
Least energy solutions to a cooperative
system of Schrödinger equations with
prescribedL2-bounds: at leastL2-critical
growth

Jarosław Mederski, Jacopo Schino

CRC Preprint 2021/1 (revised), September 2021

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



ar
X

iv
:2

10
1.

02
61

1v
3 

 [
m

at
h.

A
P]

  2
8 

Se
p 

20
21

LEAST ENERGY SOLUTIONS TO A COOPERATIVE SYSTEM OF
SCHRÖDINGER EQUATIONS WITH PRESCRIBED L2-BOUNDS: AT

LEAST L2-CRITICAL GROWTH

JAROSŁAW MEDERSKI AND JACOPO SCHINO

Abstract. We look for least energy solutions to the cooperative systems of coupled Schrödinger
equations 




−∆ui + λiui = ∂iG(u) in R
N , N ≥ 3,

ui ∈ H1(RN ),∫
RN |ui|2 dx ≤ ρ2

i

i ∈ {1, . . . ,K}

with G ≥ 0, where ρi > 0 is prescribed and (λi, ui) ∈ R × H1(RN ) is to be determined,
i ∈ {1, . . . ,K}. Our approach is based on the minimization of the energy functional over a
linear combination of the Nehari and Pohožaev constraints intersected with the product of the
closed balls in L2(RN ) of radii ρi, which allows to provide general growth assumptions about
G and to know in advance the sign of the corresponding Lagrange multipliers. We assume
that G has at least L2-critical growth at 0 and admits Sobolev critical growth. The more
assumptions we make about G, N , and K, the more can be said about the minimizers of the
corresponding energy functional. In particular, if K = 2, N ∈ {3, 4}, and G satisfies further
assumptions, then u = (u1, u2) is normalized, i.e.,

∫
RN |ui|2 dx = ρ2

i
for i ∈ {1, 2}.

Introduction

We consider the following system of autonomous nonlinear Schrödinger equations of gra-
dient type

(1.1)






−∆u1 + λ1u1 = ∂1G(u)
· · ·
−∆uK + λKuK = ∂KG(u)

in R
N

with u = (u1, . . . , uK) : R
N → R

K , which arises in different areas of mathematical physics. In
particular, the system (1.1) describes the propagation of solitons, which are special nontriv-
ial solitary wave solutions Φj(x, t) = uj(x)e

−iλjt to a system of time-dependent Schrödinger
equations of the form

(1.2) i
∂Φj

∂t
−∆Φj = gj(Φ) for j = 1, . . . , K,

where, for instance, gj are responsible for the nonlinear polarization in a photonic crystal [2,34]
and λj are the external electric potentials.
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Another field of application is condensed matter physics, where (1.1) comes from the
system of coupled Gross-Pitaevski equations (1.2) with nonlinearities of the form

gj(Φ) =

(
K∑

k=1

βj,k|Φk|2
)
Φj for j = 1, . . . , K.

The following L2-bounds for Φ will be studied:
∫

RN

|Φj(t, x)|2 dx = ρ2j and

∫

RN

|Φj(t, x)|2 dx ≤ ρ2j .

Problems with prescribed masses ρ2j (the former constraint) appear in nonlinear optics, where
the mass represents the power supply, and in the theory of Bose–Einstein condensates, where
it represents the total number of atoms (see [1, 17, 19, 27, 30, 32, 41]). Prescribing the masses
make sense also because they are conserved quantities in the corresponding evolution equation
(1.2) together with the energy (see the functional J below), cf. [13, 14]. As for the latter
constraint, we propose it as a model for some experimental situations, e.g. when the power
supply provided can oscillate without exceeding a given value.

Recall that a general class of autonomous systems of Schrödinger equations was studied
by Brezis and Lieb in [12] and using a constrained minimization method they showed the
existence of a least energy solution, i.e., a nontrivial solution with the minimal energy. Their
method using rescaling arguments does not apply with the L2-bounds.

Our aim is to provide a general class of nonlinearities and to find solutions to the nonlinear
Schrödinger problems

(1.3)






−∆ui + λiui = ∂iG(u) in R
N , N ≥ 3,

ui ∈ H1(RN),∫
RN |ui|2 dx ≤ ρ2i

for every i ∈ {1, . . . , K}

and

(1.4)





−∆ui + λiui = ∂iG(u) in R
N , N ≥ 3,

ui ∈ H1(RN),∫
RN |ui|2 dx = ρ2i

for every i ∈ {1, . . . , K},

where ρ = (ρ1, . . . , ρK) ∈ (0,∞)K is prescribed and (λ, u) ∈ R
K ×H1(RN)K is the unknown.

Let us introduce the sets

D :=

{
u ∈ H1(RN)K :

∫

RN

|ui|2 dx ≤ ρ2i for every i ∈ {1, . . . , K}
}
,

S :=

{
u ∈ H1(RN)K :

∫

RN

|ui|2 dx = ρ2i for every i ∈ {1, . . . , K}
}

and note that S ⊂ ∂D.
We shall provide suitable assumptions under which the solutions to (1.3) (resp. (1.4)) are

critical points of the energy functional J : H1(RN)K → R defined as

J(u) :=
1

2

∫

RN

|∇u|2 dx−
∫

RN

G(u) dx
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restricted to the constraint D (resp. S) with Lagrange multipliers λi ∈ R, i.e., they are critical
points of

H1(RN)K ∋ u 7→ J(u) +
1

2

K∑

i=1

λi

∫

RN

|ui|2 dx ∈ R

for some λ = (λ1, . . . , λK) ∈ R
K . Let us recall that, under mild assumptions on G, see [12,

Theorem 2.3], every critical point of the functional above belongs to W 2,q
loc

(RN)K for all q <∞
and satisfies the Pohožaev [10, 22, 31, 33]

∫

RN

|∇u|2 dx = 2∗
∫

RN

G(u)− 1

2

K∑

i=1

λi|ui|2 dx

and Nehari

J ′(u)(u) +
K∑

i=1

λi

∫

RN

|ui|2 dx = 0

identities. By a linear combination of the two equalities above it is easily checked that every
solution satisfies

M(u) :=

∫

RN

|∇u|2 dx− N

2

∫

RN

H(u) dx = 0,

where H(u) := 〈g(u), u〉−2G(u) (〈·, ·〉 is the scalar product in R
K) and g := ∇G, see e.g. [22].

Hence we introduce the constraint

M :=
{
u ∈ H1(RN )K \ {0} :M(u) = 0

}
,

which contains all the nontrivial solutions to (1.3) or (1.4) and does not depend on λ. Observe
that every nontrivial solution to (1.3) belongs to M∩D and every (nontrivial) solution to (1.4)
belongs to M∩S ⊂ M∩D. By a ground state solution to (1.3) we mean a nontrivial solution
which minimizes J among all the nontrivial solutions. In particular, if (λ, u) solves (1.3) and
J(u) = infM∩D J , then (λ, u) is a ground state solution (cf. Theorems 1.1 and 1.2). By a ground
state solution to (1.4) we mean that (λ, u) solves (1.4) and J(u) = infM∩D J (cf. Theorems
1.2, 1.3, and Corollary 1.4). Note that this is more than just requiring J(u) = infM∩S J ,
which, on the other hand, appears as a more “natural” requirement.

Working with the set D instead of the set S for a system of Schrödinger equations seems
to be new and has, among others, a specific advantage related to the sign of the Lagrange
multipliers λi. We begin by showing why this issue is important. First of all, from a physical
point of view there are situations, e.g. concerning the eigenvalues of equations describing the
behaviour of ideal gases, where the chemical potentials λi have to be positive, see e.g. [27,32]. In
addition, from a mathematical point of view the (strict) positivity of such Lagrange multipliers
often plays an important role in the strong convergence of minimizing sequences in L2(RN), see
e.g. [6, Lemma 3.9]; finally, the nonnegativity is used in some of the proofs below, e.g. the one
of Lemma 2.11 (a). The aforementioned advantage is as follows: in [15], Clarke proved that,
in a minimization problem, Lagrange multipliers related to a constraint given by inequalities
have a sign, i.e., λi ≥ 0; therefore it is enough to rule out the case λi = 0 in order to prove
that λi > 0 for every i ∈ {1, . . . , K}; note that ruling out the case λi = 0 is simpler than
ruling out the case λi ≤ 0, cf. the proof of Lemma 2.11 (b). The nonnegativity/positivity
of the Lagrange multipliers of (1.4) has often been obtained by means of involved tools (or
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at the very minimum in a not-so-straightforward way), such as stronger variants of Palais-
Smale sequences in the spirit of [22] as in [6, Lemma 3.6, proof of Theorem 1.1] or preliminary
properties of the ground state energy map ρ 7→ infM∩S J as in [24, Lemma 2.1, proof of Lemma
4.5]. Our argument, based on [15], is simple, does not seem to be exploited in the theory of
normalized solutions, and is demonstrated in Proposition A.1 in an abstract way for future
applications, e.g. for different operators in the normalized solutions setting like the fractional
Laplacian [25, 29].

A second, but not less important, advantage of considering the set D concerns the property
that the ground state energy in the Sobolev-critical case is below the ground state energy of
the limiting problem, cf. (1.9). More precisely, since in dimension N ∈ {3, 4} the Aubin–
Talenti instantone is not L2-integrable, we need to truncate it by a cut-off function and then
project it into D; however, unless K = 1, we cannot ensure that such a projection lies on S,
hence the use of D is necessary for this argument. See the proof of Proposition 2.6 (ii) for
further details.

Recall that, when K = 1 and

(1.5) G(u) =
1

p
|u|p, 2 < p < 2∗, p 6= 2N := 2 +

4

N
,

(1.4) is equivalent to the corresponding problem with fixed λ > 0 (and without the L2-bound)
via a scaling-type argument. This approach fails in the case of nonhomogeneous nonlinearities
or when K ≥ 2. In the L2-subcritical case, i.e., when G(u) ∼ |u|p with 2 < p < 2N , one can
obtain the existence of a global minimizer by minimizing directly on S, cf. [28,39]. In the L2-
critical (p = 2N) and the L2-supercritical and Sobolev-subcritical (2N < p < 2∗ := 2N

N−2
) cases

this method does not work; in particular, if p > 2N in (1.5), then infS J = −∞. The purpose
of this work is to find general growth conditions on G in the spirit of Berestycki, Lions [10]
and Brezis, Lieb [12] as well as involving the Sobolev critical terms, and to provide a direct
approach to obtain ground state solutions to (1.3), (1.4), and similar elliptic problems. The
problem (1.4) for one equation was studied by Jeanjean [22] and by Bartsch and Soave [7, 8]
with a general nonlinear term satisfying the following condition of Ambrosetti-Rabinowitz
type: there exist 4

N
< a ≤ b < 2∗ − 2 such that

(1.6) 0 < aG(u) ≤ H(u) ≤ bG(u) for u ∈ R \ {0}.
In [22] the author used a mountain pass argument, while in [7, 8] a mini-max approach in M
based on the σ-homotopy stable family of compact subsets of M and the Ghoussoub minimax
principle [20] were adopted. The same topological principle has been recently applied to the
system (1.4) with particular power-like nonlinearities, e.g. in [5–8], and by Jeanjean and
Lu [23] for K = 1 and a general nonlinearity without (1.6), but with L2-supercritical growth.

We stress that the lack of compactness of the embedding H1
rad

(RN) ⊂ L2(RN) causes
troubles in the analysis of L2-supercritical problems and makes the argument quite involved,
see e.g. [7,8,22]. A possible strategy to recover the compactness of Palais-Smale sequences, at
least when K = 1, is to show that the ground state energy map is nonincreasing with respect
to ρ > 0 and decreasing in a subinterval of (0,∞), see e.g. [9, 23].

In our approach we do not work in H1
rad

, with Palais-Smale sequences, or with (1.6), nor
the monotonicity of the ground state energy map is required, so that we avoid the mini-max
approach in M involving a technical topological argument based on [20], which has been
recently intensively exploited by many authors e.g. in [5–8, 23–25,29, 35, 36].
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In particular, we work with a weaker version of (1.6), see the condition (A5) below, and
we admit L2-critical growth at 0. We make use of a minimizing sequence of J |M∩D and we
are able to consider a wide class of nonlinearities G. In the first part of this work, we adapt
the techniques of [11] to the system (1.3) and the Sobolev-critical case, which ensure that the
minimum of J on M ∩ D is attained. If G is even, we exploit the Schwarz rearrangement
u∗ := (u∗1, . . . , u

∗
K) of (|u1|, . . . , |uK|) because, if u ∈ M ∩ D, then u∗ can be projected onto

the same set without increasing the energy. Next, we point out that dealing with systems
(1.3) and (1.4) one has to involve more tools in order to find a ground state u ∈ M∩ ∂D and
some additional restrictions imposed on G, N , or K will be required. In particular, if we want
to ensure that the Lagrange multipliers are positive and u ∈ S, we use the elliptic regularity
results contained in [10, 12], the Liouville type result [21], and Proposition A.1. Finally, a
multi-dimensional version of the strict monotonicity of the ground state energy map is simply
obtained in Proposition 2.14 as a consequence of our approach.

For 2 < p ≤ 2∗, let CN,p > 0 be the optimal constant in the Gagliardo-Nirenberg inequality

(1.7) |u|p ≤ CN,p|∇u|δp2 |u|1−δp
2 for u ∈ H1(RN),

where δp = N
(
1
2
− 1

p

)
and δpp > 2 (resp. δpp = 2, δpp < 2) if and only if p > 2N (resp. p = 2N ,

p < 2N). Here and in what follows we denote by |u|k the Lk-norm of u, 1 ≤ k ≤ ∞.
We assume there exists θ ∈ (0,∞)K or θ = 0 such that G is of the form

G(u) = G̃(u) +
1

2∗

K∑

j=1

θj |uj|2
∗

for some G̃ : RK → R
N . We set g̃ = ∇G, H̃(u) = 〈g̃(u), u〉 − 2G̃(u), h̃ = ∇H̃ , h := ∇H , and

consider the following assumptions:

(A0) g̃ and h̃ are continuous and there exists c̃ > 0 such that |h̃(u)| ≤ c̃(|u|+ |u|2∗−1).

(A1) η := lim sup
u→0

G̃(u)

|u|2N <∞.

(A2) If θ = 0, then lim
|u|→∞

G̃(u)

|u|2N = ∞; if θ ∈ (0,∞)K, then lim inf
|u|→∞

G̃(u)

|u|2N > 0.

(A3) lim
|u|→∞

G̃(u)

|u|2∗ = 0.

(A4) 2NH̃(u) ≤ 〈h̃(u), u〉.
(A5)

4

N
G̃ ≤ H̃ ≤ (2∗ − 2)G̃.

Of course, lim
|u|→∞

G(u)

|u|2N = ∞ if (A2) holds and G,H satisfy (A1) – resp. (A4), (A5) – if so do

G̃, H̃. Note that (A5) implies G̃, H̃ ≥ 0. Note also that J and M are of class C1 if (A0) and
(A5) are satisfied. For every u ∈ H1(RN)K such that

∫
RN H(u) dx > 0 we define

R := Ru :=

√
N
∫
RN H(u) dx

2
∫
RN |∇u|2 dx > 0

and note that u(R·) ∈ M.
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Observe that in view of (A2) and (A5), G(u) ≥ G̃(u) > 0 and H(u) ≥ H̃(u) > 0 for u 6= 0.
Indeed, take any v ∈ R

K such that |v| = 1 and note that (A5) implies that

G̃(v)t2
∗ ≥ G̃(tv) ≥ G̃(v)t2N if t ≥ 1,

G̃(v)t2N ≥ G̃(tv) ≥ G̃(v)t2
∗

if 0 < t ≤ 1.

Since (A2) holds, we get G̃(tv) > 0 for sufficiently large t > 0, hence taking into account the

above inequalities we obtain that G̃(tv) > 0 for all t > 0 and we conclude. In particular, M 6=
∅. Moreover, M is a C1-manifold, since M ′(u) 6= 0 for u ∈ M, cf. [33]. As a matter of fact,
if M ′(u) = 0, then u solves −∆u = N

4
h(u) and satisfies the Pohožaev identity

∫
RN |∇u|2 dx =

2∗N
4

∫
RN H(u) dx. If M(u) = 0, then we infer u = 0.

We introduce the following relation:

Let f1, f2 : R
K → R. Then f1 � f2 if and only if f1 ≤ f2 and for every ε > 0 there

exists u ∈ R
K , |u| < ε, such that f1(u) < f2(u),

and for better outcomes we need the following stronger variant of (A4):

(A4,�) 2NH̃(u) � 〈h̃(u), u〉 if θ = 0.

Notice that (A4,�) implies that 2NH(u) � 〈h(u), u〉.
From now on we assume the following condition

(1.8) 2∗C2N
N,2N

η|ρ|4/N < 1,

and the first main result concerning (1.3) reads as follows.

Theorem 1.1. Suppose (A0)–(A5) and (1.8) hold and, if θ ∈ (0,∞)K,

(1.9) inf
M∩D

J <
1

N
SN/2

K∑

i=1

θ
1−N/2
i .

(a) There exists u ∈ M∩D such that J(u) = infM∩D J . In addition, u is a K-tuple of radial,
nonnegative and radially nonincreasing functions provided that G is of the form

(1.10) G(u) =

K∑

i=1

Gi(ui) +

L∑

j=1

βj

K∏

i=1

|ui|ri,j ,

where L ≥ 1, Gi : R → [0,∞) is even, ri,j > 1 or ri,j = 0, βj ≥ 0, 2N ≤ ∑K
i=1 ri,j < 2∗, and

for every j there exists i1 6= i2 such that ri1,j > 1 and ri2,j > 1.
(b) If, moreover, (A4,�) holds, then u is of class C2 and there exists λ = (λ1, . . . .λK) ∈ [0,∞)K

such that (λ, u) is a ground state solution to (1.3).

As we shall see in Section 2, (1.9) is verified if N ≥ 5 or if N ∈ {3, 4} and an additional
mild condition holds, see Proposition 2.6 (see also Lemma 2.7). We point out that part (b)
holds regardless of whether G is of the form (1.10) or not. If this is the case, then u has the
additional properties as in part (a).

Notice that (A1) allows G to have L2-critical growth G(u) ∼ |u|2N at 0, but (A2) excludes

the same behaviour at infinity. Moreover, G̃ consists of the Sobolev-subcritical part in view of

(A3). Finally, the pure L2-critical case for |u| small is ruled out by (A4,�), i.e., G(u) = G̃(u)

cannot be of the form (1.10) with Gi(u) = αi|u|2N , αi ≥ 0, and
∑K

i=1 ri,j = 2N for every j.
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Here and later on, when we say G is of the form (1.10), we also mean the additional
conditions on Gi, βj , and ri,j listed in Theorem 1.1 (a). Observe that G of the form (1.10)
satisfies (A4) if and only if Gi satisfies the scalar variant of (A4) for all i ∈ {1, . . . , K}. If, in
addition, Gi satisfies (A4,�) for some i, then G satisfies (A4,�) as well.

More can be said if N ∈ {3, 4}.

Theorem 1.2. Assume that (A0)–(A3), (A4,�), (A5), and (1.8) are satisfied, G is of the
form (1.10), N ∈ {3, 4}, and (1.9) holds if θ ∈ (0,∞)K. Then there exist u ∈ M ∩ ∂D of
class C2 and λ = (λ1, . . . , λK) ∈ [0,∞)K such that (λ, u) is a ground state solution to (1.3).
In addition, each ui is radial, nonnegative, and radially nonincreasing. Moreover, for every
i ∈ {1, . . . , K} either ui = 0 or

∫
RN |ui|2 dx = ρ2i and, if ui 6= 0, then λi > 0 and ui > 0. In

particular, if u ∈ S, then λ ∈ (0,∞)K and (λ, u) is a ground state solution to (1.4).

Note that the obtained ground state solution u belongs to ∂D, i.e., at least one of the
L2-bounds must be the equality

∫
RN |ui|2 dx = ρ2i . In particular, ground states solutions can

be semitrivial.
If K = 2, L = 1, and the coefficient of the coupling term is large, then we find ground

state solutions to (1.4).

Theorem 1.3. Assume that (A0)–(A3), (A4,�), (A5), and (1.8) are satisfied, N ∈ {3, 4},
K = 2, L = 1, and (1.9) holds if θ ∈ (0,∞). If G is of the form (1.10) and r1,1 + r2,1 > 2N ,
then for every sufficiently large β1 > 0 there exists a ground state solution (λ, u) ∈ (0,∞)2×S
to (1.4). Moreover, each component of u is positive, radial, radially nonincreasing and of class
C2.

Observe that, if in Theorem 1.3 Gi(t) = µi|t|pi/pi for some µi > 0 and pi ∈ (2N , 2
∗),

i ∈ {1, 2}, then clearly η = 0 in (1.8) and this result was very recently obtained by Li and Zou
in [24, Theorem 1.3], again, unlike this paper, by means of the involved topological argument
due to Ghoussoub [20], cf. [5–8,23,25,29,35,36]. If η > 0 or θ ∈ (0,∞)K, the result seems to be
new and we obtain a ground state solution to (1.4) for sufficiently small |ρ| in the former case,

see (1.8), or under rather mild additional assumptions about G̃ in the latter, see Proposition
2.6. Furthermore, to our knowledge, this is the first result about normalized solutions to a
system of Schrödinger equations where the nonlinearity is rather general, in particular not
(entirely) of power-type, e.g.

(1.11) G̃i(u) =
µi

pi
|ui|pi ln(1 + |ui|), pi ∈ [2N , 2

∗ − 1], µi > 0, i ∈ {1, 2}

as well as where the nonlinearity is the sum of power-type nonlinerites including the Sobolev
critical terms of the form

(1.12) Gi(u) =
νi
2N

|ui|2N +
µi

pi
|ui|pi +

θi
2∗
|ui|2

∗

, pi ∈ (2N , 2
∗), µi, νi ≥ 0, µi+νi > 0, i ∈ {1, 2},

where η =
max{ν1, ν2}

2N
≥ 0. In view of Proposition 2.6 (ii), taking p = 2N or p = 2∗ we easily

check that (1.11) and (1.12) satisfy (1.9) and we obtain a ground state solution to (1.4) for

any µi + νi > 0 and θi > 0, i = 1, 2. As for other possible examples of scalar functions G̃1, G̃2

we refer to (E1)–(E4) in [11]. See also example (2.5).
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Moreover, if K = 1 and L = 0 (i.e., there is no coupling term), then we find ground state
solutions to the scalar problem (1.4) taking into account a general nonlinearity involving at
least L2-critical and at most Sobolev-critical growth.

Corollary 1.4. Assume that K = 1, (A0)–(A3), (A4,�), (A5), and (1.8) are satisfied, and
(1.9) holds if θ ∈ (0,∞). Assume as well that H � (2∗ − 2)G or that N ∈ {3, 4} and G is
even. Then there exist u ∈ M∩S of class C2 and λ ∈ (0,∞) such that (λ, u) is a ground state
solution to (1.4). If G is even, then u is radial, positive, and radially decreasing.

Recently, Soave considered (1.12) with θ1 = 0 in [35] and with θ1 > 0 but ν1 = 0 or µ1 = 0
in [36], with, additionally, an upper bound on µ1 > 0 if N ≥ 5. In other recent papers, Wei
and Wu [43] considered (1.12) with θ1 > 0, ν1 = 0, and no upper bound on µ1, while Alves, Ji,
and Miyagaki [3] considered (1.12) with θ1 > 0, ν1 = 0, and a lower bound on µ1. Corollary
1.4 generalizes the results from [3, 36, 43] both because no bound on µ1 is needed (upper or

lower) and because the Sobolev-subcritical term G̃ can be L2-critical, L2-supercritical, or even
both, without the need of consisting of (sums of) power functions. Of course, Corollary 1.4
also generalizes the results from [11,23], which do not deal with the Sobolev-critical case.

Finally, observe that conditions (A0)–(A5) and (A4,�) are positively additive, i.e., if G̃

and G̃′ satisfy the conditions with η and η′ in (A1) respectively and α, α′ > 0, then αG̃+α′G̃′

satisfy the corresponding conditions with lim sup
u→0

αG̃+ α′G̃′

|u|2N ≤ αη + α′η′.

2. The proof

Lemma 2.1. Let f1, f2 ∈ C(RK) and assume there exists C > 0 such that |f1(u)|+ |f2(u)| ≤
C(|u|2 + |u|2∗) for every u ∈ R

K. Then f1 � f2 if and only if f1 ≤ f2 and
∫

RN

f1(u)− f2(u) dx < 0

for every u ∈ H1(RN)K \ {0}.
Proof. We argue similarly as in the case K = 1 provided in [11, Lemma 2.1]. �

We will always assume that (A0) holds. Lemmas 2.2–2.5 are variants of the results con-
tained in [11, 23] with some improvements and adapted to the system of equations.

Lemma 2.2. If (A1)–(A3), (A5), and (1.8) hold, then inf{|∇u|22 : u ∈ M∩D} > 0.

Proof. Recall that, if p ∈ [2, 2∗], then
∣∣|u|
∣∣
p
= |u|p and

∣∣∇|u|
∣∣
2
≤ |∇u|2 for every u ∈ H1(RN)K .

For every ε > 0 there exists cε > 0 such that for every u ∈ M∩D

|∇u|22 =
N

2

∫

RN

H(u) dx ≤ 2∗
(
cε|u|2

∗

2∗ + (ε+ η)|u|2N2N
)
= 2∗

(
cε
∣∣|u|
∣∣2∗
2∗
+ (ε+ η)

∣∣|u|
∣∣2N
2N

)

≤ 2∗
(
cεC

2∗

N,2∗

∣∣∇|u|
∣∣2∗
2
+ (ε+ η)C2N

N,2N
|ρ|4/N

∣∣∇|u|
∣∣2
2

)

≤ 2∗
(
cεC

2∗

N,2∗|∇u|2
∗

2 + (ε+ η)C2N
N,2N

|ρ|4/N |∇u|22
)

i.e.,

(2.1) 0 ≤ 2∗cεC
2∗

N,2∗|∇u|2
∗

2 +
(
2∗(ε+ η)C2N

N,2N
|ρ|4/N − 1

)
|∇u|22
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Taking ε sufficiently small so that

2∗(ε+ η)C2N
N,2N

|ρ|4/N < 1

we conclude. �

For u ∈ H1(RN)K \ {0} and s > 0 define s ⋆ u(x) := sN/2u(sx) and ϕ(s) := J(s ⋆ u).

Lemma 2.3. Assume that (A1)–(A5) hold and let u ∈ H1(RN)K \ {0} such that

(2.2) η <
|∇u|22
2|u|2N2N

.

Then there exist a = a(u) > 0 and b = b(u) ≥ a such that each s ∈ [a, b] is a global maximizer
for ϕ and ϕ is increasing on (0, a) and decreasing on (b,∞). Moreover, s ⋆ u ∈ M if and only
if s ∈ [a, b], M(s ⋆ u) > 0 if and only if s ∈ (0, a), and M(s ⋆ u) < 0 is and only if s > b. If
(A4,�) holds, then a = b.

Note that (1.8) implies (2.2) provided that u ∈ D. Indeed, from (1.7)

2η|u|2N2N ≤ 2ηC2N
N,2N

|∇u|22|u|4/N2 ≤ 2ηC2N
N,2N

|∇u|22|ρ|4/N < |∇u|22.

Proof of Lemma 2.3. Notice that from (A1)

ϕ(s) =

∫

RN

s2

2
|∇u|2 − G(sN/2u)

sN
dx→ 0

as s → 0+ and from (A2) lims→∞ ϕ(s) = −∞. From (A1) and (A3) for every ε > 0 there
exists cε > 0 such that

G(u) ≤ (ε+ η)|u|2N + cε|u|2
∗

,

therefore,

ϕ(s) ≥ s2
(∫

RN

1

2
|∇u|2 − (η + ε)|u|2N dx

)
− cεs

2∗
∫

RN

|u|2∗ dx > 0

for sufficiently small ε and s. It follows that there exists an interval [a, b] ⊂ (0,∞) such that
ϕ|[a,b] = maxϕ. Moreover

ϕ′(s) = s

∫

RN

|∇u|2 − N

2

H(sN/2u)

sN+2
dx

and the function

s ∈ (0,∞) 7→
∫

RN

H(sN/2u)

sN+2
dx

is nondecreasing (resp. increasing) due to (A4) (resp. (A4,�) and Lemma 2.1) and tends to
∞ as s→ ∞ due to (A2) and (A5). There follows that ϕ′(s) > 0 if s ∈ (0, a) and ϕ′(s) < 0 if
s > b and that a = b if (A4,�) holds. Finally, observe that

sϕ′(s) =

∫

RN

s2|∇u|2 − N

2

H(sN/2u)

sN
dx =M(s ⋆ u). �

Lemma 2.4. If (A1)–(A5) and (1.8) are verified, then J is coercive on M∩D.
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Proof. First of all note that, if u ∈ M, then due to (A5)

J(u) = J(u)− 1

2
M(u) =

∫

RN

N

4
H(u)−G(u) dx ≥ 0

and so, a fortiori, J is nonnegative on M ∩D. Let (u(n)) ⊂ M∩ D such that ‖u(n)‖ → ∞,
i.e., limn |∇u(n)|2 = ∞, and define

sn := |∇u(n)|−1
2 > 0 and w(n) := sn ⋆ u

(n).

Note that sn → 0, |w(n)
i |2 = |u(n)i |2 ≤ ρi for i ∈ {1, . . . , K}, and |∇w(n)|22 = 1, in particular

(w(n)) is bounded in H1(RN )K . Suppose by contradiction that

lim sup
n

max
y∈RN

∫

B(y,1)

|w(n)|2 dx > 0.

Then there exist (y(n)) ⊂ R
N and w ∈ H1(RN)K such that, up to a subsequence, w(n)(· +

y(n))⇀ w 6= 0 in H1(RN)K and w(n)(·+ y(n)) → w a.e. in R
N . Thus, owing to (A2),

0 ≤ J(u(n))

|∇u(n)|22
≤ 1

2
−
∫

RN

G(u(n))

|∇u(n)|22
dx =

1

2
− sN+2

n

∫

RN

G
(
u(n)(snx)

)
dx

=
1

2
− sN+2

n

∫

RN

G(s−N/2
n w(n)) =

1

2
−
∫

RN

G(s
−N/2
n w(n))

|s−N/2
n w(n)|2N

|w(n)|2N dx

=
1

2
−
∫

RN

G
(
s
−N/2
n w(n)(x+ y(n))

)

|s−N/2
n w(n)(x+ y(n))|2N

|w(n)(x+ y(n))|2N dx→ −∞.

It follows that

lim
n

max
y∈RN

∫

B(y,1)

|w(n)|2 dx = 0

and so, from Lions’ Lemma [28], w(n) → 0 in L2N (RN)K . Since

s−1
n ⋆ w(n) = u(n) ∈ M,

Lemma 2.3 yields

J(u(n)) = J(s−1
n ⋆ w(n)) ≥ J(s ⋆ w(n)) =

s2

2
− sN

∫

RN

G
(
sN/2w(n)(s·)

)
dx

for every s > 0. Taking into account that

lim
n

∫

RN

G
(
sN/2w(n)(s·)

)
dx = 0,

we have that lim infn J(u
(n)) ≥ s2/2 for every s > 0, i.e., limn J(u

(n)) = ∞. �

Lemma 2.5. If (A1)–(A5) and (1.8) are verified, then c := infM∩D J > 0.

Proof. We prove that there exists α > 0 such that

(2.3) |∇u|2 ≤ α ⇒ J(u) ≥ |∇u|22
2N

.
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From (1.7) and (1.8), for every ε > 0 there exists cε > 0 such that
∫

RN

G(u) dx ≤ cεC
2∗

N,2∗|∇u|2
∗

2 + (ε+ η)C2N
N,2N

|ρ|4/N |∇u|22

≤
(
cεC

2∗

N,2∗|∇u|2
∗−2

2 + εC2N
N,2N

|ρ|4/N +
1

2
− 1

N

)
|∇u|22.

Choosing

ε =
1

4NC2N
N,2N

|ρ|4/N and α =
1

(4NcεC2∗
N,2∗)

1

2∗−2

we obtain, provided |∇u|2 ≤ α,
∫

RN

G(u) dx ≤
(
1

2
− 1

2N

)
|∇u|22

and so J(u) ≥ |∇u|22
2N

. Now take u ∈ M∩D and α > 0 such that (2.3) holds and define

s :=
α

|∇u|2
and w := s ⋆ u.

Clearly |wi|2 = |ui|2 ≤ ρi for i ∈ {1, . . . , K} and |∇w|2 = α, whence in view of Lemma 2.3

J(u) ≥ J(w) ≥ |∇w|22
2N

=
α2

2N
> 0. �

From now on, c > 0 will stand for the infimum of J over M∩D.

Proposition 2.6. Assume that θ ∈ (0,∞)K and that (A1)–(A5), (1.8), and (at least) one of
the following conditions hold:

(i) N ≥ 5;
(ii) there exist 2N ≤ p ≤ 2∗ and 2N ≤ q < 2∗ such that

(2.4) lim inf
|u|→0

G̃(u)

|u|p > 0 and lim inf
|u|→∞

G̃(u)

|u|q > 0

and max{p, q}/2−min{p, q} < −1 if N = 3.

Then (1.9) holds.

Recall that, from (A2), the second condition in (2.4) always holds with q = 2N . Notice
that the restriction on the relation between p, q is always satisfied if p = q.

Proof of Proposition 2.6. Define u10 as the Aubin–Talenti instanton [4, 40]

u10(x) :=

(√
N(N − 2)

1 + |x|2

)N−2

2

and, for ε > 0,

uε0(x) := ε1−N/2u10(x/ε) =

(
ε
√
N(N − 2)

ε2 + |x|2

)N−2

2

.
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Recall that, for every ε > 0, |∇uε0|2 = |∇u10|2, |uε0|2∗ = |u10|2∗ , and uε0 is a minimizer for

S := inf

{∫

RN

|∇v|2 dx : v ∈ D1,2(RN),

∫

RN

|v|2∗ dx = 1

}
.

(i) For every ε > 0 and j ∈ {1, . . . , K} define ūεj := θ
(2−N)/4
j uε0. Since uε0 ∈ L2(RN) for

every ε > 0 and |uε0|2 → 0 as ε → 0+, we have ūε := (ūε1, ..., ū
ε
K) ∈ D for sufficiently small ε.

Moreover, in view of Lemma B.1, ūε is such that

|∇ūε|22(∑K
j=1 θj |ūεj|2

∗

2∗

)2/2∗ = inf
u∈D1,2(RN )K\{0}

|∇u|22(∑K
j=1 θj |uj|2

∗

2∗

)2/2∗ =

(
K∑

j=1

θ
1−N/2
j

)2/N

S.

Recall that G̃(u) > 0 for u 6= 0 and then, taking ε sufficiently small,

c ≤ J(sε ⋆ ū
ε) ≤ −

∫

RN

G̃(sε ⋆ ū
ε) dx+max

s>0

s2

2

∫

RN

|∇ūε|2 dx− s2
∗

2∗

K∑

j=1

θj

∫

RN

|ūεj|2
∗

dx

< max
s>0

s2

2

∫

RN

|∇ūε|2 dx− s2
∗

2∗

K∑

j=1

θj

∫

RN

|ūεj|2
∗

dx

=
1

N

|∇ūε|N2(∑K
j=1 θj |ūεj|2

∗

2∗

)N/2−1
=

K∑

j=1

θ
1−N/2
j

SN/2

N
.

(ii) If N ≥ 5, then the statement follows form (i), therefore we can assume N ∈ {3, 4}.
Since u10 6∈ L2(RN), let 0 ≤ φ ∈ C∞

0 (RN) radial such that φ ≡ 1 in B1 and φ ≡ 0 in R
N \ B2,

where Br stands for the closed ball centred at 0 of radius r. For every ε > 0 define

uεj := θ
2−N

4

j φuε0 and vε :=
ρ̄

|uε|2
(uε1, . . . , u

ε
K) ∈ D,

where ρ̄ := minj∈{1,...,K} ρj , and recall (cf., e.g., [38, p. 179], [36, Lemma A.1]) that

|∇(φuε0)|22 = SN/2 +O(εN−2)

|φuε0|22∗ =
{
S +O(ε4) if N = 4

S1/2 +O(ε2) if N = 3

|φuε0|22 =
{
C4ε

2| ln ε|+O(ε2) if N = 4

C3ε+O(ε2) if N = 3,

where CN > 0 depends only on N and φ. Note that
∫

RN

|φuε0|rχ{φuε
0
≥1} dx ≥ CεN−(N/2−1)r

for some constant C > 0 and sufficiently small ε > 0, where r ∈ {p, q} and χA stands for the

characteristic function of A. Indeed, let |x|2 ≤ ε
√
N(N − 2) − ε2. If ε is sufficiently small,
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then x ∈ B1 and, consequently, φ(x)uε0(x) = uε0(x) ≥ 1, whence

∫

RN

|φuε0|rχ{φuε
0
≥1} dx ≥

∫
{

|x|≤
(

ε
√

N(N−2)−ε2
)1/2

} |uε0|r dx

= εN−(N/2−1)r

∫
{

|y|≤
(√

N(N−2)/ε−1
)1/2

} |u10|r dy

and we conclude, since u10 ∈ Lr(RN). Define sε > 0 such that sε ∗ vε ∈ M. In a similar way
to the proof of Lemma 2.2, for every δ > 0 there exists Cδ > 0 not depending on ε such that

1

2∗
|∇vε|22 ≤ (η+δ)|vε|2N2N +Cδs

2∗−2
ε

K∑

j=1

θj |vεj |2
∗

2∗ ≤ (η+δ)C2N
N,2N

|ρ|4/N |∇vε|22+Cδs
2∗−2
ε

K∑

j=1

θj |vεj |2
∗

2∗

(note that u 7→
(∑K

j=1 θj |uj|2
∗

2∗

)1/2∗
is an equivalent norm in L2∗(RN)K , i.e., taking δ suffi-

ciently small and denoting m :=
(
1/2∗ − (η + δ)C2N

N,2N
|ρ|4/N

)
/Cδ > 0,

s2
∗−2

ε ≥ m|∇vε|22∑K
j=1 θj |vεj |2

∗

2∗

= mρ̄2−2∗ |∇(φuε0)|22|uε|2
∗−2

2

|φuε0|2
∗

2∗
.

In a similar way to point (i),

c ≤ −
∫

RN

G̃(sε ⋆ v
ε) dx+

1

N

|∇vε|N2(∑K
j=1 θj |vεj |2

∗

2∗

)N/2−1
.

There holds

|∇vε|22 =
ρ̄2|∇(φuε0)|22

∑K
j=1 θ

1−N/2
j

|uε|22
and

K∑

j=1

θj |vεj |2
∗

2∗ =
ρ̄2

∗|φuε0|2
∗

2∗
∑K

j=1 θ
1−N/2
j

|uε|2∗2
,

thus, denoting k = 2 (resp. k = 4) if N = 3 (resp. N = 4),

|∇vε|N2(∑K
j=1 θj |vεj |2

∗

2∗

)N/2−1
=

K∑

j=1

θ
1−N/2
j

( |∇(φuε0)|2
|φuε0|2∗

)N

=

K∑

j=1

θ
1−N/2
j

(
SN/2 +O(εN−2)

S(N−2)/2 +O(εk)

)N/2

=

K∑

j=1

θ
1−N/2
j

(
S +O(εN−2)

)N/2
=

K∑

j=1

θ
1−N/2
j SN/2 +O(εN−2).

Now we estimate
∫
RN G̃(sε ⋆ v

ε) dx as ε→ 0+. From (2.4) and the fact, due to (A2) and (A5),

that G̃(u) > 0 if u 6= 0, we deduce there exists C > 0 such that G̃(u) ≥ C|u|p if |u| ≤ 1 and
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G̃(u) ≥ C|u|q if |u| > 1.
∫

RN

G̃(sε ⋆ v
ε) dx ≥ CsN(p/2−1)

ε

∫

RN

|vε|pχ
{|s

N/2
ε vε|≤1}

dx+ CsN(q/2−1)
ε

∫

RN

|vε|qχ
{|s

N/2
ε vε|>1}

dx

≥ C ′|φuε0|N(p/2−1)−p
2

∫

RN

|φuε0|pχ{|s
N/2
ε vε|≤1}

dx

+ C ′|φuε0|N(q/2−1)−q
2

∫

RN

|φuε0|qχ{|s
N/2
ε vε|>1}

dx

≥ C ′|φuε0|(N/2−1)p−N
2

∫

RN

|φuε0|pχ{|s
N/2
ε vε|≤1}

χ{φuε
0
≥1} dx

+ C ′|φuε0|(N/2−1)q−N
2

∫

RN

|φuε0|qχ{|s
N/2
ε vε|>1}

χ{φuε
0
≥1} dx

≥ C ′ min
{
|φuε0|(N/2−1)p−N

2 , |φuε0|(N/2−1)q−N
2

}∫

RN

|φuε0|min{p,q}χ{φuε
0
≥1} dx

≥ C ′′|φuε0|(N/2−1)max{p,q}−N
2 εN−(N/2−1) min{p,q}

as ε → 0+ because (N/2 − 1)r − N < 0, r ∈ {p, q}, where C ′, C ′′ > 0 are constants. There
follows that

c ≤
K∑

j=1

θ
1−N/2
j

SN/2

N
+O(εN−2)− C ′′|φuε0|(N/2−1)max{p,q}−N

2 εN−(N/2−1)min{p,q}.

If N = 3, then

|φuε0|(N/2−1) max{p,q}−N
2 εN−(N/2−1)min{p,q} =

ε3−min{p,q}/2

(C3ε)3/2−max{p,q}/4 +O(ε3−max{p,q}/2)

≥ Cε(3+max{p,q}/2−min{p,q})/2

and 0 < (3 + max{p, q}/2−min{p, q})/2 < 1 = N − 2. If N = 4, then

|φuε0|(N/2−1)max{p,q}−N
2 εN−(N/2−1)min{p,q} =

ε4−min{p,q}

(
√
C4| ln ε| ε)4−max{p,q} +O(ε4−max{p,q})

≥ Cε|p−q|| ln ε|max{p,q}/2−2

and |p− q| < 2 = N − 2, max{p, q}− 4 ≤ 0, and |p− q| > 0 or max{p, q}− 4 < 0. Either way,

O(εN−2)− C ′′|φuε0|(N/2−1) max{p,q}−N
2 εN−(N/2−1)min{p,q} < 0 for sufficiently small ε and

c <
K∑

j=1

θ
1−N/2
j

SN/2

N
. �

Since there exist nonlinearities that do not satisfy the assumptions of Proposition 2.6 (ii),
we provide other sufficient conditions for (1.9) to hold.

Lemma 2.7. Assume that (A1)–(A5) are satisfied and θ ∈ (0,∞)K.

(a) If K = 1, η = 0, and lim
u→0

G̃(u)/|u|2∗ = ∞, then there exists ρ0 > 0 such that (1.9) is

satisfied provided that ρ > ρ0.
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(b) If (1.8) holds and lim
|u|→∞

G̃(u)/|u|2N = ∞, then there exists θ0 > 0 such that (1.9) is

satisfied provided that θi < θ0 for some i ∈ {1, ..., K}.
Proof. (a) We prove that c→ 0 as ρ→ ∞ (note that (1.8) is satisfied for every ρ > 0 because
η = 0). Let ρn → ∞ and take u ∈ L∞(RN) such that |u|2 = 1. Without loss of generality
we may assume that ρn > 1 and define un := ρnu so that |un|2 = ρn. From Lemma 2.3 there

exists sn > 0 such that vn := s
N/2
n un(sn·) ∈ M. Moreover, |vn|2 = |un|2, hence

0 < inf{J(v) : v ∈ M, |v|2 ≤ ρn} ≤ J(vn) ≤
1

2

∫

RN

|∇vn|2 dx =
1

2
(snρn)

2

∫

RN

|∇u|2 dx,

so it is enough to show that snρn → 0. Note that

(snρn)
2

∫

RN

|∇u|2 dx =

∫

RN

|∇vn|2 dx =
N

2

∫

RN

H(vn) dx =
N

2
s−N
n

∫

RN

H(sN/2
n ρnu) dx

and
∫

RN

|∇u|2 dx =
N

2
s−N−2
n ρ−2

n

∫

RN

H(sN/2
n ρnu) dx =

N

2
ρ4/Nn

∫

RN

H(s
N/2
n ρnu)∣∣∣sN/2

n ρnu
∣∣∣
2N

|u|2N dx.

There follows that

lim
n

∫

RN

H(s
N/2
n ρnu)∣∣∣sN/2

n ρnu
∣∣∣
2N

|u|2N dx = 0,

whence s
N/2
n ρn → 0. Fix ε > 0. From (A5) and the fact that limt→0G(t)/|t|2∗ = ∞, there

follows that

H(s) ≥ 4

N
G(s) ≥ ε−1|s|2∗

for sufficiently small |s|. Then, taking into account that u ∈ L∞(RN), for sufficiently large n
∫

RN

|∇u|2 dx =
N

2
s−N−2
n

1

ρ2n

∫

RN

H(sN/2
n ρ2nu) dx ≥ ε−1N

2
s−N−2
n

1

ρ2n

∣∣sN/2
n ρn

∣∣2∗ |u|2∗2∗

= ε−1N

2
(snρn)

4

N−2 |u|2∗2∗

and snρn → 0 as n→ ∞, which completes the proof.
(b) Take any u0 ∈ D \ {0} and note that (2.2) holds. In view of Lemma 2.3 there exists

s0 > 0 such that s0 ⋆ u0 ∈ M and

c ≤ J(s0 ⋆ u0) ≤ max
s>0

J(s ⋆ u0) ≤ max
s>0

s2

2

∫

RN

|∇u0|2 dx−
∫

RN

G̃(sN/2u0)

sN
dx.

Observe that the latter expression is finite due to Lemma 2.3 with θ = 0. Hence we can take

θ0 > 0 so small that, if θi < θ0, then
∑K

j=1 θ
1−N/2
j SN/2/N ≥ θ

1−N/2
i SN/2/N is greater than the

right-hand side of the formula above. �

We give explicit examples of nonlinearities that do not satisfy the assumptions of Propo-
sition 2.6. Let N = 3 and ε > 0 be sufficiently small. If g̃(u) = g̃1(u) = min{|u|4−ε, |u|4/3}u
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and if θ = θ1 is not sufficiently small, then we can use Lemma 2.7 (a) provided that ρ = ρ1 is
sufficiently large, but not part (b). If G is of the form (1.10) and

(2.5) g̃i(u) = min{|u|4, |u|4/3+ε}u
and if K = 2 or ρ is not sufficiently large, then we can use Lemma 2.7 (b) provided that θi is
sufficiently small for some i ∈ {1 . . . , K}, but not part (a).

In view of Lemma 2.4, any minimizing sequence (u(n)) ⊂ M∩D such that J(u(n)) → c > 0
is bounded. By the standard concentration-compactness argument [28], u(n) ⇀ ũ for some
ũ 6= 0 up to a subsequence and up to translations. It is not clear, however, if J(ũ) = c or
ũ ∈ M∩ D. Note that we can find R > 0 such that ũ(R·) ∈ M and in order to ensure that
J(ũ) = c and ũ ∈ D we need to know that R ≥ 1. The latter crucial condition requires the
profile decomposition analysis of (u(n)) provided by the following lemma.

Lemma 2.8. Let (u(n)) ⊂ H1(RN)K be bounded. Then there exist sequences (ũ(i))∞i=0 ⊂
H1(RN)K and (y(i,n))∞i=0 ⊂ R

N such that y(0,n) = 0, limn |y(i,n) − y(j,n)| = 0 if i 6= j, and for
every i ≥ 0 and every F : RN → R of class C1 such that

lim
u→0

F (u)

|u|2 = lim
|u|→∞

F (u)

|u|2∗ = 0

there holds (up to a subsequence)

u(n)(·+ y(i,n)) ⇀ ũ(i) as n→ ∞(2.6)

lim
n

∫

RN

|∇u(n)|2 dx =

i∑

j=0

∫

RN

|∇ũ(j)|2 dx+ lim
n

∫

RN

|∇v(i,n)|2 dx(2.7)

lim sup
n

∫

RN

F (u(n)) dx =

∞∑

i=0

∫

RN

F (ũ(i)) dx,(2.8)

where v(i,n)(x) := u(n)(x)−∑i
j=0 ũ

(j)(x− y(j,n)).

Proof. We argue similarly as in the case K = 1 provided in [31, Theorem 1.4]. �

Lemma 2.9. If (A1)–(A5) and (1.8) hold and either θ = 0 or θ ∈ (0,∞)K and (1.9) is
satisfied, then c is attained.

Proof. Let (u(n)) ⊂ M∩D such that limn J(u
(n)) = c. Then (u(n)) is bounded due to Lemma

2.4 and, in view of Lemma 2.8, we find (ũ(i))∞i=0 ⊂ H1(RN)K and (y
(i,n)
n )∞i=0 ⊂ R

N such that
(2.6)–(2.8) hold. Let I := {i ≥ 0 : ũ(i) 6= 0}.

Suppose that θ ∈ (0,∞)K and (1.9) is satisfied.
Claim 1. I 6= ∅. By contradiction suppose that ũ(i) = 0 for every i ≥ 0. Then

∫

RN

|∇u(n)|2 dx =
N

2

∫

RN

H(u(n)) dx =
N

2

∫

RN

H̃(u(n)) dx+

K∑

j=1

θj

∫

RN

|u(n)j |2∗ dx.

Observe that (A1), (A3), and (A5) imply that

lim
u→0

H̃(u)

|u|2 = lim
|u|→∞

H̃(u)

|u|2∗ = 0
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and

(2.9) o(1) +

∫

RN

|∇u(n)|2 dx =

K∑

j=1

θj

∫

RN

|u(n)j |2∗ dx.

For the sake of simplicity, let us denote S̄ :=
(∑K

j=1 θ
1−N/2
j

)2/N
S, cf. Appendix B. Then

o(1) +

∫

RN

|∇u(n)|2 dx ≤ S̄−2∗/2

(∫

RN

|∇u(n)|2 dx
)2∗/2

.

Passing to a subsequence we set ν := limn

∫
RN |∇u(n)|2 dx > 0 from Lemma 2.2 and we get

ν2/(N−2) ≥ S̄N/(N−2). Then

(2.10) c = lim
n
J(u(n)) = lim

n
J(u(n))− 1

2∗
M(u(n)) =

1

N
ν ≥ 1

N
S̄N/2,

so we obtain a contradiction and I 6= ∅.
Claim 2. For every i ∈ I there holds u(n)(·+y(i,n)) → ũ(i) in D1,2(RN)K or

∫
RN |∇ũ(i)|2 dx <

N
2

∫
RN H(ũ(i)) dx. Suppose that there exists i ∈ I such that ν := limn

∫
RN |∇v(n)|2 dx > 0

(passing to a subsequence) and the reverse inequality holds, where v(n) := u(n)(·+y(i,n))− ũ(i).
By Vitali’s convergence theorem

∫

RN

(
H(u(n))−H(v(n))

)
dx =

∫

RN

∫ 1

0

− d

ds
H(u(n) − sũ(i)) ds dx

=

∫

RN

∫ 1

0

h(u(n) − sũ(i))ũ(i) ds dx

→
∫ 1

0

∫

RN

h(ũ(i) − sũ(i))ũ(i) dx ds

=

∫

RN

∫ 1

0

− d

ds
H(ũ(i) − sũ(i)) ds dx

=

∫

RN

H(ũ(i)) dx

as n→ ∞. Again, passing to a subsequence,
∫

RN

|∇v(n)|2 dx+
∫

RN

|∇ũ(i)|2 dx =
N

2

(∫

RN

H(v(n)) dx+

∫

RN

H(ũ(i)) dx
)
+ o(1)

and, since
∫
RN |∇ũ(i)|2 dx ≥ N

2

∫
RN H(ũ(i)) dx, we obtain

(2.11)

∫

RN

|∇v(n)|2 dx ≤ N

2

∫

RN

H(v(n)) dx+ o(1)

and define Rn > 0 such that v(n)(Rn·) ∈ M. We want to prove that Rn → 1. If

N

2

∫

RN

H(v(n)) dx <

∫

RN

|∇v(n)|2 dx
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holds for a.e. n, then from (2.11) and the fact that ν > 0 we get Rn → 1. If, passing to a
subsequence, ∫

RN

|∇v(n)|2 dx ≤ N

2

∫

RN

H(v(n)) dx

holds, then we infer Rn ≥ 1. Note that limn |u(n)|22 − |v(n)|22 = |ũ(i)|22 > 0, hence v(n) ∈ D and
v(n)(Rn·) ∈ M∩D for a.e. n. Hence the Brezis–Lieb Lemma yields

c ≤ J
(
v(n)(Rn·)

)
= J

(
v(n)(Rn·)

)
− 1

2
M
(
v(n)(Rn·)

)
dx =

1

RN
n

∫

RN

N

4
H(v(n))−G(v(n)) dx

≤
∫

RN

N

4
H(v(n))−G(v(n)) dx ≤

∫

RN

N

4
H(u(n))−G(u(n)) dx+ o(1)

= J(u(n))− 1

2
M(u(n)) + o(1) = J(u(n)) + o(1) = c+ o(1),

(2.12)

which implies that Rn → 1 as claimed. Therefore we have that

(2.13)

∫

RN

|∇v(n)|2 dx = o(1) +
N

2

∫

RN

H(v(n)) dx = o(1) +
K∑

j=1

θj

∫

RN

|v(n)j |2∗ dx

and as in Claim 1 we get ν2/(N−2) ≥ S̄N/(N−2). Since J(u(n)) − J(v(n)) = J(ũ(i)) + o(1) and
J(ũ(i)) ≥

∫
RN

N
4
H(ũ(i))−G(ũ(i)) dx ≥ 0, we have

(2.14) c = lim
n
J(ũ(i))+J(v(n)) = J(ũ(i))+

1

2
ν− 1

2∗
lim
n

K∑

j=1

θj

∫

RN

|v(n)j |2∗ dx ≥ 1

N
ν ≥ 1

N
S̄N/2,

a contradiction.
Conclusion. Let i ∈ I and, for simplicity, let us denote ũ(i) =: ũ. If

∫
RN |∇ũ|2 dx <

N
2

∫
RN H(ũ) dx, then there exists R > 1 such that ũ(R·) ∈ M, whence ũ(R·) ∈ D. Hence

Fatou’s Lemma yields

c ≤ J
(
ũ(R·)

)
= J

(
ũ(R·)

)
− 1

2
M
(
ũ(R·)

)
dx =

1

RN

∫

RN

N

4
H(ũ)−G(ũ) dx

< lim inf
n

∫

RN

N

4
H(u(n))−G(u(n)) dx = lim inf

n
J(u(n))− 1

2
M(u(n)) = lim inf

n
J(u(n)) = c,

(2.15)

which is a contradiction. Therefore u(n)(· + y(i,n)) → ũ in D1,2(RN)K (which, together with
(2.7), implies that I is a singleton) and, consequently, in L2∗(RN)K . Moreover, in virtue of the
Brezis–Lieb lemma,

∫
RN H(u(n)) dx→

∫
RN H(ũ) dx because, from the interpolation inequality,

∫

RN

H(u(n) − ũ) dx ≤ C(|u(n) − ũ|2N2N + |u(n) − ũ|2∗2∗)

≤ C(|u(n) − ũ|2t2 |u(n) − ũ|2∗(1−t)
2∗ + |u(n) − ũ|2∗2∗) → 0

for some C > 0 and t = 2∗−2N
2∗−2

. Hence ũ ∈ M ∩ D, and, arguing as before but with R = 1,
J(ũ) = c.
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Now we consider the case θ = 0 and in a similar way we prove Claim 1 and Claim 2 by
getting a contradiction in (2.9) and (2.13). Finally note that arguments of Conclusion apply
in the case θ = 0 as well. �

For f : RN → R measurable we denote by f ∗ the Schwarz rearrangement of |f |. Likewise,
if A ⊂ R

N is measurable, we denote by A∗ the Schwarz rearrangement of A [10, 26].

Lemma 2.10. Assume that (A1)–(A5) and (1.8) are verified, G is of the form (1.10), and
either θ = 0 or θ ∈ (0,∞)K and (1.9) holds. Then c is attained by a K-tuple of radial,
nonnegative and radially nonincreasing functions.

Proof. Let ũ ∈ M∩D such that J(ũ) = c be given by Lemma 2.9. For every j ∈ {1, . . . , K}
let uj be the Schwarz rearrangement of |ũj| and denote u := (u1, . . . , uK). Let a = a(u) be
determined by Lemma 2.3. In view of the properties of the Schwarz rearrangement [10, 26],
we obtain

M(1 ⋆ u) =M(u) ≤M(ũ) = 0,

therefore in view of Lemma 2.3 we have that a ≤ 1 and, consequently, M(a ⋆ ũ) ≥ 0. Let

d :=
N

2
max

j=1,...,L

( K∑

i=1

ri,j − 2
)
≥ 2.

Then

c ≤ J(a ⋆ u) = J(a ⋆ u)− 1

d
M(a ⋆ u)

=

∫

RN

K∑

i=1

a2
(
1

2
− 1

d

)
|∇ui|2 +

1

aN

(
N

2d
Hi(a

N/2ui)−Gi(a
N/2ui)

)
dx

− 1

aN

L∑

j=1

βj

(
1− 1

d

( K∑

i=1

ri,j − 2
)) K∏

i=1

|aN/2ui|ri,j

≤
∫

RN

K∑

i=1

a2
(
1

2
− 1

d

)
|∇ũi|2 +

1

aN

(
N

2d
Hi(a

N/2|ũi|)−Gi(a
N/2|ũi|)

)
dx

− 1

aN

L∑

j=1

βj

(
1− 1

d

( K∑

i=1

ri,j − 2
)) K∏

i=1

|aN/2ũi|ri,j

= J(a ⋆ ũ)− 1

d
M(a ⋆ ũ) ≤ J(a ⋆ ũ) ≤ J(ũ) = c,

i.e., J(a ⋆ u) = c. �

Lemma 2.11. (a) Assume that (A1)–(A3), (A4,�), (A5), and (1.8) hold and let u ∈ M∩D
such that J(u) = c and ui is radial for every i ∈ {1, . . . , K}. Then u is of class C2.
(b) If, in addition, N ∈ {3, 4}, G is of the form (1.10), and ui is nonnegative for every
i ∈ {1, . . . , K}, then u ∈ ∂D. Moreover, for every i ∈ {1, . . . , K}, either |ui|2 = ρi or ui = 0.

Proof. (a) In Proposition A.1 we set f = J , φi(v) = |vi|22−ρ2i , 1 ≤ i ≤ m = K, ψ1(v) =M(v),
n = 1, v ∈ H = H1(RN)K . Then there exist (λ1, . . . , λK) ∈ [0,∞)K and σ ∈ R such that

(2.16) − (1− 2σ)∆ui + λiui = ∂iG(u)− σ
N

2
∂iH(u)
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for every i ∈ {1, . . . , K} and u satisfies the Nehari identity

(2.17) (1− 2σ)

∫

RN

|∇u|2 dx+
K∑

i=1

∫

RN

λi|ui|2 dx+
∫

RN

σ
N

2
〈h(u), u〉 − 〈g(u), u〉 dx = 0.

If σ = 1
2
, then (A4,�), (A5), and (2.17) yield

0 ≥
∫

RN

N

4
〈h(u), u〉 − 〈g(u), u〉 dx =

∫

RN

N

4
〈h(u), u〉 −H(u)− 2G(u) dx

>

∫

RN

N

2
H(u)− 2G(u) dx ≥ 0,

a contradiction. Hence σ 6= 1
2

and u satisfies also the Pohožaev identity

(2.18) (1− 2σ)

∫

RN

|∇u|2 dx+ 2∗

2

K∑

i=1

∫

RN

λi|ui|2 dx+ 2∗
∫

RN

σ
N

2
H(u)−G(u) dx = 0.

Combining (2.17) and (2.18) we obtain

(1− 2σ)

∫

RN

|∇u|2 dx+ N

2

∫

RN

σN
(1
2
〈h(u), u〉 −H(u)

)
−H(u) dx = 0

and, using the fact that u ∈ M,

(1− 2σ)

∫

RN

H(u) dx+

∫

RN

σN
(1
2
〈h(u), u〉 −H(u)

)
−H(u) dx = 0,

that is

σ

∫

RN

〈h(u), u〉 − 2NH(u) dx = 0,

which together with (A4,�) yields σ = 0. In view of [12, Theorem 2.3], u ∈ W 2,q
loc

(RN)K for

all q < ∞, hence u ∈ C1,α
loc

(RN)K for all α < 1. Then, arguing as in the proof of [10, Lemma
1], we have that u is of class C2.

(b) First we show that u ∈ ∂D. Suppose by contradiction that |ui|2 < ρi for every i. Then
λ1 = · · · = λK = 0 and from (2.17) and (2.18) (with σ = 0 as in proof of (a)) there follows

(2.19)

∫

RN

〈g(u), u〉 − 2∗G(u) dx = 0.

In view of (A5)

(2.20) 2∗G
(
u(x)

)
= 〈g

(
u(x)

)
, u(x)〉

for every x ∈ R
N . Since Gi satisfies (A5), we get 2∗Gi(ui(x)) ≥ gi(ui(x))ui(x) for all i ∈

{1, . . . , K} and note that

2∗
L∑

j=1

βj

K∏

i=1

|ui(x)|ri,j ≥
L∑

j=1

βj

K∑

k=1

rk,j

K∏

i=1

|ui(x)|ri,j ,

since
∑K

k=1 rk,j < 2∗. Hence, from (2.20), the inequalities above are actually equalities. On the

other hand, for every j ∈ {1, . . . , L}, ∑K
i=1 ri,j < 2∗, which yields βj = 0 or

∏K
i=1 |ui(x)|ri,j = 0

for every x ∈ R
N , so that the coupling term is zero and thus

2∗Gi(ui(x)) = gi(ui(x))ui(x)
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for every i ∈ {1, . . . , K} and every x ∈ R
N .

Now fix i ∈ {1, . . . , K} such that ui 6= 0. Since ui ∈ H1(RN ) ∩ C2, there exists an open
interval I ⊂ R such that 0 ∈ I and 2∗Gi(s) = gi(s)s for s ∈ I. Then Gi(s) = θi|s|2∗/2∗ for s ∈ I
and ui solves −∆ui = θi|ui|2∗−2ui. Hence, since ui ≥ 0, ui is an Aubin–Talenti instanton, up
to scaling and translations, which is not L2-integrable because N ∈ {3, 4}. Therefore u ∈ ∂D.

Now we prove the second part and suppose that there exists ν ∈ {1, . . . , K − 1} such
that, up to changing the order, |ui|2 < ρi for every i ∈ {1, . . . , ν} and |ui|2 = ρi for every
i ∈ {ν + 1, . . . , K}. From Proposition A.1 there exist 0 = λ1 = · · · = λν ≤ λν+1, . . . , λK and
σ ∈ R such that

(2.21)

{
−(1− 2σ)∆ui = ∂iG(u)− σN

2
∂iH(u) for every i ∈ {1, . . . , ν}

−(1− 2σ)∆ui + λiui = ∂iG(u)− σN
2
∂iH(u) for every i ∈ {ν + 1, . . . , K}

and as before we obtain σ = 0. Since Gi satisfies the scalar variant of (A5), (0,∞) ∋ s 7→
Gi(s)/s

2N ∈ R is nondecreasing, hence Gi is nondecreasing as well for all i. Then, the first ν

equations in (2.21) with σ = 0 yield −∆ui ≥ 0 for i ∈ {1, . . . , ν}. Since u ∈ L
N

N−2 (RN )K as
N ∈ {3, 4}, u is of class C2, and ui ≥ 0, [21, Lemma A.2] implies ui = 0 for every i ∈ {1, . . . , ν}.
Notice that we have proved that λi = 0 implies that ui = 0. �

Remark 2.12. We point out that in addition to the assumptions of Lemma 2.11, i.e., (A1)–
(A3), (A4,�), (A5), and (1.8) hold, u ∈ M∩D, and J(u) = c, we can show that u ∈ ∂D for
any dimension N ≥ 3 and without the assumption that G is of the form (1.10) provided that
H � (2∗ − 2)G holds. Indeed, observe that (2.19) contradicts H � (2∗ − 2)G and Lemma 2.1.

Proof of Theorem 1.1. Statement (a) follows from Lemmas 2.9 and 2.10. Now we prove state-
ment (b). From Lemma 2.11 (a), u is of class C2, while from Proposition A.1 there exist
(λ1, . . . , λK) ∈ [0,∞)K and σ ∈ R such that (2.16) holds and σ = 0 as in the proof of Lemma
2.11 (a). �

Proof of Theorem 1.2. It follows from Lemma 2.11 (b), Theorem 1.1 (b), and the maximum
principle [18, Lemma IX.V.1] (the implication ui 6= 0 ⇒ λi > 0 is proved as in the proof of
Lemma 2.11 (b)). �

Proof of Corollary 1.4. From Theorem 1.1 (b), there exists u ∈ M ∩ D ∩ C2(RN ) and λ ≥ 0
such that J(u) = c and (λ, u) is a solution to (1.3). Observe that, from Lemma 2.10, we can
assume that u is radial, nonnegative (in fact, positive owing to the maximum principle and
because G is nondecreasing on (0,∞)), and radially nonincreasing provided that G is even.
Next, since N ∈ {3, 4} and G is even or H � (2∗ − 2)G, arguing as in the proof of Lemma
2.11 (b) – see also Remark 2.12 – we obtain that u ∈ ∂D = S and (λ, u) is a solution to (1.4).
Since u satisfies the Nehari and the Pohožaev inequalities, we get

λ
2

N − 2

∫

RN

|u|2 dx =

∫

RN

2∗G(u)− g(u)u dx

and, again arguing as in the proof of Lemma 2.11 (b) or Remark 2.12, we obtain
∫
RN 2∗G(u)−

g(u)u dx > 0, whence λ > 0. Finally, suppose that G is even, so u is (in particular) positive
and radially nonincreasing. Note that u(x) → 0 as |x| → ∞ and that there exists t0 > 0 such
that g(t) ≤ λt for every t ∈ [0, t0] and g(t) > λt for every t > t0. If u is constant in the annulus
A := {τ1 < |x| < τ2} for some τ2 > τ1 > 0, then 0 = −∆u = g(u)− λu in A, thus −∆u ≤ 0
in Ω := {|x| > τ1} because u is radially nonincreasing and u(x) ≤ t0 if x ∈ Ω. At the same
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time, u attains the maximum over Ω at every point of A, which is impossible because u|Ω is
not constant. This proves that u is radially decreasing. �

Lemma 2.13. Suppose that K = 2, L = 1, and the assumptions in Lemma 2.11 (b) hold. If
r1,1 + r2,1 > 2N and β1 is sufficiently large, then u ∈ S.

Proof. Since L = 1, we denote β1, r1,1, r2,1 by β, r1, r2 respectively. Suppose by contradiction
that u1 = 0 or u2 = 0, say u1 = 0, which implies that |u2|2 = ρ2. We want to find a suitable
w ∈ S such that

(2.22) J(a ⋆ w) < c = J(0, u2),

where a = a(w) is defined in Lemma 2.3 (note that a(w) = b(w) because (A4,�) holds), which
is impossible. First we show that c does not depend on β. Consider the functional

J∗ : v ∈ H1(RN ) 7→
∫

RN

1

2
|∇v|2 −G2(v) dx ∈ R

and the sets

D∗ :=

{
v ∈ H1(RN) :

∫

RN

|v|2 dx ≤ ρ22

}
,

M∗ :=

{
v ∈ H1(RN) \ {0} :

∫

RN

|v|2 dx =
N

2

∫

RN

H2(v) dx

}
.

Observe that J(0, v) = J∗(v) for v ∈ H1(RN). Moreover (0, v) ∈ D if and only if v ∈ D∗, and
(0, v) ∈ M if and only if v ∈ M∗. In particular,

c = J(0, u2) = J∗(u2) ≥ inf
M∗∩D∗

J∗ = inf{J(0, v) : (0, v) ∈ M∩D} ≥ c,

i.e., c = infM∗∩D∗
J∗, and the claim follows because J∗, D∗, and M∗ do not depend on β.

In view of Corollary 1.4, there exists v̄ ∈ M∗ ∩ ∂D∗ such that

J∗(v̄) = inf
M∗∩D∗

J∗ = c = inf
M∗∩∂D∗

J∗.

Note that v̄ does not depend on β. Define w = (w1, w2) :=
(
ρ1
ρ2
v̄, v̄
)
. From Lemma 2.3, a = aβ

is implicitly defined by

∫

RN

|∇w|2 dx =
N

2

∫

RN

G′
1(a

N/2
β w1)a

N/2
β w1 − 2G1(a

N/2
β w1)

aN+2
β

+
G′

2(a
N/2
β w2)a

N/2
β w2 − 2G2(a

N/2
β w2)

aN+2
β

+ β(r1 + r2 − 2)a
N(r1+r2−2)/2−2
β wr1

1 w
r2
2 dx

≥ β(r1 + r2 − 2)a
N(r1+r2−2)/2−2
β

N

2

∫

RN

wr1
1 w

r2
2 dx,

hence there exist C > 0 not depending on β such that

(2.23) 0 < βa
N(r1+r2−2)/2−2
β ≤ C,

whence

(2.24) lim
β→∞

aβ = 0.
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Since aβ ⋆ w ∈ M, we have from (A5)

J(aβ ⋆ w) =

∫

RN

N

4
H(aβ ⋆ w)−G(aβ ⋆ w) dx ≤ 2

N − 2

∫

RN

G(aβ ⋆ w) dx

=
2

N − 2

∫

RN

G1(a
N/2
β w1) +G2(a

N/2
β w2)

aNβ
dx+

2βa
N(r1+r2−2)/2
β

N − 2

∫

RN

wr1
1 w

r2
2 dx,

therefore (2.22) holds true for sufficiently large β owing to (A1), (2.23), and (2.24). �

Proof of Theorem 1.3. It follows from Lemma 2.13 and Theorem 1.2. �

Now we investigate the behaviour of the ground state energy with respect to ρ. For
ρ = (ρ1, . . . , ρK) ∈ (0,∞)K we denote

D(ρ) :=

{
u ∈ H1(RN)K :

∫

RN

|ui|2 dx ≤ ρ2i for every i ∈ {1, . . . , K}
}

S(ρ) :=

{
u ∈ H1(RN)K :

∫

RN

|ui|2 dx = ρ2i for every i ∈ {1, . . . , K}
}

c(ρ) := inf{J(u) : u ∈ M∩D(ρ)}.
Proposition 2.14. Assume that (A0)–(A5) and (1.8) are satisfied.
(i) If θ = 0, then c is continuous and limρ→0+ c(ρ) = ∞, where ρ → 0+ means ρi → 0+ for
every i ∈ {1, . . . , K}.
(ii) Let θ ∈ (0,∞)K and ρ ∈ (0,∞)K . If (1.9) holds for every ρ′ ∈∏K

j=1(ρj −ε, ρj) and some

ε > 0, then c is continuous at ρ. If (1.9) holds for every ρ′ ∈ (0, ε)K and some ε > 0, then

lim
ρ′→0+

c(ρ′) =
1

N
SN/2

K∑

i=1

θ
1−N/2
i

(iii) If every ground state solution to (1.3) belongs to S(ρ) (e.g. if the assumptions of Theorem
1.3 are satisfied), then c is decreasing in the following sense: if ρ, ρ′ ∈ (0,∞)K are such that
ρi ≥ ρ′i for every i ∈ {1, . . . , K} and ρj > ρ′j for some j ∈ {1, . . . , K}, then c(ρ) < c(ρ′).

Proof. Fix ρ ∈ (0,∞)K and let ρ(n) → ρ. We begin by proving the upper semicontinuity of

c at ρ. Let w ∈ M ∩ D(ρ) such that J(w) = c(ρ), denote w
(n)
i := ρ

(n)
i wi/ρi, and consider

w(n) = (w
(n)
1 , . . . , w

(n)
K ) ∈ D(ρ(n)). Due to Lemma 2.3, for every n there exists sn > 0 such

that sn ⋆ w
(n) ∈ M. Note that

(2.25)
N

2

∫

RN

H
(
s
N/2
n (ρ

(n)
1 w1/ρ1, . . . , ρ

(n)
K wK/ρK)

)

sN+2
n

dx =

∫

RN

|∇w(n)|2 dx→
∫

RN

|∇w|2 dx.

If lim supn sn = ∞, then from (A2) and (A5) the left-hand side of (2.25) tends to ∞ up to a
subsequence, which is a contradiction. If lim infn sn = 0, then from (A1), (A3), (A5) and (1.8)
and arguing as in Lemma 2.2 we obtain that the limit superior of the left-hand side of (2.25)
is less than |∇w|22, which is again a contradiction. There follows that, up to a subsequence,
sn → s for some s > 0 and s ⋆ w ∈ M. In view of Lemma 2.3,

lim sup
n

c(ρ(n)) ≤ lim
n
J(sn ⋆ wn) = J(s ⋆ w) = J(w) = c(ρ).

Now we prove the lower semicontinuity of c at ρ. Let ρ(n) → ρ and u(n) ∈ M∩D(ρ(n)) ⊂
M ∩ D(2ρ) such that J(u(n)) = c(ρ(n)) ≤ c(ρ/2). In view of Lemma 2.4, (u(n)) is bounded,



24 J. MEDERSKI AND J. SCHINO

hence we can consider the sequences (ũ(i)) and (y(i,n)) given by Lemma 2.8; note that ũ(i) ∈ D.
We consider the case θ ∈ (0,∞)K because the other one (i.e., θ = 0) is similar and simpler.

Claim: There exists i ≥ 0 such that limn u
(n)(· + y(i,n)) → ũ(i) 6= 0 in D1,2(RN)K . The

proof is similar to that of Lemma 2.9, thus we focus only on the differences. If ũ(i) = 0 for
every i ≥ 0, then as in (2.10) we obtain the contradiction

(2.26)
S̄N/2

N
> c(ρ1 − ε, . . . , ρK − ε) ≥ lim sup

n
c(ρ(n)) = lim sup

n
J(u(n)) ≥ S̄N/2

N
.

Let i ≥ 0 such that ũ(i) 6= 0 and define v(n) := u(n)(· + y(i,n)) − ũ(i). If lim infn |∇v(n)|2 > 0
and |∇ũ(i)|22 ≥ N

2

∫
RN H(ũ(n)) dx, then we prove that Rn → 1, where Rn > 0 is such that

v(n)(Rn·) ∈ M. In particular, if up to a subsequence Rn ≥ 1, then as in (2.12) we get

0 < c(2ρ) ≤ c(ρ(n)) ≤ 1

Rn

∫

RN

N

4
H(v(n))− g(v(n)) dx ≤

∫

RN

N

4
H(v(n))−G(v(n)) dx

≤ c(ρ(n)) + o(1).

Next, as in (2.14) we obtain again the contradiction (2.26), which proves that v(n) → 0 in
D1,2(RN)K (up to a subsequence) or |∇ũ(i)|22 < N

2

∫
RN H(ũ(n)) dx. In the latter case, we define

R > 1 such that ũ(i)(R·) ∈ M as in (2.15) we get the contradiction

c(ρ) ≤ J
(
ũ(i)(R·)

)
< lim sup

n
c(ρ(n)) ≤ c(ρ),

where the last inequality is due to the upper semicontinuity. This proves the Claim, which
yields, together with the interpolation inequality, that ũ(i) ∈ M∩D and so

c(ρ) ≤ J(ũ(i)) = lim
n
J(u(n)) = lim

n
c(ρ(n)).

Now we prove the behaviour of c(ρ′) as ρ′ → 0. Let ρ(n) → 0+ and u(n) ∈ M ∩ D(ρ(n))
such that J(u(n)) = c(ρ(n)). Denote sn := |∇u(n)|−1

2 and w(n) := sn ⋆ u
(n) and note that

s−1
n ⋆ w(n) = u(n) ∈ M, |∇w(n)|2 = 1 and

|w(n)|22 = |u(n)|22 = |ρ(n)|2 → 0

as n→ ∞. In particular
(
w(n)

)
is bounded in L2∗(RN)K and so

|w(n)|2N ≤ |w(n)|
2

N+2

2 |w(n)|
N

N+2

2∗ → 0

as n→ ∞. Suppose that θ = 0. Then, in view of (A1) and (A3), for every s > 0

lim
n

∫

RN

G(sN/2w(n))

sN
dx = 0

and, consequently,

J(u(n)) = J(s−1
n ⋆ w(n)) ≥ J(s ⋆ w(n)) =

s2

2
−
∫

RN

G(sN/2w(n))

sN
dx =

s2

2
+ o(1),

whence limn J(u
(n)) = ∞.

Now suppose that θ ∈ (0,∞)K . Since |u(n)|22 = |ρ(n)|2 → 0, we get u(n) → 0 in Lq(RN)K

for 2 ≤ q < 2∗. Arguing as above, for every s > 0

lim
n

∫

RN

G̃(sN/2u(n))

sN
dx = 0,
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hence

lim
n

∫

RN

G(sN/2u(n))

s−N
dx = lim

n

∫

RN

G̃(sN/2u(n))

s−N
dx+

s2
∗

2∗

K∑

j=1

θj lim
n

∫

RN

|u(n)j |2∗ dx.

Consequently,

J(u(n)) ≥ J(s ⋆ u(n)) =
s2

2

∫

RN

|∇u(n)|2 dx−
∫

RN

G(sN/2u(n))

sN
dx

=
s2

2
lim
n

∫

RN

|∇u(n)|2 dx− s2
∗

2∗

K∑

j=1

θj lim
n

∫

RN

|u(n)j |2∗ dx+ o(1)

for any s > 0. Then, in view Lemma B.1

lim
n
J(u(n)) ≥ max

s>0

s2

2
lim
n

∫

RN

|∇u(n)|2 dx− s2
∗

2∗

K∑

j=1

θj lim
n

∫

RN

|u(n)j |2∗ dx

=
1

N

limn |∇u(n)|N2(∑K
j=1 θj limn |u(n)j |2∗2∗

)N/2−1

≥ 1

N
S̄

N
2 =

1

N
SN/2

K∑

i=1

θ
1−N/2
i

and taking into account (1.9) we obtain

lim
n
J(u(n)) =

1

N
SN/2

K∑

i=1

θ
1−N/2
i .

Now assume that every ground state solution to (1.3) belongs to S(ρ) and let ρ, ρ′ as
in the statement. Let u ∈ M ∩ S(ρ) and u′ ∈ M ∩ S(ρ′) ⊂ M ∩ D(ρ) \ S(ρ) such that
J(u) = c(ρ) and J(u′) = c(ρ′). Clearly c(ρ) ≤ c(ρ′). If c(ρ) = c(ρ′), then c(ρ) = J(u′), with
u′ ∈ M∩D(ρ) \ S(ρ), which is a contradiction. �

Appendix A. Sign of Lagrange multipliers

The following result concerns the sign of a Lagrange multiplier when the corresponding
constraint is given by an inequality and the critical point of the restricted functional is a
minimizer. The result is related with Clarke’s [15, Theorem 1], however it is not clear whether
we can apply it directly in our situation.

Proposition A.1. Let H be a real Hilbert space and f, φi, ψj ∈ C1(H), i ∈ {1, . . . , m},
j ∈ {1, . . . , n}. Suppose that for every

x ∈
m⋂

i=1

φ−1
i (0) ∩

n⋂

j=1

ψ−1
j (0)

the differential (
φ′
i(x), ψ

′
j(x)

)
1≤i≤m,1≤j≤n

: H → R
m+n
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is surjective. If x̄ ∈ H minimizes f over

{x ∈ H : φi(x) ≤ 0 for every i = 1, . . . , m and ψj(x) = 0 for every j = 1, . . . , n},
then there exist (λi)

m
i=1 ∈ [0,∞)m and (σj)

n
j=1 ∈ R

n such that

f ′(x̄) +

m∑

i=1

λiφ
′
i(x̄) +

n∑

j=1

σiψ
′
j(x̄) = 0.

Proof. Fix ε > 0 and define the functional F : H → [0,∞) as

F (x) := max
1≤i≤m,1≤j≤n

{f(x)− f(x̄) + ε, φi(x), |ψj(x)|}.

and observe that F is locally Lipschitz and bounded from below by 0. Since F (x̄) = ε, in view
of the Ekeland variational principle [16, Theorem 1.1] there exists z = zε ∈ H such that

‖x̄− z‖ ≤ √
ε,

F (x) +
√
ε ‖x− z‖ ≥ F (z) ∀x ∈ H.

From [15, Propositions 6, 8] there follows that 0 ∈ ∂F (z) +
√
ε ∂‖ · −z‖(z), where ∂ stands

for the generalized gradient [15, Definition 1]. Hence, there exists ξ = ξε ∈ ∂F (z) such that
−ξ ∈ √

ε ∂‖ ·−z‖(z). In view of [15, Propositions 1, 9], ‖ξ‖ ≤ √
ε and ξ lies in the convex hull

of f(z)− f(x̄) + ε, φi(z), and |ψj(z)|, i.e., there exists τ, λ1, . . . , λm, σ̂1, . . . , σ̂n ≥ 0 depending
on ε, such that τ + λ1 + · · ·+ λm + σ̂1 + · · ·+ σ̂n = 1,

ξ ∈
(
τf ′(z) +

m∑

i=1

λiφ
′
i(z) +

n∑

j=1

σ̂j∂|ψj |(z)
)
,

and λi = 0 (resp. σ̂j = 0) if φi(z) ≤ 0 (resp. ψj(z) = 0).
For every j ∈ {1, . . . , n} such that ψj(z) 6= 0 we have

∂|ψj |(z) = {sign
(
ψj(z)

)
ψ′
j(z)}.

If j ∈ {1, . . . , n} is as before, we define σj := sign
(
ψj(z)

)
σ̂j , otherwise we define σj := 0. In

particular, we have
n∑

j=1

σ̂j∂|ψj |(z) =
{

n∑

j=1

σjψ
′
j(z)

}
.

Summing up, we obtain the following: for every ε > 0 there exist τ ≥ 0, (λi)
m
i=1 ∈ [0,∞)m,

(σj)
n
j=1 ∈ R

n and z ∈ B(x̄,
√
ε) such that

ξ := τf ′(z) +
∑m

i=1 λiφ
′
i(z) +

∑n
j=1 σjψ

′
j(z) ∈ B(0,

√
ε),

τ +
∑m

i=1 λi +
∑n

j=1 |σj| = 1.

Letting ε → 0+ we get

(A.1) τf ′(x̄) +

m∑

i=1

λiφ
′
i(x̄) +

n∑

j=1

σjψ
′
j(x̄) = 0

for some τ ≥ 0, (λi)
m
i=1 ∈ [0,∞)m, (σj)

n
j=1 ∈ R

n such that

τ +
m∑

i=1

λi +
n∑

j=1

|σj| = 1.
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Suppose by contradiction that τ = 0, whence

(A.2)

m∑

i=1

λiφ
′
i(x̄) +

n∑

j=1

σjψ
′
j(x̄) = 0.

If φi(x̄) < 0 for some i ∈ {1, . . . , m}, then of course λi = 0, hence, up to considering a
(possibly empty) subset of {1, . . . , m} in (A.2), we can assume that φ1(x̄) = · · · = φm0

(x̄) = 0
and λm0+1 = . . . = λm = 0 for some 0 ≤ m0 ≤ m, where m0 = 0 denotes that λi = 0 for all
i ∈ {1, . . . , m}, whereas m0 = m denotes φ1(x̄) = · · · = φm(x̄) = 0. Then the differential

(
φ′
1(x̄), . . . , φ

′
m0

(x̄), ψ′
1(x̄), . . . , ψ

′
n(x̄)

)
: H → R

m0+n

is surjective and so, for every i ∈ {1, . . . , m0} (resp. j ∈ {1, . . . , n}), we can choose y ∈ H such
that φ′

i(x̄)(y) 6= 0, φ′
k(x̄)(y) = 0 for every k ∈ {1, . . . , m0} \ {i} and ψ′

j(x̄)(y) = 0 for every
j ∈ {1, . . . , n} (resp. ψ′

j(x̄)(y) 6= 0, ψ′
k(x̄)(y) = 0 for every k ∈ {1, . . . , n}\{j} and φ′

i(x̄)(y) = 0
for every i ∈ {1, . . . , m0}). This and (A.2) implies λi = 0 for every i ∈ {1, . . . , m0} and σj = 0
for every j ∈ {1, . . . , n}, a contradiction. We can thus divide both sides of (A.1) by τ and, up
to relabelling λi and σj (i ∈ {1, . . . , m0}, j ∈ {1, . . . , n}), conclude the proof. �

Appendix B. A Sobolev-type constant

Let θ = (θ1, . . . , θK) ∈ (0,∞)K,

S̄ := inf
u∈D1,2(RN )K\{0}

∫
RN |∇u|2 dx

(∑K
j=1 θj

∫
RN |uj|2∗ dx

)2/2∗ ,

and, clearly, in view of the Sobolev embeddings, S̄ > 0.

Lemma B.1. S̄ is attained by (θ
−N−2

4

1 u1, ..., θ
−N−2

4

K uK), where uj are Aubin–Talenti instantons.
Moreover

S̄ :=

(
K∑

j=1

θ
−N−2

2

j

)2/N

S.

Proof. We prove that S̄ is attained. Let I : D1,2(RN)K → R be defined as

I(u) =

∫

RN

1

2
|∇u|2 − 1

2∗

K∑

j=1

θj |uj|2
∗

dx.

If u = (u1, ..., uK) ∈ D1,2(RN)K , then

I ′(u) = 0 ⇔ −∆uj = θj |uj|2
∗−2uj for every j ∈ {1, . . . , K}.

Define the Nehari manifold for I as

N :=

{
u ∈ D1,2(RN)K \ {0} : |∇u|22 =

K∑

j=1

θj |uj|2
∗

2∗

}
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ad note that, if u ∈ N , then

I(u) =
1

N
|∇u|22 =

1

N

K∑

j=1

θj |uj|2
∗

2∗

∫
RN |∇u|2 dx

(∑K
j=1 θj

∫
RN |uj|2∗ dx

)2/2∗ = |∇u|2(2∗−2)/2∗

2 =

(
K∑

j=1

θj |uj|2
∗

2∗

)(2∗−2)/2∗

,

hence
∫

RN
|∇u|2 dx

(
∑K

j=1
θj

∫

RN
|uj |2

∗ dx)
2/2∗ = A if and only if I(u) = 1

N
A2∗/(2∗−2). Moreover, if u ∈

D1,2(RN)K \ {0}, then tu ∈ N for some t > 0 and the fraction in the definition of S̄ does not
depend on the rescaling t 7→ tu, therefore

S̄ = inf
u∈N

∫
RN |∇u|2 dx

(∑K
j=1 θj

∫
RN |uj|2∗ dx

)2/2∗

and infN I = 1
N
S̄2/(2∗−2)∗ > 0. Let u(n) ∈ N be such that I(u(n)) → infN I. Up to replacing

u(n) = (u
(n)
1 , ..., u

(n)
K ) with (|u(n)1 |, ..., |u(n)K |), we can also assume that u

(n)
j ≥ 0 for every n, j. In

virtue of Ekeland’s variational principle [44], we can assume I ′(u(n)) → 0. Since infN I > 0,
u(n) 6→ 0 in L2∗(RN)K , thus, in view of Solimini’s theorem [37, Theorem 1], see also [42,
Lemma 5.3]), there exist (sn) ⊂ (0,∞), (yn) ⊂ R

N and u ∈ D1,2(RN)K \ {0}, such that

s
1/2
n u(n)(sn·+yn))⇀ u in D1,2(RN )K and s

1/2
n u(n)(sn·+yn)) → u a.e. in R

N up to a subsequence.
In particular, I ′(u) = 0 and so u ∈ N . Observe that each component of u is of the form

uj = θ
−N−2

4

j u0j , where u0j is an Aubin–Talenti instanton. Therefore

S̄ =

∫
RN |∇u|2 dx

(∑K
j=1 θj

∫
RN |uj|2∗ dx

)2/2∗ =

(
K∑

j=1

θ
−N−2

2

j

)2/N

S. �
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