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LEAST ENERGY SOLUTIONS TO A COOPERATIVE SYSTEM OF
SCHRODINGER EQUATIONS WITH PRESCRIBED L>-BOUNDS: AT
LEAST L>-CRITICAL GROWTH

JAROSELAW MEDERSKI AND JACOPO SCHINO

ABSTRACT. We look for least energy solutions to the cooperative systems of coupled Schrédinger
equations

u; € HY(RY), ie{l,...,K}

o a2 iz < 2
with G > 0, where p; > 0 is prescribed and (\;,u;) € R x HY(RY) is to be determined,
1 € {l,...,K}. Our approach is based on the minimization of the energy functional over a
linear combination of the Nehari and Pohozaev constraints intersected with the product of the
closed balls in L#(RY) of radii p;, which allows to provide general growth assumptions about
G and to know in advance the sign of the corresponding Lagrange multipliers. We assume
that G has at least L?-critical growth at 0 and admits Sobolev critical growth. The more
assumptions we make about G, N, and K, the more can be said about the minimizers of the
corresponding energy functional. In particular, if K = 2, N € {3,4}, and G satisfies further
assumptions, then u = (u1,up) is normalized, i.e., [ Jus|® dz = p? for i € {1,2}.

INTRODUCTION

We consider the following system of autonomous nonlinear Schrodinger equations of gra-
dient type

—Aul + )\1’&1 = 81G(u)
(1.1) e in RY

with v = (uy,...,ug): RY — RE which arises in different areas of mathematical physics. In
particular, the system (1.1) describes the propagation of solitons, which are special nontriv-
ial solitary wave solutions ®;(z,t) = u;(x)e " to a system of time-dependent Schrédinger
equations of the form

0d;
(1.2) ia—t]—ACDj:gj(CD) forj=1,..., K,
where, for instance, g; are responsible for the nonlinear polarization in a photonic crystal [2,34]
and A; are the external electric potentials.
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Another field of application is condensed matter physics, where (1.1) comes from the
system of coupled Gross-Pitaevski equations (1.2) with nonlinearities of the form

K
9;(®) = (Zﬁj,k\cbklz) &, forj=1,...,K.
k=1
The following L2-bounds for ® will be studied:
/ \q)j(t,x)|2 dr = p? and / \q)j(t,x)|2 dr < p?.
RN RN

Problems with prescribed masses ,0? (the former constraint) appear in nonlinear optics, where
the mass represents the power supply, and in the theory of Bose—Einstein condensates, where
it represents the total number of atoms (see [1,17,19,27,30,32,41]). Prescribing the masses
make sense also because they are conserved quantities in the corresponding evolution equation
(1.2) together with the energy (see the functional J below), cf. [13,14]. As for the latter
constraint, we propose it as a model for some experimental situations, e.g. when the power
supply provided can oscillate without exceeding a given value.

Recall that a general class of autonomous systems of Schrodinger equations was studied
by Brezis and Lieb in [12] and using a constrained minimization method they showed the
existence of a least energy solution, i.e., a nontrivial solution with the minimal energy. Their
method using rescaling arguments does not apply with the L?-bounds.

Our aim is to provide a general class of nonlinearities and to find solutions to the nonlinear
Schrodinger problems

—Aui + >\2u2 = 8ZG(U) in RN, N Z 3,

(1.3) u; € H'(RY), for every i € {1,..., K}
Je luil* dz < p?

and
—Aui + )\Zul = 8ZG(u) in RN, N Z 3,

(1.4) u; € HY(RY), for every i € {1,..., K},
Jen |wil? de = p?

where p = (p1,...,px) € (0,00)K is prescribed and (\,u) € RE x H*(RN)X is the unknown.
Let us introduce the sets

D;:{ueHl(RN)K :/ |u,~|2da7§,0?foreveryz'e{l,...,K}},
RN

S::{ueHl(RN)K :/ |u,~|2d:£:p?foreveryi€{1,...,K}}
RN

and note that S C 9D.
We shall provide suitable assumptions under which the solutions to (1.3) (resp. (1.4)) are
critical points of the energy functional J: H'(RV)X — R defined as

() ;:%/RN Vulde | Glu)da
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restricted to the constraint D (resp. S) with Lagrange multipliers \; € R, i.e., they are critical
points of

K
1
H'®NE 5 ues J(u) + 5 ZAZ-/ |ug|? dz € R
i=1 /RN

for some A = (\y,..., A \g) € RE. Let us recall that, under mild assumptions on G, see [12,

Theorem 2.3], every critical point of the functional above belongs to W2(RN)X for all ¢ < oo
and satisfies the Pohozaev [10, 22,31, 33]

K
1
V2d :2* G - = >\2 i2d
/RN| uf? da / () Dol

and Nehari
K
J (u)(u) + Z )\i/ lu;|* dr =0
i=1 RN

identities. By a linear combination of the two equalities above it is easily checked that every
solution satisfies
N
M (u) ::/ Vul?dr — — H(u)dx =0,
RN 2 RN
where H(u) := (g(u),u) —2G(u) ((-,) is the scalar product in R¥) and g := VG, see e.g. [22].
Hence we introduce the constraint

M= {ue H'RY)*\ {0} : M(u) =0},

which contains all the nontrivial solutions to (1.3) or (1.4) and does not depend on . Observe
that every nontrivial solution to (1.3) belongs to MND and every (nontrivial) solution to (1.4)
belongs to M NS C MND. By a ground state solution to (1.3) we mean a nontrivial solution
which minimizes J among all the nontrivial solutions. In particular, if (A, u) solves (1.3) and
J(u) = inf pnp J, then (A, u) is a ground state solution (cf. Theorems 1.1 and 1.2). By a ground
state solution to (1.4) we mean that (A, u) solves (1.4) and J(u) = infpnp J (cf. Theorems
1.2, 1.3, and Corollary 1.4). Note that this is more than just requiring J(u) = infyns J,
which, on the other hand, appears as a more “natural” requirement.

Working with the set D instead of the set S for a system of Schrédinger equations seems
to be new and has, among others, a specific advantage related to the sign of the Lagrange
multipliers A;. We begin by showing why this issue is important. First of all, from a physical
point of view there are situations, e.g. concerning the eigenvalues of equations describing the
behaviour of ideal gases, where the chemical potentials A; have to be positive, see e.g. [27,32]. In
addition, from a mathematical point of view the (strict) positivity of such Lagrange multipliers
often plays an important role in the strong convergence of minimizing sequences in L*(RY), see
e.g. |6, Lemma 3.9]; finally, the nonnegativity is used in some of the proofs below, e.g. the one
of Lemma 2.11 (a). The aforementioned advantage is as follows: in [15], Clarke proved that,
in a minimization problem, Lagrange multipliers related to a constraint given by inequalities
have a sign, i.e., A; > 0; therefore it is enough to rule out the case A\; = 0 in order to prove
that \; > 0 for every ¢ € {1,..., K}; note that ruling out the case \; = 0 is simpler than
ruling out the case \; < 0, cf. the proof of Lemma 2.11 (b). The nonnegativity/positivity
of the Lagrange multipliers of (1.4) has often been obtained by means of involved tools (or
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at the very minimum in a not-so-straightforward way), such as stronger variants of Palais-
Smale sequences in the spirit of [22] as in [6, Lemma 3.6, proof of Theorem 1.1] or preliminary
properties of the ground state energy map p — inf rins J as in [24, Lemma 2.1, proof of Lemma
4.5]. Our argument, based on [15], is simple, does not seem to be exploited in the theory of
normalized solutions, and is demonstrated in Proposition A.1 in an abstract way for future
applications, e.g. for different operators in the normalized solutions setting like the fractional
Laplacian [25,29].

A second, but not less important, advantage of considering the set D concerns the property
that the ground state energy in the Sobolev-critical case is below the ground state energy of
the limiting problem, cf. (1.9). More precisely, since in dimension N € {3,4} the Aubin—
Talenti instantone is not L2-integrable, we need to truncate it by a cut-off function and then
project it into D; however, unless K = 1, we cannot ensure that such a projection lies on S,
hence the use of D is necessary for this argument. See the proof of Proposition 2.6 (i) for
further details.

Recall that, when K =1 and

(1.5) G(u):1|u|p, 2<p<2 p#2y ::2+i,

D N
(1.4) is equivalent to the corresponding problem with fixed A > 0 (and without the L?-bound)
via a scaling-type argument. This approach fails in the case of nonhomogeneous nonlinearities
or when K > 2. In the L?-subcritical case, i.e., when G(u) ~ |ulP with 2 < p < 2y, one can
obtain the existence of a global minimizer by minimizing directly on S, cf. [28,39]. In the L*-
critical (p = 2y) and the L*-supercritical and Sobolev-subcritical (2y < p < 2* := 225) cases
this method does not work; in particular, if p > 2 in (1.5), then infs J = —oo. The purpose
of this work is to find general growth conditions on G in the spirit of Berestycki, Lions [10]
and Brezis, Lieb [12] as well as involving the Sobolev critical terms, and to provide a direct
approach to obtain ground state solutions to (1.3), (1.4), and similar elliptic problems. The
problem (1.4) for one equation was studied by Jeanjean [22]| and by Bartsch and Soave |7, §]
with a general nonlinear term satisfying the following condition of Ambrosetti-Rabinowitz

type: there exist % < a<b<2*—2such that
(1.6) 0 < aG(u) < H(u) < bG(u) for u € R\ {0}.

In [22]| the author used a mountain pass argument, while in [7,8| a mini-max approach in M
based on the o-homotopy stable family of compact subsets of M and the Ghoussoub minimax
principle [20] were adopted. The same topological principle has been recently applied to the
system (1.4) with particular power-like nonlinearities, e.g. in [5-8|, and by Jeanjean and
Lu [23] for K = 1 and a general nonlinearity without (1.6), but with L?-supercritical growth.

We stress that the lack of compactness of the embedding HL (RY) C L*RY) causes
troubles in the analysis of L?-supercritical problems and makes the argument quite involved,
see e.g. [7,8,22]. A possible strategy to recover the compactness of Palais-Smale sequences, at
least when K = 1, is to show that the ground state energy map is nonincreasing with respect
to p > 0 and decreasing in a subinterval of (0, c0), see e.g. [9,23].

In our approach we do not work in H',, with Palais-Smale sequences, or with (1.6), nor
the monotonicity of the ground state energy map is required, so that we avoid the mini-max
approach in M involving a technical topological argument based on [20], which has been
recently intensively exploited by many authors e.g. in [5-8,23-25,29, 35, 36].
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In particular, we work with a weaker version of (1.6), see the condition (A5) below, and
we admit L2-critical growth at 0. We make use of a minimizing sequence of J|rp and we
are able to consider a wide class of nonlinearities G. In the first part of this work, we adapt
the techniques of [11] to the system (1.3) and the Sobolev-critical case, which ensure that the
minimum of J on M N D is attained. If G is even, we exploit the Schwarz rearrangement
u* = (uj,...,uf) of (Jul,...,|uk|) because, if u € M N D, then u* can be projected onto
the same set without increasing the energy. Next, we point out that dealing with systems
(1.3) and (1.4) one has to involve more tools in order to find a ground state u € M N ID and
some additional restrictions imposed on GG, N, or K will be required. In particular, if we want
to ensure that the Lagrange multipliers are positive and u € S, we use the elliptic regularity
results contained in [10, 12], the Liouville type result [21]|, and Proposition A.1. Finally, a
multi-dimensional version of the strict monotonicity of the ground state energy map is simply
obtained in Proposition 2.14 as a consequence of our approach.

For 2 < p <2* let Cy, > 0 be the optimal constant in the Gagliardo-Nirenberg inequality

(1.7) lul, < CnplVul?uls™  for u € HY(RN),

where 9, = N(% — %) and d,p > 2 (resp. d,p =2, 6,p < 2) if and only if p > 2y (resp. p = 2,

p < 2x). Here and in what follows we denote by |ul; the L*-norm of u, 1 < k < cc.
We assume there exists 6 € (0,00)" or § = 0 such that G is of the form

K

oy 1 *

Gu) =Gu) + 5 > 05lu,?
j=1

for some G: RX — RN, We set § = VG, H(u) = (§(u),u) — 2G(u), h = VH, h :== VH, and

consider the following assumptions:
(A0) g and h are continuous and there exists ¢ > 0 such that (h(w)| < &(fu] + |u|2 ).
G (u)
uf? N
(A2) If § = 0, then lim G(u) = oo; if 6 € (0,00)%, then lim inf G(u) > 0.

(A1) n:=limsup < 00
u—0

G(u)

A3) lim = = 0.
( ) \u|1—>30 |U 2 _
(A4) 2nH(u) < (h(u),u)

A~ 2 ~
(A5) NG <H<((2"-2)G

G(u) . . .
Of course, ‘ lllm Tl = oo if (A2) holds and G, H satisfy (A1) — resp. (A4), (A5) —if so do

G, H. Note that (A5) implies G, H > 0. Note also that .J and M are of class C! if (A0) and

(Ab) are satisfied. For every u € H'(RY)¥ such that IRN u) dz > 0 we define
N [on H(u) dz
R:=R,:= = >0
\/2 Jan |Vu| dz

and note that u(R-) € M.
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Observe that in view of (A2) and (A5), G(u) > G(u) > 0 and H(u) > H(u) > 0 for u # 0.
Indeed, take any v € R such that |v| = 1 and note that (A5) implies that

GW)t¥ > G(tv) > G)>N  ift > 1,
Gy > G(ty) > G)t¥  if0<t<1.

Since (A2) holds, we get G(tv) > 0 for sufficiently large ¢ > 0, hence taking into account the
above inequalities we obtain that G(tv) > 0 for all ¢ > 0 and we conclude. In particular, M #
. Moreover, M is a C'-manifold, since M'(u) # 0 for u € M, cf. [33]. As a matter of fact,
if M'(u) =0, then u solves —Au = Zh(u) and satisfies the Pohozaev identity [oy |Vu|? dz =
2* & [ox H(u) dz. If M(u) =0, then we infer u = 0.
We introduce the following relation:
Let fi, fo: RE — R. Then f; < f, if and only if f; < f» and for every € > 0 there
exists u € RE Ju| < ¢, such that fi(u) < fa(u),

and for better outcomes we need the following stronger variant of (A4):
(A4,=) 25 H (u) < (h(u),u) if 6 = 0.
Notice that (A4,=<) implies that 2y H (u) < (h(u), u).
From now on we assume the following condition
(1.8) 2°CR% N < 1,

and the first main result concerning (1.3) reads as follows.

Theorem 1.1. Suppose (A0)-(A5) and (1.8) hold and, if 6 € (0,00)¥,

K
. i N/2 1-N/2
(1.9) /&%%J < NS ;:1 g, .

(a) There exists u € MND such that J(u) = inf pnp J. In addition, u is a K-tuple of radial,
nonnegative and radially nonincreasing functions provided that G s of the form

K L K
(1.10) Gu) =D Gi(u)+ Y B [ ] luil ™.
i=1 j=1 =1

where L > 1, G;: R — [0,00) is even, 1,5 > 1 orr;; =0, §; >0, 2y < Zfil rij; < 2% and
for every j there exists iy # ig such that r;, ; > 1 and r;, ; > 1.

(b) If, moreover, (A4,=) holds, then u is of class C* and there exists \ = (\y,. ... A\g) € [0,00)%
such that (A, u) is a ground state solution to (1.3).

As we shall see in Section 2, (1.9) is verified if N > 5 or if N € {3,4} and an additional
mild condition holds, see Proposition 2.6 (see also Lemma 2.7). We point out that part ()
holds regardless of whether G is of the form (1.10) or not. If this is the case, then u has the
additional properties as in part (a).

Notice that (A1) allows G to have L2-critical growth G(u) ~ |u|?*V at 0, but (A2) excludes
the same behaviour at infinity. Moreover, G consists of the Sobolev-subcritical part in view of

(A3). Finally, the pure L?-critical case for |u| small is ruled out by (A4,<), i.e., G(u) = G(u)
cannot be of the form (1.10) with G;(u) = a;|u|*¥, o; > 0, and Zfil ri; = 2n for every j.



LEAST ENERGY SOLUTIONS TO A COOPERATIVE SCHRODINGER SYSTEM WITH L?-BOUNDS 7

Here and later on, when we say G is of the form (1.10), we also mean the additional
conditions on G;, f;, and r;; listed in Theorem 1.1 (a). Observe that G of the form (1.10)
satisfies (A4) if and only if G; satisfies the scalar variant of (A4) for all i € {1,..., K}. If, in
addition, G; satisfies (A4,=<) for some i, then G satisfies (A4,=<) as well.

More can be said if N € {3,4}.

Theorem 1.2. Assume that (A0)-(A3), (A4,2), (A5), and (1.8) are satisfied, G is of the
form (1.10), N € {3,4}, and (1.9) holds if 6 € (0,00)%. Then there exist u € M NID of
class C? and X = (\1,..., k) € [0,00)5 such that (\,u) is a ground state solution to (1.3).
In addition, each w; s radial, nonnegative, and radially nonincreasing. Moreover, for every
ie{l,...,K} either u; = 0 or [on [wi|?de = p} and, if u; # 0, then \; > 0 and u; > 0. In
particular, if u € S, then X € (0,00)% and (\,u) is a ground state solution to (1.4).

Note that the obtained ground state solution u belongs to 0D, i.e., at least one of the
L?-bounds must be the equality f]RN |u;|> dz = p?. In particular, ground states solutions can
be semitrivial.

If K =2, L =1, and the coefficient of the coupling term is large, then we find ground
state solutions to (1.4).

Theorem 1.3. Assume that (A0)-(A3), (A4,%), (A5), and (1.8) are satisfied, N € {3,4},
K =2 L=1, and (1.9) holds if 6 € (0,00). If G is of the form (1.10) and 111 + ro1 > 2n,
then for every sufficiently large B, > 0 there exists a ground state solution (\,u) € (0,00)? xS
to (1.4). Moreover, each component of u is positive, radial, radially nonincreasing and of class

C2.

Observe that, if in Theorem 1.3 G;(t) = w;|t|P/p; for some p; > 0 and p; € (2n,2%),
i € {1,2}, then clearly n = 0 in (1.8) and this result was very recently obtained by Li and Zou
in [24, Theorem 1.3], again, unlike this paper, by means of the involved topological argument
due to Ghoussoub [20], cf. [5-8,23,25,29,35,36]. If n > 0 or § € (0, 00)%, the result seems to be
new and we obtain a ground state solution to (1.4) for sufficiently small |p| in the former case,
see (1.8), or under rather mild additional assumptions about G in the latter, see Proposition
2.6. Furthermore, to our knowledge, this is the first result about normalized solutions to a
system of Schrédinger equations where the nonlinearity is rather general, in particular not
(entirely) of power-type, e.g.

(1.11) Gi(u) = %\ui

(3

len(1+‘u2|)’ pi € [2N72*_1]7M1>0716 {172}

as well as where the nonlinearity is the sum of power-type nonlinerites including the Sobolev
critical terms of the form
Vi

(112) Gl(u) = 2—\u2\2N+Z— U pl_"; ui|2 , DPi € (2]\[,2*),#@',%' > O,Ni"‘Vi > 0,7 € {1,2},
N i

where n = M > 0. In view of Proposition 2.6 (ii), taking p = 25 or p = 2* we easily
N

check that (1.11) and (1.12) satisfy (1.9) and we obtain a ground state solution to (1.4) for

any p; +1v; > 0and 0; > 0,7 =1,2. As for other possible examples of scalar functions G1, G
we refer to (E1)—(E4) in [11]. See also example (2.5).
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Moreover, if K =1 and L =0 (i.e., there is no coupling term), then we find ground state
solutions to the scalar problem (1.4) taking into account a general nonlinearity involving at
least L2-critical and at most Sobolev-critical growth.

Corollary 1.4. Assume that K =1, (A0)-(A3), (A4,2), (A5), and (1.8) are satisfied, and
(1.9) holds if 6 € (0,00). Assume as well that H < (2* — 2)G or that N € {3,4} and G is
even. Then there exist u € MNS of class C* and A € (0,00) such that (A, u) is a ground state
solution to (1.4). If G is even, then u is radial, positive, and radially decreasing.

Recently, Soave considered (1.12) with #; = 0 in [35] and with 6; > 0 but vy =0 or u; =0
in [36], with, additionally, an upper bound on p; > 0 if N > 5. In other recent papers, Wei
and Wu [43] considered (1.12) with 6, > 0, 4 = 0, and no upper bound on p;, while Alves, Ji,
and Miyagaki [3] considered (1.12) with #; > 0, v; = 0, and a lower bound on p;. Corollary
1.4 generalizes the results from [3, 36, 43] both because no bound on ; is needed (upper or

lower) and because the Sobolev-subcritical term G can be L2-critical, L2-supercritical, or even
both, without the need of consisting of (sums of) power functions. Of course, Corollary 1.4
also generalizes the results from [11,23], which do not deal with the Sobolev-critical case.

Finally, observe that conditions (A0)—(A5) and (A4,<) are positively additive, i.e., if G
and G’ satisfy the conditions with 7 and 7" in (A1) respectively and o, a’ > 0, then aG + o/G’

: : » s aG + o'G'
satisfy the corresponding conditions with lim sup W
u—0 U

<an+adn.

2. THE PROOF
Lemma 2.1. Let fi, fo € C(RX) and assume there exists C > 0 such that |fi(u)| + | f2(u)| <
C(|ul? + |u|*) for every u € RX. Then fi < fo if and only if fi < fo and

/RN fuw) — fo(u) dz < 0

for every u € HY(RN)E \ {0}.
Proof. We argue similarly as in the case K = 1 provided in [11, Lemma 2.1]. O

We will always assume that (A0O) holds. Lemmas 2.2-2.5 are variants of the results con-
tained in [11,23] with some improvements and adapted to the system of equations.

Lemma 2.2. If (A1)-(A3), (A5), and (1.8) hold, then inf{|Vul|3:u € M ND} > 0.
Proof. Recall that, if p € [2,2*], then
|u|‘p = |u|, and ‘V\u% < |Vul, for every u € H*(RM)X.

For every € > 0 there exists c. > 0 such that for every u € M ND

N . . .
|Vu|§ =5 . H(u)dx <2 (cg|u|§ + (e + n)|u|§x) =2 (caﬂu

e+ e+ n)[ul[3Y)

" * 2% 2
<2 (eC3ae VIl + (e + m)C ol [V ]ul[3)
< 2(e.C8 0 [Vul} + (¢ + m)CR, lol Y | Tul?)

ie.,

(2.1) 0 < 2°.Chn [Vul} + (24(c + 1), ol = 1)|Vul?
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Taking ¢ sufficiently small so that
2"(e + )%, oY < 1
we conclude. UJ
For u € HY(RM)X\ {0} and s > 0 define s x u(z) := sV?u(sz) and o(s) := J(sxu).
Lemma 2.3. Assume that (A1)-(A5) hold and let uw € H'(RY)X\ {0} such that
[Vul3

2fulyy

(2.2)

Then there exist a = a(u) > 0 and b = b(u) > a such that each s € [a,b] is a global mazimizer
for ¢ and ¢ is increasing on (0,a) and decreasing on (b,00). Moreover, sxu € M if and only
if s € a,b], M(s*u) >0 if and only if s € (0,a), and M(s*u) < 0 is and only if s > b. If
(A4,%) holds, then a = b.

Note that (1.8) implies (2.2) provided that u € D. Indeed, from (1.7)

4/N
2n|ul3Y < 2nO%%, [Vuldluly™ < 20C3, [Vul3lp|N < |Vul2.

Proof of Lemma 2.3. Notice that from (A1)

2 N/2
B s 5 G(sV*u)

as s — 07 and from (A2) lim, ., ¢(s) = —oo. From (Al) and (A3) for every £ > 0 there
exists ¢, > 0 such that

G(u) < (e +n)lul + cclul”,

therefore,

1 * *
o(s) > 52</ ~|Vul® = (n+&)|ul>™ dx) — .8 / |u|*” dz > 0
RN 2 RN

for sufficiently small ¢ and s. It follows that there exists an interval [a,b] C (0, 00) such that

<,0|[a7b] = max . Moreover
N H(sM?u)
o) — 2
©'(s) —S/RN‘VM _gwdx

and the function
H(sN?u)
S € (0,00) — RNde
is nondecreasing (resp. increasing) due to (A4) (resp. (A4,=) and Lemma 2.1) and tends to
oo as § — 0o due to (A2) and (A5). There follows that ¢/(s) > 0 if s € (0,a) and ¢'(s) < 0 if

s > b and that a = b if (A4,=) holds. Finally, observe that

N H(sN/?
sgo’(s):/ sz\Vu|2—§¥dx:M(s*u). 0
RN S

Lemma 2.4. If (A1)-(A5) and (1.8) are verified, then J is coercive on M ND.
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Proof. First of all note that, if u € M, then due to (A5)
() = J(u) ——M / Glu)dz > 0
RN

and so, a fortiori, J is nonnegative on M ND. Let (u™) C M N D such that [|[u™| — oo,
i.e., lim, |[Vu™)]|, = 0o, and define

Spo= |Vu™[71 >0 and w™ = s, % u™.
Note that s, — 0, |w§")|2 = |u§")|2 < p;fori e {1,...,K}, and |[Vw™|2 = 1, in particular
(w™) is bounded in H'(R™)X. Suppose by contradiction that

lim sup max/ lw™ % dz > 0.
n o yeRY B

Then there exist (y™) C RY and w € H'(RY)X such that, up to a subsequence, w™ (- +
y™) = w # 0 in HY(RY)E and w™(- + y™) — w a.e. in RY. Thus, owing to (A2),

( ) 1 / G(u(n)) 1 N+2/ (n)
NuE =37 oy Vo dzx = 5~ Sn . G(u'"(s,2)) da

_N/2
_ 1 N+2/ Gs=V2my = L / Glon Tw) wpen g
" RN " 2 RN N/2

0<

| /\

[\)

|Sn 1U(")|2N

\ (:c+y )|2Ndx—> —00.

N —

/ G(sn N72 w™ (x4 ¢y
B s (2 y )2
It follows that

lim max/ lw™ 2 dz =0
B(y,1)

n yeRN
and so, from Lions’” Lemma [28], w™ — 0 in L2V (RV)X. Since

Lemma 2.3 yields

n

2
Ju™) = J(s7txw™) > J(sxw™) = % — SN/ G(SN/Qw(")(s-)) dx
RN
for every s > 0. Taking into account that

lim G(sN/zw(")(s-)) dxr =0,

n ]RN
we have that liminf, J(u™) > s?/2 for every s > 0, i.e., lim,, J(u™) = cc. O
Lemma 2.5. If (A1)-(A5) and (1.8) are verified, then ¢ := inf yynp J > 0.

Proof. We prove that there exists a > 0 such that

Vul3
(2.3) Vuls < a= J(u) > |2N|2’



LEAST ENERGY SOLUTIONS TO A COOPERATIVE SCHRODINGER SYSTEM WITH L?-BOUNDS 11

From (1.7) and (1.8), for every £ > 0 there exists ¢. > 0 such that

G(u) dz < c.C3 5

Vuly + (e +n)Cifa, ol [Vul3

RN
* *_ ]. ].
< (8 T 4 2R, I 4 5 - ) 19
Choosing
1 1
€= o N and o= ———
ANCYS, ol (4Nc.C% )72

we obtain, provided |Vuly < a,

1 1
<(f_ 1 2
» G(u)dz < (2 2N) |Vul;
|Vul3

and so J(u) > N Now take u € M ND and «a > 0 such that (2.3) holds and define

and w:= s*xu.

a
s =

|VU|2

Clearly |w;|s = |uile < p; for i € {1,..., K} and |Vw|y = a, whence in view of Lemma 2.3

2
> 0. ]

Vw|? «
> > = —
J(u) - J(w) - 2N 2N

From now on, ¢ > 0 will stand for the infimum of J over M ND.
Proposition 2.6. Assume that 6 € (0,00)% and that (A1)-(A5), (1.8), and (at least) one of
the following conditions hold:

(i) N >5;

(ii) there exist 2y < p < 2* and 2y < q < 2* such that

(2.4) iminf S 5 0 and Timint S <

lul—0  |ul? ul—oo  |ul?
and max{p, q}/2 — min{p,q} < —1 if N = 3.
Then (1.9) holds.

Recall that, from (A2), the second condition in (2.4) always holds with ¢ = 2y5. Notice
that the restriction on the relation between p, g is always satisfied if p = ¢.

Proof of Proposition 2.6. Define u} as the Aubin-Talenti instanton [4,40]

N-2

o (VNIN=2) *
ug(z) = (W)

w(z) == N2yl (2 fe) = <M> .

e |af?

and, for € > 0,
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Recall that, for every € > 0, [Vu§|a = [Vudle, [ujler = |uf|a+, and u§ is a minimizer for

S = inf{/ |Vol?dx :v € D1’2(RN),/ 0¥ dr = 1} :
RN RN

(i) For every € > 0 and j € {1,..., K} define u5 := 9](-2_N)/4u8. Since u§ € L*(RY) for
every € > 0 and |ug|]s — 0 as ¢ — 0T, we have u® := (u5, ..., u5) € D for sufficiently small ¢
Moreover, in view of Lemma B.1, @° is such that

vae: Vu? « o
U3 o . Ula . 1-N/2
2/2% inf 2*>2/2* = (Z 0; ) S.
T2

/ 1,2 N\K
K 9% ueDL2(RN)E\ {0} K -
(Zj:l 9]|u§|%> <Zj:1 J =1

Recall that é(u) > 0 for u # 0 and then, taking ¢ sufficiently small,

-~ 2 o+ K
e oxi) <= [ Glooxi)de g [ virfar - 2.0 [l o

RN
52 7 & .
<max—/ \Vas | do — |ﬂ§|2 dx
s>0 2 RN 2 N
1 \Vae|y i 1- N/2SN/2

N K g N/2-1
(0 oilsi3:)

(i1) If N > 5, then the statement follows form (i), therefore we can assume N € {3,4}.
Since uj € L*(RY), let 0 < ¢ € C°(RY) radial such that ¢ =1 in By and ¢ =0 in RY \ By,
where B, stands for the closed ball centred at 0 of radius r. For every £ > 0 define

2-N
ué = 9] 4 ¢U,8 and 0° = (ut; s ,Ui{) < D’

-----

\VW¢USH§==SN”-%CK€N‘3

»  JS4+0(h) ifN=4
71824 0(?) if N=3

o Cie?|Inel+0(e?) if N =4
|pugly = N - B
Cse 4+ O(e*) if N =3,

|pug

where C'y > 0 depends only on N and ¢. Note that
/ |Pugl" X pug>1y do = CeN-(N/2=1)r
RN

for some constant C' > 0 and sufficiently small € > 0, where r € {p, ¢} and x4 stands for the
characteristic function of A. Indeed, let |z|? < e4/N(N —2) — &2, If ¢ is sufficiently small,
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then x € By and, consequently, ¢(z)uf(z) = uf(z) > 1, whence

|Pup| X pus>1 dSCZ/ lug|" dx
/]RN ol Aldus=1} {\x\ﬁ(aw/N(N—m—gZ)l/z} 0

— 6N—(N/2—1)r ‘u(1)|r dy

and we conclude, since uj € L"(R"). Define s. > 0 such that s. x v° € M. In a similar way
to the proof of Lemma 2.2, for every § > 0 there exists Cs > 0 not depending on ¢ such that

K
1 — 5 5 *—
S| VOIS < (n+ )3y + Cas? 229|v 3 < ORI NIV 3+ CosT 72y 051051

j=1 j=1

*

(note that u — (Z]K:1 6;|u; %:) is an equivalent norm in L¥ (RM)X i.e., taking § suffi-
ciently small and denoting m := (1/2* — (n + 5)C]2V’Y2N|p|4/N)/C’5 > 0,

2% 2 m|Vv€|§ 9 9% (¢Uo)| |u€|2 -

> - =mp
) Zf:l 9j|”§-|§* | pugl3-

In a similar way to point (7),

- 1 \Wis N
¢ < —/ G(Sa*va)dzzjtﬁ Vel N1
N 2%
" (i o5l 3)

There holds

D DA

j=1"J

Pug

1 N/2 _2*
U
‘V’Ua‘g — ‘ (¢ 0)|22] 1 j and Ze| 5‘2 —

Jus3

)

thus, denoting k = 2 (resp. k =4) if N = 3 (resp. N = 4),

‘V’U8|év Zel N/2 ‘V (buo |2 Zel N/2 SN/2 _'_O( ) N/2
® 2 SN=2/2 1 O(ek)
(ijl 0;v5 3 )

K
Z 0~ N/2 S—I-O( N— 2) N/2 Zel N/2SN/2—|—O( N— 2)

7j=1

Now we estimate fRN (sexv®)dx as ¢ — 0. From (2.4) and the fact, due to (A2) and (A5),
that G(u) > 0 if u # 0, we deduce there exists C' > 0 such that G(u) > Clul? if |u| < 1 and
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G(u) > Clu|? if |u] > 1.
[ Glsenvyda = €550 [ eyt €80 [ o
> Clouy 07 [ 100y o
+Clonl 0 [ 1wl ey da
> O g (V2PN /RN U IPX 2 1y X1
+ C'\¢U‘8 gN/z_l)q_N /N |¢u(€J‘qX{|sN/2vs|>1}X{¢u821} dzx

20'min{|¢u0|(N/2 Dp—N |¢ (N/2 g— N}/ |¢u€|mln{pq}X{¢ s>1}d:l:'

> C”|¢Ug gN/2_1) max{p,q}—NgN_(N/g_l) min{p,q}

as ¢ — 07 because (N/2 —1)r — N < 0, r € {p,q}, where C',C" > 0 are constants. There
follows that

S N/2 —1) max — i
c< 291 N/22 O(N-2) - C"|us gN/2 1) max{p,q}=N _N—(N/2-1) min{p,q}

If N =3, then

g3—min{p,q}/2
(036)3/2—max{p,q}/4 + 0(53—maX{p,q}/2)
> (g(3+max{p.q}/2-min{p.q})/2

|¢ (N/2 1) max{p,q}— N{;‘N (N/2—1) min{p,q} _

and 0 < (3 4+ max{p,¢}/2 —min{p,q})/2 <1 =N —2. If N =4, then

g4—min{p,q}

(v/Cy|Ing| g)t-max{p.a} 4 O(gt-max{p.a})

|¢u8|;N/2—1) maX{p,q}—NEN—(N/2—1) min{p,q} _

and [p—q| <2=N -2, max{p,q} —4 <0, and |[p—¢| > 0 or max{p, ¢} —4 < 0. Either way,
O(eN72) — C”|¢u8|éN/2_1)max{p’q}_NeN_(N/2_1)min{p’q} < 0 for sufficiently small ¢ and

= 1-ny2 SN2
c < ZQJ T ]
=1

Since there exist nonlinearities that do not satisfy the assumptions of Proposition 2.6 (i),
we provide other sufficient conditions for (1.9) to hold.

Lemma 2.7. Assume that (A1)-(A5) are satisfied and 0 € (0, o0) .
() If K =1, 7 =0, and llr%G( u)/|ul* = oo, then there exists py > 0 such that (1.9) is
u—>

satisfied provided that p > py.
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(b) If (1.8) holds and |l‘im G(u)/|ul> = oo, then there exists 8y > 0 such that (1.9) is
U|—00
satisfied provided that 0; < 6y for some i € {1,..., K}.

Proof. (a) We prove that ¢ — 0 as p — oo (note that (1.8) is satisfied for every p > 0 because
n = 0). Let p, — oo and take u € L>®(RY) such that |u|, = 1. Without loss of generality
we may assume that p, > 1 and define u,, := p,u so that |u,|s = p,. From Lemma 2.3 there

N/2

exists s, > 0 such that v, := s5," “u,(s,) € M. Moreover, |v,|s = |u,|2, hence

1 1
0<mﬂﬂm:veWLWb§W}§JmJ§—/ w%ﬁmﬁrx%%f/ IVl dz,
2 RN 2 RN
so it is enough to show that s, p, — 0. Note that

@Mf/\wmw:/)w%mm_ﬂ Ho)dz = s [ H(sY2p,u) da
]RN 2 ]RN 2 ]RN
and

N noo N H(sn'*pau
[ vakas = S [ o= S [ L g

There follows that
His / Pl

n RN‘N/Q | |2Nd$_0

pu

whence sn/?p, — 0. Fix ¢ > 0. From (A5) and the fact that lim,_,o G(t)/|t|>" = oo, there
follows that

4
H(s) > —=G(s) >
() > <) 2 ¢
for sufficiently small |s|. Then, taking into account that u € L>(RY), for sufficiently large n
N 1 N 1 .
/ \Vul?de = —s; 7" = H(sN?p2u)de > et —s V22 }SN/Q n‘ |u o
2 Pr JrN 2 o
_ N _4 *
=€ lg(snpn) N2 |uf3

and s, p, — 0 as n — oo, which completes the proof.
(b) Take any ug € D \ {0} and note that (2.2) holds. In view of Lemma 2.3 there exists
s9 > 0 such that sgxug € M and

2 (/2
< Hsowu) < maS(swug) S max s [ (Vuolde— Gw)
5>0 s>0 2 RN RN s

Observe that the latter expression is finite due to Lemma 2.3 with § = 0. Hence we can take

6y > 0 so small that, if §; < 6, then Zy 1 ]1 N/zSN/z/N > Qg_N/zSNﬂ/N is greater than the

right-hand side of the formula above. O

We give explicit examples of nonlinearities that do not satisfy the assumptions of Propo-
sition 2.6. Let N = 3 and € > 0 be sufficiently small. If §(u) = g, (u) = min{|u|*"®, [u|*3}u
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and if 6 = 0, is not sufficiently small, then we can use Lemma 2.7 (a) provided that p = p; is
sufficiently large, but not part (b). If G is of the form (1.10) and

(2.5) gi(w) = min{Jul!, [u"**}u

and if K =2 or p is not sufficiently large, then we can use Lemma 2.7 (b) provided that 6; is
sufficiently small for some ¢ € {1..., K}, but not part (a).

In view of Lemma 2.4, any minimizing sequence (u™) C MND such that J(u™) — ¢ >0
is bounded. By the standard concentration-compactness argument [28], u{™ — @ for some
@ # 0 up to a subsequence and up to translations. It is not clear, however, if J(@) = ¢ or
@ € M ND. Note that we can find R > 0 such that @(R-) € M and in order to ensure that
J(@) = c and @ € D we need to know that R > 1. The latter crucial condition requires the
profile decomposition analysis of (u(™) provided by the following lemma.

Lemma 2.8. Let (u™) ¢ H'(RM)X be bounded. Then there exist sequences (@)%, C
HYRME and (y@™)2, C RN such that yO™ = 0, lim,, |[y®™) — yU™)| =0 if i # j, and for
every i > 0 and every F': RY — R of class C* such that

F(u) i F(u)

li = =0
w0 Tul? ~ Julose [ul?
there holds (up to a subsequence)
(2.6) u™ 4y G s n = oo
(2.7) lim Vu™2de = Z/ V) |? dx+lim/ V™) 2 g
noJRN =0 RN n JrNv

n

(2.8) limsup/ Fu™)dz = Z/ F(a%) dz,
RN o JrY

where v)(z) = u(2) = iy 80(& — yo).
Proof. We argue similarly as in the case K = 1 provided in [31, Theorem 1.4]. O

Lemma 2.9. If (A1)-(A5) and (1.8) hold and either § = 0 or 6 € (0,00)% and (1.9) is
satisfied, then c is attained.

Proof. Let (u™) C M ND such that lim, J(u™) = ¢. Then (u(™) is bounded due to Lemma
2.4 and, in view of Lemma 2.8, we find (a®), ¢ H'(RV)X and (yg’"))fio C RY such that
(2.6)-(2.8) hold. Let I :={i >0:a® # 0}.

Suppose that 6 € (0,00)% and (1.9) is satisfied.

Claim 1. I # (. By contradiction suppose that @ = 0 for every ¢ > 0. Then

K
n N . N ~ o .
/RNWu“de:; H(u™)de = - H<u<>>dx+§:ej/ u* da.

R R - /R

Observe that (A1), (A3), and (Ab) imply that
H(u) . H(u)

li = =
ug% |u|2 |u|—o00 |u z
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and
K
(2.9) 0(1)+/ |Vu(")|2dx:Z(9j/ W da.
]RN j:l ]RN

N, & K g1-n2\ N .
For the sake of simplicity, let us denote S := (Z - 0. ) S, cf. Appendix B. Then

j=1"J

2% /2
0(1)+/ |Vu™|? de < §72'/2 </ |Vu(")|2d:c) :
RN RN

Passing to a subsequence we set v := lim,, [y |Vu™|2dz > 0 from Lemma 2.2 and we get
p2/(N=2) > GN/(N=2)  Then

1 1

(2.10) ¢ =lim J(u™) = lim J(u™) — §M(u(")) =5V
so we obtain a contradiction and I # (.

Claz'm 2 For every i € I there holds u™ (-4+y®™) — 4 in DY2(RV)X or [ox \Vﬂ(i)|2 dr <

5 fRN ))dx. Suppose that there exists i € I such that v := lim, f]RN Vo™ |2dz > 0

(passmg to a subsequence) and the reverse inequality holds, where v(™ := ™ (. +¢@n)) — 4@,
By Vitali’s convergence theorem

1
/ (H(u™) — H(v"))dz = / /—iH(uW—sa(i))dsdx

RN RN
/ / u™ — siNa® ds da

RN
— // 4 — st a9 dx ds

RN
/RN

/ ——H @ — su9) ds dzx
= H (W) dx
RN

as n — 0o. Again, passing to a subsequence,

) N )
/ |Vv(")|2dx—l—/ (Va2 d = —( H(v™) dz + H(ﬂ(’))dx> +o(1)
RN RN 2 RN RN

and, since [y [Va|?dz > & [ H(a™) dz, we obtain
W2 g < Y ()
(2.11) Vo™ | de < — H(v'"™)dz + o(1)
RN 2 RN

and define R, > 0 such that v™(R,-) € M. We want to prove that R, — 1. If

N

— H(v(”))d:c</ Vo™ 2 da
2 RN ]RN
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holds for a.e. n, then from (2.11) and the fact that v > 0 we get R, — 1. If, passing to a
subsequence,

N
/ Vo2 de < — H(v™) dx
RN 2 RN

holds, then we infer R, > 1. Note that lim,, [u™ |2 — [v(|2 = |@®|2 > 0, hence v € D and
v (R,-) € MND for a.e. n. Hence the Brezis-Lieb Lemma yields

(2.12)

) ) L vz (o L[ Nym )
c < J(W™(R,)) = J(v (Rn-))—iM(v (R, ))da:—ﬁ —H( ) — G(") dx
< [ THE) =60 dr < [ TH@D) - G do + o)
RN RN
1

= J(u™) — §M(u(")) +0(1) = J(u™) +o(1) = ¢ + o(1),

which implies that R, — 1 as claimed. Therefore we have that

(2.13) /RN (Vo™ |2 da = o(1) + g Hw™)dz = o(1) + Z@/R

RN

and as in Claim 1 we get v¥N=2) > GN/(N=2) " Gince J(u™) — J(v™) = J(@®) + o(1) and
J(@W) > [on TH(@D) — G(a?) dz > 0, we have

K

i 1 1. n

(2.14) c—hmJ( N+ J(e™) = J(U())"‘iV_;hr{nE Hj/RN |v](-)
i=1

a contradiction.
Conclusz’on Let i € I and, for simplicity, let us denote a9 =: @. If [ |Va[*dz <

& Jon H(@) dz, then there exists R > 1 such that @(R-) € M, whence a(R-) € D. Hence
Fatou’s Lemma yields
(2.15)
- N 1 N 1 N .
e < J(a(R) = I (i) ~ M (a(R)) dr = 2o [ N (@) - 6 e
RN

N 1
< lim inf/ ZH(U(")) — G(u™) dx = liminf J(u™) — §M(u(")) = liminf J(u™) = ¢,
n RN n n
which is a contradiction. Therefore u™ (- 4 y@™) — @ in DY2(RY)X (which, together with
(2.7), implies that I is a singleton) and, consequently, in L2 (RY)X. Moreover, in virtue of the
Brezis-Lieb lemma, [pv H (u™) dx — Je~ H (@) dz because, from the interpolation inequality,

Hu™ —a)de < C(|Ju™ — a5y + [u™ - al2)

]RN
< C(Ju™ — a2 u™ — @207 4 W™ —@2) =0

for some C > 0 and ¢t =
J(u) =c.

2 . Hence u € M N D, and, arguing as before but with R = 1,
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Now we consider the case = 0 and in a similar way we prove Claim 1 and Claim 2 by
getting a contradiction in (2.9) and (2.13). Finally note that arguments of Conclusion apply
in the case # = 0 as well. OJ

For f: RY — R measurable we denote by f* the Schwarz rearrangement of | f|. Likewise,
if A C RY is measurable, we denote by A* the Schwarz rearrangement of A [10,26].

Lemma 2.10. Assume that (A1)-(A5) and (1.8) are verified, G is of the form (1.10), and
either 0 = 0 or 6 € (0,00)% and (1.9) holds. Then c is attained by a K-tuple of radial,
nonnegative and radially nonincreasing functions.

Proof. Let 4 € M N D such that J(@) = ¢ be given by Lemma 2.9. For every j € {1,..., K}
let u; be the Schwarz rearrangement of |@;| and denote u := (uy,...,ux). Let a = a(u) be
determined by Lemma 2.3. In view of the properties of the Schwarz rearrangement [10, 26],
we obtain

M1 *u)=M(u) < M(u) =0,
therefore in view of Lemma 2.3 we have that a < 1 and, consequently, M (ax @) > 0. Let

d:ZEJH%aX (Zr” )

.....

Then
1
c<Jaxu)=J(a*xu)— EM(a*u)
K
1 1 1 /N
= /]RN ZCL2 <§ _ 8) ‘VUZ|2 _'_ a_N<2_de(aN/2u) G (aN/QuZ)) dx
1 & T K
‘a—NZﬁjG‘a(Z%—?) [T 1a"" 2l
Jj=1 i=1 i=1
= (1 1 (N
< [ w5 a) v+ g (G e - G ) d
i=1
1 & T K
‘a—NZﬁJO‘a(Zm—?) [L1a™2
Jj=1 =1 i=1
= Jaxit) ~ SM(axi) < Jaxi) < J(@i) = c
e, J(axu)=c. -

Lemma 2.11. (a) Assume that (A1)-(A3), (A4,=), (A5), and (1.8) hold and let u € MND
such that J(u) = ¢ and u; is radial for everyi € {1,..., K}. Then u is of class C*.

(b) If, in addition, N € {3,4}, G is of the form (1.10), and u; is nonnegative for every
ie{l,...,K}, then u € 9D. Moreover, for everyi € {1,..., K}, either |u;|s = p; or u; =0.

Proof. (a) In Proposition A.1 we set f = J, ¢;(v) = |v;|3—p?, 1 <i <m = K, 9;(v) = M(v),
n=1veH=H(RY)X. Then there exist (\i,..., \x) € [0,00)¥ and o € R such that

(2.16) (1= 20) A + A = OC () — a%&-H(u)



20 J. MEDERSKI AND J. SCHINO

for every i € {1,..., K} and u satisfies the Nehari identity

K

(2.17) (1 - 20)/ |Vul? dr + Z/ Nl | d +/ ag(h(u),u) —(g(u),u)dx =0.
RN i1 RN RN 2

If 0 = 3, then (A4,X), (A5), and (2.17) yield

[ ). (gl do =

>/ gH(u) —9G () dx > 0,
]RN

a contradiction. Hence o # % and u satisfies also the Pohozaev identity

N

0>
= ey 4

(h(u),uy — H(u) — 2G(u) dz

K
2* N
(218)  (1-— 20)/ IVul? de + 5 Z/ Aol wi|? da + 2*/ 05 H(u) = G(u) dz = 0.
RN — JrN RN
Combining (2.17) and (2.18) we obtain

N
(1—20)/ |Vul® dx + —
RN

2 RN

O—N(%m(u), u) — H(w)) ~ H(u)dr =0

and, using the fact that u € M,

(1—20) H(u)dx+/

RN RN

aN(%(h(u), u) — H(u)) — H(u) dz = 0,

that is
a/ (h(u),u) — 2y H(u) dx =0,
RN
which together with (A4,<) yields ¢ = 0. In view of [12, Theorem 2.3, u € W>9(RM)¥ for

loc

all ¢ < oo, hence u € CL*(RN)X for all & < 1. Then, arguing as in the proof of [10, Lemma

loc
1], we have that u is of class C%.

(b) First we show that w € OD. Suppose by contradiction that |u;|s < p; for every i. Then

A =---=Ag =0 and from (2.17) and (2.18) (with ¢ = 0 as in proof of (a)) there follows
(2.19) /RN (g(u),u) —2°G(u) dx = 0.

In view of (Ab)

(2.20) 2°G(u(z)) = (g(u(2)),u(z))

for every x € RY. Since G; satisfies (A5), we get 2°G;(u;(z)) > gi(wi(x))u;(z) for all i €
{1,..., K} and note that

74,5
)

L K K
23 B [T lwa@) ™ =" 8> e [ [ lwilw)
j=1 =1 j=1 k=1 i=1
since Zszl T, < 2*. Hence, from (2.20), the inequalities above are actually equalities. On the
other hand, for every j € {1,..., L}, Y25 r;; < 2*, which yields 8; = 0 or [[, Jui(z)["5 = 0
for every z € RY, so that the coupling term is zero and thus
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for every i € {1,..., K} and every z € RY.

Now fix 7 € {1,..., K} such that u; # 0. Since u; € H*(RY) N C?, there exists an open
interval I C R such that 0 € T and 2*G;(s) = gi(s)s for s € I. Then G;(s) = 0;|s|*" /2" for s € T
and u; solves —Au; = 9i|ui|2*_2u,~. Hence, since u; > 0, u; is an Aubin—Talenti instanton, up
to scaling and translations, which is not L*-integrable because N € {3,4}. Therefore u € 9D.

Now we prove the second part and suppose that there exists v € {1,..., K — 1} such
that, up to changing the order, |u;|a < p; for every i € {1,...,v} and |u;|s = p; for every
i€{v+1,...,K}. From Proposition A.1 there exist 0 = A\; = --- =X\, < A\41,..., g and
o € R such that

(2.21) —(1—=20)Au; = 8,G(u) — o F0;H(u) for every i € {1,...,v}
) —(1 = 20)Au; + \u; = 0;G(u) — U%@iH(u) foreveryie {v+1,...,K}

and as before we obtain ¢ = 0. Since G; satisfies the scalar variant of (A5), (0,00) > s —
Gi(s)/s* € R is nondecreasing, hence G; is nondecreasing as well for all i. Then, the first v
equations in (2.21) with ¢ = 0 yield —Awu; > 0 for i € {1,...,v}. Since u € L%(RN)K as
N € {3,4}, uis of class C?, and u; > 0, [21, Lemma A.2] implies u; = 0 for every i € {1,...,v}.
Notice that we have proved that \; = 0 implies that u; = 0. O

Remark 2.12. We point out that in addition to the assumptions of Lemma 2.11, i.e., (A1)~
(A3), (A4,=), (A5), and (1.8) hold, u € MND, and J(u) = ¢, we can show that uw € D for
any dimension N > 3 and without the assumption that G is of the form (1.10) provided that
H = (2" —2)G holds. Indeed, observe that (2.19) contradicts H =< (2* —2)G and Lemma 2.1.

Proof of Theorem 1.1. Statement (a) follows from Lemmas 2.9 and 2.10. Now we prove state-
ment (b). From Lemma 2.11 (a), u is of class C?, while from Proposition A.1 there exist
(A1, ..., Ax) €]0,00)% and o € R such that (2.16) holds and o = 0 as in the proof of Lemma
2.11 (a). 0

Proof of Theorem 1.2. 1t follows from Lemma 2.11 (b), Theorem 1.1 (b), and the maximum
principle [18, Lemma IX.V.1] (the implication u; # 0 = \; > 0 is proved as in the proof of
Lemma 2.11 (b)). O

Proof of Corollary 1.4. From Theorem 1.1 (), there exists u € M NDNC*(RY) and X > 0
such that J(u) = ¢ and (A, u) is a solution to (1.3). Observe that, from Lemma 2.10, we can
assume that u is radial, nonnegative (in fact, positive owing to the maximum principle and
because G is nondecreasing on (0,00)), and radially nonincreasing provided that G is even.
Next, since N € {3,4} and G is even or H =< (2* — 2)G, arguing as in the proof of Lemma
2.11 (b) — see also Remark 2.12 — we obtain that u € 9D = S and (), u) is a solution to (1.4).
Since u satisfies the Nehari and the Pohozaev inequalities, we get

2 9
- - 9% —
)\N 5 /RN |u|” dz /RN G(u) — g(u)udz

and, again arguing as in the proof of Lemma 2.11 (b) or Remark 2.12, we obtain [,y 2*G(u) —
g(u)udr > 0, whence A > 0. Finally, suppose that G is even, so u is (in particular) positive
and radially nonincreasing. Note that u(z) — 0 as |x| — oo and that there exists ¢y > 0 such
that g(t) < At for every t € [0,to] and g(t) > At for every t > to. If u is constant in the annulus
A :={n < |z| <} for some 7, > 7 > 0, then 0 = —Au = g(u) — A in A, thus —Au <0
in Q := {|z| > 7} because u is radially nonincreasing and u(z) < ty if € Q. At the same
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time, u attains the maximum over  at every point of A, which is impossible because u|q is
not constant. This proves that u is radially decreasing. 0

Lemma 2.13. Suppose that K =2, L = 1, and the assumptions in Lemma 2.11 (b) hold. If
r11 +1req > 2y and By is sufficiently large, then u € S.

Proof. Since L = 1, we denote 31, 111, 721 by [, 71, r2 respectively. Suppose by contradiction
that u; = 0 or ug = 0, say u; = 0, which implies that |us|s = po. We want to find a suitable
w € § such that

(2.22) J(axw) <c=J(0,us),

where a = a(w) is defined in Lemma 2.3 (note that a(w) = b(w) because (A4,=<) holds), which
is impossible. First we show that ¢ does not depend on (3. Consider the functional

1
Jo:ive HY(RY) — §|Vv|2—G2(v)dx€R
RN

and the sets
D, = {v c H'(RY) : / lv]? do < pg},
RN
1N 2 N
M, = {’UGH (RY)\ {0} / v dsz/ Hg(v)dx}.
RN RN

Observe that J(0,v) = J,(v) for v € HY(RY). Moreover (0,v) € D if and only if v € D,, and
(0,v) € M if and only if v € M,. In particular,

c=J(0,uy) = Ju(ug) > /\/Iil%fD J, = inf{J(0,v) : (0,v) e MND} >c,

i.e., ¢ =infr, np, Js, and the claim follows because J,, D,, and M, do not depend on f.
In view of Corollary 1.4, there exists v € M, N dD, such that

J,(v)= inf J,=c= inf J.
M.ND, M, NID.

Note that v does not depend on . Define w = (wy, ws) := (%T), T)). From Lemma 2.3, a = ag
is implicitly defined by

2, N [ Giay w)aun —2G (0 wn) Gyl ws)ay ws — 2Gs(ay w,)
Vul* dr == o N v
RN RN ag a)

+ B(r1 + 12 — 2)&2[(“”2_2)/2_210?10? dx

r1+ro— o N
Zﬁ(r1+r2—2)ag( 1+r2=2)/2-2

T1,,72
wy'wy? dx,
2 RN

hence there exist C' > 0 not depending on [ such that

(2.23) 0 < Bay IR <
whence
(2.24) lim ag = 0.

B—o0
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Since ag x w € M, we have from (A5)

J(ag*w) / —H(ag*w) — G(aﬁ*w)deNi RNG(ag*w)dx
h o, B
N -2 ay N -2 RN wi:
therefore (2.22) holds true for sufficiently large 5 owing to (Al), (2.23), and (2.24). O
Proof of Theorem 1.3. 1t follows from Lemma 2.13 and Theorem 1.2. O

Now we investigate the behaviour of the ground state energy with respect to p. For
p=(p1,-..,pr) € (0,00)K we denote

D(p) = {uEHl(]RN)K:/NWiPda:Sp? foreveryz'e{l,...,K}}
R

S(p) = {uEHl(]RN)K:/RN|ui|2d:E:p?foreveryi€{1,...,K}}
c(p) = inf{J(u):ue MnND(p)}.

Proposition 2.14. Assume that (A0)-(A5) and (1.8) are satisfied.

(i) If § = 0, then c is continuous and lim, ,o+ c(p) = oo, where p — 0% means p; — 0T for
everyi € {1,..., K}.

(ii) Let 6 € (0,00)K and p € (0,00)% . If (1.9) holds for every p' € Hle(pj —¢,pj) and some
e > 0, then ¢ is contz’nuous at p. If (1.9) holds for every p' € (0,€)% and some ¢ > 0, then
1 SN/Q 91 N/2

Jime(p) = Z

(111) If every ground state solution to (1.3) belongs to S(p) (e.g. if the assumptions of Theorem
1.3 are satisfied), then c is decreasing in the following sense: if p,p’ € (0,00)% are such that
pi > p; for everyi € {1,..., K} and p; > pj for some j € {1,..., K}, then c(p) < c(p').

Proof. Fix p € (0,00)X and let p™ — p. We begin by proving the upper semicontinuity of
cat p. Let w € M N D(p) such that J(w) = c(p), denote w™ := p{™w;/p;, and consider
w™ = (w) (") L' )) € D(p™). Due to Lemma 2.3, for every n there exists s, > 0 such
that s, x w™ € ./\/l Note that

N/2 n
N [ H(s2(p\"wifpr,. ., pwic /o))
o Siv+2

(2.25) dx :/ Vw™|? dz — |Vw|* d.
RN RN

2 Jgn
If lim sup,, s, = oo, then from (A2) and (A5) the left-hand side of (2.25) tends to co up to a
subsequence, which is a contradiction. If liminf, s, = 0, then from (A1), (A3), (A5) and (1.8)
and arguing as in Lemma 2.2 we obtain that the limit superior of the left-hand side of (2.25)
is less than |Vw]|3, which is again a contradiction. There follows that, up to a subsequence,
S, — s for some s > 0 and s xw € M. In view of Lemma 2.3,

limsup ¢(p™) < lim J (s, * w,) = J(s *w) = J(w) = ¢(p).

Now we prove the lower semicontinuity of ¢ at p. Let p™ — p and u™ € M ND(p™) C
M N D(2p) such that J(u™) = c(p™) < ¢(p/2). In view of Lemma 2.4, (u{™) is bounded,
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hence we can consider the sequences (%) and (y*™) given by Lemma 2.8; note that @) € D.
We consider the case 6 € (0,00)% because the other one (i.e., # = 0) is similar and simpler.
Claim: There exists ¢ > 0 such that lim, u™ (- +y@&™) — @@ £ 0 in DV2(RY)X. The
proof is similar to that of Lemma 2.9, thus we focus only on the differences. If 4 = 0 for
every ¢ > 0, then as in (2.10) we obtain the contradiction
GN/2 SN/2

I >c(pr—e,...,px —e) > limsup ¢(p™) = limsup J(u™) >

Let ¢ > 0 such that @@ # 0 and define v(™ = u( (- + &™) — GO If liminf, [Vo™ |y > 0
and |Va®% > X [ H(a™)dz, then we prove that R, — 1, Where R, > 0 is such that
v™(R,) € M. In particular if up to a subsequence R, > 1, then as in (2.12) we get

(2.26)

0 < c(2p) < c(pf <— — (™) dx < / %Hw-a@%
RN

RN
< c(,o )+ 0(1)
Next, as in (2.14) we obtain again the contradiction (2.26), which proves that v™ — 0 in
DY2(RM)X (up to a subsequence) or [Va® |3 < & [ H(@™)dz. In the latter case, we define
R > 1 such that @P(R-) € M as in (2.15) we get the contradiction

clp) < J(a(R)) < limsupe(p™) < c(p)

where the last inequality is due to the upper semicontinuity. This proves the Claim, which
yields, together with the interpolation inequality, that @) € M N D and so

c(p) < J(@9) = lim J(u™) = lim ¢(p™).

Now we prove the behaviour of ¢(p') as p/ — 0. Let p™ — 07 and u™ E MND(p™)
such that J(u™) = ¢(p™). Denote s, := |[Vu™|;! and w™ := s, x u™ and note that
st xw™ =y™ e M, [Vw™|, =1 and

w3 = [ = o7 0

as n — oo. In particular (w(™) is bounded in L* (RV)X and so

0]z, < T ] 0
as n — 00. Suppose that # = 0. Then, in view of (A1) and (A3), for every s > 0

G (sMN20m)

li dx =0
lgLn RN SN v

and, consequently,

2 (V2™ 2
J™) = J(s7 % w™) > J(sxw™) = = —/ % dr = > +o(1),
2 RN S 2
whence lim,, J(u™) = oco.
Now suppose that § € (0,00)%. Since [u™|2 = [p™|?> — 0, we get u™ — 0 in LI(RV)E
for 2 < g < 2*. Arguing as above, for every s > 0

G(sN/2y ™)

lim N dr =0,

n RN
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hence
N/2, (n) N/2q,
lim G(Sfﬁ) dr = lim G( dx +2 ZG hm/ |u(" 1> du.
n RN S n RN ST

Consequently,

2 G (sN/2q(n)
Ju™) > J(sxu™) = S—/ |Vu™|? da —/ MdI

2 RN RN SN

s " P ) 2+
= Eh,lln . |V )|2d:c—?;9jh£n/w \u§ 2 dx + o(1)

for any s > 0. Then, in view Lemma B.1

s>0 n

lim J(u™) > max —hm |Vu(" dx — —ZH hm/ |u

lim,, |Vu Ny

N/2—1
K . n *
521 6 Tim, 03

K
T A s

"

1

>

- N

and taking into account (1.9) we obtain

K
1
I my _ L gnp N g2,
im J(u'™) NS ; :

Now assume that every ground state solution to (1.3) belongs to S(p) and let p,p" as
in the statement. Let u € M N S(p) and v/ € MNS(p) € MND(p) \ S(p) such that
J(u) = c(p) and J(u') = ¢(p). Clearly c(p) < c(p’). If c¢(p) = c(p'), then ¢(p) = J(v'), with
u e MND(p)\ S(p), which is a contradiction. O

APPENDIX A. SIGN OF LAGRANGE MULTIPLIERS

The following result concerns the sign of a Lagrange multiplier when the corresponding
constraint is given by an inequality and the critical point of the restricted functional is a
minimizer. The result is related with Clarke’s [15, Theorem 1], however it is not clear whether
we can apply it directly in our situation.

Proposition A.1. Let H be a real Hilbert space and f,¢;,¢; € CHH), i € {1,...,m},
j€{1,...,n}. Suppose that for every

ze (e (0N )¢ (0)
i=1 j=1
the differential
((ﬁ;(l’), w; (x))1<z<m 1<j<n "’ H - Rm+”

SO IS >



26 J. MEDERSKI AND J. SCHINO

1s surjective. If x € H minimizes f over
{r e H:¢i(x) <0 for everyi=1,...,m and ¢;(x) =0 for every j =1,...,n},
then there exist (\;)i2) € [0,00)™ and (0;)j_; € R" such that

f(z) + Z Nid(Z) + Z o(T) =

Proof. Fix € > 0 and define the functional F': H — [0, 00) as
F(o) = _max {f(z) = f(2)+e i), [v(2)]}-

and observe that F is locally Lipschitz and bounded from below by 0. Since F(Z) = ¢, in view
of the Ekeland variational principle [16, Theorem 1.1] there exists z = z. € H such that

Iz -zl < Ve
F(x)++Ve|r—z|| > F(z) VreH.

From [15, Propositions 6, 8| there follows that 0 € dF(z) + v/ J|| - —z||(z), where O stands
for the generalized gradient |15, Definition 1]. Hence, there exists £ = & € OF(z) such that
—& € 1/e0|-—2||(2). In view of [15, Propositions 1, 9], ||£]| < v/ and £ lies in the convex hull
of f(2) — f(Z)+ ¢, ¢i(2), and |1);(2)], i.e., there exists 7, A1, ..., A, F1,...,6, > 0 depending
on ¢, such that 7+ M\ +---+ A\, +01+---+0, =1,

. ( P+ YNk + Z&jamuz)),

and \; = 0 (resp. 6; =0) if ¢;(2) <0 (resp. ¥;(z) = 0).
For every j € {1,...,n} such that ¢;(z) # 0 we have

Ol (2) = {sign(v;(2))¥5(2)}-

If j € {1,...,n} is as before, we define o; := sign(t;(z))6;, otherwise we define o; := 0. In

particular, we have
Z ;0| (= {Z o5(2 }

Summing up, we obtain the followmg. for every € > 0 there exist 7 > 0, ()™, € [0,00)™,
(0j)j=1 € R™ and 2 € B(z,/¢) such that

§=7f"(2) + 25 Mdi(2) + X051 005(2) € B(0,VE),
T A+ ol =1
Letting e — 07 we get

(A1) (@) + D Nl(@) + Y oiy(a) =

for some 7 > 0, (A)2; € [0,00)™, (05)j=; € R™ such that

T+§:>\i+zn:|0'j‘ =1.
i=1 j=1
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Suppose by contradiction that 7 = 0, whence
(A.2) D Ndi(@) + > ol(z) = 0.
i=1 j=1

If ¢;(z) < 0 for some i € {1,...,m}, then of course \; = 0, hence, up to considering a
(possibly empty) subset of {1,...,m} in (A.2), we can assume that ¢1(Z) = -+ = ¢y, () =0
and A1 = ... = Ay = 0 for some 0 < my < m, where my = 0 denotes that \; = 0 for all
i€{l,...,m}, whereas my = m denotes ¢1(z) = --- = ¢,,(Z) = 0. Then the differential

(B12).- - Oy (), U4 (2), . (1)) : H > RO

is surjective and so, for every i € {1,... ,mg} (resp. j € {1,...,n}), we can choose y € H such
that ¢}(z)(y) # 0, ¢.(Z)(y) = 0 for every k € {1,...,mo} \ {i} and ¢}(Z)(y) = 0 for every
j€{1,....n} (resp. ¥;(T)(y) # 0, ¥ (T)(y) = O for every k € {1,... ., n}\{j} and ¢;(z)(y) = 0
for every i € {1,...,mg}). This and (A.2) implies \; = 0 for every i € {1,...,mp} and o, =0
for every j € {1,...,n}, a contradiction. We can thus divide both sides of (A.1) by 7 and, up
to relabelling A\; and o; (i € {1,...,mg}, 7 € {1,...,n}), conclude the proof. O

APPENDIX B. A SOBOLEV-TYPE CONSTANT
Let 6 = (6y,...,0k) € (0,00)K,
Vul?d
12(mfg)K\{ } fRN | U| - 2/2%7
ueDL2(R 0 K «
(Zj:l 0 f]RN |u;[? d:z:)

and, clearly, in view of the Sobolev embeddings, S > 0.

S =

_ _N—2 _N-2
Lemma B.1. S is attained by (6, * wuy,...,0, * uk), where u; are Aubin-Talenti instantons.

Moreover
K 2/N
_ _N-2
S = (Zej 2 ) S.
j=1

Proof. We prove that S is attained. Let I: DY?(RY)X — R be defined as

1 1 &
Iw = | Z\Vulr= =3 6,|u,
(u) /RN2| ul = 5 ;:1 ilu;

If u=(ug,..ux) € D»?(RY)K then

¥ du.

I'(u) = 0 & —Auj = 0;|u;|* ~2u; for every j € {1,..., K}.

Define the Nehari manifold for I as

K
N = {u e DVRY)F\ {0} : [Vul3 = Zf}j\uﬂ%i}
j=1
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ad note that, if u € A/, then

1 1 &
I(u) = NWU\S = > 0l
j=1

2%
2*

K (25 —2)/2*
f N |VU|2dI 2(25—2)/2* *
K R 2/2* = |V |2( )/ = Z 9.7 |u] g* )
(Zj:1 0; Jr lus]* dx) i=1
Jan |Vul? do

hence = A if and only if I(u) = FA*/@ =2 Moreover, if u €

(20165 fun luyl?* dx)m* _
DLARN)EN {0}, then tu € A for some ¢ > 0 and the fraction in the definition of S does not
depend on the rescaling ¢ — tu, therefore

- Jan [Vul? dx

R N
(0005 o g )

and infy [ = %5‘2/(2*_2)* > 0. Let u™ € A be such that I(u™) — infy I. Up to replacing

(n) :
;= 0for every n,j. In

virtue of Ekeland’s variational principle [44], we can assume I'(u(™) — 0. Since infy I > 0,

u™ 4 0 in L* (RV)X, thus, in view of Solimini’s theorem [37, Theorem 1], see also [42,

Lemma 5.3]), there exist (s,) C (0,00), (y,) € RY and u € DM?(RY)X \ {0}, such that

s/ 2™ (s, +yn)) = win DV2(RME and s/ *u™ (s,4y,)) = wae. in RY up to a subsequence.

In particular, I'(u) = 0 and so u € N. Observe that each component of u is of the form
N—-2

0
J

2/N

_ [on [Vul? dz 5 oy

§=———= — = Zej S. O
(ijl 0; Jan lujl? dl‘) i=1
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