic shot gathers in both the PCG and PTN FWIs show a nice238

agreement with the observed data. The waveform residual in the PTN FWI results is hardly visible and239

is smaller than the PCG results. The data misfit with the PTN method indicates a better convergence240

compare to the PCG method.241

In the next spatially-correlated synthetic example, we replace the high-density anomalies with242

low-density anomalies. In this example, the VS and ρ anomalies are anticorrelated in the shallow part.243

In the inverted PCG results (Figure 11), the low-value density anomaly can be hardly reconstructed and244

even produces a wrong high-value anomaly in the shallow part. This may be caused by the crosstalk245

of the high S-wave velocity anomaly. We notice, however, that the deeper low-density anomaly is246

better reconstructed, which might be partially caused by the crosstalk between VS and ρ. The previous247

synthetic example (Figure 6) showed that the VS anomaly will cause a correlated footprint on the248

reconstruction of the density model. In the present experiment, the reconstruction of the shallow low-249

density anomaly is ruined by the correlated crosstalk from VS anomaly. All five parameter models are250

better reconstructed in the PTN results, especially for the deeper VS and VP anomalies and the shallow251

anomaly for density. In both spatially correlated models, attenuation reconstruction from PCG seems252

to be more accurate compared to the results from the PTN method thanks to the footprint from the253

velocity model. However, the results may be contaminated when the spatially correlated parameters254

have anticorrelated values.255
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Figure 11. Multiparameter reconstruction example on a spatially correlated model where VS and ρ are anti-

correlated in the shallow part. Three rows represent the true perturbation models, viscoelastic FWI results with

preconditioned conjugate gradient method (PCG) and preconditioned truncated Newton method (PTN), respec-

tively.

Overall, the synthetic examples demonstrate that considering the Hessian can significantly im-256

prove the multiparameter reconstruction and mitigate the coupling between different parameter classes,257

which helps to reconstruct subsurface multiparameter models with higher confidence. Furthermore, the258

Hessian leads to better focusing of deeper anomalies and thus improves spatial resolution.259

6 CONCLUSIONS260

The truncated Newton method accounts for the inverse Hessian operator and helps to mitigate crosstalk261

in multiparameter viscoelastic FWI. We presented an efficient implementation of the preconditioned262

truncated Newton strategy in multiparameter viscoelastic FWI and showed synthetic reconstruction263

tests of shallow anomalies. The scattering responses of the five parameters show that the scattered264

wavefields of P- and S-wave velocity perturbations are similar at surface and shallow depth. With the265

depth increase, the scattered wavefield of Rayleigh wave caused by S-wave velocity perturbation has266

a 180-degree phase change along the backward direction. Attenuation parameters are always coupled267

with the corresponding velocity with a phase difference of about 90-degree. The density has partly268

coupled with S- and P-wave velocity thus is hard to be reconstructed. The complicated coupling ef-269

fects make viscoelastic FWI difficult to simultaneously reconstruct multiparameter models accurately270

with a gradient-based optimization algorithm. We performed synthetic examples by using spatially271

uncorrelated and correlated models. They confirmed that by accounting for the Hessian during the272
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inversion, the truncated Newton method outperforms the conventional gradient-based optimization273

algorithm and improves the accuracy of the reconstructed models.274
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7 APPENDICES279

For the self-contentedness of this paper, we recall formulas originally derived by Kirsch & Rieder280

(2019).281

APPENDIX A. GRADIENT CALCULATION282

Here we give the explicit expression for the misfit gradient calculation.283

The adjoint φ′(m)† atm = (ρ, VS , τs, VP , τp) ∈M is given by

φ′(m)†g =



∫ T
0 (∂tv ·w − 1

ρε(v) : (ψ0 + Σ))dt,

2
VS

∫ t
0 (−ε(v) : (ψ0 + Σ) + πtr(Σv)divv)dt,

1
1+ατs

∫ T
0 (ε(v) : Στ

s,2 + πtr(Στ
s,1)divv)dt,

− 2π
VP

∫ T
0 tr(Σv)divvdt,

π
1+αVP

∫ T
0 tr(Σv)divvdt,

(10)

for g = ∆d = (∆v,∆σ0, . . . ,∆σl), which is the data residual. Further, v is the first component of

the solution of equation 3, w uniquely solves the backward equation

∂tw =
1

ρ
div

(
L∑∑∑
l=0

σl

)
+

1

ρ
∆v,

∂tσ0 = C (µ0, π0) (ε (w) + ∆σ0),

∂tσl = C (τsµ0, τpπ0) (ε (w) + ∆σl) +
1

τσ,l
σl,

(11)

with w(T ) = 0.284
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And

Σv =
1

2(π − µ)
ψ0 +

τp
2(τpπ − τsµ)

Σ,

Στ
s,1 = − α

2(π − µ)
ψ0 +

τp
2τs(τpπ − τsµ)

Σ,

Στ
p =

α

2(π − µ)
ψ0 −

1

2(τpπ − τsµ)
Σ,

(12)

with Σ = ΣL
l=1ψl, µ = µ0

ρ and π = π0
ρ .285

Appendix B. Hessian-vector product calculation286

Let us define the FWI forward operator φ = Ψ ◦ F which means that φ(m) = Ψ(F (m)), where Ψ

is the linear observation operator and F is the parameter-to-solution map F : (ρ, VS , τs, VP , τp) →

(v, σ0, ..., σL). For any m̂ = (ρ̂, v̂s, τ̂s, v̂p, τ̂p) ∈ M, the Hessian-vector product H(m)m̂ can be

calculated as

H(m)m̂ = φ′(m)†φ′(m)m̂︸ ︷︷ ︸
P1

+ Ψ′′(F (m))F ′(m)†m̂(φ(m)− dobs)︸ ︷︷ ︸
P2

+ Ψ′(F (m))F ′′(m)†m̂(φ(m)− dobs)︸ ︷︷ ︸
P3

(13)

From this equation, we can notice that the Hessian-vector products are given by the sum of three287

parts.288

The calculation of the first term P1 in equation 13 is explicitly solved with equation 10 with289

φ′(m)m̂ = ū where ū = (v̄, σ̄0, . . . , σ̄L) with ū(0) = 0 is the solution of290

∂tv̄ =
1

ρ
div

(
L∑∑∑
l=0

σl

)
− ρ̂

ρ
∂tv,

∂tσ̄0 = C (µ0, π0) ε (v̄) + (ρ̂C(µ, π) + ρC(µ̃, µ̃))ε(v),

∂tσ̄l = C (τsµ0, τpπ0) ε (v̄)− 1

τσ,l
σ̄l + (ρ̂C(τsµ, τpπ) + ρC(µ̂, µ̂))ε(v),

(14)

where (v,σ0, . . . ,σL) is the solution of equation 3.291

The second part P2 is given by

Ψ′′(F (m))F ′(m)m̂†g =



∫ T
0 (∂tv̄ ·w − 1

ρε(v̄) : (ψ0 + Σ))dt,

2
VS

∫ t
0 (−ε(v̄) : (ψ0 + Σ) + πtr(Σv)divv̄)dt,

1
1+ατs

∫ T
0 (ε(v̄) : Στ

s,2 + πtr(Στ
s,1)divv̄)dt,

− 2π
VP

∫ T
0 tr(Σv)divv̄dt,

π
1+αVP

∫ T
0 tr(Σv)divv̄dt,

(15)

where v̄ is the solution of equation 14, w = (w,ψ0, . . . ,ψl) solves equation 11 with w(T ) = 0.292
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The second part P3 is given by

Ψ′(F (m))F ′′(m)m̂†g =



1
ρ

∫ T
0 (ε(v) : Υρ

1 + tr(Υρ
2)divv)dt,

2
VS

∫ t
0 (ε(v) : Υv

s,1 + tr(Υv
s,2)divv)dt,

1
1+ατs

∫ T
0 (ε(v) : Υτ

s,1 + tr(Υτ
s,2)divv)dt,

2π
VP

∫ T
0 tr(Υv

P )divvdt,

π
1+αVP

∫ T
0 tr(Υτ

P )divvdt,

(16)

where v is the solution of equation 1 and w = (w,ψ0, . . . ,ψl) solves equation 11 with w(T ) = 0.293

In equation 16 the following coefficients are used:

Υρ
1 = (

ρ̂

ρ
+
µ̃

µ
)ψ0 + (

ρ̂

ρ
+

µ̂

τsµ
)Σ,

Υρ
2 =

π̃ − µ̃π
2µ(π − µ)

ψ0 +
π̂τsµ− µ̃τpπ

2τsµ(τpπ − τsµ)
Σ,

ΥVS
1 = (

ρ̂

ρ
+

2µ̃

µ
)ψ0 + (

ρ̂

ρ
+

2µ̂

τsµ
)Σ,

ΥVS
2 = KS,ψψ0 +KS,ΣΣ,

Υτs
1 = −α(

ρ̂

ρ
+

2µ̃

µ
)ψ0 + (

ρ̂

τsρ
+

2µ̂

τ2
s µ

)Σ,

Υτs
2 = −αKS,ψψ0 +

KS,Σ

τs
Σ,

ΥVP
2 = KP,ψψ0 + τpKP,ΣΣ,

ΥVP
2 = −αKP,ψψ0 +KP,ΣΣ,

(17)

where

KS,ψ =
2πµµ̃− µ̃π2 − π̃µ2

µ(π − µ)2
− ρ̂

ρ

π

2(π − µ)
,

KS,Σ =
2τsτpπµµ̂− µ̂τ2

pπ
2 − π̂τ2

s µ
2

τsµ(τpπ − τsµ)2
− ρ̂

ρ

π

2(τpπ − τsµ)
,

KP,ψ =
ρ̂

ρ

1

2(π − µ)
+

π̂ − µ̂
(π − µ)2

,

KP,Σ =
ρ̂

ρ

1

2(τpπ − τsµ)
+

π̂ − µ̂
(τpπ − τsµ)2

.

(18)

with

µ̃ =
2VS

1 + ατs
v̂s −

αV 2
S

(1 + ατs)2
τ̂s,

µ̂ =
2τsVS

1 + ατs
v̂s +

V 2
S

(1 + ατs)2
τ̂s,

π̃ =
2VP

1 + ατp
v̂p −

αV 2
P

(1 + ατp)2
τ̂p,

π̂ =
2τpVP

1 + ατp
v̂p +

V 2
P

(1 + ατp)2
τ̂p.

(19)
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