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Abstract The scattering of electromagnetic waves from obstacles with wave-
material interaction in thin layers on the surface is described by generalized
impedance boundary conditions, which provide effective approximate models.
In particular, this includes a thin coating around a perfect conductor and the
skin effect of a highly conducting material. The approach taken in this work
is to derive, analyse and discretize a system of time-dependent boundary in-
tegral equations that determines the tangential traces of the scattered electric
and magnetic fields. In a second step the fields are evaluated in the exterior
domain by a representation formula, which uses the time-dependent poten-
tial operators of Maxwell’s equations. A key role in the well-posedness of the
time-dependent boundary integral equations and the stability of the numeri-
cal discretization is taken by the coercivity of the Calderón operator for the
time-harmonic Maxwell’s equations with frequencies in a complex half-plane.
This entails the coercivity of the full boundary operator that includes the
impedance operator. The system of time-dependent boundary integral equa-
tions is discretized with Runge–Kutta based convolution quadrature in time
and Raviart–Thomas boundary elements in space. The full discretization is
proved to be stable and convergent, with explicitly given rates in the case of
sufficient regularity. The theoretical results are illustrated by numerical exper-
iments.
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Faculty of Mathematics, University of Regensburg,
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1 Introduction

This work studies a numerical approach to computing time-domain electro-
magnetic scattering from obstacles that, due to their material properties, in-
volve multiple scales and yield effective boundary conditions known as gener-
alized impedance boundary conditions.

On an exterior domain Ω, which is the complement of one or multiple
bounded domains, we consider the time-dependent Maxwell’s equations for
the total electric field Etot(x, t) and the total magnetic field Htot(x, t),

ε ∂tE
tot − curlHtot = 0

µ∂tH
tot + curlEtot = 0

in the exterior domain Ω. (1.1)

The permittivity ε and the permeability µ are taken here as positive constants
in Ω.

We assume to be given incident electric and magnetic fields (Einc, H inc),
which are a solution to Maxwell’s equations in R3, and which initially, at time
t = 0, have their support in Ω and are thus bounded away from the boundary
Γ = ∂Ω. The objective is to compute the scattered fields Escat = Etot − Einc

and Hscat = Htot−H inc on a time interval 0 ≤ t ≤ T , possibly only at selected
space points x ∈ Ω, such that the total fields (Etot, Htot) are a solution to
Maxwell’s equations (1.1) that satisfies the specified boundary conditions on
the boundary Γ . As we will construct a numerical method for the computation
of the scattered fields, we simply write them as (E,H) = (Escat, Hscat).

The generalized impedance boundary conditions studied here are of the form

Etot
T + Z(∂t)

(
Htot × ν

)
= 0 on Γ = ∂Ω, (1.2)

where ν denotes the unit outward surface normal, Etot
T denotes the tangential

component of the total electric field Etot on the scattering surface Γ , and Z(∂t)
is a combined surface differential operator and temporal convolution operator,
which in the following is called the time-dependent impedance operator.

We now list some examples of operators Z(∂t) that appear in the literature.
These boundary operators often contain small quantities, each corresponding
to a different physical value. To unify our notation, we will make use of a small
parameter δ > 0.

The first boundary condition we are interested in is an approximate model
for a material with a thin coating, as introduced by Engquist & Nédélec [21,
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equation (4.9)] in the time-harmonic setting. Transferred to the time domain,
it is given by (1.2) with

Z(∂t) = δ

(
µδ∂t −

1

εδ
∂−1t ∇Γ divΓ

)
, (1.3)

where δ � 1 is the layer depth and εδ, µδ describe the permittivity and per-
meability inside the thin layer. Here, ∂−1t denotes integration in time. This
boundary condition is of first-order accuracy in δ. The problem in the time-
harmonic setting with a fixed frequency was analysed by Ammari & Nédélec
[3,4] using boundary integral equations. In the time-dependent case we are
not aware of an analysis of well-posedness or of numerical analysis. Both will
be given here.

The boundary condition (1.2) with (1.3) has been extended in several ways,
of which we present a small selection in the following. The second-order bound-
ary condition for thin layers was derived by Haddar & Joly [23, Eq. (95)]. Its
time domain formulation reads

Z(∂t) = δ

(
µδ∂t + δµδ (H− C) ∂t −

1

εδ
∂−1t ∇Γ [(1− δH) divΓ ]

)
, (1.4)

where H is the mean curvature and C is the curvature tensor.
In [2], the first-order boundary condition is generalized to a model where

the permittivity of the thin coating is not homogenous but depends on the
location on Γ .

Multiple layers on top of each other is another case of interest, for which
effective boundary conditions were recently given in [22]. The corresponding
impedance operator is a linear combination of operators (1.3) with different
permittivities.

A boundary condition for the approximation of scattering from highly con-
ductive obstacles was developed by Haddar, Joly & Nguyen [24]. The skin ef-
fect limits the penetration of the wave to a thin layer near the surface, which
then can be asymptotically approximated to create a reduced model. The
authors deduce absorbing impedance boundary conditions for time-harmonic
Maxwell’s equations of multiple orders. Here we restrict our attention to the
first- and second-order boundary conditions. The impedance operator corre-
sponding to the first-order boundary condition reads in the time domain

Z(∂t) = δ ∂
1/2
t , (1.5)

where δ is inversely proportional to the high conductivity, and the fractional

derivative ∂
1/2
t is the time derivative of convolution with the kernel (πt)−1/2.

The second-order impedance operator reads

Z(∂t) = δ ∂
1/2
t − δ2(H− C), (1.6)

where again H is the mean curvature and C is the curvature tensor.
The above generalized impedance boundary conditions have been analysed

in the time-harmonic setting (for a fixed frequency) in the stated references; see
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also Chaulet [19] for well-posedness results in a general framework that partly
inspired ours. While there is some numerical analysis in the time-harmonic
case by Schmidt & Hiptmair [36], we are not aware of any existing numerical
analysis of the time-dependent problem as studied here, which requires esti-
mates for the corresponding time-harmonic problem for all frequencies in a
complex half-plane in combination with Laplace transform techniques on the
analytical side, and stable time discretization on the numerical side.

This paper transfers the approach to numerical discretization and its analy-
sis from time-dependent acoustic scattering with generalized impedance bound-
ary conditions, as studied in [9], to the time-dependent electromagnetic case.
While the basic numerical approach via the discretization of time-dependent
boundary integral equations by convolution quadrature and boundary ele-
ments is conceptually similar, the functional-analytic framework is very differ-
ent. A basic tool in [9] was a coercivity property of the Calderón operator of
the Helmholtz equation for frequencies in a half-plane, which was previously
proved in [10]. In this paper we use an analogous result for the Calderón oper-
ator of the time-harmonic Maxwell’s equations, which was proved in [27]; see
also [34]. Using this result together with a positivity property of the impedance
operator is the key to proving well-posedness of the time-dependent problem
and the stability of the numerical discretization.

For the time discretization of the system of time-dependent boundary inte-
gral equations for the tangential traces and the time-dependent representation
formulas for the electric and magnetic fields, we use Runge–Kutta based convo-
lution quadrature, which was first introduced in [30] in the context of parabolic
problems and was later studied for wave propagation problems in [8]. Convo-
lution quadrature was used and analysed for the numerical solution of various
exterior Maxwell problems in [5,18,20] and of an eddy current problem with
an impedance boundary condition in [26].

For space discretization we use boundary elements as described for bound-
ary integral equations related to Maxwell’s equations in the monographs by
Nédélec [32] and Monk [31]. For our numerical experiments we have chosen
Raviart–Thomas elements.

The paper is organized as follows:
In Section 2 we introduce the functional-analytic setting of the paper, prove

that the above impedance operators fit into this framework, and give an ap-
propriate weak formulation of the generalized impedance boundary condition.
Moreover, we introduce basic notation used throughout the paper.

Section 3 studies the time-harmonic Maxwell’s equations with generalized
impedance boundary conditions for frequencies in a complex half-plane. The
main result here is a well-posedness result for the time-harmonic scattering
problem with a bound that gives an explicit dependence on the complex fre-
quency (Theorem 3.1) and behaves well with respect to the small parameter
δ that appears in the time-harmonic impedance operators described above.
On the way to proving this result we prove and use boundedness and coer-
civity results for time-harmonic boundary integral operators, in particular the
Calderón operator and a related operator that adds the impedance operator.
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We formulate the system of boundary integral equations for the tangential
traces of the electric and magnetic fields under generalized impedance bound-
ary conditions and prove its well-posedness, showing a bound that is propor-
tional to the square of the absolute value of the complex frequency divided by
its real part. With the tangential traces, the scattered electric and magnetic
fields are obtained from the representation formula that involves the single
and double layer electromagnetic potential operators.

Section 4 transfers the results of Section 3 from the Laplace domain to the
time domain, using the polynomial bounds in the frequency together with
Laplace transform techniques. We thus obtain well-posedness of the time-
dependent electromagnetic scattering problem with generalized impedance
boundary conditions (Theorem 4.1) via a system of time-dependent bound-
ary integral equations for the tangential traces of the electric and magnetic
fields, which is discretized numerically in the following sections.

Section 5 briefly recapitulates Runge–Kutta based convolution quadratures
and their error bounds as proved in [8]. Combining these quadrature error
bounds with the time-harmonic well-posedness results of Section 3, we ob-
tain error bounds for the semi-discretization in time of the system of time-
dependent boundary integral equations of Section 4 and of the scattered time-
dependent electric and magnetic fields obtained from the convolution quadra-
ture time discretization of the time-dependent representation formulas.

In Section 6 we consider the full discretization of the time-dependent
boundary integral equation by Runge–Kutta convolution quadrature in time
and Raviart–Thomas boundary elements in space. We obtain error bounds
for the approximate scattered electric and magnetic fields (Theorem 6.1). We
prove full-order error bounds in time and space in exterior subdomains Ωd ⊂ Ω
with a fixed positive distance d to the boundary Γ , both in the H(curl, Ωd)
norm and in the maximum norm on Ωd, and we prove error bounds of re-
duced (actually halved) temporal order on the whole exterior domain Ω in the
H(curl, Ω) norm, uniformly over bounded time intervals. The error bounds are
uniform in the small parameter δ of the impedance operators described above.

In Section 7 we present numerical experiments to illustrate our theoretical
results and computational aspects.

2 Framework and analytical background

We are interested in the solution of the time-dependent Maxwell’s equations
with generalized impedance boundary conditions in the context of wave scat-
tering. Given an incident wave

(
Einc, H inc

)
, which is a solution to the time-

dependent Maxwell’s equations on R3 with initial support in the exterior do-
main Ω away from the boundary Γ , we are interested in computing (possibly
in a few selected points x only) the scattered fields E = Etot − Einc and
H = Htot − H inc, which are an outgoing solution to the following initial–
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boundary value problem of Maxwell’s equations:

ε ∂tE − curlH = 0 in Ω, (2.1)

µ∂tH + curlE = 0 in Ω, (2.2)

ET + Z(∂t) (H × ν) = ginc on Γ, (2.3)

where ET = (I−νν>)E = −(E×ν)×ν is the tangential component of E and

ginc = −
(
Einc
T + Z(∂t)(H

inc × ν)
)

on Γ. (2.4)

The initial values at t = 0 are zero in Ω for both E and H.
Throughout the paper, we assume that the physical units are chosen such

that
εµ = c−2 = 1, (2.5)

which can always be achieved by rescaling time t→ ct or frequency s→ s/c.
As the problem has finite wave speed c = 1, the fields (E,H) have bounded

support at any time, vanishing beyond a distance ct from the boundary at
time t. (In contrast to the time-harmonic problem we therefore need not care
about asymptotic conditions as |x| → ∞.)

In this section we describe the functional-analytic framework and show that
the above-mentioned examples for Z(∂t) fit into this general setting. We then
give a weak formulation of the boundary condition (2.3) that is appropriate
for our analysis.

2.1 Tangential trace, trace space XΓ and a further Hilbert space VΓ ⊂ XΓ

Throughout this paper, we assume that Ω is the complement of one or several
bounded domains in R3 with a piecewise smooth boundary surface Γ = ∂Ω.
For a continuous vector field in the domain, v : Ω → C3, we define the tan-
gential trace

γT v = v|Γ × ν on Γ,

where ν denotes the unit surface normal pointing into the exterior domain. We
note that the tangential component of v|Γ is vT = (I−νν>)v|Γ = −(γT v)×ν.

By the version of Green’s formula for the curl operator, we have for suffi-
ciently regular vector fields u, v : Ω → C3 that∫

Ω

(
u · curl v − curlu · v

)
dx =

∫
Γ

(γTu× ν) · γT v dσ, (2.6)

where the dot · stands for the Euclidean inner product on C3, i.e., a · b = a>b
for a, b ∈ C3. The right-hand side in this formula defines a skew-hermitian
sesquilinear form on continuous tangential vector fields on the boundary, say
φ, ψ : Γ → C3, which we write as

[φ, ψ]Γ =

∫
Γ

(φ× ν) · ψ dσ. (2.7)
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As it was shown by Alonso & Valli [1] for smooth domains and by Buffa, Costa-
bel & Sheen [16] for Lipschitz domains (see also the surveys in [17, Sect. 2.2]
and [32, Sect. 5.4]), the trace operator γT can be extended to a surjective
bounded linear operator from the space that appears naturally for Maxwell’s
equations, H(curl, Ω) = {v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3}, to the

proper trace space: a Hilbert space denoted XΓ , with norm ‖ · ‖XΓ .

This space is characterized as the tangential subspace of the Sobolev space
H−1/2(Γ )3 with surface divergence in H−1/2(Γ ) (see the papers cited above
for the precise formulation, e.g. [17, Section 2.2]). It has the property that
the pairing [·, ·]Γ can be extended to a non-degenerate continuous sesquilinear
form on XΓ ×XΓ . With this pairing the space XΓ becomes its own dual.

For the treatment of generalized impedance boundary conditions we need a
further Hilbert space, which is chosen as a dense subspace VΓ ⊂ XΓ equipped
with a (semi-)norm |·|VΓ and the full norm

‖φ‖2VΓ = ‖φ‖2XΓ + |φ|2VΓ . (2.8)

We will choose VΓ = XΓ ∩ H(divΓ , Γ ) with H(divΓ , Γ ) = {φ ∈ L2(Γ )3 :
divΓ φ ∈ L2(Γ )} for the impedance operators (1.3) and (1.4), and we choose
VΓ = XΓ ∩L2(Γ )3 for (1.5) and (1.6), in all cases with |·|VΓ depending on the
small parameter δ.

2.2 Impedance operator and temporal convolution

Let Z(s) : VΓ → VΓ
′, for Re s > 0, be an analytic family of bounded linear

operators. We assume that Z is polynomially bounded : there exists a real κ,
and for every σ > 0 there exists Mσ <∞, such that

‖Z(s)‖VΓ ′←VΓ
≤Mσ |s|κ , Re s ≥ σ > 0. (2.9)

As a key property, we further assume that Z is of positive type: for every
σ > σ0 ≥ 0, there exists cσ > 0 such that

Re〈φ,Z(s)φ〉 ≥ cσ Re s
∣∣s−1φ∣∣2

VΓ
for all φ ∈ VΓ and Re s ≥ σ, (2.10)

where 〈·, ·〉 denotes the anti-duality between VΓ and VΓ
′, taken anti-linear in

the first argument.
The bound (2.9) ensures that Z is the Laplace transform of a distribution

of finite order of differentiation with support on the non-negative real half-
line t ≥ 0. For a function g : [0, T ] → VΓ , which together with its extension
by 0 to the negative real half-line is sufficiently regular, we use the operational
calculus notation

Z(∂t)g = (L−1Z) ∗ g (2.11)

for the temporal convolution of the inverse Laplace transform of Z with g. For
the identity operator Id(s) = s, we have Id(∂t)g = ∂tg, the time derivative
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of g. For two such families of operators K(s) and L(s) mapping into compat-
ible spaces, the associativity of convolution and the product rule of Laplace
transforms yield the composition rule

K(∂t)L(∂t)g = (KL)(∂t)g. (2.12)

For a Hilbert space V , we let Hr(R, V ) be the Sobolev space of order r of
V -valued functions on R, and on finite intervals (0, T ) we denote1

Hr
0 (0, T ;V ) = {g|(0,T ) : g ∈ Hr(R, V ) with g = 0 on (−∞, 0)}.

For integer r ≥ 0, the norm ‖∂rt g‖L2(0,T ;V ) is equivalent to the natural norm
on Hr

0 (0, T ;V ). The Plancherel formula yields the following [29, Lemma 2.1]: If
Z(s) is bounded by (2.9) in the half-plane Re s > 0, then Z(∂t) extends by den-
sity to a bounded linear operator Z(∂t) from Hr+κ

0 (0, T ; VΓ ) to Hr
0 (0, T ; VΓ

′)
with the bound

‖Z(∂t)‖Hr0 (0,T ;VΓ ′)←Hr+κ0 (0,T ;VΓ )
≤ eM1/T (2.13)

for arbitrary real r. (The bound on the right-hand side arises from the bound
eσTMσ on choosing σ = 1/T .) We note that for any integer k and α > 1/2,
we have the continuous embedding Hk+α

0 (0, T ; VΓ
′) ⊂ Ck([0, T ]; VΓ

′).
The passage from the operators Z(s), satisfying a polynomial bound (2.9),

to the convolution operators Z(∂t) and their bound (2.13) will be used in
the same way also for other operators between different Hilbert spaces in the
course of this paper.

2.3 The impedance operators (1.3)–(1.6)

As the following two lemmas show, the impedance operators listed in the
introduction fit into the abstract framework given above.

Lemma 2.1 (Thin coating) With the space VΓ = XΓ ∩H(divΓ , Γ ) and, in
(2.8), the norm |φ|2VΓ = δ

(
‖φ‖2L2(Γ )3 + ‖ divΓ φ‖2L2(Γ )

)
, the transfer operators

Z(s) : VΓ → VΓ
′ for Re s > 0 corresponding to the impedance operators

(1.3) and (1.4) satisfy the bound (2.9) with κ = 1 and the positivity condition
(2.10), with Mσ and cσ > 0 independent of the small parameter δ. In the case
of (1.3), σ0 = 0 for (2.10).

Proof We prove the result only for (1.3), as the proof for (1.4) is a straight-
forward extension. Moreover, we assume εδ and µδ to be positive and restrict
our attention, for the ease of presentation, to the transfer operator

Z(s) = δ
(
s− s−1∇Γ divΓ

)
,

1 We note that the subscript 0 in Hr
0 only refers to the left end-point of the interval.
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for which the anti-duality between VΓ and VΓ
′ is to be understood as

〈φ,Z(s)ψ〉 = δs
(
φ, ψ

)
L2(Γ )3

+ δs−1
(
divΓ φ, divΓ ψ

)
L2(Γ )

, (2.14)

where the round brackets denote the L2 inner product, taken anti-linear in the
first argument. This is bounded as follows, abbreviatingm(|s|) = max(|s|, |s|−1):

|〈φ,Z(s)ψ〉| ≤ m(|s|) δ
(
‖φ‖L2(Γ )3 ‖ψ‖L2(Γ )3 + ‖ divΓ φ‖L2(Γ ) ‖ divΓ ψ‖L2(Γ )

)
≤ m(|s|) δ

(
‖φ‖L2(Γ )3 + ‖ divΓ φ‖L2(Γ )

)(
‖ψ‖L2(Γ )3 + ‖ divΓ ψ‖L2(Γ )

)
≤ 2m(|s|) |φ|VΓ |ψ|VΓ
≤ 2m(|s|) ‖φ‖VΓ ‖ψ‖VΓ .

This yields (2.9) with κ = 1. On the other hand, taking φ = ψ, we have for
Re s ≥ σ > 0

Re〈φ,Z(s)φ〉 = δ (Re s) ‖φ‖2L2(Γ )3 + δ
Re s

|s|2
‖ divΓ φ‖2L2(Γ )

≥ δ(Re s)σ2‖s−1φ‖2L2(Γ )3 + δ(Re s)‖s−1 divΓ φ‖2L2(Γ )

≥ min(σ2, 1) (Re s) |s−1φ|2VΓ ,

which yields (2.10). ut

Lemma 2.2 (Strong absorption) With the space VΓ = XΓ ∩ L2(Γ )3 and
|φ|2VΓ = δ‖φ‖2L2(Γ )3 , the transfer operators Z(s) : VΓ → VΓ

′ for Re s > 0

corresponding to the impedance operators (1.5) and (1.6) satisfy the bound
(2.9) with κ = 1/2 and the positivity condition (2.10), with Mσ and cσ > 0
independent of the small parameter δ. In the case of (1.5), σ0 = 0 for (2.10).

Proof We prove the result only for (1.5), as the proof for (1.6) is a straight-
forward extension. Here, the transfer operator is

Z(s) = δ s1/2,

for which the anti-duality between VΓ and VΓ
′ is to be understood as

〈φ,Z(s)ψ〉 = δs1/2
(
φ, ψ

)
L2(Γ )3

. (2.15)

Here we obtain without ado

|〈φ,Z(s)φ〉| ≤ |s|1/2‖φ‖VΓ ‖φ‖VΓ ,

which yields (2.9) with κ = 1/2, and for Re s ≥ σ > 0 we have

Re〈φ,Z(s)φ〉 ≥ δ(Re s1/2) ‖φ‖2L2(Γ )3 ≥ σ
3/2(Re s)|s−1φ|2VΓ ,

which yields (2.10). ut
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2.4 Weak formulation of the generalized impedance boundary condition

Formally taking the L2(Γ )3 inner product (·, ·)Γ of the boundary condition
(2.3) with an arbitrary continuous tangential vector field φ on Γ , we obtain
the equation

(φ,ET )Γ + (φ,Z(∂t)γTH)Γ = (φ, ginc)Γ , (2.16)

which is the starting point for motivating the weak formulation given below.
Noting that for continuous E we have ET × ν = E × ν = γTE, we find

(φ,ET )Γ = (φ× ν,ET × ν)Γ = (φ× ν, γTE)Γ = [φ, γTE]Γ ,

with the skew-hermitian sesquilinear form (2.7). Starting from a combined
surface differential and temporal convolution operator Z(∂t) in the strong
formulation (2.3), we construct the transfer operator Z(s) : VΓ → VΓ

′ such
that for sufficiently regular γTH, the duality coincides with the L2(Γ )3 inner
product:

〈φ,Z(∂t)γTH〉Γ = (φ,Z(∂t)γTH)Γ , φ ∈ VΓ ,

as we did for (1.3)–(1.6) in (2.14) and (2.15). Similarly, a regular tangential
vector field ginc defines a functional on VΓ by

〈φ, ginc〉Γ = (φ, ginc)Γ , φ ∈ VΓ .

Inserting the identities above into (2.16) motivates us to study the follow-
ing weak formulation of the boundary condition (2.3): the tangential traces
of solutions E,H ∈ L2(0, T ;H(curl, Ω)) ∩H1(0, T ;L2(Ω)3) to the Maxwell’s
equations in Ω with zero initial conditions are to be determined as γTE ∈
L2(0, T ; XΓ ) and γTH ∈ Hκ

0 (0, T ; VΓ ), for κ of (2.9), such that for almost
every t ∈ (0, T ),

[φ, γTE]Γ + 〈φ,Z(∂t)γTH〉Γ = 〈φ, ginc〉Γ for all φ ∈ VΓ . (2.17)

This boundary condition relates the tangential traces of E and H. The terms
on the left-hand side are well-defined under the stated regularity requirements
on γTE and γTH.

In the following two sections we will prove that this initial and boundary
value problem is well-posed in the stated Hilbert spaces if ginc has sufficient
temporal regularity: ginc ∈ H3

0 (0, T ; VΓ
′) (provided that κ ≤ 1, else H2+κ

0 ).
The arguments and intermediate results in the proof of well-posedness will
again be used in the stability and error analysis of the numerical methods.

3 Time-harmonic Maxwell’s equations

Although the main interest of this work lies on time-domain scattering, it will
turn out useful to start with the analysis of the corresponding problem in
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the Laplace domain, the time-harmonic Maxwell’s equations. These equations
read, for s ∈ C considered here with Re s > 0 (and with εµ = 1; see (2.5))

sεÊ − curl Ĥ = 0 in Ω, (3.1)

sµĤ + curl Ê = 0 in Ω. (3.2)

This is complemented with the asymptotic conditions as |x| → ∞ for an
outgoing wave, which are automatically satisfied by the solutions constructed
via the representation formula from the tangential traces on Γ , as we will do
in the following. We will then obtain Ê, Ĥ ∈ H(curl, Ω).

For solutions of the time-harmonic Maxwell’s equations, Green’s formula
(2.6) reduces to [

γT Ê, γT Ĥ
]
Γ

=

∫
Ω

Ê · curl Ĥ − curl Ê · Ĥdx

=

∫
Ω

sε
∣∣Ê∣∣2 + s̄µ

∣∣Ĥ∣∣2dx. (3.3)

The conjugation of s in the second summand stems from the convention that
· denotes the inner product a · b = a>b on C3.

3.1 Potential operators and representation formulas

We recall the usual potential operators for the time-harmonic Maxwell’s equa-
tions; cf. [17,32]. The fundamental solution is given by

G(s, x) =
e−s|x|

4π |x|
, Re s > 0, x ∈ R3 \ {0}.

The electromagnetic single layer potential operator S(s), applied to a regular
complex-valued function ϕ and evaluated at x ∈ R3 \ Γ , is given by

S(s)ϕ(x) = −s
∫
Γ

G(s, x− y)ϕ(y)dy + s−1∇
∫
Γ

G(s, x− y) divΓ ϕ(y)dy,

and the electromagnetic double layer potential operator D(s) is given by

D(s)ϕ(x) = curl

∫
Γ

G(s, x− y)ϕ(y)dy.

The potential operators satisfy the relations

sS(s)− curl ◦D(s) = 0, sD(s) + curl ◦ S(s) = 0. (3.4)

This implies that for any regular function ϕ, the fields Ê = S(s)ϕ and µĤ =
D(s)ϕ are a solution to the time-harmonic Maxwell’s equations (3.1)–(3.2) on

R3 \ Γ (recall εµ = 1). Likewise, this also holds true for the fields Ê = D(s)ϕ

and µĤ = −S(s)ϕ.
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In our problem setting only the exterior domain Ω occurs. As a theoretical
tool, however, it will be useful to analyse transmission problems on R3 \ Γ .
We introduce some standard notation designed to simplify the description of
such problems.

In the context of transmission problems, we denote the interior of the
bounded scatterer by Ω− and the exterior domain by Ω+ (elsewhere in this
paper denoted by Ω), such that R3 is decomposed into R3 = Ω− ∪̇Γ ∪̇Ω+.
Furthermore, γ−T and γ+T denote the tangential traces on Ω− and Ω+, respec-
tively. We denote jumps and averages by

[γT ] = γ+T − γ
−
T , {γT } = 1

2

(
γ+T + γ−T

)
.

The sign convention for the jumps has been chosen to coincide with that of [17].
A fundamental role is played by the jump relations of the potential operators:

[γT ] ◦ S(s) = 0, [γT ] ◦ D(s) = −Id. (3.5)

As a direct consequence of (3.4) and (3.5), for any given boundary densities

(ϕ̂, ψ̂) (regular in a dense subspace of XΓ × XΓ ), the electric and magnetic
fields defined by2

Ê = −S(s)ϕ̂+D(s)ψ̂, (3.6)

µĤ = −D(s)ϕ̂− S(s) ψ̂, (3.7)

are a solution to the transmission problem (assuming εµ = 1)

sεÊ − curl Ĥ = 0 in R3 \ Γ, (3.8)

sµĤ + curl Ê = 0 in R3 \ Γ, (3.9)

µ[γT ]Ĥ = ϕ̂ , (3.10)

− [γT ]Ê = ψ̂ . (3.11)

So far, our presentation was restricted to regular boundary densities. The
following lemma shows that the linear map (ϕ̂, ψ̂) 7→ (Ê, µĤ) extends by
density to a bounded linear operator from XΓ×XΓ to H(curl, Ω)×H(curl, Ω),
and it gives an s-explicit bound; cf. [18, Lemma 6.4] for a related, yet more
complicated result.

Lemma 3.1 For Re s > 0, the solution (Ê, Ĥ) of the transmission problem
(3.8)–(3.11) defined by (3.6)–(3.7) is bounded by∥∥∥∥∥

(
Ê

µĤ

)∥∥∥∥∥
H(curl,R3\Γ )2

≤ CΓ
|s|2 + 1

Re s

∥∥∥∥(ϕ̂ψ̂
)∥∥∥∥

XΓ 2

,

where CΓ = ‖{γT }‖XΓ←H(curl,R3\Γ ).

2 We write (ϕ̂, ψ̂) when these functions appear as boundary densities defining fields (Ê, Ĥ)
as in (3.6)–(3.7), where the hats recall that these variables correspond to Laplace transforms
of time-dependent functions, which will be studied in the next section. On the other hand,
we omit the hats for generic functions to which potential operators or boundary operators
are applied.
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Proof We start from Green’s formula (3.3) on the exterior and interior domain,
which after multiplying with µ and using εµ = 1 gives

I :=

∫
R3\Γ

s
∣∣Ê∣∣2 + s̄

∣∣µĤ∣∣2dx =
[
γ+T Ê, µγ

+
T Ĥ

]
Γ
−
[
γ−T Ê, µγ

−
T Ĥ

]
Γ
. (3.12)

On inserting (3.8) and (3.9) for Ê and µĤ into θ times the integrand, where
0 < θ < 1 is arbitrary, the left-hand side is rewritten as

I =

∫
R3\Γ

(
(1− θ)s

∣∣Ê∣∣2 + θs̄
∣∣s−1 curl Ê

∣∣2
+ (1− θ)s̄

∣∣µĤ∣∣2 + θs
∣∣s−1 curl(µĤ)

∣∣2)dx.

Choosing θ such that 1− θ = θ|s|−2, i.e. θ = 1/(1 + |s|−2), and taking the real
part then gives

Re I =
Re s

|s2|+ 1

(
‖Ê‖2H(curl,R3\Γ ) + ‖µĤ‖2H(curl,R3\Γ )

)
. (3.13)

On the other hand, by (3.12) we also have

Re I = Re
([
γ+T Ê, µγ

+
T Ĥ

]
Γ
−
[
γ−T Ê, µγ

−
T Ĥ

]
Γ

)
.

Rewriting the right-hand side in terms of jumps and averages and using the
transmission conditions (3.10)–(3.11), we obtain

Re I = Re
([
µ[γT ]Ĥ, {γT }Ê

]
Γ

+
[
−[γT ]Ê, µ{γT }Ĥ

]
Γ

)
(3.14)

= Re
([
ϕ̂, {γT }Ê

]
Γ

+
[
ψ̂, µ{γT }Ĥ

]
Γ

)
.

We now recall that XΓ is its own dual with the duality pairing [·, ·]Γ and we
use the Cauchy–Schwarz inequality on R2 to estimate

Re I ≤ ‖ϕ̂‖XΓ ‖{γT }Ê‖XΓ + ‖ψ̂‖XΓ ‖{γT }µĤ‖XΓ

≤
(
‖ϕ̂‖2XΓ + ‖ψ̂‖2XΓ

)1/2(
‖{γT }Ê‖2XΓ + ‖{γT }µĤ‖2XΓ

)1/2
.

The right-hand side is finite because it is known from [17] that Ê and Ĥ are
in the local Sobolev space Hloc(curl,R3 \Γ ) and moreover, {γT } is a bounded
operator from H(curl, ΩR) onto XΓ , where ΩR is a ball of sufficiently large
radius R that contains Γ . So we find that Re I has a finite bound, and by
(3.13), Ê and Ĥ are therefore in H(curl,R3 \ Γ ). We then use the bound CΓ
of {γT } : H(curl,R3 \ Γ )→ XΓ to conclude

Re I ≤ CΓ
(
‖ϕ̂‖2XΓ + ‖ψ̂‖2XΓ

)1/2(
‖Ê‖2H(curl,R3\Γ ) + ‖µĤ‖2H(curl,R3\Γ )

)1/2
.

In view of (3.13), this yields the stated result. ut
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On setting ψ̂ = 0 in Lemma 3.1, we immediately obtain the following
corollary.

Lemma 3.2 For Re s > 0, the single and double layer potential operators
S(s) and D(s) extend by density to bounded linear operators from XΓ to
H(curl,R3 \ Γ ), which are bounded by

‖S(s)‖H(curl,R3\Γ )←XΓ ≤ CΓ
|s|2 + 1

Re s
, ‖D(s)‖H(curl,R3\Γ )←XΓ ≤ CΓ

|s|2 + 1

Re s
,

where again CΓ = ‖{γT }‖XΓ←H(curl,R3\Γ ).

We return to the transmission problem (3.8)–(3.11). Electromagnetic scat-

tered fields Ê, Ĥ that solve (3.1)–(3.2) in the exterior domain Ω = Ω+ are
extended by zero into the interior, so that the jumps are just the exterior
tangential traces in (3.10)–(3.11), as are the averages up to the factor 1/2.
The scattered fields are then recovered from their tangential traces by the
representation formulas (recall that εµ = 1)

Ê = −S(s)
(
µγT Ĥ

)
+D(s)

(
−γT Ê

)
in Ω, (3.15)

µĤ = −D(s)
(
µγT Ĥ

)
− S(s)

(
−γT Ê

)
in Ω. (3.16)

Our analytical as well as numerical approach will consist in determining the
tangential traces from boundary integral equations that incorporate the gen-
eralized impedance boundary conditions, and then obtain the electromag-
netic fields from the above representation formulas (or their time-domain ana-
logues).

In this situation the bound of Lemma 3.1 improves as follows.

Lemma 3.3 In the situation of Lemma 3.1, assume further that the interior
tangential traces of Ê and Ĥ are identically 0, which implies µγT Ĥ = ϕ̂ and
−γT Ê = ψ̂. Then, the bound of Lemma 3.1 improves to∥∥∥∥∥

(
Ê

µĤ

)∥∥∥∥∥
H(curl,Ω)2

≤

(
|s|2 + 1

2 Re s

)1/2 ∥∥∥∥(ϕ̂ψ̂
)∥∥∥∥

XΓ 2

.

Furthermore, we have the L2 bound∥∥∥∥∥
(
Ê

µĤ

)∥∥∥∥∥
(L2(Ω)3)2

≤
(

1

2 Re s

)1/2 ∥∥∥∥(ϕ̂ψ̂
)∥∥∥∥

XΓ 2

.

Proof The proof of the H(curl, Ω) bound is identical to that of Lemma 3.1

down to (3.14), which now implies the bound Re I ≤ 1
2

(
‖ϕ̂‖2XΓ + ‖ψ̂‖2XΓ

)
and

yields the stated result. The proof of the L2 bound is even simpler, working
directly with (3.12) instead of (3.13). ut
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3.2 Time-harmonic boundary operators and the Calderón operator

The electromagnetic single and double layer boundary operators are the oper-
ators from XΓ to XΓ defined as

V (s) = {γT } ◦ S(s), K(s) = {γT } ◦ D(s).

We define the Calderón operator as introduced in [27] (with a sign corrected
in [34]):

B(s) =

(
−V (s) K(s)
−K(s) −V (s)

)
= {γT } ◦

(
−S(s) D(s)
−D(s) −S(s)

)
, (3.17)

where we note that the right-most block operator is the one appearing in the
representation formula (3.6)–(3.7). Let Ê, Ĥ be Maxwell solutions that are
given by this representation formula. Then, the Calderón operator satisfies by
construction (see (3.8)–(3.11))

B(s)

(
µ[γT ]Ĥ

−[γT ]Ê

)
=

(
{γT }Ê
µ{γT }Ĥ

)
. (3.18)

The following bound of B(s) follows immediately from (3.17) and Lemma 3.1.
This bound improves on existing time-harmonic s-explicit bounds of the bound-
ary operators; see [5, Theorem 4.4] and [27, Lemma 2.3].

Lemma 3.4 For Re s > 0, the Calderón operator B(s) : XΓ
2 → XΓ

2 is
bounded by

‖B(s)‖XΓ 2←XΓ 2 ≤ C2
Γ

|s|2 + 1

Re s
, (3.19)

where again CΓ = ‖{γT }‖XΓ←H(curl,R3\Γ ). The same bound also holds for
‖V (s)‖XΓ←XΓ

+ ‖K(s)‖XΓ←XΓ
.

We extend the skew-hermitian pairing [·, ·]Γ from XΓ ×XΓ to XΓ
2 ×XΓ

2

in the obvious way: [(
ϕ
ψ

)
,

(
υ
ξ

)]
Γ

= [ϕ, υ]Γ + [ψ, ξ]Γ .

The Calderón operator B(s) is coercive with respect to the pairing [·, ·]Γ , as
was shown in [27, Lemma 3.1]. Here we give a formulation of this key lemma
with an explicit bound, and we include the short proof that reframes the
arguments of the proof in [27] within the present setting.

Lemma 3.5 (essentially [27, Lemma 3.1]) For Re s > 0, we have the
coercivity

Re

[(
ϕ
ψ

)
, B(s)

(
ϕ
ψ

)]
Γ

≥ 1

c2Γ

Re s

|s|2 + 1

(∥∥ϕ∥∥2
XΓ

+
∥∥ψ∥∥2

XΓ

)
(3.20)

for all (ϕ,ψ) ∈ XΓ
2. Here, cΓ = ‖[γT ]‖XΓ←H(curl,R3\Γ ).
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Proof Let (ϕ̂, ψ̂) ∈ XΓ
2 be arbitrary and Ê, Ĥ ∈ H(curl,R3 \ Γ ) be the so-

lutions to the associated transmission problem of Lemma 3.1. We then have
consecutively by (3.10)–(3.11), by the bound cΓ of the jump operator [γT ],
and by (3.13)–(3.14),∥∥∥∥(ϕ̂ψ̂

)∥∥∥∥2
XΓ×XΓ

=

∥∥∥∥∥
(
µ[γT ]Ĥ

−[γT ]Ê

)∥∥∥∥∥
2

XΓ×XΓ

≤ c2Γ
(∥∥µĤ∥∥2

H(curl,R3\Γ )
+
∥∥Ê∥∥2

H(curl,R3\Γ )

)
= c2Γ

|s|2 + 1

Re s
Re

[(
µ[γT ]Ĥ

−[γT ]Ê

)
,

(
{γT }Ê
µ{γT }Ĥ

)]
Γ

= c2Γ
|s|2 + 1

Re s
Re

[(
ϕ̂

ψ̂

)
, B(s)

(
ϕ̂

ψ̂

)]
Γ

,

where the last equality follows from (3.18) on inserting (3.10)–(3.11). This
yields the result. ut

3.3 Boundary integral equation for tangential traces under time-harmonic
generalized impedance boundary conditions

We now derive a well-posed boundary integral equation of the time-harmonic
Maxwell’s equations (3.1)–(3.2) for Re s > 0 with the weak formulation of the
generalized impedance boundary condition (2.17),

[φ, γT Ê]Γ + 〈φ,Z(s)γT Ĥ〉 = 〈φ, ĝinc〉Γ for all φ ∈ VΓ , (3.21)

where the transfer operator Z(s) satisfies (2.9)–(2.10), and ĝinc ∈ VΓ
′ is arbi-

trary.
We start with the observation that any solution of the time-harmonic

Maxwell’s equations on the exterior domain Ω = Ω+, trivially extended by
zero into the bounded interior Ω−, solves an associated transmission prob-
lem as in Lemma 3.1. As the inner traces of the extended fields vanish by
construction, the jumps and the averages reduce to the outer traces and the
representation formulas can be evaluated by the boundary data, as in (3.15)–
(3.16).

Therefore, the relation (3.18) of the Calderón operator then reads

B(s)

(
µγT Ĥ

−γT Ê

)
=

1

2

(
γT Ê

µγT Ĥ

)
. (3.22)

Following [12,7,9] in the acoustic case, we rewrite this identity by adding a
symmetric block operator and arrive at

Bimp(s)

(
µγT Ĥ

−γT Ê

)
=

(
γT Ê

0

)
, Bimp(s) = B(s) +

(
0 − 1

2I
− 1

2I 0

)
. (3.23)
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Introducing the boundary densities

ϕ̂ = µγT Ĥ, ψ̂ = −γT Ê, (3.24)

and testing both sides with (υ, ξ) ∈ VΓ ×XΓ yields[(
υ
ξ

)
, Bimp(s)

(
ϕ̂

ψ̂

)]
Γ

=
[
υ, γT Ê

]
Γ
.

Inserting the boundary condition (3.21) on the right-hand side leads, upon
rearranging the impedance operator to the left-hand side, to the weak for-
mulation of the boundary integral equation that will be studied here: Find
(ϕ̂, ψ̂) ∈ VΓ ×XΓ such that, for all (υ, ξ) ∈ VΓ ×XΓ ,[(

υ
ξ

)
, Bimp(s)

(
ϕ̂

ψ̂

)]
Γ

+ µ−1〈υ, Z(s)ϕ̂〉 = 〈υ, ĝinc〉. (3.25)

We introduce the family of operators A(s) : VΓ ×XΓ → VΓ
′ ×XΓ

′ that is
defined by the left-hand side above, i.e., for all (ϕ,ψ) and (υ, ξ) ∈ VΓ ×XΓ ,〈(

υ
ξ

)
, A(s)

(
ϕ
ψ

)〉
=

[(
υ
ξ

)
, Bimp(s)

(
ϕ
ψ

)]
Γ

+ µ−1〈υ, Z(s)ϕ〉, (3.26)

where 〈·, ·〉 denotes the anti-duality between VΓ × XΓ and VΓ
′ × XΓ

′ on the
left-hand side, and between VΓ and VΓ

′ on the right-hand side. The boundary
integral equation (3.25) then reads more compactly as follows: find (ϕ̂, ψ̂) ∈
VΓ ×XΓ such that〈(

υ
ξ

)
, A(s)

(
ϕ̂

ψ̂

)〉
= 〈υ, ĝinc〉 for all (υ, ξ) ∈ VΓ ×XΓ . (3.27)

We write (3.27) even more compactly as

A(s)

(
ϕ̂

ψ̂

)
=

(
ĝinc

0

)
. (3.28)

The boundary integral operator A(s) defined by (3.26) inherits the bounds
and positivity properties of the Calderón operator B(s) and the impedance
operator Z(s), respectively, from Lemma 3.4–3.5 and (2.9)–(2.10), as the fol-
lowing two lemmas state.

Lemma 3.6 The operators A(s) : VΓ × XΓ → VΓ
′ × XΓ

′ defined by (3.26)
form an analytic family of bounded linear operators that satisfy the bound, for
Re s ≥ σ > 0,

‖A(s)‖VΓ ′×XΓ ′←VΓ×XΓ ≤ Cσ
|s|2

Re s
.

The constant Cσ only depends polynomially on σ−1 and on the boundary Γ
via the norm of the tangential trace operator.



18 J. Nick, B. Kovács, and Ch. Lubich

Proof The bound (3.19) of the Calderón operator B(s) given in Lemma 3.5 and
the polynomial bound (2.9) of the impedance operator Z(s) yield estimates on
all the terms appearing on the right-hand side of (3.26) with the exceptions
of the identity operators IVΓ ′←XΓ and IXΓ ′←VΓ occurring in Bimp, which are
bounded in view of the continuous embeddings VΓ ⊂ XΓ = XΓ

′ ⊂ VΓ
′. ut

Lemma 3.7 The operator family A(s) has the following coercivity property:
For every σ > σ0 (with σ0 ≥ 0 of (2.10)), there exists a constant cσ > 0 such
that for Re s ≥ σ,

Re

〈(
ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
≥ cσ

Re s

|s|2
(∥∥ϕ∥∥2

VΓ
+
∥∥ψ∥∥2

XΓ

)
,

for all (ϕ,ψ) ∈ VΓ × XΓ . The constant cσ only depends polynomially on σ−1

and on the boundary Γ via the norm of the tangential trace operator.

Proof The operator Bimp(s) has the same coercivity property as B(s) because
the additional sum is skew-symmetric with respect to the skew-hermitian pair-
ing, since [(

ϕ
ψ

)
,

(
0 I
I 0

)(
ϕ
ψ

)]
Γ

= [ϕ,ψ]Γ + [ψ,ϕ]Γ = 0.

Combining the coercivity of the Calderón operator, as stated in Lemma 3.5,
and the positivity condition (2.10) on Z(s) then yield

Re

〈(
ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
= Re

[(
ϕ
ψ

)
, B(s)

(
ϕ
ψ

)]
Γ

+ µ−1 Re〈υ, Z(s)ϕ〉

≥ c(B)
σ

Re s

|s|2
(∥∥ϕ∥∥2

XΓ
+
∥∥ψ∥∥2

XΓ

)
+ c(Z)

σ

Re s

|s|2
∣∣ϕ∣∣2

VΓ

≥ cσ
Re s

|s|2
(∥∥ϕ∥∥2

VΓ
+
∥∥ψ∥∥2

XΓ

)
,

which is the stated result. ut

From the previous two lemmas we obtain the following result.

Proposition 3.1 (Well-posedness of the time-harmonic boundary in-
tegral equation) For Re s > σ0 ≥ 0, the boundary integral equation (3.27),
with the boundary operator A(s) : VΓ × XΓ → VΓ

′ × XΓ
′ defined by (3.26),

has a unique solution (ϕ̂, ψ̂) ∈ VΓ ×XΓ , and∥∥∥∥(ϕ̂ψ̂
)∥∥∥∥

VΓ×XΓ
≤ Cσ

|s|2

Re s

∥∥ĝinc∥∥
VΓ ′

. (3.29)

The constant Cσ only depends polynomially on σ−1 and on the boundary Γ
via the norm of the tangential trace operator.
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Proof By the Lax–Milgram theorem, Lemmas 3.6 and 3.7 yield that A(s) is
invertible and its inverse is bounded, for Re s ≥ σ > σ0, by

∥∥A(s)−1
∥∥
VΓ×XΓ←VΓ ′×XΓ ′

≤ Cσ
|s|2

Re s
. (3.30)

This gives the result. ut

Remark 3.1 In Lemmas 2.1 and 2.2 we have δ1/2‖φ‖L2(Γ )3 ≤ ‖φ‖VΓ for all
φ ∈ VΓ . This implies that for a tangential vector field ĝinc ∈ L2(Γ )3,∥∥ĝinc∥∥

VΓ ′
= sup
‖φ‖VΓ =1

〈φ, ĝinc〉 = sup
‖φ‖VΓ =1

(φ, ĝinc)Γ

≤ sup
‖φ‖L2(Γ )3≤δ−1/2

(φ, ĝinc)Γ = δ−1/2 ‖ĝinc‖L2(Γ )3 .

On the other hand, we have ‖φ‖XΓ ≤ ‖φ‖VΓ for all φ ∈ VΓ . If ĝinc is in XΓ ,
we therefore obtain ∥∥ĝinc∥∥

VΓ ′
≤
∥∥ĝinc∥∥

XΓ

without any dependence on the small parameter δ. We do have ĝinc ∈ XΓ in
the case where ĝinc = −Êinc

T − Z(s)γT Ĥ
inc, cf. (2.4), for a sufficiently regu-

lar boundary Γ and sufficiently regular fields Êinc and Ĥ inc for Z(s) in the
situations of Lemmas 2.1 and 2.2.

3.4 Well-posedness of time-harmonic scattering from generalized impedance
boundary conditions

Using the above properties, we prove the following result.

Theorem 3.1 (Well-posedness of the time-harmonic scattering prob-
lem) For Re s > σ0 ≥ 0, consider the time-harmonic scattering problem (3.1)–
(3.2) (with the normalization εµ = 1) under the generalized impedance bound-
ary condition (3.21), with Z(s) satisfying conditions (2.9)–(2.10) and with
ĝinc ∈ VΓ

′.
(a) This problem has a solution (Ê, Ĥ) ∈ H(curl, Ω)×H(curl, Ω) given by

the representation formulas (3.15)–(3.16). The tangential traces are uniquely

determined by the solution (ϕ̂, ψ̂) = (µγT Ĥ,−γT Ê) ∈ VΓ × XΓ of the system
of boundary integral equations of Proposition 3.1.

(b) The electromagnetic fields are bounded by

‖Ê‖H(curl,Ω) + ‖µĤ‖H(curl,Ω) ≤ Cσ
|s|3

(Re s)3/2

∥∥ĝinc∥∥
VΓ ′

,

where Cσ depends on σ, on cσ of (2.10), and on Γ through norms of tangential
trace operators, but is independent of ε and µ with εµ = 1 and, in the case
of the impedance operators (1.3)–(1.6), independent of the small parameter δ
(but see Remark 3.1).



20 J. Nick, B. Kovács, and Ch. Lubich

Proof By Proposition 3.1, the boundary integral equation (3.28) has a unique

solution (ϕ̂, ψ̂) ∈ VΓ ×XΓ , which is bounded by (4.4).
We are now in the situation of Lemma 3.1: The representation formulas

(3.6)–(3.7) define Ê, Ĥ ∈ H(curl,R3 \ Γ ), which solve the transmission prob-

lem (3.8)–(3.11). Furthermore, upon expressing (ϕ̂, ψ̂) in terms of (Ê, Ĥ) by
means of (3.10)–(3.11), the fundamental identity (3.18) of the Calderón oper-
ator implies the identity

Bimp(s)

(
ϕ̂

ψ̂

)
= B(s)

(
ϕ̂

ψ̂

)
− 1

2

(
ψ̂
ϕ̂

)
=

(
{γT Ê}
µ{γT Ĥ}

)
− 1

2

(
−[γT Ê]

µ[γT Ĥ]

)
=

(
γ+T Ê

µγ−T Ĥ

)
. (3.31)

By definition, (ϕ̂, ψ̂) solve the weak formulation (3.25) of the boundary integral
equation. Using the identity above reduces the weak formulation to[

υ, γ+T Ê
]
Γ

+ µ−1
〈
υ, Z(s)ϕ̂

〉
=
(
υ, ĝinc

)
Γ

for all υ ∈ VΓ , (3.32)[
ξ, µγ−T Ĥ

]
Γ

= 0 for all ξ ∈ XΓ . (3.33)

As XΓ coincides with its own dual, we deduce γ−T Ĥ = 0 and hence ϕ̂ =

µγ+T Ĥ. Therefore, (3.32) implies that (Ê, Ĥ)|Ω+ are indeed solutions to the
time-harmonic Maxwell’s equations which satisfy the generalized impedance
boundary condition (3.21).

Green’s formula (2.6) for the solution Ê|Ω− in the interior domain Ω− of
(3.1)–(3.2) yields∫

Ω−
sε
∣∣Ê∣∣2 + s̄µ

∣∣Ĥ∣∣2dx = −
∫
Γ

(γ−T Ê × ν) · γ−T Ĥ dσ = 0,

which, after taking the real part, gives Ê|Ω− = Ĥ|Ω− = 0 and therefore

γ−T Ê = 0 and ψ̂ = −γ+T Ê. This completes the proof of part (a).

With γ−T Ê = 0 and γ−T Ĥ = 0 as shown, we are now in the situation
of Lemma 3.3, which together with the bound of Proposition 3.1 yields the
bound of part (b) of the theorem. ut

Remark 3.2 In view of the L2 bound of Lemma 3.3, we further have the L2

bound

‖Ê‖L2(Ω)3 + ‖µĤ‖L2(Ω)3 ≤ Cσ
|s|2

(Re s)3/2

∥∥ĝinc∥∥
VΓ ′

. (3.34)

3.5 Bounds for the time-harmonic potential operators away from the
boundary

Point evaluations of the potential operators are bounded by means of the
following lemma, which yields a more favourable dependence on s for large
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Re s than the H(curl,R3 \Γ )-norm bound of Lemma 3.2. On smooth domains
similar pointwise bounds already exist, obtained with more straightforward
techniques; see [5, Theorem 4.4 (c)] for the single layer operator. The proof
of the following lemma generalizes the idea given there to the more technical
situation of non-smooth boundaries.

Lemma 3.8 The single and double layer potential operators S(s),D(s) eval-
uated at a point x ∈ R3 \ Γ with d = dist(x, Γ ) > 0 satisfy the following
bounds:

|S(s)ϕ(x)| ≤ C |s|2 e−dRe s ‖ϕ‖XΓ ,

|D(s)ϕ(x)| ≤ C |s|2 e−dRe s ‖ϕ‖XΓ ,

for Re s ≥ σ > 0, and for any ϕ ∈ XΓ . The constant C depends only on x, Γ
and σ.

Proof Let ej denote the j-th unit vector in R3, and let x ∈ Ω with d =
dist(x, Γ ) > 0. We then start by analysing the corresponding component of
the integral∣∣∣∣ej · ∫

Γ

G(s, x− y)ϕ(y)dy

∣∣∣∣ =

∣∣∣∣∫
Γ

G(s, x− y)ej · ϕ(y)dy

∣∣∣∣
=

∣∣∣∣∫
Γ

G(s, x− y) (ej × ν) · (ϕ(y)× ν) dy

∣∣∣∣
≤ C ‖γT (G(s, x− ·)ej)‖XΓ ‖ϕ‖XΓ
≤ C ‖G(s, x− ·)ej‖H(curl,Ω) ‖ϕ‖XΓ
≤ C ‖G(s, x− ·)‖H1(Ω) ‖ϕ‖XΓ ,

where the estimate on the trace holds due to [16, Theorem 4.1]. The second
summand of the single layer operator is estimated more straightforwardly, as∣∣∣∣∇ ∫

Γ

G(s, x− y) divΓ ϕ(y)dy

∣∣∣∣ ≤ ‖∇G(s, x− ·)‖H1/2(Γ ) ‖divΓ ϕ(y)‖H−1/2(Γ )

≤ ‖G(s, x− ·)‖H2(Ω) ‖ϕ‖XΓ .

We estimate the double layer potential similarly to the first summand of
the single layer, by taking a partial derivative with respect to a coordinate xi
and obtain∣∣∣∣∂xiej · ∫

Γ

G(s, x− y)ϕ(y)dy

∣∣∣∣ =

∣∣∣∣ej · ∫
Γ

∂xiG(s, x− y)ϕ(y)dy

∣∣∣∣
≤ ‖∂xiG(s, x− ·)‖H1(Ω) ‖ϕ‖XΓ .

Since the curl operator is a linear combination of partial derivatives, this esti-
mate implies the stated bound for the double layer potential operator. ut
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The proof of the above result immediately implies the following extension
for any spatial differential operator. In particular it implies that, given traces
ϕ̂, ψ̂ ∈ XΓ , the corresponding (time-harmonic) solution field Ê = −S(s)ϕ̂ +

D(s)ψ̂ is smooth in every point x ∈ Ω \ Γ .

Lemma 3.9 For every positive integer k and for j = 1, 2, 3, we have the
following bounds at x ∈ R3 \ Γ with d = dist(x, Γ ) > 0 for Re s ≥ σ > 0:∣∣∣∂kxjS(s)ϕ(x)

∣∣∣ ≤ C |s|2+k e−σd ‖ϕ‖XΓ ,∣∣∣∂kxjD(s)ϕ(x)
∣∣∣ ≤ C |s|2+k e−σd ‖ϕ‖XΓ , for all ϕ ∈ XΓ .

The following lemma gives a bound of the potential operators in the opera-
tor norm from XΓ to H(curl, Ωd), where the boundary of Ωd ⊂ Ω has distance
d to Γ .

Lemma 3.10 Let Ωd = {x ∈ Ω | dist(x, Γ ) > d} be the domain away from
the boundary by at least some fixed distance d > 0. Then, the single and double
layer potential operators S(s),D(s) satisfy the following bounds:

‖S(s)‖H(curl,Ωd)←XΓ
≤ Ce−dRe s max{σ−1, σ−3} |s|3 ,

‖D(s)‖H(curl,Ωd)←XΓ
≤ Ce−dRe s max{1, σ−3/2} |s|3 ,

for Re s ≥ σ > 0.

Proof To show the bound for the double layer potential, we start with the
square of the H(curl, Ω)-norm of an image of the double layer potential and
employ the bounds from Lemma 3.9:

‖S(s)ϕ(x)‖2H(curl,Ωd)
=

∫
Ωd

|S(s)ϕ(x)|2+ |curlS(s)ϕ(x)|2 dx

≤ Cσ ‖ϕ‖2XΓ |s|
6
∫
Ωd

e−2 dist(x,Γ ) Re sdx.

Estimating the last integral then yields the stated result for S(s). The result
for D(s) is obtained by the same argument. ut

4 Time-dependent Maxwell’s equations with generalized
impedance boundary conditions

The time-harmonic treatment of the previous section extends to the time do-
main in a direct way, using the passage from the Laplace domain to the time
domain described in Section 2.2. We start from the time-dependent version
of the boundary integral equation (3.23), obtained by formally replacing the
Laplace transform variable s by the time differentiation operator ∂t:
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Find time-dependent boundary densities (ϕ,ψ) : [0, T ] → VΓ × XΓ (of
temporal regularity to be specified later) such that for almost every t ∈ [0, T ]
we have for all (υ, ξ) ∈ VΓ ×XΓ ,[(

υ
ξ

)
, Bimp(∂t)

(
ϕ
ψ

)]
Γ

+ µ−1〈υ, Z(∂t)γTϕ〉 = 〈υ, ginc〉, (4.1)

where ginc : [0, T ]→ VΓ
′ is given by (2.4), assuming that ginc ∈ Hm

0 (0, T ; VΓ
′)

with sufficiently large m (to be specified later). We refer to Section 2.2 for the
definition of this spatio-temporal Hilbert space.

With the operators A(s) : VΓ × XΓ → VΓ
′ × XΓ

′ defined by (3.26), this
boundary integral equation is rewritten more compactly as in (3.28),

A(∂t)

(
ϕ
ψ

)
=

(
ginc

0

)
. (4.2)

In view of the bound (3.30) on the operator family A(s)−1 for Re s > σ0, the
temporal convolution operator A−1(∂t) is well-defined by (2.11), and by the
composition rule we have A−1(∂t)A(∂t) = Id and A(∂t)A

−1(∂t) = Id. So we
have the temporal convolution(

ϕ
ψ

)
= A−1(∂t)

(
ginc

0

)
(4.3)

as the unique solution of (4.2). More precisely, with the argument given above
and the bound of [29, Lemma 2.1], i.e. (2.13) used for A−1(∂t) instead of Z(∂t)
and with the exponent κ = 2 by (3.30), we obtain the following result.

Proposition 4.1 (Well-posedness of the time-dependent boundary
integral equation) Let r ≥ 0. For ginc ∈ Hr+3

0 (0, T ; VΓ
′), the boundary in-

tegral equation (4.2), with the boundary operator A(s) : VΓ ×XΓ → VΓ
′×XΓ

′

defined by (3.26), has a unique solution (ϕ,ψ) ∈ Hr+1
0 (0, T ; VΓ ×XΓ ), and∥∥∥∥(ϕψ

)∥∥∥∥
Hr+1

0 (0,T ;VΓ×XΓ )
≤ CT

∥∥ginc∥∥
Hr+3

0 (0,T ;VΓ ′)
. (4.4)

Here, CT depends on T (polynomially if σ0 = 0 in (2.9)–(2.10)) and on the
boundary Γ via norms of tangential trace operators.

With the time-dependent boundary densities ϕ,ψ of Proposition 4.1, the
scattered wave is obtained by the time-dependent representation formula (as-
suming here again εµ = 1)

E = −S(∂t)ϕ+D(∂t)ψ, (4.5)

µH = −D(∂t)ϕ− S(∂t)ψ. (4.6)

We now give the well-posedness result for the time-dependent scattering prob-
lem under the generalized impedance boundary condition, which follows from
the time-harmonic well-posedness result Theorem 3.1.
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Theorem 4.1 (Well-posedness of the time-dependent scattering prob-
lem) Consider the time-dependent scattering problem (2.1)–(2.2) (with the
normalization εµ = 1) under the generalized impedance boundary condition
(2.17), with Z(s) satisfying conditions (2.9)–(2.10) with κ ≤ 1 and with ĝinc ∈
Hr+3

0 (0, T ; VΓ
′) for some arbitrary r ≥ 0.

(a) This problem has a unique solution

(E,H) ∈ Hr
0 (0, T ;H(curl, Ω)2) ∩Hr+1

0 (0, T ; (L2(Ω)3)2),

which is given by the representation formulas (4.5)–(4.6). The tangential traces
are uniquely determined by the solution of the system of boundary integral
equations of Proposition 4.1,

(ϕ,ψ) = (µγTH,−γTE) ∈ Hr+1
0 (0, T ; VΓ ×XΓ ).

(b) The electromagnetic fields are bounded by

‖E‖Hr0 (0,T ;H(curl,Ω)) + ‖µH‖Hr0 (0,T ;H(curl,Ω)) ≤ CT ‖ginc‖Hr+3
0 (0,T ;VΓ ′)

,

and the same bound is valid for the Hr+1
0 (0, T ; (L2(Ω)3)2) norms. Here, CT

depends on T (polynomially if σ0 = 0 in (2.9)–(2.10)) and on the boundary
Γ via norms of tangential trace operators, but is independent of ε and µ with
εµ = 1 and, in the case of the impedance operators (1.3)–(1.6), independent
of the small parameter δ.

Proof We extend ginc ∈ Hr
0 (0, T ; VΓ

′) from the interval (0, T ) to a func-
tion in Hr(R; VΓ

′) on the whole real line, with support in [0, 2T ]. The fields
(E,H) defined by the time-dependent boundary integral equation (4.2) and
the time-dependent representation formulas (4.5)–(4.6) have the regularity as
stated because of (2.13) used for the time-harmonic solution operator with
the bounds given in Theorem 3.1, and they satisfy the stated bounds on ev-
ery finite interval (0, T̄ ), with at most exponential growth in T̄ of the norm

with an arbitrary exponent σ1 > σ0. The Laplace transform (Ê(s), Ĥ(s)) then
exists for Re s > σ0, and it is obtained by the solution of the time-harmonic
boundary integral equation (3.28) and the time-harmonic representation for-

mulas (3.15)–(3.16). By Theorem 3.1, (Ê(s), Ĥ(s)) is the solution to the time-
harmonic scattering problem with the time-harmonic generalized impedance
boundary conditions. Taking the inverse Laplace transform then shows that
(E,H) solve the time-dependent scattering problem (2.1)–(2.2) under the gen-
eralized impedance boundary condition (2.17). Finally, the uniqueness of the
time-dependent solution (E,H) follows from the uniqueness of the tangential
traces and the well-posedness of the time-dependent exterior Maxwell problem
with a given tangential trace. ut
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5 Semi-discretization in time by Runge–Kutta convolution
quadrature

5.1 Recap: Runge–Kutta convolution quadrature

Runge–Kutta convolution quadratures will be used here to approximate tem-
poral convolutions K(∂t)g; cf. (2.11). Let us first recall an m-stage implicit
Runge–Kutta discretization of the initial value problem y′ = f(t, y), y(0) = y0;
see [25]. For a time step τ > 0, the approximations yn to y(tn) at time tn = nτ ,
and the internal stages Y ni approximating y(tn + ciτ), are obtained from

Y ni = yn + τ

m∑
j=1

aijf(tn + cjh, Y
nj), i = 1, . . . ,m,

yn+1 = yn + τ

m∑
j=1

bjf(tn + cjh, Y
nj).

The method is given by its coefficients

A = (aij)
m
i,j=1, b = (b1, . . . , bm)T , and c = (c1, . . . , cm)T .

The stability function of the Runge–Kutta method is given by R(z) = 1 +
zbT (I − zA )−11, where 1 = (1, 1, . . . , 1)T ∈ Rm. We always assume that A
is invertible.

Runge–Kutta methods can be used to construct convolution quadrature
methods. Such methods were first introduced in [30] in the context of parabolic
problems and were studied for wave propagation problems in [8] and subse-
quently, e.g., in [6,7,11,12]. Runge–Kutta convolution quadrature was studied
for the numerical solution of some exterior Maxwell problems in [5,20] and of
an eddy current problem with an impedance boundary condition in [26]. For
wave problems, Runge–Kutta convolution quadrature methods such as those
based on the Radau IIA methods (see [25, Section IV.5]), often enjoy more
favourable properties than their BDF-based counterparts, which are more dis-
sipative and cannot exceed order 2 but are easier to understand and slightly
easier to implement.

Let K(s) : X → Y , Re s ≥ σ0 > 0, be an analytic family of linear operators
between Banach spaces X and Y , satisfying the bound, for some exponents
κ ∈ R and ν ≥ 0,

‖K(s)‖Y←X ≤Mσ
|s|κ

(Re s)ν
, Re s ≥ σ > σ0. (5.1)

As in Section 2.2, this yields a convolution operator K(∂t) : Hr+κ
0 (0, T ;X)→

Hr
0 (0, T ;X) for arbitrary real r. For functions g : [0, T ] → X that are suffi-

ciently regular (together with their extension by 0 to the negative real half-axis
t < 0), we wish to approximate the convolution (K(∂t)g)(t) at discrete times
tn = nτ with a stepsize τ > 0, using a discrete convolution.
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To construct the convolution quadrature weights, we use the Runge–Kutta
differentiation symbol

∆(ζ) =
(
A +

ζ

1− ζ
1bT

)−1
∈ Cm×m, ζ ∈ C with |ζ| < 1. (5.2)

This is well-defined for |ζ| < 1 if R(∞) = 1− bTA −11 satisfies |R(∞)| ≤ 1, as
is seen from the Sherman–Woodbury formula. Moreover, for A-stable Runge–
Kutta methods (e.g. the Radau IIA methods), the eigenvalues of the matrices
∆(ζ) have positive real part for |ζ| < 1 [8, Lemma 3].

To formulate the Runge–Kutta convolution quadrature for K(∂t)g, we re-
place the complex argument s in K(s) by the matrix ∆(ζ)/τ and expand

K
(∆(ζ)

τ

)
=

∞∑
n=0

Wn(K)ζn. (5.3)

The operators Wn(K) : Xm → Y m are used as the convolution quadrature
“weights”. For the discrete convolution of these operators with a sequence
g = (gn) with gn = (gni )mi=1 ∈ Xm we use the notation

(
K(∂τt )g

)n
=

n∑
j=0

Wn−j(K)gj ∈ Y m. (5.4)

Given a function g : [0, T ] → X, we use this notation for the vectors gn =(
g(tn + ciτ)

)m
i=1

of values of g. The i-th component of the vector
(
K(∂τt )g

)n
is then an approximation to

(
K(∂t)g

)
(tn + ciτ); see [7, Theorem 4.2].

In particular, if cm = 1, as is the case with Radau IIA methods, the
continuous convolution at tn is approximated by the m-th, i.e. last component
of the m-vector (5.4) for n− 1:(

K(∂t)g
)
(tn) ≈

(
K(∂τt )g

)n−1
m

.

An essential property is that the composition rule (2.12) is preserved under
this discretization: for two such operator families K(s) and L(s) that map to
compatible spaces, we have

K(∂τt )L(∂τt )g = (KL)(∂τt )g. (5.5)

The following error bound for Runge–Kutta convolution quadrature from [8],
here directly stated for the Radau IIA methods [25, Section IV.5] and trans-
ferred to a Banach space setting, will be the basis for our error bounds of the
time discretization.

Lemma 5.1 ([8, Theorem 3]) Let K(s) : X → Y , Re s > σ0 ≥ 0, be an
analytic family of linear operators between Banach spaces X and Y satisfying
the bound (5.1) with exponents κ and ν. Consider the Runge–Kutta convolution
quadrature based on the Radau IIA method with m stages. Let 1 ≤ q ≤ m (the
most interesting case is q = m) and r > max(2q − 1 + κ, 2q − 1, q + 1).
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Let g ∈ Cr([0, T ], X) satisfy g(0) = g′(0) = ... = g(r−1)(0) = 0. Then, the
following error bound holds at tn = nτ ∈ [0, T ]:

‖(K(∂τt )g)n−1m − (K(∂t)g)(tn)‖Y

≤ CM1/T τ
min(2q−1,q+1−κ+ν)

(
‖g(r)(0)‖X +

∫ t

0

‖g(r+1)(t′)‖X dt′
)
.

The constant C is independent of τ and g and Mσ of (5.1), but depends on
the exponents κ and ν in (5.1) and on the final time T .

5.2 Convolution quadrature for the scattering problem

Using a Runge–Kutta based convolution quadrature for the semi-discretization
in time of the time-dependent boundary integral equation (4.2) yields the
discrete convolution equation

A(∂τt )

(
ϕτ

ψτ

)
=

(
ginc

0

)
. (5.6)

By the discrete composition rule (5.5), the solution to this equation is given
by the convolution quadrature semi-discretization of the convolution (4.3),(

ϕτ

ψτ

)
= A−1(∂τt )

(
ginc

0

)
.

While this formula is of no computational use, as the inverse boundary integral
operator A(s)−1 is not computationally available, it is extremely helpful for
the convergence analysis, since it interprets the solution of the discretized
boundary integral equation as a mere convolution quadrature, to which we can
apply the error bound of Lemma 5.1 using the bound (3.30) of A(s)−1. (Such
an argument was first used in [29] for a time-dependent boundary integral
equation in the acoustic case.) In particular, no stability issues arise for this
time discretization.

The time discretizations of the electromagnetic fields are then obtained
by applying the convolution quadrature to the representation formulas (4.5)–
(4.6):

Eτ = −S(∂τt )ϕτ +D(∂τt )ψτ , (5.7)

µHτ = −D(∂τt )ϕτ − S(∂τt )ψτ . (5.8)

Again by the composition rule, this is the convolution quadrature discretiza-
tion (

Eτ

µHτ

)
= U(∂τt )ginc of

(
E
µH

)
= U(∂t)g

inc, (5.9)

where we have by Theorem 4.1 that

U(s) =

(
−S(s) D(s)
−D(s) −S(s)

)
A(s)−1

(
Id
0

)
: VΓ

′ → H(curl, Ω)2,
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for which the bound

‖U(s)‖H(curl,Ω)2←VΓ ′ ≤ Cσ
|s|3

(Re s)3/2
, for Re s ≥ σ > σ0 ≥ 0,

is given in Theorem 3.1. Moreover, away from the boundary we obtain by
concatenating Lemmas 3.8–3.10 and Proposition 3.1 that on Ωd = {x ∈ Ω :
dist(x, Γ ) > d} with d > 0, we have for Re s ≥ σ > σ0 ≥ 0 that

‖U(s)‖(C1(Ωd)3)2←VΓ ′
+ ‖U(s)‖H(curl,Ωd)2←VΓ ′ ≤ Cσ |s|

5
e−dRe s,

where the C1(Ωd)-norm is the maximum norm on continuously differentiable
functions and their derivatives on the closure of Ωd.

Using U(s) in the role of K(s) and these bounds as (5.1) in Lemma 5.1
then directly yields the following result.

Proposition 5.1 (Error bound of the semi-discretization in time) In
the situation of Theorem 4.1, consider the Runge–Kutta convolution quadra-
ture based on the Radau IIA method with m stages used for the semi-discreti-
zation in time (5.6) and (5.7)–(5.8) of the boundary integral equation (4.2)
and the representation formulas (4.5)–(4.6), respectively. For r > 2m + 3,
assume that ginc ∈ Cr([0, T ],VΓ

′), vanishing at t = 0 together with its first
r − 1 time derivatives. Then, the approximations to the electromagnetic fields
En = (Eτ )n−1m and Hn = (Hτ )n−1m satisfy the following error bound of order
m− 1/2 at tn = nτ ∈ [0, T ]:∥∥∥∥(En − E(tn)

Hn −H(tn)

)∥∥∥∥
H(curl,Ω)2

≤ C τm−1/2M(ginc, tn).

On Ωd = {x ∈ Ω : dist(x, Γ ) > d} with d > 0, there is the full order 2m− 1:∥∥∥∥(En − E(tn)
Hn −H(tn)

)∥∥∥∥(
H(curl,Ωd)∩C1(Ωd)3

)2 ≤ Cd τ2m−1M(ginc, tn).

Here, M(g, t) = ‖g(r)(0)‖VΓ ′ +
∫ t
0
‖g(r+1)(t′)‖VΓ ′ dt′. The constants C and Cd

are independent of n, τ and g, but depend on the final time T . Cd additionally
depends on the distance d. In the case of the impedance operators (1.3)–(1.6),
both C and Cd are independent of the small parameter δ.

We remark that for acoustic scattering from a sound-soft obstacle, full-
order convergence away from the boundary for the Runge-Kutta convolution
quadrature time discretization was previously proved in [8]. Proposition 5.1
shows that this favourable error behaviour extends to the electromagnetic
scattering from generalized impedance boundary conditions.
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6 Full discretization

We use a Galerkin approximation of the boundary integral equation (5.6) with
boundary element spaces Vh ⊂ VΓ and Xh ⊂ XΓ corresponding to a family
of triangulations with mesh width h. We choose both Vh and Xh to be the
Raviart–Thomas boundary element space of order k ≥ 0 [35], which is defined

on the unit triangle K̂ as reference element by

RTk(K̂) =
{
x 7→ p1(x) + p2(x)x : p1 ∈ Pk(K̂)2, p2 ∈ Pk(K̂)

}
,

where Pk(K̂) is the polynomial space of degree k on K̂. Raviart–Thomas ele-
ments on an arbitrary grid are then obtained in the standard way by piecewise
pull-back to the reference element.

We will use the following approximation results, which are obtained from
the results collected in Lemma 15 and Theorem 14 of [17]; see also the orig-
inal references [14, Section III.3.3] and [15]. Here we use the same notation
Hp
×(Γ ) = γTH

p+1/2(Ω)3 as in [17].

Lemma 6.1 Let Xh = Vh be the k-th order Raviart–Thomas boundary ele-
ment space on Γ . For every ξ ∈ XΓ ∩Hk+1

× (Γ ) and υ ∈ VΓ ∩Hk+1
× (Γ ), with

the space VΓ of Lemma 2.1 or Lemma 2.2, the best-approximation error is
bounded by

inf
ξh∈Xh

‖ξh − ξ‖XΓ ≤ Chk+3/2‖ξ‖Hk+1
× (Γ ),

inf
υh∈Vh

‖υh − υ‖VΓ ≤ Chk+1‖υ‖Hk+1
× (Γ ).

Remark 6.1 We would have expected that the best-approximation error bound
in the VΓ -norm is O(hk+3/2+δ1/2hk+1), in analogy to the situation for acoustic
generalized impedance boundary conditions [9]. This would, however, require
proving the VΓ -norm stability of the projection of [15] from XΓ to Xh that
was used to show the best-approximation estimate in XΓ . If at all possible,
this is in any case beyond the scope of this paper.

The Galerkin approximation of the time-discretized boundary integral equa-
tion (5.6) on Vh ×Xh then reads〈(

υh
ξh

)
, A(∂τt )

(
ϕτh
ψτh

)〉
= 〈υh, ginc〉 ∀ (υh, ξh) ∈ (Vh ×Xh)m. (6.1)

This determines the approximate boundary densities ϕτh =
(
(ϕτh)n

)
with (ϕτh)n

=
(
(ϕτh)ni

)m
i=1
∈ V mh and ψτh =

(
(ψτh)n

)
with (ψτh)n =

(
(ψτh)ni

)m
i=1
∈ Xm

h , which
are used to define the approximations to the electromagnetic fields via the
time-discrete representation formulas

Eτh = −S(∂τt )ϕτh +D(∂τt )ψτh, (6.2)

µHτ
h = −D(∂τt )ϕτh − S(∂τt )ψτh. (6.3)

We then have the following error bounds for the full discretization, obtained
under regularity assumptions that are presumably stronger than necessary.
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Theorem 6.1 (Error bound of the full discretization) In the situation
of Theorem 4.1, consider
— Runge–Kutta convolution quadrature based on the Radau IIA method with
m ≥ 2 stages used for the time discretization (5.6) and (5.7)–(5.8) of the
boundary integral equation (4.2) and the representation formulas (4.5)–(4.6),
respectively; and
— Raviart–Thomas boundary elements of order k for the space discretization
of the boundary integral equation (4.2).
For r > 2m+ 3, let ginc ∈ Cr([0, T ],VΓ

′) vanish at t = 0 together with its first
r − 1 time derivatives. Furthermore, it is assumed that the solution (ϕ,ψ) of
the boundary integral equation (4.2) is in C10([0, T ], Hk+1

× (Γ )2), vanishing at
t = 0 together with its time derivatives.
Then, the approximations to the electromagnetic fields Enh = (Eτh)n−1m and
Hn
h = (Hτ

h)n−1m satisfy the following error bound of order m− 1/2 in time and
order k + 1 in space at tn = nτ ∈ [0, T ]:∥∥∥∥(Enh − E(tn)

Hn
h −H(tn)

)∥∥∥∥
H(curl,Ω)2

≤ C
(
τm−1/2 + hk+1

)
.

On Ωd = {x ∈ Ω : dist(x, Γ ) > d} with d > 0, there is the full order 2m − 1
in time: ∥∥∥∥(Enh − E(tn)

Hn
h −H(tn)

)∥∥∥∥(
H(curl,Ωd)∩C1(Ωd)3

)2 ≤ Cd(τ2m−1 + hk+1
)
.

The constants C and Cd are independent of n, τ and h, but depend on the
final time T and on the regularity of ginc and (ϕ,ψ) as stated. Cd additionally
depends on the distance d. In the case of the impedance operators (1.3)–(1.6),
both C and Cd are independent of the small parameter δ.

Proof We structure the proof into three parts (a)–(c).
(a) (Discretized time-harmonic boundary integral equation). We first con-

sider the time-harmonic boundary integral equation (3.27), for Re s ≥ σ >
σ0 ≥ 0. We denote by Lh(s) : VΓ

′ → Vh × Xh the solution operator ĝ 7→
(ϕ̂h, ψ̂h) of the Galerkin approximation in Vh ×Xh,〈(

υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
= 〈υh, ĝ〉 ∀ (υh, ξh) ∈ Vh ×Xh, (6.4)

which by the bound ofA(s) in Lemma 3.6, the coercivity estimate of Lemma 3.7
and the Lax–Milgram lemma is bounded by

‖Lh(s)‖Vh×Xh←VΓ ′ ≤
1

cσ

|s|2

Re s
. (6.5)

Next we consider the associated Ritz projection Rh(s) : VΓ ×XΓ → Vh×Xh,

which maps (ϕ̂, ψ̂) ∈ VΓ ×XΓ to (ϕ̂h, ψ̂h) ∈ Vh ×Xh determined by〈(
υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
=

〈(
υh
ξh

)
, A(s)

(
ϕ̂

ψ̂

)〉
∀ (υh, ξh) ∈ Vh ×Xh.
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Again by Lemmas 3.6 and 3.7 and the Lax–Milgram lemma, this problem has
a unique solution (ϕ̂h, ψ̂h) ∈ Vh ×Xh, and by Céa’s lemma,∥∥∥∥(ϕ̂hψ̂h

)
−
(
ϕ̂

ψ̂

)∥∥∥∥
VΓ×XΓ

≤ Cσ
cσ

(
|s|2

Re s

)2

inf
(υh,ξh)∈Vh×Xh

∥∥∥∥(υhξh
)
−
(
ϕ̂

ψ̂

)∥∥∥∥
VΓ×XΓ

,

where the right-hand side is further bounded by Lemma 6.1. We can thus view
the associated error operator Eh(s) = Rh(s)− Id as a bounded operator from
Hk+1
× (Γ )2 to VΓ ×XΓ with the bound, for Re s ≥ σ > σ0 ≥ 0,

‖Eh(s)‖VΓ×XΓ←Hk+1
× (Γ )2 ≤ C̃σ

|s|4

(Re s)2
hk+1. (6.6)

(b) (Error of the spatial semi-discretization). The spatial semi-discretization
of the time-dependent boundary integral equation (4.2),〈(

υh
ξh

)
, A(∂t)

(
ϕh
ψh

)〉
= 〈υh, ginc〉 ∀ (υh, ξh) ∈ (Vh ×Xh)m, (6.7)

then has the unique solution(
ϕh
ψh

)
= Lh(∂t)g

inc = Rh(∂t)

(
ϕ
ψ

)
,

where (ϕ,ψ)> = A−1(∂t)(g
inc, 0)> is the solution of (4.2). We abbreviate

W (s) =

(
−S(s) D(s)
−D(s) −S(s),

)
and set

Uh(s) = W (s)Lh(s) : VΓ
′ → H(curl, Ω)2. (6.8)

By (6.5) and Lemma 3.1, this is bounded by

‖Uh(s)‖H(curl,Ω)2←VΓ ′ ≤ C̄σ
|s|4

(Re s)2
. (6.9)

The spatial semi-discretization of the scattering problem is then obtained as(
Eh
µHh

)
= Uh(∂t)g

inc.

In view of (5.9), its error is(
Eh
µHh

)
−
(
E
µH

)
= Uh(∂t)g

inc − U(∂t)g
inc = W (∂t)

(
ϕh
ψh

)
−W (∂t)

(
ϕ̂

ψ̂

)
= W (∂t)(Rh − Id)

(
ϕ̂

ψ̂

)
= W (∂t) Eh(∂t)

(
ϕ̂

ψ̂

)
.

Using the bound of Lemma 3.1 for the potential operator W (s), the bound
(6.6) for the error operator Eh(s), and the bound (2.13) (with κ = 6) for their
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composition, and finally the Sobolev embeddingH1(0, T ;H) ⊂ C([0, T ], H) for
any Hilbert space H, we obtain for the error of the spatial semi-discretization

max
0≤t≤T

∥∥∥∥( Eh(t)
µHh(t)

)
−
(
E(t)
µH(t)

)∥∥∥∥
H(curl,Ω)2

(6.10)

≤ C
∥∥∥∥( Eh
µHh

)
−
(
E
µH

)∥∥∥∥
H1

0 (0,T ;H(curl,Ω)2)

≤ CT hk+1

∥∥∥∥(ϕψ
)∥∥∥∥

H7
0 (0,T ;Hk+1

× (Γ )2)

.

Using the same argument with the pointwise bounds away from the boundary
given by Lemmas 3.8 and 3.9, we further obtain

max
0≤t≤T

∥∥∥∥( Eh(t)
µHh(t)

)
−
(
E(t)
µH(t)

)∥∥∥∥
C1(Ωd)2

≤ CT hk+1

∥∥∥∥(ϕψ
)∥∥∥∥

H8
0 (0,T ;Hk+1

× (Γ )2)

.

(6.11)
(c) (Error of the full discretization). The total error is(

Enh
µHn

h

)
−
(
En

µHn

)
+

(
En

µHn

)
−
(
E(tn)
µH(tn)

)
.

The second difference is the error of the temporal semi-discretization, which is
bounded by O(τm−1/2) in the H(curl, Ω)2 norm in Proposition 5.1. The first
difference is written as (omitting here the superscript n− 1 and subscript m)

W (∂τt )Eh(∂τt )

(
ϕ̂

ψ̂

)
=

(
W (∂τt )Eh(∂τt )

(
ϕ̂

ψ̂

)
−W (∂t)Eh(∂t)

(
ϕ̂

ψ̂

))
+ W (∂t)Eh(∂t)

(
ϕ̂

ψ̂

)
.

The last term is the error of the spatial semi-discretization studied in part (b),
which is bounded by (6.10). The difference written in brackets on the right-
hand side is a convolution quadrature error, which can be bounded by Lem-
ma 5.1. This gives an O(hk+1) error in the H(curl, Ω)2 norm, using that by
Lemma 3.1 and (6.6) we have here Mσ ≤ Cσh

k+1, κ = 6, ν = 3 in (5.1) with
W (s)Eh(s) in the role of K(s), and choosing q = 2 and r = 10 > 2q − 1 + κ.
Note that here min(2q − 1, q + 1− κ+ ν) = q − 2 = 0. Altogether, this yields
the stated O(τm−1/2 + hk+1) error bound in the H(curl, Ω)2 norm.

To prove the full-order error bound away from the boundary, we rewrite
the error as(

Enh
µHn

h

)
−
(
Eh(tn)
µHh(tn)

)
+

(
Eh(tn)
µHh(tn)

)
−
(
E(tn)
µH(tn)

)
.

The second difference is the error of the spatial semi-discretization studied in
part (b). The first difference is a convolution quadrature error for the transfer
operator Uh(s) of (6.8):(

Enh
µHn

h

)
−
(
Eh(tn)
µHh(tn)

)
=
(
Uh(∂τt )ginc

)n−1
m
− Uh(∂t)g

inc(tn).
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(Estimating this error in the H(curl, Ω)2 norm by Lemma 5.1 would only give
an O(τm−1) bound instead of the stated O(τm−1/2) bound, which is why we
chose a different path before.)

The full-order error bound away from the boundary in the H(curl, Ωd)
norm and the C1(Ωd) norm then follows from Lemma 5.1, using the bounds
of Lemmas 3.8–3.10 that decay exponentially with d Re s, concatenated with
the bound (6.5). This completes the proof of the error bounds. ut

7 Implementation and Numerical Experiments

We start this final section with a few words on the implementation and then
present the results of numerical experiments. The codes which were used to
generate the figures in this section are distributed via [33].

7.1 Implementation

The convolution quadrature weights are approximated by discretizing their
Cauchy-integral representation with the trapezoidal rule, as already described
in [28]. This gives the approximation to the weights

Wn(K) ≈ ρ−n

L

L−1∑
l=0

K

(
∆(ρ ζ−lL )

τ

)
ζnlL , for 0 ≤ n ≤ N, (7.1)

where ζL = e2πi/L. The parameters are chosen such that L = N + 1 and
ρN =

√
ε, where ε denotes the machine precision.

To evaluate the analytic operator family K(∆(ζ)/τ), for the matrix valued
characteristic function ∆(ζ) ∈ Cm×m at a point ζ ∈ C inside of the unit circle,
it is convenient to diagonalize the characteristic function by

T−1K (∆(ζ))T = K
(
T−1∆(ζ)T

)
, for invertible T ∈ Cm×m,

which reduces the evaluation K(∆(ζ)/τ) to evaluating K(·) at the eigenvalues
of ∆(ζ). Plugging the approximations to the quadrature weights into (5.4)
then gives the scheme

(K(∂τt )g)
n ≈ ρ−n

L

L−1∑
l=0

ζlnL K

(
∆(ρ ζ−lL )

τ

) N∑
j=0

ρjgjζ−jlL

 .
The sums above are realized effectively by the application of FFTs, which
leaves the main computational obstacle at the evaluations of the Laplace do-
main operatorsK(·) atmL scalar frequencies sk ∈ C for k = 1, . . . ,mL (i.e. the
collection of eigenvalues of K(∆(ρ ζ−lL )/τ)) with positive real part. Setting ei-
ther K(s) = Ah(s)−1 or K(s) = Uh(s) then gives schemes to approximate the
boundary densities (ϕ,ψ) or the electromagnetic fields E,H, respectively.
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We note that due to symmetric properties of the time-harmonic operators,
only half of the Laplace domain evaluations have to be computed [13].

Our numerical experiments were conducted in Python, where the appearing
potential and boundary operators were discretized with the library Bempp
[37]. As space discretization we choose Raviart–Thomas elements of order 0
and the arising linear systems were iteratively solved with GMRES. The anti-
symmetric pairing appearing in the weak formulation (3.26) was realized by
choosing corresponding Nédélec boundary elements as the test space.

7.2 Numerical Experiments

We present two types of numerical experiments.

- Convergence experiments, where the errors between the numerical solution
and a reference solution are presented, for various mesh sizes and time step
sizes, and for different values of δ.

- We present the computed numerical solution of a three-dimensional scat-
tering problem with a torus as the obstacle.

We test the proposed numerical method with an incidental electric planar
wave that solves Maxwell’s equations on R3, which we set to be

Einc(t, x) = e−50(t−x3−t0)2e1, (7.2)

where e1 = (1, 0, 0)T and t0 = −2. This incidental wave is scattered from a unit
sphere centered around the origin, where we applied the generalized impedance

boundary condition corresponding to Z(∂t) = δ∂
1/2
t , with δ = 10−1, 10. The

reference solution is computed using a 0-th order Raviart–Thomas boundary
element space discretization with 47242 degrees of freedoms and the 3-stage
Radau IIA time discretization of order 5 with N = 210 time steps.

In Figure 7.1 and 7.2 we report on a numerical experiment illustrating
the error estimate of Theorem 6.1. We plot the error of the point evaluation
at P = (2, 0, 0) between numerical approximation Eτh(P, tn) and the reference
solution Eref (P, tn).

The logarithmic plots in Figure 7.1 show the errors against the time step
size τ , the lines marked with different symbols correspond to different mesh
widths h given in the plot. Figure 7.2 contains the same plots for δ = 10−1

(left) and δ = 10 (right), but reversing the roles of τ and h.
In Figure 7.1 we can observe a region where the temporal discretization

error dominates, and a region where the spatial discretization error dominates
(the curves are flattening out). In the region with small spatial error, we can
observe that the error curves match the order of convergence of our theoretical
results (note the reference lines), of full classical order O(τ2m−1).

Similarly, for Figure 7.2 an analogous description applies but with reversed
roles. Although the error estimates of Theorem 6.1 are δ-independent, in view
of Remark 6.1, we expect a δ-explicit error bound O(hk+3/2 + δ1/2hk+1). Fig-
ure 7.2 reports on the spatial convergence rates with k = 0. On the left-hand
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side we can observe that since δ is small enough the first spatial term dom-
inates in the above error estimate, matching the spatial order O(h3/2). On
the right-hand side, with a large enough δ the second term is dominating,
matching the spatial order O(h).

step size 

Fig. 7.1 Convergence plot in time for the fully discrete problem, with δ = 0.1

Fig. 7.2 Space convergence plot of the fully discrete system, with varying layer thickness
δ = 10−2 (left), and δ = 10 (right).
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We conclude our investigations with a visual representation of the scatter-
ing arising from a torus with a revolving circle of radius r = 0.2, where the
outer centres lie on a circle of radius R = 0.8. The incidental wave (7.2) with
t0 = −1 is scattered by absorbing boundary conditions corresponding to the

impedance operator Z(∂t) = δ∂
1/2
t with δ = 0.1 on the torus.

We discretize the described problem in space with 0-th order Raviart–
Thomas boundary elements with 2688 degrees of freedom and apply convolu-
tion quadrature based on the 3-stage Radau IIA method with N = 100 time
steps. The left-hand side plot of Figure 7.3 visualizes the frequencies sk for
k = 1, . . . ,mL, at which the Laplace domain operator Uh(sk) has to be evalu-
ated. The plot on the right-hand side shows condition numbers and norms of
the matrix arising from Ah(s) and its inverse, as one follows the contour de-
picted before. We observe that the condition number remains relatively mild,
which makes iterative solvers accessible to the problem at hand.

Figure 7.4 then shows the total wave Etot on the x2 = 0 plane at different
times.

Fig. 7.3 The left-hand side plot shows a plot of the occuring frequencies for the 3-stage
Radau IIA method for N = 100 and T = 4. On the right-hand side, the condition num-
bers and the euclidean norms of the occuring matrices are shown, as they appear when
following the integral contour on the left-hand side. The markers on both plots localize the
corresponding spikes of the condition numbers on the integral contour.
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Fig. 7.4 3D-scattering arising from a torus, visualized at different times. Shown is the y = 0
plane, through the middle of the scatterer and the boundary condition employed is (1.5)
with δ = 0.1
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