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Abstract. In this paper we propose two exponential integrators of first and second order applied
to a class of quasilinear wave-type equations. The analytical framework is an extension of the classical
Kato framework and covers quasilinear Maxwell’s equations in full space and on a smooth domain as
well as a class of quasilinear wave equations. In contrast to earlier works, we do not assume regularity
of the solution but only on the data. From this we deduce a well-posedness result upon which we
base our error analysis. We include numerical examples to confirm our theoretical findings.
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1. Introduction. In the present paper we study the time integration of the
quasi-linear evolution equation

(1.1) Λ(u(t))u′(t) = Au(t) + g(t, u(t)), t ∈ [0, T ], u(0) = u0,

posed in some Hilbert space X with a skew-adjoint operator A : D(A) → X using
exponential integrators. In [18, 19], Kato casted a large class of equations into this
form and established suitable well-posedness results. This framework (for g(t, u) =
Q(u)u) was refined in the doctoral thesis [26] in order to treat certain quasilinear wave
and Maxwell’s equations. Since these quasilinear equations are important models for
nonlinear optics and acoustics, in the recent years a lot of effort has been put in the
numerical treatment. We give a brief review in the following paragraph.

In the pioneering works [6, 17, 20, 29] an abstract approximation to nonlinear
and quasilinear evolution equation was constructed with the goal to prove existence
of solutions. However, one can actually also find approximation rates of the implicit
and semi-implicit Euler method in there. By completely new techniques, these re-
sults could be improved to optimal order in [15] for equations of the type (1.1) and
higher order Runge-Kutta methods were discussed in [14, 21]. In the case of the one-
dimensional wave equation equipped with periodic boundary condition, error bounds
for semi-discretization in time and full discretization were proved in [9]. These bound
were shown for a trigonometric integrator by a sophisticated stability analysis. In
[2, 27] continuous and discontinuous Galerkin (dG) methods were used for the space
discretization of the Westervelt equation in two and three dimensions and absorbing
boundary conditions for this equation were treated in [25]. Concerning full discretiza-
tion, we further mention the work [5], where error bounds for linear finite elements
in space combined with a dG method of order 0 in time for parabolic problems were
derived under low regularity assumptions. In the hyperbolic case the thesis [23] treats
finite element methods and Runge-Kutta schemes for Maxwell’s equations and wave
equations. The potential of exponential integrators for Maxwell’s equations has been
shown by several numerical experiments in [28].
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2 B. DÖRICH AND M. HOCHBRUCK

Our aim is to provide reliable error bounds for exponential integrators which only
depend on the regularity given from the data but not on the additional assumptions
on the smoothness of the solution. As a consequence, we only consider first- and
second-order methods and analyze the convergence in the appropriate spaces. This
approach was already used by the authors in [3].

The theory is inspired by the two following series of papers. In [10, 11, 12]
González and Thalhammer constructed and analyzed several exponential integration
schemes for parabolic equations. Their analysis heavily relies on the parabolic smooth-
ing properties induced by the analytic semigroup which are not available for skew-ad-
joint operators. For hyperbolic systems the original Kato framework in [18, 19] was
used in [21] to prove error bounds for algebraically stable and coercive Runge-Kutta
methods and the same result could be shown in [14, 15] in the refined Kato framework
[26].

In contrast to previous works we focus on the time integration of (1.1) by expo-
nential integrators. Recently, in [3] we observed that for semilinear wave equations
it is thereby possible to lower the regularity requirements in comparison to standard
Runge-Kutta or BDF methods. Our main results show that also for quasilinear wave-
type problem less regularity is needed to obtain first- and second-order error bounds
compared to the results in [14, 15, 21]. A more detailed version of the results presented
in this paper can be found in the doctoral thesis [8].

The rest of the paper is structured as follows. For our error analysis we first
introduce the analytical framework in Section 2. In Section 3, we state the main
results for the first-order method and add some assumptions required for the second-
order scheme. The proofs are given in Section 4 and 5, respectively. We conclude
with numerical experiments for both methods combined with a finite element method
in space in Section 6.

Notation. For Hilbert spaces X,Y , 〈·, ·〉X denotes the scalar product on X and
L(X,Y ) the set of all bounded operators T : X → Y equipped with the standard
operator norm ‖T‖Y←X and we set L(X) := L(X,X). By BX(r) we denote all
elements in X with norm less or equal r. Further, we write W k,p(Ω), k ∈ N0, 1 ≤
p ≤ ∞, for the Sobolev space of order k with all (weak) derivatives in Lp(Ω) and
abbreviate Hk(Ω) := W k,2(Ω).

2. Analytical framework and problem statement. We introduce the three
nested Hilbert spaces

Z ↪→ Y ↪→ X

continuously and densely embedded, and Y is an exact interpolation space between
Z and X, see [22]. The linear operator A is skew-adjoint on D(A) and the domain
satisfies Y ↪→ D(A) ↪→ X with

‖A‖X←Y ≤ αXY , ‖A‖Y←Z ≤ αY Z .

In order to formulate the scheme and state all the assumptions, we rewrite (1.1) as

(2.1) u′(t) = A(u(t)) + f(t, u(t)), u(0) = u0,

where we use the notation

A(u) = Au = Λ−1(u)A, f(t, u) = Λ−1(u)g(t, u) .
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Given a numerical approximation un ≈ u(tn), tn = nτ with stepsize τ , we define the
operators

An = A(un), fn = f(tn, un) ,(2.2)

and construct the exponential integrators in the following way. We freeze the ar-
gument of the differential operator and the semilinear term in (2.1) and solve the
resulting linear equation exactly. If we use the last approximation un, we obtain the
exponential Euler scheme

(2.3)
un+1 = eτAnun + τϕ1(τAn)fn

= un + τϕ1(τAn)
(
Anun + fn

)
,

where the function ϕ1 is given by

ϕ1(z) =

1∫
0

esz ds .

We also study a second-order method, inspired by the semi-implicit midpoint rule in
[21]. To obtain a method of order 2, one would like to use the average of un and un+1,
but this would make the method implicit and thus computationally more expensive.
Hence, the idea is to use the last two approximations in order to extrapolate to the
average which gives the exponential midpoint rule

(2.4)

u1/2 = u0,

un+1/2 = 1
2

(
3un − un−1

)
, n ≥ 1,

un+1 = un + τϕ1(τAn+1/2)
(
An+1/2un + fn+1/2

)
, n ≥ 0.

The main computational cost for this two-step method is the same as for the expo-
nential Euler method (2.3).

2.1. A prototypical example. Before we precisely state the assumptions, we
focus on an example for equation (1.1). As a prototype consider the quasilinear wave
equation from [7] on a bounded domain Ω ⊆ Rd, d = 1, 2, 3, with a C3-boundary ∂Ω
of the form

∂ttq(t) + ∂ttK
(
q(t)

)
= ∆q(t) + r(t, q(t), ∂tq(t)), in Ω, t ≥ 0 ,

q(t) = 0, on ∂Ω, t ≥ 0 ,

with

K ∈ C4(R), 1 +K ′(0) > 0, r ∈ C3(R× Ω× R× R) ,

and r(t, ·, 0, 0) = 0 on ∂Ω for t ≥ 0. Note that in [7] the term r was not present. We

rewrite the equation in a first-order formulation with u =
(
q, ∂tq

)T
and operators

Λ(u) =

(
1 0
0 1 +K ′(q)

)
, A =

(
0 I
∆ 0

)
, g(t, u) =

(
0

r(t, q, ∂tq)−K ′′(q)
(
∂tq
)2) ,

such that it fits into the framework of (1.1). The Hilbert spaces in this example are

X := H1
0 (Ω)× L2(Ω), Y :=

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω),

Z := {q ∈ H3(Ω) ∩H1
0 (Ω) : ∆q ∈ H1

0 (Ω)} ×
(
H2(Ω) ∩H1

0 (Ω)
)
.
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In order to ensure non-degeneracy of (1.1) and to derive the formulation (2.1),
we need invertibility of the operator Λ. In the model above, a typical choice is the
Kerr-type nonlinearity

K(z) = χz3, χ ∈ R ,

see for example [4, 24, 28]. In this model, for the solution q one has to guarantee

(2.5) 1 +K ′(q) = 1 + 3χq2 > 0 ,

which holds for χ ≥ 0 independent of q. Since we only consider d ≤ 3, we employ the
continuous embedding H2(Ω) ↪→ L∞(Ω) with constant Cemb, and obtain

‖q‖L∞ ≤ Cemb ‖q‖H2 ≤ Cemb ‖u‖Y .

Hence, (2.5) also holds true for χ < 0 if the norm ‖u‖Y is controlled by some radius
R satisfying

R2 <
1

C2
emb3 |χ|

.

This radius R plays an important role in the well-posedness and the error analysis in
the present paper. From the above considerations it is clear that R is a given quantity
of the problem which might have an a priori bound as in the case χ < 0. Further, we
need another radius r, which can be chosen arbitrarily, with

‖u‖Z ≤ r,

in order to establish uniforms bounds in the following.
The scheme can also be applied to quasilinear Maxwell’s equations for which an

appropriate framework was provided in [26], for instance. Most of the assumptions
made in this section are verified therein. For time integration schemes, this framework
was first amended in [15].

2.2. General assumptions. We recall that the radius R < ∞ is a quantity
which is in general given from the problem, but might have no a-priori bound. How-
ever, the radius r < ∞ can always be chosen arbitrarily large. We drop the depen-
dency of the constants on R and r for the sake of readability, i.e., we always abbreviate
C = C(R, r) where C is any constant appearing in the following.

Assumption 2.1 (properties of Λ). The set {Λ(y) : y ∈ B̄Y (R)} forms a family
of invertible self-adjoint operators in L(X) such that the ranges Ran(I ∓ Λ−1(y)A)
are dense in X and the inverses Λ−1(y) also belong to L(Y ). Moreover, for all x ∈ X
and y, ỹ ∈ BY (R), we have for some constants λX , νX , ` > 0 the bounds

‖Λ(y)‖X←X ≤ λX ,(2.6a)

〈x,Λ(y)x〉X ≥ ν−1
X ‖x‖

2
X ,(2.6b)

‖Λ(y)− Λ(ỹ)‖X←X ≤ ` ‖y − ỹ‖Y .(2.6c)

Further, there are constants `X , `Y , `Z such that for φ, φ̃ ∈ B:∥∥∥Λ−1(φ)− Λ−1(φ̃)
∥∥∥
V←W

≤ `V
∥∥∥φ− φ̃∥∥∥

V
,(2.6d)
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with the triples(
V,W,B

)
∈
{(
X,Y,BY (R)

)
,
(
Y, Y,BY (R)

)
,
(
Z,Z,BZ(r)

)}
.

From the previous assumption we immediately infer, with νX from (2.6b) and
constants νY , νZ , that for φ ∈ B it holds∥∥Λ−1(φ)

∥∥
V←V ≤ νV ,(2.7)

with the tupels (
V,B

)
∈
{(
X,BY (R)

)
,
(
Y,BY (R)

)
,
(
Z,BZ(r)

)}
.

For φ ∈ BY (R), we consider the state dependent inner product

(2.8) 〈x, y〉φ = 〈Λ(φ)x, y〉X ,

which is defined by (2.6a) and (2.6b). The two following properties connect the
state dependent norm with the X-norm and also the norms for different states. The
assertions can be found in the Appendix of [15].

Lemma 2.2 (relation between norms). Let Assumption 2.1 hold.
(a) For φ ∈ BY (R)

λ−1
X ‖u‖

2
φ ≤ ‖u‖

2
X ≤ νX ‖u‖

2
φ .

(b) For φ, ψ ∈ BY (R)

‖u‖φ ≤ e
k1τ ‖u‖ψ , for ‖φ− ψ‖Y ≤ γτ,

where k1 = k1(γ) = 1
2νX ` γ.

The assumptions on Λ also yield bounds and Lipschitz properties of the composed
differential operator Aφ.

Lemma 2.3 (properties of Aφ). Let Assumption 2.1 hold. Then for φ ∈ BY (R)

‖Aφ‖X←Y ≤ νXαXY ,(2.9a)

and for φ, ψ ∈ BY (R) ∩ BZ(r)

‖Aφ‖Y←Z ≤ νY αY Z ,(2.9b)

‖Aφ −Aψ‖X←Z ≤ LX ‖φ− ψ‖X ,(2.9c)

‖Aφ −Aψ‖Y←Z ≤ LY ‖φ− ψ‖Y .(2.9d)

Proof. The bound (2.9a) directly follows from Assumption 2.1 and the other state-
ments are proved in [15, Lemma 3.6].

A key element not only in the proofs of well-posedness is the following assumption.
It guarantees that the quasilinear operator behaves well not only with respect to the
ground space X but also on the stronger space Z.

Assumption 2.4 (commutator condition). We assume that there is a continuous
isomorphism S : Z → X such that for z ∈ BY (R) ∩ BZ(r)

AS
z = SAzS

−1 = Az +B(z),
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and there is a constant β ≥ 0 such that

‖B(z)‖X←X ≤ β .

We finally conclude properties of the semilinear term in (2.1). The assumptions
are made for the term original term g in (1.1).

Assumption 2.5 (properties of g). For V ∈ {X,Y, Z} there are constants Lg,V
such that for φ1, φ2 ∈ BZ(r) and t, s ∈ [0, T ] it holds

(2.10) ‖g(t, φ1)− g(s, φ2)‖V ≤ Lg,V
(
|t− s|+ ‖φ1 − φ2‖V

)
.

We recall that the above assumptions are all satisfied in the case of the wave and Max-
well’s equations considered in Section 2.1, cf. [8, Appendix B]. Employing properties
(2.6d) and (2.7) we derive the following result.

Lemma 2.6 (properties of f). Let Assumptions 2.1 and 2.5 hold.
(a) The Lipschitz bound (2.10) also holds for f with constants Lf,V .
(b) For V ∈ {Y,Z} there are constants Cf,V,∞ such that for φ ∈ BZ(r) and

t ∈ [0, T ]

‖f(t, φ)‖V ≤ Cf,V,∞ .

2.3. Notation and well-posedness. We briefly collect some relevant constant
used in the error analysis later. In the following, γ > 0 denotes a given parameter,
which will be determined later.

k0 = (νXλX)1/2 ≥ 1, k1 = k1(γ) = 1
2 νX`γ,

c0 = ‖S‖X←Z
∥∥S−1

∥∥
Z←Xk0 ≥ 1, c1 = c0νY αY Z .

We are now in the position to state the necessary extension of the well-posed-
ness result to our problem which is proven in the case of f(t, u) = Q(u)u in [26] and
extended in [8, Thm. 5.14] to the general case.

Theorem 2.7. Let Assumptions 2.1, 2.4, and 2.5 be satisfied. For an initial value

‖u0‖Y ≤ R0 := 1
4c0
R, ‖u0‖Z ≤ r0 := 1

4c0
r,

define the time

(2.12) T := min
{ ln 2

ω2
,

R

4c0Cf,Y,∞
,

r

4c0Cf,Z,∞
,

1

4c0
(
LY r + Lf,Y

)} ,
where

(2.13) ω2 = ω2(γ) = k1(γ) + k0β, γ = γ(r) := c1
c0
r + 2c0Cf,Y,∞ .

Then there is a unique solution u of (2.1) with

u ∈ C([0, T ], Z) ∩ C1([0, T ], Y )

satisfying

‖u(t)‖Y ≤ R, ‖u(t)‖Z ≤ r

on the interval [0, T ].
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Analogously to the definitions in (2.2) for the numerical approximation un, let
u(t) be the solution of Theorem 2.7 and define ûn+σ = u(tn + τσ). With this we
introduce the notation

f̂(t) = f(t, u(t)), f̂n+σ = f(tn + τσ, ûn+σ),

Â(t) = A(u(t)), Ân+σ = A(ûn+σ) .

We further use for a Hilbert space V and a function v ∈ C([0, T ], V )

‖v‖V,∞ := max
t∈[0,T ]

‖v(t)‖V .

3. Numerical methods and main results. In this section we present error
bounds for the schemes (2.3) and (2.4) which are the main results of the paper. In
the following we precisely state the necessary regularity of the solution u. Note that
in addition all constants depend on quantities introduced in Section 2.

3.1. Exponential Euler. We first consider the first-order scheme proposed
in (2.3). For this method we establish uniform error bounds of order one in the
X- as well as in the Y -norm.

Theorem 3.1. Let u be the solution of (1.1) and un the approximation obtained
from (2.3). If Assumptions 2.1, 2.4, and 2.5 are satisfied, we obtain for V ∈ {X,Y }
the error bounds

‖u(tn)− un‖V ≤ tne
cV tnCV τ, 0 ≤ nτ = tn ≤ T,

with constants CV , cV > 0 that only depend on ‖u′‖V,∞ and ‖u‖Z,∞, but are indepen-
dent of τ , n and tn.

By Theorem 2.7, we can control the X-, Y - and Z-norm of u on [0, T ]. More
regularity of the exact solution u and additional assumptions on the data lead to
first-order convergence also in the Z-norm, c.f. [15, Thm. 4.5] and [8, Thm. 7.20].
Note however, that the bound in the Y -norm is shown only using regularity given in
Theorem 2.7.

3.2. Exponential midpoint rule. In order to derive error bounds of order
higher than one for the scheme (2.4), it is not sufficient to use Lipschitz bounds as
stated in previous section. Instead, we need to apply Taylor expansion to the terms on
the right-hand-side of (2.1). We formulate the necessary differentiability conditions
in assumptions. The straightforward but rather lengthy computations to verify them
for the quasilinear wave equation and Maxwell’s equations can be found in full detail
in [8, Appendix B].

Assumption 3.2 (additional properties of g). Let u ∈ C1([0, T ], Y )∩C([0, T ], Z)
and consider the map

t 7→ ĝ(t) = g(t, u(t)) .

Then there is a constant Cg′,Y,∞ with
(a) t 7→ ĝ(t) ∈ C1([0, T ], Y ), ‖ĝ′(t)‖Y ≤ Cg′,Y,∞,

and, if in addition, u ∈ C2([0, T ], X) holds, then there is Cg′′,X,∞ such that
(b) t 7→ ĝ(t) ∈ C2([0, T ], X), ‖ĝ′′(t)‖X ≤ Cg′′,X,∞

with constants only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞.
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Whereas similar conditions to those in Assumption 3.2 are known from the analy-
sis of semilinear evolution equations, the following is needed for the expansion of the
term with the differential operator.

Assumption 3.3 (additional properties of Λ). Let u ∈ C1([0, T ], Y )∩C([0, T ], Z)
and consider the map

t 7→ Λ−1(t) := Λ−1(u(t)) .

For V ∈ {X,Y } and v ∈ V it holds

(a) t 7→ Λ−1(t)v ∈ C1([0, T ], V ),
∥∥∥(Λ−1)′(t)∥∥∥

V←V
≤ CV V ,

and, if in addition, u ∈ C2([0, T ], X), it further holds for y ∈ Y
(b) t 7→ Λ−1(t)y ∈ C2([0, T ], X),

∥∥∥(Λ−1)′′(t)∥∥∥
X←Y

≤ CXY ,

with constants CXX , CXY , CY Y only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞.

A combination of the two preceding assumptions gives us the following differentiability.

Lemma 3.4. Let u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z) and consider the map

t 7→ f̂(t) = f(t, u(t)) .

If Assumptions 2.1, 2.5, 3.2, and 3.3 hold, then f̂ satisfies Assumption 3.2(a). If in
addition u ∈ C2([0, T ], X), then it also satisfies Assumption 3.2(b). The constants
Cf ′,Y,∞, Cf ′′,X,∞ only depend on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞.

Further, we easily obtain together with Assumption 2.1 (a) the following differ-
entiability of the differential operator evaluated at a smooth function.

Lemma 3.5. Let u ∈ C1([0, T ], Y ) ∩ C([0, T ], Z) and consider the map

t 7→ Â(t) = Λ−1(t)A .

If Assumptions 2.1 and 3.3 hold, then for y ∈ Y and z ∈ Z it holds

(a) t 7→ Â(t)y is C1([0, T ], X),
∥∥∥Â′(t)∥∥∥

X←Y
≤ CAXY ,

(b) t 7→ Â(t)z is C1([0, T ], Y ),
∥∥∥Â′(t)∥∥∥

Y←Z
≤ CAY Z ,

and, if in addition, u ∈ C2([0, T ], X), it further holds

(c) t 7→ Â(t)z is C2([0, T ], X),
∥∥∥Â′′(t)∥∥∥

X←Z
≤ CAXZ ,

with constants CAXY , C
A
Y Z , C

A
XZ only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞.

The first important application of the assumptions in this section is the following
regularity result which is intensively used in the error analysis of the second-order
scheme.

Lemma 3.6. If the assumptions of Theorem 2.7 are satisfied and in addition As-
sumptions 3.2 (a) and 3.3 (a) hold, then the solution u of (2.1) satisfies

u ∈ C2([0, T ], X) ∩ C1([0, T ], Y ) ∩ C([0, T ], Z) .

Proof. We only need to prove that u′ is differentiable in X. To do so, we dif-
ferentiate the right-hand-side of (2.1), which is possible by the regularity of u in
Theorem 2.7, Assumption 3.2 (a), and Lemma 3.5.

The last step towards the statement of the error bound of the exponential mid-
point rule is an adaption of the constants caused by the extrapolated approximation
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un+1/2. Since this is not a convex combination of previous approximations, bounds

on those are not directly applicable. We hence choose some radius R̂ > R such that
Assumption 2.1 on Λ(y) for y ∈ BY (R̂) is still valid. This is necessary for the stability
of the numerical schemes and enters later as a mild stepsize restriction τ ≤ τ0 with

(3.1) γ̂τ0
2 < R̂−R ,

where γ̂ is chosen below in (3.3). Similarly, we also have to replace the radius r by
r̂ = 2r. For all computations concerning the exponential midpoint rule we adapt the
assumptions of the previous section to the new radii R̂ and r̂ and denoted them by
the same name but with an additional hat, e.g., we replace

Cf,X,∞ = Cf,X,∞(R, r) by Ĉf,X,∞ = Ĉf,X,∞(R̂, r̂) .

Without loss of generality in the following we assume that all constants grow mono-
tonically in the radii such that, e.g., Cf,X,∞ ≤ Ĉf,X,∞ holds. This allows to only
simulate up to the time

T̂mid := min
{ ln 2

ω̂2
,

R

4ĉ0Ĉf,Y,∞
,

r

4ĉ0Ĉf,Z,∞

}
,(3.2)

where

ω̂2 = 2k̂1(γ̂) + k̂0β̂, γ̂ :=
ĉ1
ĉ0
r + 2ĉ0Ĉf,Y,∞ .(3.3)

If we compare (3.2) to the end time T given in (2.12), then in general the three terms
appearing here are smaller than the corresponding ones in (2.12). However, in (3.2)
there is one term less, such that one can not decide which time is larger. Hence, we
prove the following error bound in X- and the Y -norm on the intersection of both
time intervals.

Theorem 3.7. Let u be the solution of (1.1) and un the approximation obtained
from (2.4). If Assumptions 2.1, 2.4, and 2.5 are satisfied, and in addition Assump-
tions 3.2 and 3.3 hold true, and τ0 is given by (3.1), then for all τ ≤ τ0 the error is
bounded by

‖u(tn)− un‖X + τ ‖u(tn)− un‖Y ≤ tne
c tnCτ2, 0 ≤ nτ = tn ≤ min{T, T̂mid} ,

with constants C, c > 0 that only depend on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞, but are
independent of τ , n and tn.

Remark 3.8. More regularity of the exact solution u and stronger versions of
Assumptions 3.2 and 3.3 also lead to second-order convergence in the Y -norm, see [8,
Theorem 7.27].

4. Proof for the exponential Euler method. This section is devoted to the
proof of Theorem 3.1, and it is divided into three steps. We first show bounds of
the numerical approximations uniformly for all time-steps in the stronger norms and
obtain from this well-posedness of the numerical scheme. The analysis closely follows
[15]. Next, we derive a suitable representation for the exact solution and bound the
defects. In the last step, we solve the error recursion and conclude the main theorem.
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4.1. Stability. The first result is a variant of [15, Lemma 3.7] where we use a
space that contains all numerical approximations. For N ∈ N and ξ > 0 we define
the space

(4.1)

E
(
N,R, r, ξ

)
:= {φ =

(
φ0, . . . , φN

)
∈ ZN+1 |

‖φk‖Y ≤ R, ‖φk‖Z ≤ r, k = 0, . . . , N ,

‖φk − φk−1‖Y ≤ ξ, k = 1, . . . , N} .

It is constructed in such a way that inserting an element in the space E
(
N,R, r, ξ

)
in

the numerical scheme yields the following approximation together with the preceding
ones to be in E

(
N + 1, R, r, ξ

)
. Based on the following auxiliary result, this is shown

by induction in Lemma 4.2.

Lemma 4.1. Let φ =
(
φ0, . . . , φN

)
∈ E

(
N,R, r, τγ

)
and 0 ≤ j ≤ k ≤ N for

j, k ∈ N. If Assumptions 2.1 and 2.4 hold, then:∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
X←X

≤ k0e
ω1(k−j+1)τ ,∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
Y←Y

≤ c0eω2(k−j+1)τ ,∥∥∥eτAφk eτAφk−1 . . . eτAφj

∥∥∥
Z←Z

≤ c0eω2(k−j+1)τ ,

with ω1 = ω1(γ) = k1(γ) and ω2 given in (2.13).

Proof. The proof can be found in the Appendix of [15]. The modification in the
choice of ω1 and ω2 is due to

∥∥etAφx
∥∥
φ

= ‖x‖φ for x ∈ X with ‖·‖φ defined in (2.8).

The main result of the section is an extension of [15, Theorem 4.1] and states that
the lower bound on the possible simulation time, for which uniform boundedness of
the numerical approximations can be guaranteed, is identical to the one of the exact
solution.

Lemma 4.2. Let Assumptions 2.1, 2.4, and 2.5 hold. For T defined in (2.12) and
initial values

‖u0‖Y ≤ R0 := 1
4c0
R, ‖u0‖Z ≤ r0 := 1

4c0
r,

the numerical approximations given by (2.3) satisfy for Nτ ≤ T

(4.2) (u0, . . . , uN ) ∈ E
(
N,R, r, τγ

)
,

for E defined in (4.1) and γ in (2.13).

Proof. We first introduce an abbreviation for the product of several semigroups

(4.3) Ski :=

{
eτAk . . . eτAi , i ≤ k,
I, i > k,

and derive the representation

(4.4)

un+1 = eτAnun + τϕ1(τAn)fn

= eτAn

(
eτAn−1un−1 + τϕ1(τAn−1)fn−1

)
+ τϕ1(τAn)fn

= Sn0u0 + τ

n∑
j=0

Snj+1ϕ1(τAj)fj .
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We prove (4.2) by induction on n. Let (4.2) be true for some n ≤ N − 1, i.e. we
have (u0, . . . , un) ∈ E

(
n,R, r, γτ

)
. Then by Lemma 4.1 and the definition of ϕ1 we

estimate for j ≤ n

(4.5)
∥∥Snj+1ϕ1(τAj)

∥∥
Y←Y ,

∥∥Snj+1ϕ1(τAj)
∥∥
Z←Z ≤ c0e

ω2(n−j+1)τ .

We estimate the Y -norm of un+1 in (4.4) using Lemma 2.6

(4.6)

‖un+1‖Y ≤ c0e
ω2tn+1 ‖u0‖Y + c0τ

n∑
j=0

eω2(n−j+1)τ ‖fj‖Y

≤ c0eω2tn+1
(
‖u0‖Y + T Cf,Y,∞

)
≤ 2c0

(
R0 + 1

4c0
R
)

= R ,

since tn+1 ≤ T , where we used the induction hypothesis to bound fj . Analogously,
Lemma 2.6 yields

(4.7) ‖un+1‖Z ≤ c0e
ω2T
(
‖u0‖Z + TCf,Z,∞

)
≤ 2
(
r
4 + r

4

)
≤ r .

It remains to bound the difference of two successive approximation. We employ (2.9b)
and obtain

(4.8)
‖un+1 − un‖Y ≤

∥∥(eτAn − I
)
un
∥∥
Y

+ τ ‖ϕ1(τAn)fn‖Y
≤ τνY αY Z ‖ϕ1(τAn)un‖Z + τ ‖ϕ1(τAn)fn‖Y .

If we use the representation in (4.4) for un, proceeding as in (4.7) we derive

(4.9) ‖ϕ1(τAn)un‖Z ≤ c0e
ω2T
(
‖u0‖Z + TCf,Z,∞

)
≤ r .

Applying Lemma 2.6 and (4.5), the second term is bounded by

(4.10) ‖ϕ1(τAn)fn‖Y ≤ c0e
ω2τ Cf,Y,∞ ≤ 2c0 Cf,Y,∞ ,

where we used τω2 ≤ ln 2. In total, we arrive at

(4.11) ‖un+1 − un‖Y ≤ τ
(
c1
c0
r + 2c0 Cf,Y,∞

)
= γτ ,

which yields (u0, . . . , un+1) ∈ E
(
n+ 1, R, r, γτ

)
and hence closes the proof.

4.2. Defect. In this step we present a recursion for the global error given by

en := u(tn)− un .

It is based on a representation of the exact solution, where we replace A(u(t))
by A(un) such that the recurrence relation is driven by the semigroups studied in
Lemma 4.1. Hence, one can directly compare the exact solution with the numerical
scheme (2.3). In the following proposition we further bound the defects.

Proposition 4.3. Let Assumption 2.1, 2.4, and 2.5 hold and consider the so-
lution u given by Theorem 2.7 and numerical approximations (un)n given by (2.3).
Then the global error satisfies the error recursion

(4.12) en+1 = eτAnen + δn ,
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where the defects are bounded by

‖δn‖X ≤
(
Cσ,X τ ‖en‖X + Cδ,X τ

2
)
eτω1 ,

with constants Cσ,X , Cδ,X > 0 that only depend on ‖u′‖X,∞ and ‖u‖Z,∞, but are
independent of τ , n and tn.

Proof. We obtain from equation (2.1) inserting An and fn the differential equation

u′(t) = Â(t)u(t) + f̂(t)

= Anu(t) + fn

+
(
Ân −An

)
u(t) +

(
f̂n − fn

)
+
(
Â(t)− Ân

)
u(t) +

(
f̂(t)− f̂n

)
=: Anu(t) + fn +

4∑
i=1

δ̃n,i(t) .

By the variation-of-constants formula, the exact solution is given by

(4.13) u(tn+1) = eτAnu(tn) + τϕ1(τAn)fn + δn, δn :=

4∑
i=1

δn,i,

with the defects

δn,i =

τ∫
0

e(τ−s)An δ̃n,i(tn + s) ds ,

which are estimated in the following. Using the Lipschitz bound (2.9c) and the esti-
mates of Lemma 4.1 we infer

(4.14)

‖δn,1‖X = τ
∥∥∥ 1∫

0

e(1−s)τAn
(
Ân −An

)
ûn+s ds

∥∥∥
X

≤ τk0

1∫
0

e(1−s)τω1

∥∥∥(Ân −An

)
ûn+s

∥∥∥
X
ds

≤ τk0LX ‖en‖X

1∫
0

e(1−s)τω1 ‖ûn+s‖Z ds

≤ τk0LXe
τω1 ‖en‖X ‖u‖Z,∞ ,

and similarly by Lemma 2.6

‖δn,2‖X ≤ τk0e
τω1Lf,X ‖en‖X .

To obtain a local error of order two, we use (2.9c) and estimate

(4.15)

‖δn,3‖X ≤ τk0

1∫
0

e(1−s)τω1

∥∥∥(Ân+s − Ân

)
ûn+s

∥∥∥
X
ds

≤ τk0LX

1∫
0

e(1−s)τω1 ‖ûn+s − ûn‖X ‖ûn+s‖Z ds

≤ τ2k0LXe
τω1 ‖u′‖X,∞ ‖u‖Z,∞ ,
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as well as by Lemma 2.6

‖δn,4‖X ≤ τ
2k0e

τω1Lf,X
(
1 + ‖u′‖X,∞

)
.

We conclude the proof by subtracting (2.3) from (4.13).

Along the same lines we can deduce bounds in the stronger Y -norm, where the addi-
tional regularity u ∈ C1([0, T ], Y ) comes into play.

Corollary 4.4. The defect in (4.12) can also be bounded by

‖δn‖Y ≤
(
Cσ,Y τ ‖en‖Y + Cδ,Y τ

2
)
eτω2 ,

with constants Cσ,Y , Cδ,Y > 0 that only depend on ‖u′‖Y,∞ and ‖u‖Z,∞, but are
independent of τ , n and tn.

4.3. Proof of Theorem 3.1. A combination of the stability bounds and the
defects yields the global error result.

Proof of Theorem 3.1. We only prove the bound in the X-norm here. The error
bound in the Y -norm is easily derived replacing Proposition 4.3 by Corollary 4.4 and
ω1 by ω2.

Using the error recursion in (4.12) and recalling Ski from (4.3), we obtain by a
discrete version of the variation-of-constants formula

(4.16) en+1 = eτAnen + δn = Sn0 e0 +

n∑
j=0

Snj+1δj .

Similar to (4.5), we conclude by Lemma 4.1, Proposition 4.3, and e0 = 0,

‖en+1‖X ≤
n∑
j=0

∥∥Snj+1

∥∥
X←X ‖δj‖X

≤ k0τ

n∑
j=0

eω1(n+1−j)τCσ ‖ej‖X + k0τ

n∑
j=0

eω1(n+1−j)τCδτ .

Multiplying with e−ω1(n+1)τ gives

e−ω1(n+1)τ ‖en+1‖X ≤ Cσk0τ

n∑
j=0

e−ω1jτ ‖ej‖X + k0τ

n∑
j=0

e−ω1jτCδτ ,

and a Gronwall argument yields with tn+1 = (n+ 1)τ

e−ω1tn+1 ‖en+1‖X ≤ tn+1e
Cσk0tn+1k0Cδ τ .

Finally, we arrive at

‖en+1‖X ≤ tn+1e
(ω1+Cσk0)tn+1k0Cδ τ ,

which completes the proof.

5. Proof for the exponential midpoint rule. The proof of Theorem 3.7
has a very similar structure to the one of Theorem 3.1. We first derive bounds
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for the numerical approximations. But since we plug in extrapolations of previous
approximations, this becomes slightly more technical. In a second step we derive the
defects and bound them with the right order. Here, some terms can be treated as
for the exponential Euler method and are bounded first. The remaining terms take
the additionally required differentiability into account and are more involved. As the
structure of the two methods is so similar, there is nothing left to do in the error
accumulation, and we may immediately conclude the main result.

5.1. Stability. We again need an auxiliary result on the behavior of the com-
position of linear flows, but this time evaluated at the extrapolated midpoints. The
choice of the larger constants in the space E become clearer in the proceeding lemma.

Lemma 5.1. Let φ =
(
φ1/2, φ3/2 . . . , φN+1/2

)
∈ E

(
N, R̂, r̂, 2τγ

)
. If Assump-

tions 2.1 and 2.4 hold, we obtain the stability bounds as in (4.1) for j ≤ k and

j, k ∈ { 1
2 ,

3
2 , . . . , N + 1

2} with k0, c0, ω1 and ω2 replaced by k̂0, ĉ0, ω̂1 and ω̂2, respec-

tively, where ω̂1 := 2k̂1(γ̂) and ω̂2 is given in (3.3).

Proof. As for Lemma 4.1, the proof can be found in the Appendix of [15].

With this we can mimic the bounds in Lemma 4.2. However, we need to take
the minimal simulation time T̂mid defined in (3.2) into account which is necessary to
obtain uniform bounds in the numerical approximations.

Lemma 5.2. Let Assumptions 2.1, 2.4, and 2.5 hold. For T̂mid defined in (3.2),
τ ≤ τ0 with τ0 given in (3.1) and initial values

‖u0‖Y ≤ R0 := 1
4ĉ0
R, ‖u0‖Z ≤ r0 := 1

4ĉ0
r,

the numerical approximations satisfy for Nτ ≤ T̂mid

(5.1) (u0, . . . , uN ) ∈ E
(
N,R, r, τ γ̂

)
, (u1/2, . . . , uN−1/2) ∈ E

(
N − 1, R̂, r̂, 2τ γ̂

)
.

Proof. We prove the assertion by induction on n and assume (5.1) is true for
some 1 ≤ n ≤ N − 1. By the choice u1/2 := u0, the case n = 1 is treated as for the
exponential Euler. In part (a), we first prove the bounds for the midpoints in order
to apply Lemma 5.1.

(a) Using the induction hypothesis, we obtain for τ ≤ τ0 given in (3.1)∥∥un+1/2

∥∥
Y
≤ ‖un‖Y + 1

2 ‖un − un−1‖Y ≤ R+ γ̂τ
2 ≤ R̂ ,

as well as ∥∥un+1/2

∥∥
Z
≤ 3

2 ‖un‖Y + 1
2 ‖un−1‖Z ≤ 2r = r̂ .

Let u−1 := u0, then it holds u1/2 = 3
2u0 − 1

2u−1 and we estimate for n ≥ 1∥∥un+1/2 − un−1/2

∥∥
Y
≤ 3

2 ‖un − un−1‖Y + 1
2 ‖un−1 − un−2‖Y ≤ 2γ̂τ ,

which implies (u1/2, . . . , un+1/2) ∈ E
(
n, R̂, r̂, 2τ γ̂

)
.

(b) With this we may proceed as in Lemma 4.2. The induction hypothesis and
Lemma 2.6 yield as in (4.6)

‖un+1‖Y ≤ ĉ0e
ω̂2tn+1

(
‖u0‖Y + T̂midĈf,Y,∞

)
≤ R,



EXPONENTIAL INTEGRATORS FOR QUASILINEAR WAVE-TYPE EQUATIONS 15

and analogously

‖un+1‖Z ≤ ĉ0e
ω̂2tn+1

(
‖u0‖Z + T̂midĈf,Z,∞

)
≤ r .

We close as in (4.8), (4.9), (4.10), and (4.11) to obtain

‖un+1 − un‖Y =
∥∥(eτAn+1/2 − I

)
un + τϕ1(τAn+1/2)fn+1/2

∥∥
Y

≤ τ
∥∥An+1/2ϕ1(τAn+1/2)un

∥∥
Y

+ τ ĉ0e
ω̂2τ Ĉf,Y,∞

≤ γ̂τ ,

such that (u0, . . . , un+1) ∈ E
(
n+ 1, R, r, γτ

)
holds.

5.2. Defects and global error. To shorten the notation, we define analogously
to un+1/2 the exact extrapolation and the corresponding operator by

ûn+1/2 = 1
2 (3ûn − ûn−1) , Ân+1/2 = A(ûn+1/2), f̂n+1/2 = f(tn+1/2, ûn+1/2),

with û1/2 = u0. We further use the extrapolated error

en+1/2 = ûn+1/2 − un+1/2 ,

and resolve this term at the very end. As mentioned before we start with a represen-
tation of the exact solution similar to Proposition 4.3 and derive a recursion for the
global error. We further provide bounds on the defects.

Proposition 5.3. Let Assumptions 2.1, 2.4, 2.5, 3.2, and 3.3 be satisfied and
consider the solution u given by Lemma 3.6 and numerical approximations (un)n
given by (2.4). Then the global error satisfies the error recursion

(5.2) en+1 = eτAn+1/2en + δn ,

where the defects are bounded by

‖δ0‖X ≤ Cδ,X τ
2 eτω̂1 ,

‖δn‖X ≤
(
Cσ,X τ

∥∥en+1/2

∥∥
X

+ Cδ,X τ
3
)
eτω̂1 , n ≥ 1 ,

with constants Cσ,X , Cδ,X only depending on ‖u′′‖X,∞, ‖u′‖Y,∞, and ‖u‖Z,∞, but are
independent of τ , n and tn.

Proof. Similar to Proposition 4.3, inserting An+1/2 and fn+1/2 yields the differ-
ential equation

u′(t) = Â(t)u(t) + f̂(t)

= An+1/2u(t) + fn+1/2

+
(
Ân+1/2 −An+1/2

)
u(t) +

(
f̂n+1/2 − fn+1/2

)
+
(
Ân+1/2 − Ân+1/2

)
u(t) +

(
f̂n+1/2 − f̂n+1/2

)
+
(
Â(t)− Ân+1/2

)
u(t) +

(
f̂(t)− f̂n+1/2

)
=: An+1/2u(t) + fn+1/2 +

6∑
i=1

δ̃n,i(t) .
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As in (4.13), the variation-of-constants formula yields the representation

(5.3) u(tn+1) = eτAn+1/2u(tn) + τϕ1(τAn+1/2)fn+1/2 + δn ,

where δn := δn,1 + . . . + δn,6. We split the proof into two parts. We first bound the
four terms that require the Lipschitz bounds only. In the second part, we have to use
the additional assumptions on the differentiability. The assertion on the defect from
the first step is handled as in Proposition 4.3, and we omit the details.

(a) Along the lines of (4.14) we obtain

‖δn,1‖X ≤ τ k̂0L̂Xe
τω̂1
∥∥en+1/2

∥∥
X
‖u‖Z,∞

as well as

‖δn,2‖X ≤ τ k̂0e
τω̂1L̂f,X

∥∥en+1/2

∥∥
X
.

We further derive as in (4.15)

‖δn,3‖X ≤ τ k̂0L̂X

1∫
0

e(1−s)τω̂1

∥∥∥u(tn+1/2)− ûn+1/2

∥∥∥
X
‖ûn+s‖Z ds

≤ τ3k̂0L̂Xe
τω̂1 3

8 ‖u
′′‖X,∞ ‖u‖Z,∞ ,

as well as δn,4 by

‖δn,4‖X ≤ τ
3k̂0e

τω̂1L̂f,X
3
8 ‖u

′′‖X,∞ ,

where we used Taylor expansion of u(tn+1/2) for both defects.
(b) Since the structure of the defects δn,5 and δn,6 is very similar, we will only

prove the statement for δn,5. We have

(5.4) δn,5 =

τ∫
0

e(τ−s)An+1/2dn(tn + s) ds,

with the function

(5.5) dn(t) :=
(
Â(t)− Ân+1/2

)
u(t), dn(tn+1/2) = 0 .

Since we need to expand this term in the following, we compute

d′n(t) = Â′(t)u(t) +
(
Â(t)− Ân+1/2

)
u′(t) =: ḋn,1(t) + ḋn,2(t)

and observe

d′n(tn+1/2) = ḋn,1(tn+1/2) = Â′(tn+1/2)ûn+1/2 .

We also need the derivative of ḋn,1 given by

d̈n,1(t) := d
dt ḋn,1(t) = Â′′(t)u(t) + Â′(t)u′(t) .
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Using (5.5) and integration by parts, we expand

dn(tn + s) =

s−τ/2∫
0

ḋn,1(tn+1/2 + σ) dσ +

s−τ/2∫
0

ḋn,2(tn+1/2 + σ) dσ

=
(
s− τ

2

)
ḋn,1(tn+1/2) +

s−τ/2∫
0

(
s− τ

2 − σ
)
d̈n,1(tn+1/2 + σ) dσ

+

s−τ/2∫
0

ḋn,2(tn+1/2 + σ) dσ .

Plugging this in (5.4) gives

δn,5 =

 τ∫
0

e(τ−s)An+1/2
(
s− τ

2

)
ds

 ḋn,1(tn+1/2)

+

τ∫
0

e(τ−s)An+1/2

s−τ/2∫
0

(
s− τ

2 − σ
)
d̈n,1(tn+1/2 + σ) dσ ds

+

τ∫
0

e(τ−s)An+1/2

s−τ/2∫
0

ḋn,2(tn+1/2 + σ) dσ ds

= δ1
n,5 + δ2

n,5 + δ3
n,5.

We estimate these terms separately. By integration by parts we obtain

δ1
n,5 =

(1

2

τ∫
0

e(τ−s)An+1/2
(
s2 − τs

)
ds
)

An+1/2ḋn,1(tn+1/2).

Since Lemma 3.5 implies

(5.6)
∥∥∥ḋn,1(tn+1/2)

∥∥∥
Y

=
∥∥∥Â′(tn+1/2)ûn+1/2

∥∥∥
Y
≤ CAY Z ‖u‖Z,∞ ,

we estimate by Lemma 5.1, (2.9a), and (5.6)∥∥δ1
n,5

∥∥
X
≤ 1

12 k̂0τ
3eτω̂1

∥∥∥An+1/2 ḋn,1(tn+1/2)
∥∥∥
X

≤ 1
12 k̂0ν̂X α̂XY τ

3eτω̂1

∥∥∥ḋn,1(tn+1/2)
∥∥∥
Y

≤
(

1
12 k̂0ν̂X α̂XY C

A
Y Z ‖u‖Z,∞

)
τ3eτω̂1 .

We further obtain by Lemma 3.5∥∥δ2
n,5

∥∥
X
≤ 1

24 k̂0τ
3eτω̂1 sup

t∈[tn,tn+1]

∥∥∥d̈n,1(t)
∥∥∥
X

≤ 1
24 k̂0 sup

t∈[tn,tn+1]

(∥∥∥Â′′(t)u(t)
∥∥∥
X

+
∥∥∥Â′(t)u′(t)∥∥∥

X

)
τ3eτω̂1 ,

≤ 1
24 k̂0

(
CAXZ ‖u‖Z,∞ + CAXY ‖u′‖Y,∞

)
τ3eτω̂1 ,
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as well as ∥∥δ3
n,5

∥∥
X
≤ 1

4 k̂0τ
2eτω̂1 sup

t∈[tn,tn+1]

∥∥∥ḋn,2(t)
∥∥∥
X

≤ 1
4 k̂0 sup

t∈[tn,tn+1]

∥∥∥(Â(t)− Ân+1/2

)
u′(t)

∥∥∥
X
τ2eτω̂1

≤
(

1
8 k̂0C

A
XY ‖u′‖Y,∞

)
τ3eτω̂1 .

This gives the assertion for δn,5. For δn,6, Taylor expansion, integration by parts as
for δ1

n,5, and the bounds provided in Assumption 3.2 yield to the desired estimate.
Subtracting (2.4) from (5.3) closes the proof.

We can finally give a proof the error bound of the exponential midpoint rule.

Proof of Theorem 3.7. By (5.2) we resolve the error recursion as in (4.16) and
use the bounds provided in Lemma 5.1 and Proposition 5.3. With the observation

n∑
j=1

∥∥ej+1/2

∥∥
X
≤ 2

n∑
j=1

‖ej‖X ,

the bound in the X-norm is derived analogously to Theorem 3.1. For the convergence
in the Y -norm, note that it is sufficient that an adaption of Corollary 4.4 remains
valid, which is easily verified.

6. Numerical experiments. We close this paper by illustrating our theoretical
findings. We consider the model problem of Section 2.1, given by the quasilinear wave
equation

(6.1) λ(q)q′′ = ∆q + g(t, q, q′),

with λ(q) = 1− 1
10q

2 and g(t, q, q′) = 1
5q · (q

′)2 + r(t) where

r(t, x) = sin
(
(1 + t)(1− |x|2)3

)
,

on the unit disc Ω ⊆ R2 subject to homogeneous Dirichlet boundary conditions. Since
we focused on the regularity of the solution in the error analysis, we chose the special
initial position

q0(x) = −1

4
|x|2 ln(− ln(ρ(|x|2)) + C1(|x|2 − 1) + C2,

with ρ = 2
5 and constants C1 and C2 such that q0 = ∆q0 = 0 holds on ∂Ω. For this

position, it holds q0 ∈ H3(Ω) \H3+ε(Ω) for any ε > 0 due to the term

x 7→ ln(− ln(ρ|x|2)) ∈ H1(Ω) \ L∞(Ω).

For the second component we take q′0(x) = −(1−|x|2)2, which is smooth but satisfies
∆q0 6= 0 on ∂Ω.

6.1. Space discretization. We performed the space discretization by linear
Lagrange finite elements. To this end we used the open source Python tool FEniCS
[1, version 2018.1.0]. Denoting this ansatz space as Vh ⊆ H1

0 (Ωh), with Ωh ⊆ Ω, we
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then seek for qh(t) ∈ Vh which solves for all φ ∈ Vh

〈λ(qh(t))q′′h(t), φ〉L2(Ωh) =− 〈qh(t), φ〉H1
0 (Ωh)

+ 〈λ(qh(t))Ih
(
λ(qh(t))−1g(t, qh(t), q′h(t))

)
, φ〉L2(Ωh),

where Ih denotes the interpolation onto Vh. Hence, we solve the system of ordinary
differential equations

Mh(qh(t))q′′h(t) = −Lhqh(t) +Mh(qh(t))gh(t, qh(t), q′h(t))(6.2)

with the mass and stiffness matrix(
Mh(qh(t))

)
i,j

= 〈λ(qh(t))φi, φj〉L2(Ωh),
(
Lh
)
i,j

= 〈∇φi,∇φj〉L2(Ωh) ,

and discretized nonlinearity

gh(t, qh(t)) = Ih
(
Λ(qh(t))−1g(t, qh(t), q′h(t))

)
.

6.2. Time discretization. We compute the approximations qn+1
h ≈ q(tn+1)

and vn+1
h ≈ q′(tn+1) by solving a linear version of (6.2) exactly. For the Euler method,

given previous approximations qnh , vnh , we replace λ(qh(t)) by λ(qnh). We obtain the
equation

Mh(qnh)q′′h(t) = −Lhqh(t) +Mh(qnh)gh(tn, q
n
h , v

n
h), t ∈ [tn, tn + τ ] ,(6.3)

where the exact solution yields the next approximations qn+1
h , vn+1

h . We note that
this is equivalent to first formulate (6.2) as a first-order system and then apply (2.3).

For the exponential midpoint rule we define the extrapolation terms q
n+1/2
h =

3
2q
n
h − 1

2q
n−1
h and v

n+1/2
h = 3

2v
n
h − 1

2v
n−1
h and replace λ(qh(t)) by λ(q

n+1/2
h ) to obtain

Mh(q
n+1/2
h )q′′h(t) = −Lhqh(t) +Mh(q

n+1/2
h )gh(tn+1/2, q

n+1/2
h , v

n+1/2
h ) .(6.4)

The exact solution of of (6.3) and (6.4) is then computed using rational Krylov meth-
ods to evaluate the trigonometric matrix functions as it was suggested in [13] and
[16]. Under https://doi.org/10.5445/IR/1000131109, the code to reproduce the plots
is available.

6.3. Results for the exponential Euler method and the exponential
midpoint rule. We computed a reference solution with the midpoint rule on a fine
grid with maximal diameter href = 6 · 10−3 and step-size τref = 1

360 . The solution of
(6.3) and (6.4) were computed on a coarser mesh with maximal diameter hmax = 10−2.
and step-sizes τ were chosen such that the quotient τ

τref
is an integer.

In Figure 1, we depicted the error between the projection of the reference solution
and the numerical approximations. The discrete H1

0 (Ω)×L2(Ω) norm was computed
with the mass and stiffness matrix to approximate the error in the X-norm. Since
linear Lagrange finite elements are not H2-conforming, we only included the error of
the position in the H1

0 (Ω) to estimate the Y -norm. One can clearly observe the first-
and second-order convergence in time derived in Theorems 3.1 and 3.7. We further
mention that the error induced by the space discretization is only relevant in the
regime below 10−3.

https://doi.org/10.5445/IR/1000131109
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10−2 10−1

10−3

10−2

10−1

100

101

Fig. 1. Discrete L∞
(

[0, 1], H1
0 (Ω) × L2(Ω)

)
error (on the y-axis) of the numerical solution of

(6.1) computed with (6.3) (middle line, red, crosses) and (6.4) (lower line, blue, squares) plotted

against the step size τ (on the x-axis). Further, the discrete L∞
(

[0, 1], H1
0 (Ω)

)
error in the velocity

q′0 computed with (6.3) is shown (upper line, green, dots). The gray lines indicate order one (dotted)
and two (dashed).
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[10] C. González and M. Thalhammer, A second-order Magnus-type integrator for quasi-
linear parabolic problems, Math. Comp., 76 (2007), pp. 205–231, https://doi.org/10.1090/
S0025-5718-06-01883-7.

https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1016/j.jcp.2020.109484
https://doi.org/10.1007/s42985-020-00045-9
https://doi.org/10.1016/j.physrep.2007.02.011
https://doi.org/10.1007/s00211-019-01071-5
https://doi.org/10.1007/s00211-019-01071-5
http://dx.doi.org/10.1016/0362-546X(86)90049-0
http://dx.doi.org/10.1016/0362-546X(86)90049-0
https://doi.org/10.1080/00036811.2015.1089236
https://doi.org/10.1080/00036811.2015.1089236
https://doi.org/10.5445/IR/1000130187
https://doi.org/10.5445/IR/1000130187
https://doi.org/10.1090/mcom/3339
https://doi.org/10.1090/mcom/3339
https://doi.org/10.1090/S0025-5718-06-01883-7
https://doi.org/10.1090/S0025-5718-06-01883-7


EXPONENTIAL INTEGRATORS FOR QUASILINEAR WAVE-TYPE EQUATIONS 21
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