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ON THE EFIMOV EFFECT IN SYSTEMS OF
ONE- OR TWO-DIMENSIONAL PARTICLES

SIMON BARTH, ANDREAS BITTER AND SEMJON VUGALTER

ABSTRACT. We study virtual levels of N-particle Schrodinger operators and prove that if the
particles are one-dimensional and N > 3, then virtual levels at the bottom of the essential
spectrum correspond to eigenvalues. The same is true for two-dimensional particles if N > 4.
These results are applied to prove the non-existence of the Efimov effect in systems of N > 4
one-dimensional or N > 5 two-dimensional particles.
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1. INTRODUCTION

In recent years the Efimov effect has attracted large interest. This effect is named after
the physicist V. Efimov and can be stated as follows: A system of three quantum particles in
dimension three, interacting through attractive short-range potentials, has an infinite number
of bound states if the subsystems do not have negative spectrum and at least two of them are
resonant [9], i.e. any arbitrarily small negative perturbation of the pair potential leads to a
negative spectrum. In this situation we also say that the two-body Hamiltonian of the system
has a virtual level.

The Efimov effect is a surprising phenomenon, because although the pair interactions are short-

range, the system of three particles behaves as a system of two particles with long-range potential.

Another interesting feature is its universality. This means that the existence of the effect as well

as the distribution of the eigenvalues do not depend on the shape of the potentials of interaction

of particles. It is only important that they are short-range and resonant. Indeed, the counting
1
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function N(z) of the eigenvalues of the three-body Hamiltonian below z < 0 obeys the following
asymptotics
N(z)

zi%lf m = Ay >0, (11)
where the constant Ay depends on the masses of the particles, but not on the potentials [9].
For a long time the Efimov effect was regarded by many as a theoretical peculiarity. After the
theoretical discovery of the Efimov effect great efforts were made to verify it experimentally.
However, it took more than 30 years before in 2002 it was found in an ultra-cold gas of caesium
atoms [15]. This experiment was a milestone and opened the way to many further experiments
in different systems of ultra-cold atoms in many laboratories all over the world [10, 14, 6].
In addition, it lead to a resurgence of interest to the Efimov effect, see for example the review
of P. Naidon and S. Endo [16], which contains 400 references. Since then, many predictions of
phenomena similar to the Efimov effect have been made [20, 21, 18, 19]. Some of these predictions
focus on the question whether an Efimov-type effect can be found in NV-particle systems consisting
of one- or two-dimensional particles under the assumptions that the (IV — 1)-particle subsystems
have a virtual level at the bottom of the essential spectrum. For example in [18] and [20] it
is predicted that such an effect occurs for systems of N = 4 two-dimensional or N = 5 one-
dimensional particles if the interactions in subsystems of less than N — 1 particles are absent.
In the table below we give a list of systems of IV identical particles where the Efimov effect is
expected in the physics literature.

System Art of Resonant Predicted in Does a mathematical
Interactions subsystems proof exist?
four-body

5 bosons, d=1  mno two-body four-body [20] No
no three-body

4 bosons, d = 2 If:;if(fgjgy three-body [18] No

3 bosons, d =3 two-body two-body [9] Yes, [36]

3 fermions, d = 2 two-body two-body [19] Yes, [13]

TABLE 1. Systems for which an Efimov-type effect is expected by physicists

Besides these systems, effects similar to the Efimov effect are expected for systems with mixed
dimensions, i.e. where the particles move in the three-dimensional space, but some of them are
confined in a lower-dimensional space. Such an effect is called confinement-induced Efimov
effect, see for example [21]. From a mathematical point of view the question of existence or
non-existence of Efimov-type effects in systems with mixed dimensions is completely open.

The first mathematically rigorous proof of the Efimov effect for systems of three three-
dimensional particles was given by D. R. Yafaev [36] using a system of symmetrized Faddeev
equations combined with the low-energy asymptotics of the resolvents of the two-body Hamilto-
nians. In [38] he also showed that the Hamiltonian has only a finite number of bound states if at
most one of the subsystems is resonant. Later, A. V. Sobolev proved the asymptotics (1.1) for
the eigenvalue counting function [27]. In the years after the mathematical confirmation of the
Efimov effect different techniques were developed and many other mathematical results related
to this effect were obtained [34, 22, 30, 29, 5, 32].

In particular, it was proved in [34] that the existence of the Efimov effect depends on the nature
of the virtual levels in the subsystems. If the virtual level in the two-body subsystems correspond



to eigenvalues, which for example is the case if the three-particle Hamiltonian is considered on
certain symmetry subspaces of L?(R%), then the Efimov effect is absent.

For a long time it has been expected that due to the same reason the Efimov effect does not exist
for systems of N > 4 three-dimensional bosons. However, to prove that virtual levels in subsys-
tems of N — 1 particles correspond to eigenvalues and not to resonances was a very challenging
problem, because the sum of the pair potentials does not decay in all directions at infinity, which
makes it difficult to use Green’s functions. This problem was first solved by D. Gridnev [12] and
recently a proof with simpler methods and less restrictions on the potentials was given in [5]. In
addition, it was shown in [5] that the Efimov effect can not occur in systems of N > 4 one- or
two-dimensional spinless fermions.

For the case of three two-dimensional spinless fermions, which is not covered by [5], it was pre-
dicted in the physics literature that an effect similar to the Efimov effect is present, namely the
so-called super Efimov effect [19]. The first mathematical proof of this prediction was given by
D. Gridnev [13]. Recently, this result was improved by H. Tamura, where the conditions on the
potentials [31] were less restrictive.

Much less is mathematically known about the existence of the Efimov effect in systems of N > 3
one- or two-dimensional bosons or systems without symmetry restrictions. For such systems
consisting of three one- or two-dimensional particles the absence of the Efimov effect was first
proved by G. Zhislin and one of the authors of this paper in [33] under very strong restrictions
on the potentials. Later, in [35] these restrictions were relaxed, but unfortunately Lemma 1 in
[35] contains a mistake. We will correct this mistake in Section 6 at the end of this paper. For
systems of N > 4 one- or two-dimensional bosons mathematical results are unknown. The main
goal of our work is to fill this gap, at least partially.

Our main results are the following: For systems of N > 3 one-dimensional bosons or particles
without symmetry restrictions with pair interactions we prove that the existence of virtual levels
in the (N — 1)-particle subsystems does not imply the infiniteness of the number of negative
eigenvalues. For systems of N two-dimensional particles we prove the same result except for
N = 4.

The method of the proof is analogous to the proof in [5]. We study the decay of solutions of the
Schrédinger equation corresponding to a virtual level and show that these solutions are eigen-
functions. Then we use arguments similar to [34]. To obtain the decay rate of the solutions we
apply a modification of Agmon’s method [2], developed in [5]. This method requires estimates
on the quadratic form of a multi-particle Schrodinger operator on functions supported far from
the origin. In order to obtain these estimates we make a partition of unity of the configuration
space according to decompositions of the original system into clusters with careful estimates of
the localization error.

On the technical level however this work is very different from [5]. A crucial difference between
one- or two-dimensional particles and d-dimensional particles with d > 3 is that in lower dimen-
sions the common Hardy inequality does not hold. This manifests in particular in the fact that
the one-particle Schrodinger operator h = —A + V in dimension one or two with a short-range
potential V' # 0 has negative eigenvalues if [V (z)dz < 0. Consequently, if we know that h
does not have negative spectrum, we can immediately say that [V(z)dz > 0. This simple
observation plays an important role in our proof.

On the other hand to localize regions in the configuration space in [5] we used a special type of
the cut-off functions constructed in [34]. For this choice of the cut-off functions, due to Hardy’s
inequality, the localization error can be compensated by a small part of the kinetic energy. Since
in one- and two-dimensional cases the Hardy inequalities are different, this construction can not
be applied in lower dimensions. To overcome this obstacle, we develop in Section 3 an advanced
way to construct the cut-off functions, which is better compatible with one- and two-dimensional



variants of Hardy’s inequality.

The paper is organized as follows. In Section 2 we discuss virtual levels of one-body Schrodinger
operators with short-range potentials in dimension one and two. We prove that virtual levels
correspond to resonances and give an estimate for the decay rate of the corresponding solutions.
This section is contained for completeness. Readers only interested in the multi-particle case can
skip it and go immediately to Section 3, where we extend the study of virtual levels to the multi-
particle case. We prove that for systems of N > 3 one-dimensional or N > 4 two-dimensional
particles virtual levels correspond to eigenvalues. We also derive lower bounds for the decay
rates of the zero energy eigenfunctions. In Section 4 we discuss systems of three two-dimensional
particles, which is the only case where a virtual level might correspond to a resonance. We show
that there exists a solution of the Schrédinger equation in the space L2(R*, (1 + |z])~%), d > 0.
Section 5 is devoted to the absence of the Efimov effect for multi-particle systems in dimension
one and two. In Section 6 we give the proof for the absence of the Efimov effect in systems of
three one- or two-dimensional particles.

2. VIRTUAL LEVELS OF ONE-PARTICLE SCHRODINGER OPERATORS IN DIMENSION ONE AND
TWO

Although the main subject of this paper are virtual levels of multi-particle systems consisting
of one- or two-dimensional particles and the non-existence of the Efimov effect in such systems,
in this section we discuss virtual levels of one-particle Schrodinger operators in these dimensions.
Some of the results of this section will be applied later to study the multi-particle case, others
are given for a better understanding of one- and two-dimensional systems.

2.1. Notation and assumptions. In this section we consider the one-particle Schrodinger
operator

h=-A+V (2.1)
in L2(R4) with d = 1 or d = 2. Within the whole section we assume that V # 0. Furthermore,
we assume that V is relatively form bounded with relative bound zero, i.e. for every € > 0 there
exists a constant C'(g) > 0, such that

(VI ) < e VYII* + Cle)|lvl? (2.2)
holds for any ¢ € H'(R?). This condition is fulfilled if V € L¥ (R?) + L>®(R?) with p = 1

ifd=1andp > 1if d =2, [8. Due to the KLMN-theorem [23, Theorem X.17] under this
assumption the operator h is self adjoint on L?(R%) with the associated quadratic form

QW = [VeI* + (Vi ) (2.3)
with form domain H!(R9). For any ¢ € (0,1) we define
he = h+ eA. (2.4)

For any self-adjoint operator A we denote by S(A), Sess(A) and Sqisc(A) the spectrum, the
essential spectrum and the discrete spectrum of A, respectively.

Following [7] we introduce function spaces which will be important for our studies in this paper.
For dimension d > 3 the homogenous Sobolev space H'(R?) is defined as the completion of
Cs° (R%)-functions with respect to the norm

e = ([ |w|2dac>é . (25)

It follows from Hardy’s inequality that for d > 3 a sequence of functions u, € H'(R?%) with
ltn|l 71 — O converges to zero in LE (R%). It is also known (see, for example [7]) that for d = 1
and d = 2 the completion of C§°(R%) with respect to (2.5) does not lead to a function space,
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because constant functions are identified. In order to avoid this problem we add a local L? norm
to the gradient semi-norm and define for d =1 or d = 2

lull g = (/ |Vu|2d:c+/ |u|2dx> . (2.6)
R {lz|<1}

Let H'(R%) be the completion of C§°(R%) with respect to the norm (2.6), then
O RY) = {u € L (RY), Vu € L*(RY)} . (2.7)

In Appendix A we collect some elementary properties of the space H LRY), d = 1,2, which we
use in this paper.

2.2. Properties of virtual levels of one-particle Schréodinger operators with short-
range potentials.

Definition 2.1. Assume that the potential V satisfies (2.2). We say that the operator h, defined
n (2.1), has a virtual level at zero if

h >0, infS (h:) <0 and inf Segs (he) =0 (2.8)
holds for any sufficiently small € > 0.

Remark. Note that the Laplace operator is critical in dimension one and two, i.e. for any
V e L'(RY) satisfying (2.2) and V # 0 with [p, V(z)dz < 0 the operator h has at least
one negative eigenvalue, see [26]. Consequentely, for d = 1,2 the condition A > 0 implies
[ V(z)dz > 0. On the other hand, the condition infS(he) < 0 yields that V(z) has a
non-trivial negative part.

Let us briefly motivate our goals for this section. For the case d = 3 it was shown that the
one-particle Schrédinger operator h > 0 with short-range potential has a virtual level if and only
if hyp = 0 has a solution in H' (R%). This solution does not belong to L? (R?) and decays as
|z| =t as |x| — oo, see [37].

Moreover, by applying Hardy’s inequality one can see that in case d > 3 for short-range potentials
the operator h has a virtual level at zero if and only if h > 0 and for any € > 0 the operator
h=—A+V —e(1+]|z|)~2 has a discrete eigenvalue below zero.

Our goal is to generalize these two statements to the cases d = 1,2. This will be done in the
following two theorems.

Theorem 2.2 (Solutions of the Schrédinger equation corresponding to virtual levels). Assume
that d =1 or d = 2 and that the potential V satisfies V # 0, condition (2.2) and

V)| <CO+z)>™", zeRY |z/>A (2.9)
for constants A,C,v > 0. If h has a virtual level at zero, then the following assertions hold:

(i) There exists a solution ¢o € HY(RY), @ # 0, of the equation —Apy+ Vg =0, i.e. for
all € HY(RY)

(Veo, Vib) + (Vipo, 9h) = 0. (2.10)
(ii) Let d =1. Then for the functions @o satisfying (2.10) we have
(1+|z))"2 %o € L*(R)  for any £ > 0. (2.11)

(iii) Let d = 2. Then for the functions ¢o satisfying (2.10) we have

1+ |z))" (1 + | In(|2])]) "2~ o € L2(R?)  for any e > 0. (2.12)
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(iv) If in addition the potential V is relatively —A-bounded, i.e. there exists a constant C > 0,
such that

Vel* < C (I1av)* + 1)) (2.13)

holds for all functions 1 € H?(R?), then there exists a constant &g > 0, such that for
any function 1 € HY(RY) satisfying (Vip, Vi) = 0

(hap, ) > bol [ V|| (2.14)

Remark. (i) Note that the left-hand side of (2.10) is well-defined due to condition (2.9)
and inequalities (A.4) and (A.5) in Appendix A.

(ii) Similarly to Theorem 2.1 in [5] we use the condition (2.13) on the potential V" only to be
able to apply the unique continuation theorem. Without this condition we are not able to
prove uniqueness of the solution ¢ of the equation —Apo+Vo = 0 in H* (R4). However,
similarly to [5] we can show that the subspace M c H'(R?) of functions ¢ satisfying
(2.10) is finite-dimensional and that for each ¢ € H'(R?), satisfying (Vip, V4p) = 0 for
all ¢ € M holds (2.14).

(iii) Theorem 2.2 gives a lower bound on the decay rate of solutions of the Schrédinger
equation corresponding to virtual levels. It is easy to see that if the potentials are
compactly supported and V(z) = V(|z|), then estimates (2.53) and (2.54) are almost
sharp. It is also easy to see that the solution can not be an eigenfunction, it is a zero
energy resonance.

Theorem 2.3 (Necessary and sufficient condition for a virtual level). Let d = 1,2. We assume
that V' # 0 satisfies (2.2) and (2.9) and that h > 0. Further, let U be a continuous, strictly
negative potential satisfying for |x| > A the condition

U(x)| <Clz| 2 ifd=1 and [U(z)| < Clz|?In*(|z|) if d =2 (2.15)

for some A,C > 0. Then h has a virtual level at zero if and only if for any € > 0 and for any
function ¢ € HY(R?) we have

inf S (h+eld) < 0. (2.16)

Remark. (i) Note that in dimension d > 3 Hardy’s inequality yields that inf S(h+elf) = 0
for sufficiently small € > 0 if h does not have a virtual level. For dimension d = 1 or
d = 2 it does not follow from Hardy’s inequality. However, Theorem 2.3 shows that it is
still true.

(ii) Assume that V' # 0 satisfies (2.2) and (2.9), h > 0 and that h does not have a virtual
level at zero. Then for small g > 0 the operator h., > 0 also does not have a virtual
level and therefore Theorem 2.3 can be applied to the operator h.,. Hence, there exists
€1 > 0, such that

(1 =) [VYI* + (Vo ) + er (U, 9) > 0 (2.17)

holds for any function v € H*(R?) with U defined as in Theorem 2.3. This modification
of Theorem 2.3 will be used in the case of multi-particle systems in the next sections.
(iii) Assume that h > 0 does not have a virtual level and that the potential V' # 0 satisfies
(2.2) and (2.9). Then by choosing U according to Theorem 2.3 with U(z) = —1 for
|z| < 1 we obtain from (2.17) that for any ¢ € H(R9)
1+e1—¢ 1
917, < ————IVe[* + = (Vi,9). (2.18)
€1 €1
Theorem 2.3 will be proved in Appendix B, where similar statements for multi-particle Schrédinger
operators are established. We turn to the
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Proof of Theorem 2.2. Since for any ¢ > 0 we have inf Sqisc(he) < 0, we find a sequence of
eigenfunctions 1, € H*(R?), corresponding to eigenvalues E,, < 0 of the operator h,,-1, i.e.

We normalize the functions 1), by the condition [|1),|| 71 = 1. Then there exists a subsequence,
also denoted by (1, )nen, which converges weakly in H L(R?) to a function ¢q € H L(R?). At first,
we prove that g is a solution of the equation —Apy + Vo = 0 in H'(R?%) and that ¢y # 0.
Indeed, we have the following

Lemma 2.4. Assume that h has a virtual level at zero and that V satisfies (2.2) and (2.9).
Then the function @o defined above is not zero and for any 1 € H*(RY)

Vo, V) + (Vipo, 1) = 0. (2.20)

Proof of Lemma 2.4. Since @ is the weak limit of the sequence (¢, )nen in H'(RY), we have
wo € L% . (RY) and by Proposition A.1 (iii) ¥, — ¢o strongly in L2 (R). First, we show that

loc loc

/ V() [ty (2)|? dz — V(2)|go(x)|*dz as n — oo (2.21)
{lz|<R} {lz|<R}

for any fixed R > 0. We write
(Vibn, Yn)r) — (Vwo, o) B(r) = (V(¥n — ©0), ¥n)B(r) + Vo, (Vn —¢0))B(R),  (2.22)

where B(R) = {z € R? : |x| < R}. Let x be a piecewise differentiable function satisfying
x(xz) =1 for z € B(R) and x(z) =0 if z ¢ B(R+ 1). Then we get by Cauchy Schwarz

(VIIen = ol [l Bry < (V12 [0 — @olx, V]2 [nlx)
< ((IVIIn = w0l [1on — 2olx))E (VI1¥nlx: [n]x)) -

We estimate the two factors on the r.h.s. of (2.23) separately. By assumption (2.2) we get

(V11 = @olX: [tn — @olx) < €llVo (|on — wolx) II” + C ()| (¥ — @o)x|I>- (2.24)

Due to [|[Votn| < 1, [[Vopol <1, 0 < x <1 and |Vox| < C for some C' > 0, the first term
on the r.h.s. of (2.24) is arbitrarily small if € > 0 is small enough. The second term tends to
zero as n — 0o because ¥, — o in L2 _(RY). Similarly, we can show that (|V||vn|x, [¢n|x) is
bounded and therefore (|V|[1)n — @ol, [¥n]) B(r) tends to zero as n — co. Analogously we get
(V(¥n — @0),00)B(rR) — 0 as n — oo. Hence, we get (2.21).

By taking R > A, condition (2.9) together with inequality (A.4) for d = 1 and (A.5) for d = 2,
respectively, implies

(2.23)

g @
/{ V@l @R < /{ o T .

v

< CR™%|[4pu|l3, = CR™%
for some constants C,C' > 0. Since ||¢o|| 71 < 1, by the same arguments we get
[ W@l as < Crs, (2.26)
{lz|>R}

which together with (2.21) implies that (Vo, o) is well-defined and
<V1/}n; 1/}n> - <V5007 900> as n — oo. (227)



Recall that
<anawn> < - (1 - n_l) HV’L/J’GHQ

2.28
—(1-n ) <_1+/ |wn|2dx> — -1t [ s, (2:28)
{lzI<1} {lzI<1}
Sending n to infinity and using (2.27) yields

Wengo) <1+ [ fpoltde = <1 V0l + ol (229)

Since ||¢o|l7: < 1 and the operator h is non-negative, we get [|poll 7. =1 and
IVepol* + (Vipo, o) = 0. (2.30)
Standard arguments show that g satisfies (2.20) for any ¢ € H'(R%). O

Now we turn to the proof of statements (ii) and (iii) of Theorem 2.2, i.e. the estimate of the
weighted L?(R?) norm of @g. At first, we prove a weighted L?(R%)-estimate for the functions

Un.

Lemma 2.5. Assume that h has a virtual level at zero and that V' satisfies (2.2) and (2.9). Let
(Vn)nen be a sequence of eigenfunctions corresponding to negative eigenvalues E, < 0 of the
operator hy,—1, normalized as ||y, || g1 = 1. Then the following assertions hold:

(i) If d =1, then for any ag < % there exists a C' > 0, such that for all n € N we have
IV (|lz[*9n) | < C and |1+ ]z))* ] < C. (2.31)

(ii) If d =2, then for any oy < % there exists a C > 0, such that for all n € N we have
IV (In(jz))]*¢) | <C and |1+ |2]) 711 + [In(|z])[)* " ] < C. (2.32)

Proof of Lemma 2.5. The proof is a modification of the proof of Lemma 2.4 in [5]. At first, we
prove the Lemma for the case d = 1. For any € > 0 and R > 0 we define the function

|[ ™

Ge(z) = WXR(ZE), (2.33)
where yg is a C'-cutoff function with
xn(@) = {(1’ :ﬂ o (2.34)
We multiply the eigenvalue equation
— (1 =n ) AP, + Vo = Epihy (2.35)
by Ggm and integrate by parts to obtain
(1 =071 (V. V (G2n)) + (Vipu, G2) = En||Getp > < 0. (2.36)
Since
Re(Vpn, G2tn) = (Vipn, GZ¢)  and  Re Ep||Gethnl® = En|Gethn?, (2.37)
we have

Re(Vibn, V (G2hn)) = (Vibn, V (GZ¢n)). (2.38)



Note that
Re(Vipn, V(G21y,)) = Re(Viby, Gepn VGe) + Re((Vihy )Gz, V(Gety,))
= Re(V(WnG:), vnVGe) — Re(w,VGe, ¥, VG,)

2.39
£ Re(V(Ge), VUnGo) — Rl VG, VG )
= R€<V(¢nGa), v(wnGe» - Re<anGaa anGa>
Therefore, we obtain
(Vipn, V(G2n)) = [V (0nG)II” = [9n VG| (2.40)

This together with (2.36) yields

(1-n7") (|V(wnG8)||2 —/|wn|2|VGE|2dx) +/V|wnG8|2dx < 0. (2.41)

Now we estimate the function |VG,|. For |z| > 2R we have

a0|x|a071

|VG€| = < 040|:L'|71|G€|. (2'42)

(1 + efa]ae) =
For |z| € [R, 2R] the function |VG,| is uniformly bounded in &, which implies

/ VG |* dz < Co/ |¢hn|? da, (2.43)
{R<|z|<2R} {R<|z|<2R}

for some Cy > 0 which depends on R only. Now we use inequalitiy (A.4) to estimate the r.h.s.
of (2.43). We get

2
/ |2 de < (1 + 4R2)/ MQ dz < Cu(1 4 4R?)|¢n| %, (2.44)
{R<|z|<2R} (R<|o|<2Rr} L T2

where C is a Hardy-type constant in (A.4). This, together with (2.43) and ||¢,|| 71 = 1 implies

/ VG Pl < 1 (2.45)
{R<z|<2R}

for some Cy > 0 which is independent of n € N and € > 0. Substituting (2.42) and (2.45) into
(2.41) we obtain

Gy ?
(1= 1Y) [V @nGo)ll® + (VGCethn, Gethn) — ag/ Getnl” < g, (2.46)
{|z|>2R} |z|

where C5 > 0 does not depend on n € N or € > 0. The function G v, is supported outside the
ball with radius R. Therefore, choosing R > A we can use (2.9) and apply Hardy’s inequality
for the half-line, which yields

(1- 'YO)HV(GEwn)HQ + (VGetpn, Gebn) — 0‘(2J<|$|72G6wm Gen) >0 (2.47)
1

for all a < 1 and o < (1 —4ad). For n > 29y estimates (2.46) and (2.47) imply

DIV (Getin) |2 < Co (2.48)

Taking the limit ¢ — 0 yields ||V (|z]|*,,) || < C for some C' > 0.
Applying Hardy’s inequality for the half-line to the function G.v,, and taking the limit ¢ — 0
implies

1(1+ Jz) o~ || < C. (2.49)



10

This completes the proof of Lemma 2.5 for d = 1. Now we assume d = 2. For ¢ > 0 and
0<ag< % let

[ In(Jz[)[*

G = 2.50
E(x) 1+5|11’1(|.’I]|)|a0 XR(:C)v ( )
where yg is a C'-cutoff function with
0, |z| <R,
= 2.51
Xr(z) {17 | > 2R. ( )

Due to (2.9) and Hardy’s inequality in dimension two we get similarly to (2.47) that

(1—- '70)||V(G81/1n)”2 + VG, Gepn) — a%<|x|_2 (In |x|)_2 Gethn, Gethn) > 0 (2.52)

for all a3 < 1 and v < (1 —4ad). Now the proof is a straightforward modification of the

one-dimensional case. O

Statements (ii) and (iii) of Theorem 2.2 follow from the following

Corollary 2.6. The weak limit o of the sequence (¢ )nen has the following properties.
(i) If d =1, then

1
(1+ |z|)* Lo € L*(R) for any ap < 3 (2.53)
(ii) Ifd =2, then

o 1

(1+ |z~ 1+ In(|z])* o € L2(R?)  for any ap < 5 (2.54)
Proof of Corollary 2.6. Let d = 1. Since (¢, )nen converges to ¢g in L2 (R) and for any ag < %
we have the estimate [|(1+ |2[)* 14, || < C uniformly in n € N, for every ap < 3 we get

(14 |z 1ep, — (1 + |z))* tpo in L*(R) asn — oo. (2.55)

The case d = 2 follows analogously. (|

To complete the proof of Theorem 2.2 it remains to prove statement (iv). This is a straightfor-
ward generalization of Lemma 2.10 in [5], which is based on the the unique continuation theorem
[24, Theorem 2.1]. O

3. VIRTUAL LEVELS OF SYSTEMS OF N ONE- OR TWO-DIMENSIONAL PARTICLES

In this section we introduce virtual levels of Schrédinger operators corresponding to systems
consisting of N one- or two-dimensional particles. We prove several results on the decay rate of
solutions of the Schrodinger equation corresponding to virtual levels of multi-particle systems.
The main result of this section is Theorem 3.2, where we give sufficient conditions in terms of a
Hardy-type constant, such that virtual levels of multi-particle Schrédinger operators correspond
to eigenvalues and prove an estimate for the decay rate of the corresponding eigenfunctions. In
Corollaries 3.3 and 3.4 and Theorem 3.5 we discuss applications of Theorem 3.2 to multi-particle
systems.
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3.1. Notation and definitions for multi-particle systems. We consider a system of N > 3
quantum particles in dimension d = 1 or d = 2 with masses m; > 0 and position vectors
xz; € R4, i=1,...,N. Such a system is described by the Hamiltonian

N
1
Hy==3 — > Viglwy), miy=mi—a (3.1)

i=1 " 1<i<j<N

acting on L2(R4Y). The potentials V;; describe the particle pair interactions and in the following
we assume that they satisfy V;; # 0 and the conditions (2.2) and (2.9).

Separation of the center of mass of the system. We will consider the operator Hy in the center-
of-mass frame. Following [25], we denote by (,-),, the scalar product on R which is given
by

N
(,Y)m = Zmi<xi,yi>, 2|2, = (x,2)m, z,y € RV, (3.2)
i=1

Here, (-,-) is the standard scalar product on R?. Let X be the space R equipped with the
scalar product (-, -),, and let

N
X():{w:(wl,...,l‘]v)EX : Zmixi:()} (33)
i=1
be the space of positions of the particles in the center of mass frame and X, = X & X, be the
space of the center of mass position of the system. We denote by Py and P, the orthogonal
projections from X on Xy and X, respectively.
Furthermore, we introduce —A, —Ag and —A, as the Laplace-Beltrami operators on L?(X),
L?(Xy) and L?(X.), respectively. Then, corresponding to the decomposition L?(X) = L?*(X() ®
L?(X,.) we find

—A=-A;Id+Id® (—A.). (3.4)
Since for every z € X we have
(Pox)i — (Pox)j = @i — a;, (3.5)
the potential V(z) = >3, ., ;< Vij(wi;) satisfies
V(z) = V(Pox). (3.6)
Therefore, Hy is unitarily equivalent to the operator
Held+Id® (—A,), (3.7)
where
H=-A¢g+V. (3.8)

In view of (3.7) the center of mass of the system moves like a free particle and the operator H
corresponds to the relative motion of the system.

Clusters and Cluster Hamiltonians. A cluster C of the system is defined as a non-empty subset
of {1,..., N} and we denote by |C| the number of particles contained in C. For 1 < |C| < N we
define the space of the relative positions of the particles in the cluster C by

XolCl={zeXo:2;=0if i ¢ C}. (3.9)
Let —Ag[C] be the the Laplace-Beltrami operator on L?(X[C]) and
vicl= >V (3.10)

i,j€C, i<j



12

the potential of the interactions between the particles in the cluster C. Then for 1 < |C] < N
the cluster Hamiltonian with reduced center of mass, acting on L?(X,[C]), is given by
H[C] = -A[C] + VI[C] (3.11)

and describes the internal dynamics of the cluster C. For C = {1,..., N} we have X,[C] = X,
so we set H[C] = H. For |C| =1 we have X[C] = {0} and we set H[C] = 0.
Let Py[C] be the orthogonal projection from Xy to Xo[C] and for x € X let

q[C] = Ro[C)z. (3.12)

Partitions of the system. We say that Z = (C1,...,C)) is a partition or cluster decomposition
of the system of order |Z| = p if and only if

p
C; # 0, c;nC; =0, Uei=1{1....N} (3.13)
j=1

holds for all 4,5 = 1,...,p with i # j. We refer to C C Z as a cluster of the partition Z =
(Ch,...,Cp)f C =C; for some i =1,...,p. Let
Xo(2)= P XolCr],  Xc(Z) = X0 0 Xo(Z). (3.14)
CrCZ
This gives rise to the decomposition
L*(Xo(2)) = Q) L*(Xo[Ck)). (3.15)
CrCZ
By abuse of notation we denote the operator
e - @ld® (—A[Ch)) ®1d®---®Id and Id®---®Id® H[Cy®Ild® - ®1Id, (3.16)

acting on L?(Xo(Z)), by —A¢[Ck] and H[Cy], respectively. The cluster decomposition Hamil-
tonian of the partition Z is defined by

H(Z)= ) H[C] (3.17)
CrCZ

and describes the joint internal dynamics of the clusters in Z. Let —Ag(Z) be the Laplace-
Beltrami operator on L?(Xo(Z)). Then

—Ao(2) = ) —Ao[Chl. (3.18)
CrCZ
We denote the potential of the inter-cluster interaction by
I(Z)=V - > VIC]. (3.19)
CrCZ
Then the Hamiltonian of the whole system can be written as
H=HZ)eld+Id® (—A.(2)) +I1(2), (3.20)

where —A.(Z) is the Laplace-Beltrami operator on L?(X.(Z)). We introduce the projections
Py(Z) and P.(Z) from Xy on Xo(Z) and X.(Z), respectively. For z € X let

o(Z) = Po(Z)z,  &(Z) =P(Z)x. (3.21)
To emphasize the dependence on ¢(Z) and £(Z) we will write
—Ayzy = —A0(Z) and — Az =—Ac(Z) (3.22)

and
HI*AQ(Z)ng(Z)ﬁ’V or H:H(Z)*Ag(z)#*I(Z) (323)
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Note that the i-th coordinates of ¢(Z) and £(Z) are vectors ¢; and §; given by

qi = Ty —TCy, & = xc, (3.24)

where C is the cluster which contains the particle ¢. Here,
1

O 2 )
is the center of mass of the cluster C;.
For k > k' > 0, R > 0 and partitions Z with 1 < |Z| < N we define the regions

B(R)={z € Xy : |z|m < R},
K(Z,r)={z € Xo : |q(Z)|m < &[€(Z) |m}

3.26
Kn(Zw) =z € Xo : [0(2)|n < KIE(2) |, [l > R}, (326)
Kr(Z,K' k) = Kr(Z,k) \ Kr(Z,, K").
For the entire system Z = {1,..., N} we set
K(Z, k) ={z € Xo : |z|m < K} (3.27)

We will use the regions defined in (3.26) to make a partition of unity of Xy corresponding to
different cluster decompositions of the N-particle system.
Now we extend Definition 2.1 of a virtual level to the case of multi-particle systems.

Definition 3.1. Assume that the potentials V;; satisfy (2.2) and (2.9). Let C C {1,...,N} be
a cluster. We say that H[C] has a virtual level at zero if H[C] > 0 and

(i) there exists a constant €9 > 0, such that
inf Sess (H[C] + £0A0[C]) = 0, (3.28)
(ii) for any € € (0,1) we have
inf S (H[C] +eAp[C]) < 0. (3.29)

Remark. (i) If H > 0, then condition (3.28) is fulfilled for C = {1,... N} if and only if
for no cluster C' with 1 < |C] < N the cluster Hamiltonian H|[C] has a virtual level at
zero. Indeed, if there exists such a cluster C' for which the corresponding Hamiltonian

has a virtual level, then we have inf S (H [C] 4+ 0o [C]) < 0 and according to the HVZ
theorem condition (3.28) can not be fulfilled.

On the other hand, if (3.28) does not hold, then due to the HVZ theorem there exists a
cluster C' with 1 < |C| < N, such that

inf S (H[C‘] +eAg [é]) <0 (3.30)

holds for any € > 0. Among these clusters we choose one with the smallest number of
particles and denote it by Cp. Then, by definition of Cy, for any cluster C' C Cj with
|C’] > 1 inequality (3.30) does not hold, i.e. we have

inf S (H[C'] +eAg[C']) =0 (3.31)
for £ > 0 small enough. Therefore, by the HVZ theorem we have
inf Segs (H[Co] + 0l [Co]) =0 (332)

for some gy > 0. At the same time, inf S (H[Cy] + £Ao[Cop]) < 0 for any € > 0. Hence,
H[Cy] has a virtual level at zero.
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(ii) Similarly to the case of one-particle Schrodinger operators we can give necessary and
sufficient conditions for the operator H to have a virtual level at zero in terms of pertur-
bations of the operator with additional potentials. This result can be found in Appendix
B, Theorem B.1.

3.2. Statements of our results on the decay rates of solutions corresponding to virtual
levels. Now we give our main results of this section, namely the existence of solutions of the
Schrédinger equation in the presence of a virtual level and estimates of the decay rate of these
solutions. For these estimates certain Hardy-type constants play an important role. Let

M={yeC5(Xo\B(1)) : p(z) =0forz; =a;,1<4,j <N, i#j} (3.33)

and let

On(Xo)= e V0¥l

= o (3.34)
oFvEM || |z]m |

Remark. If the particles are two-dimensional, the sets {; = x;} have co-dimension two and
the set M is dense in H' (Xo\ B(1)). In this case the constant Cg(Xo) coincides with the
Hardy constant Cgr(Xo) = N — 2. However, for one-dimensional particles the sets {z; = x;} are
hyperplanes and the closure of M with respect to the H!(X() norm includes only functions with
trace zero on {z; = x;}. Below we will see that in this case we have C'r(Xo) > At

The main result of this section is the following

Theorem 3.2. Let H be the Hamiltonian of a system of N > 3 d-dimensional particles with
d € {1,2}, where the potentials Vi; # 0 satisfy (2.2) and (2.9). Assume that H has a virtual

level at zero and for the constant Cr(Xo) defined in (3.34) we have Cy(Xo) > 1. Then

(i) zero is a simple eigenvalue of H and for the corresponding eigenfunction o we have
Vo (J2lmp0) € L*(Xo) and (1 + |z[m)* 0o € L*(Xo) (3.35)

for any 0 < a < Cy(Xo).
(ii) There exists a constant &g > 0, such that for any function p € H'(Xo) satisfying
(Vogo, Vo) =0
(1= 80) I Vol + (Vip, ) > 0. (3.36)

Corollary 3.3. Ifd = 2 and N > 4, then we have Cy(Xo) = Cu(Xo) = N —2 > 1. There-
fore, Theorem 3.2 can be applied. In particular, it shows that in this case the solution g of
the Schréodinger equation corresponding to the virtual level is a non-degenerate eigenfunction
satisfying

(1 + |z|m)* T € L*(Xo) for any o < N — 2. (3.37)

Corollary 3.4. Ifd =1 and N > 4, each of the hyperplanes {z; = z;} divides the space Xg

into two half-spaces. Taking one of these hyperplanes and using that the Hardy constant for the

half-space is given by % [17, Proposition 4.1] we get éH(Xo) > % > 1. Hence, Theorem

3.2 can be applied. This implies that zero is a simple eigenvalue of H and the corresponding

eigenfunction @q satisfies

N -1
5

(1 + |z|m)* T € L*(Xo) for any o < (3.38)
Remark. We can significantly improve the estimate from below for the constant C 1 (Xo) given
in Corollary 3.4 by taking into account that the traces of functions in M are zero not only on
one of the hyperplanes {x; = z;}, but on all of them. For example, if we have a system of
N = 4 identical particles, then there are six hyperplanes {z; = z;} which cut the space Xy into
congruent sectors S;. One can show that the hyperplanes are the nodal set of a homogeneous
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harmonic polynomial of degree six. Its restriction to the unit sphere is a spherical harmonic of
degree six and an eigenfunction corresponding to the first eigenvalue of the Dirichlet-Laplacian
on S;NS?. This, together with [17, Proposition 4.1] implies that in this case the constant Cgr (Xo)

. 1
is given by Cr(Xo) = (3 +42)2 = L&

Note that the constant C(Xp), which gives a lower bound on the decay rate of the eigen-
function g, does not depend on the potentials. However, for one-dimensional particles it does

depend on the ratios of the masses of the particles. In particular if d = 1, N = 3 we get the
following

Theorem 3.5. For a system of three one-dimensional particles with masses m1, ma, ms > 0 let

0; — e . (3.39)
; = arccos NN e )

Then we have

Ci(Xo) = 91, where 0y = max{6;, i = 1,2,3}. (3.40)
o
Remark. (i) It is easy to see that for d = 1, N = 3 we have § < 6y < 3. The constant

Cr(Xo) takes its maximal value Cgr(Xo) = 3 for 6y = %, which corresponds to the case
m1 = mg = mg. On the other hand, if one of the masses m; tends to infinity, then
o — 5 and therefore Cr(Xo) — 2.

(ii) Corollary 3.3, Corollary 3.4 and Theorem 3.5 show that for all multi-particle systems
consisting of one- or two-dimensional particles, except for the case d = 2 and N = 3,
virtual levels correspond to eigenvalues. This fact will be used in Section 5 to prove the
absence of the Efimov effect in multi-particle systems in dimension one and two.

(iii) Note that if the dimension of the particles is d > 3, the eigenfunction ¢q corresponding
to a virtual level decays with the same rate as the fundamental solution of the Laplace
operator [5], [4]. Theorem 3.2 shows that for one-dimensional particles the decay rate is
higher.

For d =2, N = 3 we do not expect that solutions of the Schrédinger equation corresponding
to a virtual level are eigenfunctions. We will discuss this case in Section 4.

3.3. Proof of Theorem 3.2 — Auxiliary results. To prove Theorem 3.2 we need several
auxiliary results. The first one is a generalization of Theorem 2.2 to potentials which do not
necessarily decay at infinity.

Theorem 3.6. Let h = —A+V acting on L*>(R¥), k € N, where the potential V satisfies (2.2).
Suppose that h has a virtual level at zero and that there exist constants ag > 1, b > 0 and
Y0 € (0,1), such that for any function 1 € H'(R*) with supp () C {x € R* : |z| > b} we have

(hp, ) =20l VYI* — af(|z[ 2, 9) > 0. (3.41)
Then zero is a simple eigenvalue of h and the corresponding eigenfunction g satisfies
1+ |z))* Ly € L2(R* if k2,
(1+|zD* o (R*) # (3.42)

and (14 |z)* "1+ |In(|z])]) g0 € L*(RF)  if k=2

for any o < a. Moreover, there exists a constant 5o > 0, such that for any function 1 € H*(RF)
with (V, Vo) =0

(hp, ¥) > 8|V (3.43)

Remark. (i) By Lemma C.1 condition (3.41) implies inf Sess(he) = 0 for sufficiently small
e >0.
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(ii) Theorem 3.6 is a generalization of Theorem 2.1 in [5] to dimensions k = 1 and k = 2.
Therefore, we only need to prove the theorem for these dimensions.

(iii) Note that Theorem 3.6 does not require that the potential V' decays in all directions,
which is the case if we consider multi-particle systems where V is the sum of the pair-
potentials.

(iv) For dimension k£ = 1 or k = 2 Theorem 3.6 considers the case which is in some sense
complementary to the one studied in Theorem 2.2. In Theorem 2.2 we assumed that the
potential V' decays fast at infinity. In Theorem 3.6 we do not require any decay of the
potential. Instead of this we need inequality (3.41) for functions ¢ which are supported
far away from the origin. This condition can not be fulfilled for k = 1 and k = 2 if
V' decays fast at infinity. Moreover, under the conditions of Theorem 3.6 virtual levels
correspond to eigenvalues of h. In contrast to that, under the conditions of Theorem 2.2
they correspond to resonances.

Proof of Theorem 3.6 for dimensions k =1 and k = 2. Since inf S(h.) < 0 for every
e > 0, we find a sequence of eigenfunctions v, € H'(R¥), corresponding to eigenvalues E,, < 0
of the operator h,,-1, i.e.

— (L=n"") Aty + Vo, = Epthy. (3.44)
We normalize the functions 1), by the condition ||¢,|| 51 = 1. In the first step we show a uniform
bound for the L?(R*) norm of the functions .

Lemma 3.7. Assume that h has a virtual level at zero, where V satisfies (2.2) and suppose that
(3.41) holds for some cg > 1. Then there exists a constant C' > 0, such that for any eigenfunc-
tion 1, € H'(R¥) corresponding to a negative eigenvalue of the operator h,-1, normalized by
ltnll g1 = 1, we have
[V ([z|*yn)|| < C (3.45)
and
(L + [a])* | < © ifk=1
and |1+ |z 1+ [ In(z))Troall < C 0 ifk=2.

The proof of Lemma 3.7 is a straightforward generalization of the proof of Lemma 2.5 in
Section 2 and Lemma 2.4 in [5] and we omit it here.
Since we have normalized the sequence 1, as ||| 71 = 1, there exists a subsequence, also
denoted by (1, )nen, which converges weakly in H'(R¥) to a function ¢y € H'(R¥). Since by
Lemma 3.7 the estimates (3.46) hold for some o > 1, we get convergence of the subsequence
(¥n)nen in L2(R*) and the limit ¢y € H'(RF) satisfies (1 + |x|)* po € L2(RF) for any a < ay.
It remains to prove that ¢q is in fact an eigenfunction of A corresponding to the eigenvalue zero.
This is done in the following

(3.46)

Lemma 3.8. Assume that h has a virtual level at zero, where V satisfies (2.2) and suppose
that (3.41) holds for some ag > 1. Then the function @o given above is an eigenfunction of the
operator h corresponding to the eigenvalue zero, satisfying ||¢oll g1 = 1.

Proof of Lemma 3.8. Due to the semi-continuity of the norm we have ||¢o|| 71 < 1. Since (¢ )nen
converges to ¢q in L%(R¥) and V satisfies (2.2), we get

(Vibn, n) = (Vo, o), (n — 00). (3.47)
Now it follows analogously to the proof of Lemma 2.5 that g satisfies
Vol + (Vepo, po) = 0 (3.48)

and || Vol 71 = 1. Recall that ¢y € H'(R*) and therefore is an eigenfunction of h corresponding
to the eigenvalue zero. This completes the proof of Lemma 3.8. O
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It remains to prove (3.43). This is a straightforward modification of the proof of (2.9) in [5].
The only difference is that we normalize the sequence of eigenfunctions by ||y || 5. = 1 instead
of [|Vothnl| = 1.

A new estimate of the localization error. To prove Theorem 3.2 we will follow the strategy
of the proof of Theorem 4.4 in [5], where so-called geometric methods were used to get lower
bounds for the quadratic form of the multi-particle Schrodinger operator. These methods in-
clude, for example, a separation of regions K (Z, k) corresponding to different partitions Z. A
crucial element of these methods is a partition of unity of the configuration space, which requires
an appropriate estimate of the localization error. Note that in fact the localization error is re-
sponsible for the existence or non-existence of the Efimov effect.

If the dimension of the particles is d > 3, one can use a localization error estimate given in [34,
Lemma 5.1]. This estimate shows that when we separate a cone K(Z, k), then the localization
error can be estimated as e|q(Z)|~2 with arbitrarily small ¢ > 0. Using Hardy’s inequality this
term can be controlled by a small part of the kinetic energy. However, if the particles are one-
or two-dimensional, the estimate given in [34] cannot be used, because Hardy’s inequality fails
in dimension one and two. Therefore, we need a significant improvement of the estimate of the
localization error. This is done in the following

Theorem 3.9. Given e > 0 and k > 0, for each partition Z with |Z| > 2 one can find a constant
0 < k' < k and piecewise continuously differentiable functions uz,vz : Xo — R, such that

1, zeK(Zr)
2 2 ) 9 9
+ =1, = 3.49
Yz Tz uz(®) {0, v ¢ K(Z k), (3.49)
and
Vouz|® +[Vovz|? < [zl + luzl?lalm’ ™2 (Jglmléln")] (3.50)

forxz e K(Z k' k). Here ¢ = q(Z) and & = (7).
To prove Theorem 3.9 we will use an auxiliary result for scalar functions, namely the following

Lemma 3.10. For any ¢ > 0 and 0 < 8 < 1 one can find a constant 0 < o < B2 and a
non-increasing function u € H* (o, 8) N C([c, B]), such that u(a) =1, u(B) =0 and

(u'(t)? < et™2In"2(2), a<t<p. (3.51)
Proof of Lemma 3.10. Let ¢ > 0 and 8 € (0,1) be fixed. For any 0 < v < 1 and « € (0, %) let
u: [a, ] = R be given by
(0 [In(as™1)| 7 In¢s=h)|" if o <t<p?
u(t) == _
(=) B [In(tp=h)| i B2 <t < B.
Obviously, u € C([a, 8]) N HY (v, B) with u(8) = 0 and u(a) = 1.
At first, we prove the claimed estimate for (u/(¢))? for o <t < 3% by choosing the constant v > 0
sufficiently small. For a < t < 32 we have
W (1) = 72 (s (s 2, (3.53)

Note that a8~! < 1 and t7! < 1 for @ <t < 2 and therefore [In(af™")| > |In(t87")|, which
yields

(3.52)

@ () < |m@EsY)| 2% a<t<p (3.54)
Furthermore, for ¢ < 8% we have |[In(¢87')| > |Inv/¢| = § [Int|. This implies

(W' (1)* <42 Int| 272, a<t< B> (3.55)
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Choosing 0 < v < ‘/TE we get

W' ()* <ellnt| 272,  a<t<p (3.56)
Now we estimate (u/(t))? for 3% <t < (. In this case we have
(w'(£)" = [n(aB™)| 7 [m g0 2. (3.57)

Since B < 1, we have |In 82| > |Int| for 3% <t < 3 and therefore
(W'(0)* < [In(@p)[ 7 In AP0 [1n 822 I t] 24~ 559)

= 4 |In(aB™H)| 7 I B1P | Int| %2 < e Int| 22

if a is chosen small enough. This completes the proof of Lemma 3.10 (I

Now we turn to the

Proof of Theorem 3.9. Let Z be a partition with |Z| > 2 and let € > 0 and 0 < £ < 1 be fixed.
We construct functions uz, vz which satisfy the conditions of Theorem 3.9.

Let v; € HY(R;) be a non-decreasing function with vy(t) = 1 for t > x and 0 < vy (t) < 1 for
t < k, such that v|(£)(1 —v2)"2 = 0ast S k. Forz € Xo, © =q+¢, let

= [alm uz(x) = —vi(z
va(x) = <|€|m) 2(2) = /1-v2(a). (3.59)

Then for 2 € K(Z, k) we have

[Vouz[* + [Vovz]? = [Vovz]* (1 - %)’1 (3.60)
= L) (1= v31) " (1+ a2 112,
where ¢ = |q|,[¢[;,1. For z € K(Z, k) we have [£[;,2 < (1 + &%) |z];,2. This implies
Vouz[? + |Vovz* < (] ()2 (1= v}(1)) ™" (1+ £2)2jaf;2. (3.61)
Since v} (t)(1 —v2(t))"2 — 0 ast &, we can find 0 < " < & so close to & that
W ()2 (1= 03(1) " (14,22 <evd(t), K <t<r (3.62)
This implies
|Vouz|> + |Vovz|? < evgla|;, 2, x e K(Z,k)\ K(Z,k"). (3.63)

Now we define vy for © € K(Z,x"). By Lemma 3.10, for given £ > 0 we find a constant
0 < k' < k" and a non-decreasing function vq, such that

va(k') = 0, va(k") = v1(k”) and (1)5(15))2 <Et|2In"?t for K <t <k (3.64)
Let vy be such a function and for z € K(Z,k"), x = q+ &, let

= 9l uz(x) = —vi(z
va(x) = <|€|m) 2(2) = /1- o2 (a). (3.65)

Then, similar to (3.60) we have
(IWouz[? + Vovz[?) uz? = (v5(8)* (1 = v3(£) " uz? (1 + lal2, 1¢127) [¢]2, (3.66)
-2

where t = |g|m|];,}. Since vy is non-decreasing, we have (1 —v3(t))"tu,* < (1 —v3 (k")) for
t < k. Substituting this estimate into (3.66) we have

(IVouzl? + [Vovz|?) uz* < (v(£)2 (1 —va(k")?) " (14 (5")2) [€]2. (3.67)
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> < &2 In"2t we

Recall that va(x”) is close to one, but strictly less then one. Due to (v4(t))
get

(IVouz|* + |Vovz|?) uy® < &lt| 2 In~%¢ (1 — vg(k”)Q)‘2 (14 (&")?) €2 (3.68)
Choosing € > 0 so small that & (1 — vy (k")?) - (1+ (k")?) < £ and using t = |g|;n|€];,} completes
the proof of Theorem 3.9. O

3.4. Proof of Theorem 3.2. Now we turn to the proof of Theorem 3.2. It is an application of
Theorem 3.6 and we use geometrical methods to prove that all conditions of the letter theorem are
fulfilled. Since the pair potentials V;; are relatively form bounded, sois V = ZKKKN Vij(@ij).
Hence, we only need to show that condition (3.41) is fulfilled for any 0 < a < C(X). This is
done in the following

Lemma 3.11. Let d € {1,2} and N > 3. Assume that the potentials Vi; satisfy (2.2) and (2.9).
Further, suppose that H has a virtual level at zero. Then for any 0 < a < Cy(Xo) there exist
constants Yo, R > 0, such that for any function ¢ € H'(Xo) with supp (p) C {z € Xo : |z|m > R}
we have

Llg] = (1 =70) I Voel* + (Vo, ) — o®[l|lz]5" ¢ > 0. (3.69)
In the proof of Lemma 3.11 we use the following

Lemma 3.12. Let Z be a partition of the system, such that dim(Xy(Z)) = 2. Furthermore, let
0 < k < 1. Then there exists € > 0, such that for any function ¢ € H*(Ry) with supp(y)) C
Kgr(Z,k) and any 0 < k' < k we have

192007 —  [llaln 1™ (gl €l ) ¥l gy 2 O (3.70)
q

Proof of Lemma 3.12. We introduce the new variable y = T Then we get

[m

195012 < lal 7 (b €)%

= / / Vo ? = elal? 072 (Jglm €l ) | 191) dgdé
n/\s\mgqmsaam( ! | ( JI10F) (3.71)

1 7 2 -2 -2 7 2
= - 1 m ’ d d ’
S L o (9008 =iz [0 (ol 160, OF)

where &(y,f) = Y(y|l&|m,&). Note that 1/3(3/,5) = 0 for |ylm > k. Due to k < 1 we have
(In|y|m)™2 < C(1 + (Iny|m)?)~! for some C > 0 and |y|n < k. Therefore, applying Corollary
A3 to the function 1/3(y, €) for fixed £ shows that the r.h.s. of (3.71) is non-negative for sufficiently
small € > 0. This completes the proof of Lemma 3.12. (I

Now we turn to the

Proof of Lemma 3.11. The proof follows the idea of the proof of Theorem 4.4 in [5]. We make a
partition of unity of the support of ¢, separating regions K(Z, k) which correspond to different
partitions Z of the system into clusters.

We start by estimating the functional L[] in regions K (Z, k) corresponding to partitions Z into
two clusters. Let k2 € (0,1) be so small that Kr(Z, k2) and Kg(Z', ka) for clusters Z # Z' with

|Z| = |Z'| = 2 do not overlap. Such a constant ko exists according to [3] (an English version can
be found in [5, Theorem B.2]). By Theorem 3.9 we get
Ligl > > Lafpug] + Ly{VPy], (3.72)

Z:|Z|=2
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where V(2 = /1 — > 2.|7|=2 Uy and the functionals Lo, Ly : H'(Xo) — R are given by

Lo[g] = (1 = 20)IVot|I* + (Vo 9) — o®|lJ] ¢
~ el W (DD Wenpmny  (BT3)

Ly[g] = (1 = 0) Vol + (Vo 9) — (o + &) [l ¢ l1%,
where € > 0 can be chosen arbitrarily small if k};, > 0 is sufficiently small. Recall that the functions
uyz are supported in the region K (Z, k2), i.e where the two clusters in Z are far away from each
other. Note also that the terms e [z[;,}4(|? and e]||¢(Z)];; In™" (|a(2)m|E(2);0) 1/1||§(R(Zﬁ,21,{2)
come from the estimate for the localization error given in Theorem 3.9.
Let Z be an arbitrary partition into two clusters, ¢ = ¢(Z), £ = £(Z) and ¥ = puy. Our goal is
to show that La[tp)] > 0. We have

La[y)] =(H(Z)9,9) = 0l Ve |* + (1 = 70) [ Vew | + (1(Z), )
= o [[lalz el = e gl " (gl €)Yz )
First, we estimate the inter-cluster potential I(Z) by
[1(2)(2)] < ClE2 < el (3.75)

for x € supp(¢)) and sufficiently large R > 0. Furthermore, on the support of ¢ we have
lg|m < K2|&|m and therefore the Poincaré-Friedrich inequality [1, Theorem 6.30] yields

i _
Wl VeI = 2 lel vl (3.76)
2

(3.74)

By choosing k2 > 0 small enough this implies
112
Wl Vell* +(L(2)y, ) — o |||z[5' " = 0 (3.77)

and therefore
P _ 2
2[y] > ) = 29[Vl = & [llalt 07" (lalml€5") Yl 2,0,
Lo[g] > (H(Z)Y,¢) — 29IV ll* = ||lal! ™" (lalml€]t) ¢

To estimate the r.h.s. of (3.78) we distinguish between several cases.
(1) If dim(Xo(Z)) = 1, we have d = 1 and N = 3. Assume that Z = (C1,C2) with |C4] = 2,
then H[C2] =0 and

(3.78)

Kz) .

(H(Z)y,9) = (H[C\]Y, ) and [[Vezydll = [V l- (3.79)
We estimate the last term on the r.h.s. of (3.74) by
_ _ _ 2 _
e gl ™ (lalml120) Yl 2.mg ey < €N+ ) Tl 205 ) (3.80)
for kg > 0 small enough and R > 0 sufficiently large. This yields
Loy] = (H[C1)w, %) = 270/ Voren 9II* — ell (1 + lalm) ™ ¥l (2.0 0 (3.81)

Since by the remark after Definition 3.1 the operator H[C4] does not have a virtual level and
V[Ci] # 0, we can use Theorem 2.3 to conclude that La[t)] > 0 for € > 0 and 79 > 0 small
enough and R > 0 sufficiently large.

(i) If dim(Xy(Z)) > 2, we use again that for clusters C' with 1 < |C| < N the operator H[C)|
does not have a virtual level, which implies

(H(Z), ) =370 Veel|* > 0 (3.82)
for small vy > 0 and therefore

Lali] > 30Vl — gl 0™ (labmlél) %5 (3.83)

Rg) :
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If dim(Xo(Z)) = 2, we apply Lemma 3.12 with kK = k9 and £’ = &} to conclude that La[)] > 0.
If dim(Xo(Z)) > 3, we use (3.80) and Hardy’s inequality in the form of (A.10). This implies
La[p] > 0.

Now we estimate Lj[V® ). If N = 3, the function V()¢ is supported in the region where all
particles are separated, i.e. there exists a constant ¢ > 0, such that |z;;| > c|z|,, for all i # j.
This implies

V(@)| < Clalm?™ < elzl7?, (3.84)
where £ > 0 can be chosen arbitrarily small for sufficiently large R > 0. Therefore,
LylV® ] > (1 =) IVo(VP)|* = (o + 2¢) | |2l VP . (3.85)

Since V¢ can be approximated (in the norm of H'(Xj)) by functions in M, we get
_ 2
Vo0V @)2 > (Cn(X0)) Nl Vel (3.56)

Due to a < Cy(Xo) we obtain Ly[V@ ] > 0 for the case N = 3 by choosing 7p,e > 0 small
enough.

If N > 4, we make a partition of unity of the support of V ). Let k3 € (0,1) be so small
that K(Z, k3) and K(Z,r3) do not overlap on the support of V@ for partitions Z # Z with

|Z| = |Z| = 3. Such a constant 3 exists due to [3] (see [5, Theorem B.2] for an English version).
Applying Theorem 3.9 we get
L@l > " LaPPpuz] + Ly, (3.87)
Z:|Z|=3

where V&) = V2 /T =3~ w2 and the functionals Ls, L} : H'(X,) — R are given by
Ls[¢] = (1 =) Vol + (Vo 9) — (o +€)?|||z] 4[|
—ellla(Z)]5" ™" (|a(2)lml€(2) ") D (2000 (3.88)
Ly[y] = (1 = 20) Vot |I* + (Vi ¥) = (o® + &) |2l ||

for some € > 0 which can be chosen arbitrarily small. Let Z be an arbitrary partition into
three clusters. Then by the same arguments as for partitions Z with |Z| = 2 we can prove
L3[V@uy] > 0. If N > 5, we continue this process for all partitions Z with |Z| < N — 1 and
finally arrive at the point where it remains to estimate the functional

L’[JJ] = (L= 70)IVod|l* + (V& &) — (@® + &) |l ' ))* = 0 (3.89)

for functions 1/) = V(N=Dy, supported in the region where all particles are separated from each
other, i.e. there exists a constant ¢ > 0, such that |z;;| > c|z|,, for x € supp (VD).
Therefore, we have

V(@) < CA+Jalm) 77 <1+ [a]m) 7 (3.90)
on the support of V(N if R > 0 is large enough. This implies
L'V > (1= 40)[[Vo (VI V) |2 = (® + 2¢) |l VTV 2. (3.91)
Similarly to (3.86) we have
2 2
oo () = Cuts) v pon

Since a < (Cr(Xo)), we can choose 7o, € > 0 sufficiently small to obtain L'[VN=V¢] > 0. This
completes the proof of Lemma 3.11 and therefore the proof of Theorem 3.2. O
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3.5. Proof of Theorem 3.5. Now we turn to the proof of Theorem 3.5. Since in the case of
three one-dimensional particles the configuration space Xy is two-dimensional, we are able to
improve the geometric methods and therefore to derive the exact value of the constant C'z(Xo).
The proof of the theorem follows from the following lemma, where we collect some geometric
properties of the space Xj.

Lemma 3.13. Let d =1 and N = 3. Then the following statements hold.

(1) The lines x1 = xa, x1 = x3 and xo = x3 divide the space Xy into six sectors S1,Sa, ..., Ss
with angles 01 = 04, 05 = 05 and 03 = 0. The angles 0;, i = 1,2,3 are given by
m;myg
f; = arccos . (3.93)
Vmi Fmgy/mi +my,

(ii) Let ¢ € H}(S;). Then we have
™ _
Vo]l = 2=l 1l (3.94)

Proof of Lemma 3.13. The half lines x1 = 2 > 0, 1 = 23 > 0 and x2 = 23 < 0 in X are
spanned by the vectors

T T
g — (1,1,_m) = (1,_m,1)

s e (3.95)

mo + ms3

-
and wuo3 = ( ,—1,—1) , respectively.

ma
Let S7 be the sector between the half-lines 1 = x5 < 0 and 1 = x3 > 0, S the sector between
the half-lines 1 = 29 > 0 and 292 = 23 < 0 and S3 the sector between the half-lines x5 < z3 > 0
and x1 = z3 > 0. Here, we always choose the one sector with angle 0 < 6; < 7, see Figure
1. To illustrate the situation we choose an orthogonal basis {v1,va} of Xy with v1 = w2 and

V2 = (m27*m150)—r'

FIGURE 1. The sectors S1, Sz, Ss

Let Sy, S5 and Sg be the sectors which we get by reflecting the sectors S7,.S2 and S3 at the origin.
Obviously, 0; = 6,45, ¢ = 1,2,3. Since (—u12,u13)m > 0, we have 0; € (0, %) and analogously
we see that 65,03 € (0, g) . The angle 6; can be computed by the formula

cos(6r) = (—u12,u13)m maims

Juislm|waslm  V/ma F may/my +mg’

(3.96)

Similarly we can see that the angles 63 and 63 also satisfy (3.93). This completes the proof of
statement (i) of Lemma 3.13.
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Now we turn to the proof of the Hardy-type inequality (3.94) for the sectors S;. According to
[17, Proposition 4.1] functions v € H*(R?) supported in a sector S C R? satisfy

Vo]l > (AG))? [l oll, (3.97)
were A(G) is the first eigenvalue of the Dirichlet problem for the Laplace-Beltrami operator in
G = SNS' In dimension two G can be identified with the interval (0,60) where 6 is the angle
of S. The Dirichlet eigenvalues of the Laplacian on an interval of length [ > 0 are given by
A = (k—“)Q Therefore, we have A(G) = (%)2, which implies that for any function v € H'(R?)

7
supported in S we have

T _
IVoll = Zlllzl~ ol (3.98)
This completes the proof of Lemma 3.13 and therefore of Theorem 3.5. O

4. VIRTUAL LEVELS OF SYSTEMS OF THREE TWO-DIMENSIONAL PARTICLES

In this section we consider systems of three two-dimensional particles. This is the only case of
multi-particle systems in lower dimensions where we have C(X) = 1, which leaves a possibility
for virtual levels to correspond to resonances and not to eigenvalues. We give the following

Theorem 4.1 (Virtual levels of systems of three two-dimensional particles). Let H be the Hamil-
tonian of a system of three two-dimensional particles. Assume that the potentials Vi; # 0
satisfy (2.2) and (2.9) and that H has a virtual level at zero. Then there exists a function

@0 € H'(Xo), @o # 0, satisfying
IVowoll” + (Vo, po) = 0 (4.1)

and
(1+ |z|m) "% o € L*(Xo) for any a > 0. (4.2)

Proof. To prove Theorem 4.1 we take a sequence (¢, )nen of eigenfunctions corresponding to
eigenvalues F,, < 0 of the operator H +n~ 1Ay, i.e.

- (1 - nil) A(ﬂ/}n + Vo = Enty. (43)

We normalize the functions ¢, by ||Vot,|| = 1. Then there exists a subsequence of (¥, )nen,
also denoted by (%, )nen, which converges weakly in f{l(XO) to a function ¢ € f{l(XO). Due
to the Rellich-Kondrachov thereom we have convergence of v, to ¢q in LIQOC(XO).

At first, we show that ¢ # 0 and establish the decay property (4.2) of the function ¢g. Due to
Lemma 3.11 there exist constants 7o > 0 and R > 0, such that for every function ¢ € H*(Xj)

supported in the region {|z|, > R}

(1 =) [[Voul|* + (Vo 9) > 0. (4.4)
Applying Lemma 2.3 in [5] we see that the weak limit ¢y € H'(Xo) of the sequence (¢, )nen of
eigenfunctions normalized by ||V, | = 1 is not zero.

In the next step we show that g satisfies the estimate (4.2) on the decay rate. To do this we
first give the following estimate for a weighted L? norm of the functions 1,,.

Lemma 4.2. Let H be the Hamiltonian of a system of three two-dimensional particles. Assume
that the potentials Vi; satisfy (2.2) and (2.9) and that H has a virtual level at zero. Then, for
any 0 < a < 1 there exists a constant C > 0, such that for all n € N we have

IVo(lelpton) | <C - and || (14 |lm)* " ¢l < C. (4.5)
Proof. The proof is a straightforward modification of the proof of Lemma 2.4 in [5]. O
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By Lemma 4.2 we get convergence of (¥, )nen to ¢ in L?*(Xo, (1 + |2],,) "“dz) for any a > 0.
This shows that the function ¢q satisfies (4.2).
Our next goal is to prove that
Vool + (Vpo, o) = 0. (4.6)
Note that first we have to prove that (Vg, o) is well defined. Since we do not know whether
@ is square-integrable, we can not use the arguments of Lemma 3.8. We prove that (V;;¢0, o)
is well-defined for each pair of particles 5 = (4, 7). By Corollary A.2 to do this, it is sufficient to

show that
[ P <. @.7)
{laslm <1}

In other words, it is enough to prove that the restriction of the function ¢q to cylindrical regions
{lgalm < 1}, B € {(1,2),(1,3),(2,3)}, is square-integrable. Here and in the following for § =
(i,7) we denote by gg, &g the variables ¢[C], £[C], where C' = {3, j}.

To prove (4.7) we need to make several steps. Let (¢, )nen be the sequence of eigenfunctions of
the operator H + n~1A, normalized by ||V, | = 1. Furthermore, let x; : Ry — [0,1] be a
function with x; € C*(Ry) and (1 — x2)z € C*(R.), satisfying

For b > 0 let x(z) = x1 (%) . The first step to prove that (V;;p0, o) is well-defined is the

following

Lemma 4.3. Let ¢, and x be defined as above. Then, for any € > 0 we can find b > 0 and
no € N, such that for all n > ng we have

(A) IVolxtm) | <&, (i) (Vijxt¥n,xbn) <e, 1,5 €{1,2,3}. (4.9)
Proof of Lemma 4.3. For ¢ € H(Xy) let
L] = [IVot|* + (V, 9). (4.10)
Then, by definition of the functions 1, we have L[i},] < 1[[Vtp,[|? = L. On the other hand,
by the IMS localisation formula we get

Lla] = LI(1 —x®) 6] + Lixahn] — /

Xo

1

(IVoxt? + Vo1 =x)2) [alde. (411)

We estimate the terms on the r.h.s. of (4.11) separately. Due to H > 0 the first term is
non-negative. Since x is supported in the region {|z|,, > b}, by Lemma 3.11 with & = 0 we get

LIxta] =70 Vo (x¥n) |12 (4.12)

for some v > 0 if b > 0 is large enough. Now we estimate the last term on the r.h.s. of (4.11).
Note that Vox and Vo (1 — x?)? are supported in the region {b < |z| < 2b} and satisfy
1 C
[Vox[*> + Vo (1—x%) | < =
for some C' > 0 which does not depend on b. This, together with the estimate (4.5) on the decay
rate of ¥, we get, uniformly in n € N,

(4.13)

[¥n?

{|z|m>b} |z[2,

[ (190 + 1900 = ) o do < 20 dr<a®)  (414)
Xo

for some €1 (b) with e1(b) — 0 as b — co. Combining this with (4.11) and (4.12) we obtain
Lltpn] = 70lIVo (xtn) I = £1(b). (4.15)
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Since L[] < +, it follows from (4.15) that for fixed € > 0 we can choose ng € N and b > 0
large enough, such that ||[Vo (x¢») ||* < € holds uniformly for n > ng. This completes the proof
of statement (i) of the Lemma.

Now we turn to the proof of assertion (ii). At first, we note that for any pair (i, jo) we have

(ViogoXtns Xtn) = Llxthn] = [Vo Octbn) 17 = D (VijXtn, xn), (4.16)
(4,5)#(%0,J0)

ie. (VigjoX¥n, X¥n) can be estimated by estimating the r.h.s. of (4.16). For the first term we
get by (4.11) and (4.13)

Lixtn] < L] + C / Ol g (4.17)

{|z|m>b} |:C|72n

Now, by using L[i),,] < 2 and the estimate (4.5) for the functions 1, we obtain

1
Llxyn] < — +22(b), (4.18)
where e2(b) — 0 as b — co. Substituting this in (4.16) we get
1
{Viojo X¥n, Xt¥n) < — 4 €a(b) — > (ViiXthn, Xtn).- (4.19)

(4,5)#(i0,J0)
Now we estimate the last term on the r.h.s. of (4.19). Since the Hamiltonians of the clusters
consisting of two particles do not have negative spectrum, we have

(Vijxthns xt¥n) = —[[Vo (xtn) |* > —e, (4.20)

where according to statement (i) of the Lemma the constant € > 0 can be chosen arbitrarily
small if b > 0 and n € N are sufficiently large. Inserting this in (4.19) we get

1
(Vigjo Xty Xthn) < — 4 €2(b) + 22, (4.21)
which completes the proof of Lemma 4.3. O

Now we turn to the proof of the well-definedness of (Vj;¢o, ¢o). Recall that we need to show

that
// |ipol® dgp dés < oo (4.22)
{laslm<1}

Since the cluster Hamiltonians for non-trivial clusters do not have virtual levels and V;; # 0, by
the remark (iii) after Theorem 2.3 we get

[ P dasdgs < CulIVa, ()P + CalVipn, i) (4.23)
{‘qﬂlﬂLS]‘}
for some constants C1,C2 > 0 and 8 = (4, 7). Now by Lemma 4.3 we see that the r.h.s. of (4.23)

can be done arbitrarily small if the constant b > 0 in the definition of the function x and n € N
are sufficiently large. Hence, for any € > 0 we find b > 0, such that

// IX¥n|? dgp dés <. (4.24)
{laslm<1}

Recall that for [£g|m, > 2b we have x(z) = 1 and therefore

[ w@Pd= [ pw@Pdeze @2)
{1€slm =26} J{lgp|m <1} {1€slm =26} {lgplm <1}
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for b > 0 and n € N large enough. Furthermore, we have ¢,, — o in L _(Xo). Therefore, we

get
Jo [ Pdgsdgs | ePdgsds. @20
{l€alm<2b} J{|gs|m<1} {l€s1m <2b} J{lgslm <1}
This, together with (4.25) shows that the integral
[ e dasds (427)
{laglm<1}

is bounded and thus (V;jo, o) is well-defined.
Now we show that (Vi;1n, ¥n) = (Vijpo, po) as n — oo. At first, we consider the integral

[ vl agsagy (4.28)
{l€slm=>2b}

and prove that it can be done arbitrarily small if b > 0 and n € N are large enough. By Corollary
A.2 we have

[ WallvaP dgsagy
{1€p1m =20}

<c / ( / [V gy 6l das + / |wn|2dqﬁ> g,
{1€s|m >2b} {lag|lm <1}

Note that by Lemma 4.3 we get for arbitrary € > 0

/ / Vs o dgs dés — / / Vo () Pdgsdes <= (430)
{lgﬂ‘mEQb} {lgﬂ‘mEQb}

if b> 0 and n € N are large enough. Substituting this inequality and inequality (4.25) in (4.29)
yields

(4.29)

/ [ Willvn? das des < 2= (431)
{165 1m>2}
Due to
/I‘/z'jllsoo|2dqﬂ dés < o0 (4.32)
we also obtain
/ /|Vij||800|2d% dép <e (4.33)
{1€51m>20}

for b > 0 large enough. Now we consider the region {|€g],, < 2b}. Due to the decay property
(2.9) of the potentials V;; and the estimates (4.5) and (4.2) for the functions ¢, and ¢y we get

/ / [Vigl[? dgs s < € (4:31)
{l€sIm<2b} J{|gg|m >b1}

/ / Vi llpol? dgs dés < (4.35)
{1€81m<2b} J{|qg|m=>b1}

where € > 0 can be chosen arbitrarily small if b; > 0 is large enough and estimate (4.34) holds
uniformly in n € N.

Estimates (4.31) - (4.35) show that to prove convergence (Vi;1n, ¥n) = (Vijpo, o) it suffices to
show that (Vij¢n, ¥n)a — (Vij¥o, po)a for the compact set

Q:={z € Xo : |gslm < b1, |€alm < 20} (4.36)

and
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We write

(Vijtn, Yn)a — (Vijeo, vo)a = (Vij (¥n — @0), ¥n)a + (Vijeo, (n — o))a- (4.37)
Since 1y, converges to ¢ in L (Xo), [[Ve,¥nll < 1, Vg, 0]l < 1 and the potential V;; satisfies

loc
(2.2), both summands on the r.h.s. of (4.37) tend to zero as n — co. Combining this with the
estimates (4.31) - (4.35) we conclude (V;;j¢n, ¥n) = (Vijeo0, o) for every pair (i, j) of particles
and therefore (Vib,,, ¥,) = (Vpo, vo) as n — oo.

Since by definition of the functions 1,

(Vipn, o) < — (1=n""), (4.38)
we get (Vipo, o) < —1. On the other hand, H > 0 and ||Vopo| < 1. This shows

IVogoll* + (Vpo, po) = 0, (4.39)
which completes the proof of Theorem 4.1. O

5. ABSENCE OF THE EFIMOV EFFECT IN MULTI-PARTICLE SYSTEMS CONSISTING OF ONE- OR
TWO-DIMENSIONAL PARTICLES

In this section we prove that the Efimov effect does not occur in systems of N > 4 one-
dimensional or N > 5 two-dimensional particles. The absence of the Efimov effect for such
systems is mainly caused by the fact that in these cases virtual levels of the cluster Hamiltonians
H[C] with |C| = N — 1 correspond to eigenvalues, as we have shown in Section 3. We follow the
strategy of the proof of Theorem 5.1 in [5], which itself is based on ideas of [34]. However, on
a technical level the proof in this section is slightly different from those in [5] and [34] because
Hardy’s inequality, which plays an important role in [5] and [34], is different in lower dimensions.
The main result of this section is the following

Theorem 5.1. Letd =1 and N > 4 ord =2 and N > 5. Suppose that every pair potential
Vij # 0 satisfies (2.9) and is operator bounded with respect to —A with relative bound zero, i.e.
for any € > 0 there exists a constant C(e) > 0, such that

Vil <ellAgl® + CE)llvl®, v € H*RY). (5.1)

Furthermore, assume that H[C]| > 0 for all clusters C with |C| = N —1 and there existse € (0,1),
such that

Sess (—(1 — ) Ag[C] + V[C]) = [0, 00). (5.2)
Then the discrete spectrum of H is finite.

Remark. We emphasize that in Theorem 5.1 the cluster Hamiltonian H[C] with |C| = N — 1
may have a virtual level at zero. For clusters C’ with 1 < |C’| < N —1 however, the Hamiltonian
H[C"] are not allowed to have a virtual leval, which is a consequence of (5.2) and the HVZ
theorem.

Proof of Theorem 5.1. For € > 0 we define the functional L : H'(X,) — R as

Llg] := (He,¢) —elllz]2 ¢l (5.3)
and prove that L[p] > 0 for any function ¢ € H'(Xg) with supp (¢) C {|x|n > R} if R > 0 is

large enough and € > 0 is small enough. This implies finiteness of the discrete_ spectrum of H,
see Lemma C.1 in Appendix C (see also [39]).
We fix a constant « > 0, such that Kr(Z,k) N Kr(Z',k) = 0 for all partitions Z # Z’ with

|Z| = |Z'| = 2. By applying Theorem 3.9 we get

Ligl > Y Lofpuz]+ L[eV, (5.4)
Z:|Z|=2
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where V.= /1 =377, u% and the functionals Ly and L’ are defined by

Lofus] := (H, ) — ][22
— e [la(2) [ (a2l (Z) D e (5.5)
LhR] = (Ho, ) — (e + e0)lllaly 20>

Here, the constants k > 0 and €1 > 0 can be chosen arbitrarily small and ' € (0,x) depends
on k and €1 only. For the sake of simplicity we omit the index Z in the following computations
and write ¢ and ¢ instead of ¢(Z) and £(Z), respectively. At first, we prove Lafpuyz] > 0. We
distinguish between the following two types of partitions Z = (C1, Cs):

(i) |01| <N —1 and |CQ| <N -1,

(ii) |Ci|=N—-1or |C] =N —1.
In the first case the operators H[C4] and H[C3] do not have virtual levels, which implies that
there exists a constant pp > 0, such that

(H(Z)p,¥) > pol | Vgi|? (5.6)
holds for any function ¢ € H'(Xy). Repeating the arguments which were used in the proof of
Lemma 3.11 we get La[puz] > 0.

We turn to case (ii), where the Hamiltonian H[C}] or H[C3] may have a virtual level. Suppose
that |C1] = N — 1 and that H[C4] has a virtual level. According to Theorem 3.2, Corollaries
3.3 and 3.4 and Theorem 3.5 zero is a simple eigenvalue of the operator H[C1]. Let o be the

corresponding eigenfunction normalized by ||po|| = 1. Let
F(&) = Vel ~*(Vq (puz(-,€)) , Vo) 12(xo(2)) (5.7)
and
9(a,€) == puz(q,§) — f(§)po(a)- (5.8)

Then we have

puz = foo+g and (Ve9(-, ), Vepo)r2(xe(z)) =0 (5.9)
for almost every &. For €], < % we have f(£) = 0 and g(q,&) = 0, because puz = 0 for |z| < R.
We write

Laolpuz] = (H[Ch] g,9) + (H[Ci]eof, pof) + 2 Re(g, H[Ch]o f)
+ Ve (puz) I + (I(2)puz, puz) —elllal;* ouz|? (5.10)
—e1fllalm 1 m(lglm €D ouzl 2, )
Due to H[Ci]po = 0 the second term and the third term on the r.h.s. of (5.10) are zero. Now
we estimate the term (I(Z)puz, puz). For fixed g2 > 0 we get
2y €2 _ —_
[1(2)(@)] < Clel2 " < I n(I&lm)| 18] (5.11)
for x € Kr(Z,k) if R > 0 is large enough. Since puyz(q,§) = 0 for [£|,, < %, we can apply the
one- or two- dimensional Hardy inequality in the £-variable to obtain

€2 —1yg—
(L(Z)puz, puz)| < Nn(lEln)| 18] uz]]* < 2| Ve(ouz) | (5.12)
This, together with (5.10) implies
Lolpuz] >(H[C1lg, g) + (1 = €2)| Ve (puz) |I* = elllz]; uzl|?

o (5.13)
— el n(lglm |71 aln! euzllc, 2 -

Since ) )
llzlm2euz|” < [|I€l! n" [€lm)puz]| (5.14)
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for ||, > 1 and we have [¢],, > £ on the support of puz, we get

4e]|Ve (puz) |I? — elllz]* puzl* > 0. (5.15)
Substituting this inequality into (5.13) yields

Lolpuz] > (H[Cilg, g) + (1 - €3)||Ve (ouz) |I?

I (5.16)
— el (gl €11 alm! euzlli 2
where €3 = €5 + 4¢. Now we estimate the term
(H[C\]g,9) — el n(lglml€lm0)~ alm' euzllipzm - (5.17)

This is done in the following

Lemma 5.2. Let 1 < o < Cy(Xo) and let Cy be a cluster with |C1| = N — 1 and the functions
fyg be defined by (5.7) and (5.8). Then for 1 > 0 small enough and R > 0 sufficiently large

(H[C1]g,9) — exllln(lalm €1 alm' ozl 2. )

Con 5.18
>- [ risere O
{lglm>51
Proof of Lemma 5.2. Due to Theorem 3.2 the orthogonality in (5.9) implies
(H[C1]g, 9) = d0[|Vqgl? (5.19)
for some dg > 0. Therefore,
(H[C1lg,9) — exlllm(lglm|€[;,] 7 Halm euz i 2.0 0) (5.20)
> 8[IVqgll? = exlll n(lalm €101 alm uzll 2, -
Since puz = @of + g, we have
IVa(puz)* = Va(pof +9)|* < 2[Vapof* +2[Vegl, (5.21)
which yields
1
IVagl iz ) = SIVa(Puz) iz m) = 1Va0 Wiz (5.22)
Since puz = 0 for |g|m = K|€|m, we get similarly as in the proof of Lemma 3.11 that
do iy —1
S IValpun) ez ) = el alm €101l Uzl z,mm = 0 (5.23)

if 1 > 0 is small enough. Combining this inequality with (5.22) and (5.20) yields
(H[C1]g. 9) = exllltnlglm €151 Nl ouzlli y zwr my = =00l Vapof licpzimr iy (5:24)
Now we estimate the term ||vq(,00f||%(R(Z1;{’”{). By Theorem 3.2 we have
IV (lalp0)l € L2(X0(Z)) and (1 +[qlm)* ™ w0 € L*(Xo(2)) (5.25)
for any 0 < o < Cr(Xo). This implies
|l [Vawol € L*(Xo(Z)). (5.26)
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Due to |¢],, > & for € Kr(Z, k) we get
wl€lm

/ VagofP da = / FOP / V0l dgde
Kr(Z,k',K) {l€lm>£} K €|m

ngle
- / FOP / 191214122V gipol? dg dé (5.27)
{‘&‘ng} K’lglm

K|€lm

< (w)2e / €27 (6 / 14221V 00 ? dg de,
{1€lm>L} /1€ m

where in the last inequality we used |g|m, > £|¢|m. Since |q|%,|Vqpo| € L2(X0(Z)), we have

KlE]m
Lo Vol da < (005" (5.28)
K |€]m
for |&]m > % if R > 0 is sufficiently large. This yields
—0olVaso ey = = [ leRIAQP (5.29)
{1glm>51}
which completes the proof of Lemma 5.2. O

We continue to estimate the functional Ls[puz]. Combining (5.16) with Lemma 5.2 we get

Lofpuz] > (1 —e3)[[Ve(ouz)|I* — 61/ . €l £ (€I de. (5.30)

{lglm>F

In the next step we estimate the term ||V¢(puz)||?. This is done in the following

Lemma 5.3. Let 6 > 0. There exists a constant w > 0 which depends on ||¢oll, ||Vqpol and
1Aq@oll only, such that

IVe (puz) I > w (1€l po fII* + 1€ gll) - (5.31)

Remark. For the case dim X.(Z) = 3, a statement similar to Lemma 5.3 was proved in [34]. In
the proof of Lemma 5.3 we follow the ideas of this work.

Proof of Lemma 5.3. Since puz(q,&) = 0 for €], < %, we can apply the one- or two-dimensional
Hardy inequality in the space X.(Z) to the function puz(q,-) for fixed ¢q. This implies

1,1 [ L1
IVe (puz) I > 1€l puzl® = L€l wof + €'l

1 1 1 _1_ 1
24 (€20 f 17 + €L 911 = 21€l" o £ €1 9)1) -
Since (Vq0, Vqg) 12(x,(2)) = 0, we have

(Volélm 0o f. Valéln gy =0 (5.33)

and by Lemma 5.3 in [34] we can find a constant w > 0 which depends on ||¢o||, ||Vqpol and
[IAg¢0]| only, such that

(5.32)

_1- _1- 1 _1- _1-
[l = pof €l )| < 5 (1= 4w) (1€l o fI* + 1€ 911%) - (5.34)
Substituting this inequality in (5.32) yields
IVe (puz) I? > w (€l 0o f 17 + lllEl" ~gl1?) (5.35)

which completes the proof of Lemma 5.3. O
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Combining (5.30) with (5.31) and using ||¢o|| = 1 we get
Bipuz 2 (e | i@ Pag e |

{Iglm>%
Choosing § < a — 1 and 1,3 > 0 small enough yields La[puz] > 0.

To complete the proof of Theorem 5.1 it remains to show Lj[pV] > 0 for every p € H'(X,) with
supp (p) C {z € Xo : |z|m > R}, where L} is the functional defined in (5.5). Note that for
all partitions Z = (C4,...,Cp) with p = 3,4, ..., N — 1 the Hamiltonians H[C;] do not have a
virtual level if |C;| > 1. Hence, we can estimate the functional L5[V] > 0 in cones corresponding
to partitions Z with |Z| > 3 in the same way as in the proof of Lemma 3.11. In the region which
remains after separation of the cones corresponding to all partitions Z with |Z| < N —1 we have
|Vij(@ij)| < |z|,27" for all i # j. Applying Hardy’s inequality in the space X, completes the
proof. (I

} €72 1F ()7 dg. (5.36)

13 ng

6. ABSENCE OF THE EFIMOV EFFECT IN SYSTEMS
OF THREE ONE- OR TWO-DIMENSIONAL PARTICLES

Now we prove that the Efimov effect is absent for systems of three one- or two-dimensional
particles. This was first proved in [33] under restrictive conditions on the pair potentials. There,
the potentials had to be compactly supported or short-range and negative at infinity. Later, in
[35] the restrictions on the potentials were relaxed. Unfortunately, Lemma 1 in [35] contains a
mistake. Below we follow the ideas of [35] and correct this mistake. We give the proof for both,
the one- and the two-dimensional case.

6.1. Systems of three one-dimensional particles.

Theorem 6.1 (Absence of the Efimov effect for systems of three one-dimensional particles). Let
H be the Hamiltonian corresponding to a system of N = 3 one-dimensional particles. Suppose
that H > 0 and each pair potential Vi; satisfies (2.2) and (2.9). Then the discrete spectrum of
H is finite.

In the proof of Theorem 6.1 we will use the following lemmas.

Lemma 6.2. Consider the Schridinger operator h = —A +V in L*(R), such that h > 0 and
the potential V' satisfies (2.2) and (2.9). Then there exists a constant C' > 0, such that for any
bo > A and any function 1 € H*(R)

Tsbali= [ (W OF + VOROP) de = -0t (o) + (b)) . (6.)

—bo
Here, v and A are the constants given by (2.9).

Proof of Lemma 6.2. Let v € H'(R) and by > A. For n > 2 we define the function 1, as
Gn(t) = 9(t) for —bg <t < bo, ¥y (t) = 0 for t < —nby and for t > nbo, Yu(t) = ¥(—bo) 2t
for —mby < t < —by and ¥, (t) = z/J(bO)M for by < t < nbg. Since @ and 1, coincide for

bo(n—l)
—by <t < by, we have

—bo

(s ) < / (P + VL) dt+ / (10402 + 1V (0)[n (1)[2) dt

b

e (6.2)

nbo

+ [ (P + 1V OllenoP) d

bo
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bo)

1 for

At first, we estimate the two last integrals of the r.h.s of (6.2). Since ¢/, (t) = W=

bo(n
t € (—nbo, —bo) and ¢}, (t) = — 5225 for ¢ € (bo, nbo), we get

—bg nbo

[ wras [uora<e, (6:3)
bo

7’nb0

where € > 0 can be chosen arbitrarily small if n is large enough. Moreover, 0 < b”boft <1 for
g(n 1)

t € (—nbg, —bg). This implies

—bo —bo
/ V() (8) Pt < 1(—bo) / V(r)dt (6.4)
—nbg —nbg
and analogously we get
nbo nbo
/ IV (0) 1o (£) Pt < [25(b0) 2 / IV ()dt. (6.5)
bo bo
This, together with (6.2) and (6.3) yields
—bo nbo
(s ) < T bo] + [t(=bo) P / IV (£)[dt + [ (bo) / VD)|di+e  (6.6)
—nbg bo

Now we estimate the integrals on the r.h.s of (6.6). For any 0 < § < v we have —1 —v+¢§ < —1.
Since by > A, we get by (2.9)

nbg [
/ V()| dt < cbal_‘s/ [t~ dt < by 0 (6.7)
bo A
for some constants ¢, c; > 0. Analogously we have
—bo
/ ) [V ()| dt < erby* 2. (6.8)
—nbo

Due to h > 0 we conclude from (6.6), (6.7) and (6.8) that
Tl bo] = —ebg = ([w(bo)[* + [9(=bo)*) — e

Since € > 0 can be chosen arbitrarily small, this completes the proof. (I

Lemma 6.3. Let Cy > 0. Then for any sufficiently large b > 0 and for any ¢ € H*(R)
[ W - car > woPR) at > 20 ) (6:9)
b
Proof of Lemma 6.3. Let ¢ € H'(R) and (t) = 9 (t) — 1(b). Then ¢/ (t) = ¢/(t) and we have

[0 oF - up) ar> [ (10@F - 2000 a
b b (6.10)

—200/ t=27 Y ap(b)|* dt.
b

Since ﬁ(b) = 0, we can use the one-dimensional Hardy inequality, which for sufficiently large
b > 0 yields

[ (90 —2cu i) azo (6.11)
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This, together with (6.10) implies

[ W - o uto?) at = —2ColuP [ (6.12)
b b
Computing the integral on the r.h.s. of (6.12) completes the proof. O

Lemma 6.4. Let by > by. Then for any ¢ € H'(R)
b2 b2
(b2 < 2(bs — bl)‘l/ () dir + 2(bs — bl)/ W@ de, i=12  (6.13)

b1 bl

Remark. Lemma 6.4 is the one-dimensional analogue of Lemma 2 in [35].

Proof of Lemma 6.4. For x € (b, by) we write

d(x) = [ ' (t)dt+1(br). (6.14)
b1
Therefore, we have
b 2
[W(by)* < 2y (x)* +2 (/ |¢'($)|d$> ;@€ (b1, b2). (6.15)
b1
Applying the Cauchy-Schwarz inequality to the integral on the r.h.s. of (6.15) yields
bo
[W(b)* < 2l¢(2)* +2(b — bl)/ ¢ (2)* dz, @ € (by,b2). (6.16)
b1

Integrating both sides of (6.16) over (by,b2) and dividing by (ba — b1) implies

b2 b2
WP <202 -0 [ W@P e+ 2 -b) [ W @P e (617)
bl bl
Similarly we can prove the statement for b,. (I

Proof of Theorem 6.1. As in the proof of Theorem 5.1 we show that
Ligl = [ (Fagl + VIl = efal11oP) do > 0 (6.18)

holds for all functions ¢ € H*(Xg) with supp (¢) C {|z|m > R} if € > 0 is small enough and
R > 0 is sufficiently large. Let Z = (Cy,C3) be a partition into two clusters with |Cy| = 2.
First, we estimate the part of the quadratic form L corresponding to the cone K(Z, k), where
k > 0 is so small that cones K(Z, k) and K(Z', k) corresponding to different partitions do not
overlap. Denote the particles in C; by 7 and j and the third particle by k. In the following we
will need subtle geometric arguments and therefore we introduce a basis of X and work with the
corresponding coordinates. Recall that dim(Xo(Z)) = 1 and dim(X.(Z)) = 1. Choosing a vector
uy € Xo(Z) and a vector ug € X.(Z), both normalized with respect to the norm |u;|m, = 1, we
get an orthonormal basis of Xy. Denote by ¢ and §~ the coefficients corresponding to the basis
{u1,uz}. Then we have |qlm = |q], |¢]m = |€] and we can represent Kr(Z, k) as

Kr(Zr) = {(@.8) € B : g < wld], |a* + 15 > B?} (6.19)
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and ¢ = (g,

| Vol VIR el foR) do= [ (10a0f 4 Viglel) da
KR(Z,KZ)

KR(Z,R)

) as a function of ¢ and €. We have

(6.20)
[ (10epP + (Vi + Valil = el 1ol da
KR(Z,R)

and estimate the two integrals on the r.h.s of (6.20) separately. By choosing k£ > 0 small enough
we have || > £ and therefore

[ ol e vileP) do= [ [ (0ue o+ Vlel?) dgaé (o)
Kr(Zr) {2} J{lal<wlel}

Applying Lemma 6.2 to the integral over ¢ in (6.21) with by = n|§~| we get

[ ol valel) agad
{1€1= 5} J{lal<xl€l}

>0 [ (e O + le(—rE.EP) de.
{1g1=4}

Now we estimate the second integral on the right hand side of (6.20). Note that for R > 0
sufficiently large we have

(6.22)

Ve (ire)| + Vi (n)] < el€] 7> (6.23)
for some ¢ > 0. This, together with |z|;>! < |€|~! implies

[ (10e0P + Vi + Vil = o) o
KR(Z,I{)

> dgp> — CIEI>ol?) dx
[, oy (e —Crd10)

for some C' > 0, where without loss of generality we assumed that v < 2. To estimate the
integral on the r.h.s. of (6.24) we first integrate over the variable ¢ for fixed §. Let us describe

(6.24)

the domain of integration first. The integral over £ is from the boundary of K r(Z, k) to infinity.
Note that if |g| is small, then the boundary of Kr(Z, ) is given by an arc with radius R, see
Figure 2.

B(R)

FIGURE 2. The cone Kr(Z, k)
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By definition, the function ¢ vanishes on this arc. For large values of |g| the boundary of Kr(Z, k)
is given by the straight lines |§| = x|¢]. Let = (¢, &) be a point of intersection of the ball B(R)

1

with the set {|g| = «[¢|}. Then || = (1 +&~2) > R =:  and we have

| (10l = cldl > 1el?) da
KR(Z,H)

- 0= 2 _ 57271/ 2 d£d~
/{Ifi|<n}/{§>\/32—|fi|2}(| el el ) ! (6.25)

+ 0= 2 _ é—2—u 2 d£d~
/{6277} /{|é|zn1|q|}(| 550| clé| | ) q

Since ¢(g,€) = 0 for |€] < \/R% —|§|?, the one-dimensional Hardy inequality implies

Depl” = cle[ " Ipl?) d€dg > 0 6.26
/{q<n}/{|g|>\/m—q|z}(| 2o|” — clé] |90|) £dg > (6.26)

if R > 0 is large enough. To estimate the second integral on the r.h.s of (6.25) we apply Lemma
6.3 with b = k~1|g|, which yields

8~ 2 57271/ 2 d£d~
/{q>n}/{|g|>n1|q|}(| eI I (2 €9) ) g

(6.27)
> ¢ a7 (9@ 511 2 + L@, —aDI?) da
{l1d@1>n}
for some C > 0. Combining (6.22) and (6.27) with (6.20) we get
[ (190l + Vil = elalylol?) do
KR(Z,H)
20 [ I (1oL O+ e(rlE] D) (6.28)
25

_c / 37 (lp(@ = aD + (@~ YD) ?) dd.
{lq1>n}

Note that the integrals on the r.h.s of (6.28) are in fact integrals of the function ¢ over the edges
of the cone K(Z, k). We introduce polar coordinates (p, 8) in the space X. Let 6y = arctan(k) €
(0, %) At first, we consider the integral over £ in (6.28) and integrate initially over the set where
§~ > 0. We have

| ETeE P = [ o el ) dp (6.29)
{23 R
and
/~ M p(—rE PP dE = c/ P~ o(p, —00) | dp, (6.30)
(€% R
where c is a constant depending on y only. Together with the analogous integrals for £< 7%
we get
/{ g 7 (108D + (i) ) (6.31)
23

=</ P77 (l(p, 00)1* + l(p, ™ — 00)|* + |(p, m + 60)” + |(p, —60)[?) dp.
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Similarly we can represent the second integral on the r.h.s. of (6.28). Hence, we arrive at
[ (90l + Vi = clalol?) do (632
KR(Z I{

c/ Y (I (02 80)12 + Lo (oo — 60) % + (s 7+ B0)|2 + Lo(p. —60)[2) dp

for some C > 0. To estimate the r.h.s. of (6.32) let us estimate exemplarily the integral

|0l a, (6.33)

We choose ' > & such that K(Z, ') and K(Z',«") do not overlap for any pair of two-cluster
partitions Z # Z' and denote 6; = arctan(x’) € (0, %) Applying Lemma 6.4 to the function
©(p,-) for fixed p and with by = 6y and by = 61 we get

61
lp(p, 60)] < 0(90,91)/9 (Ie(p, 0)1* + |9ap(p, 0)?) dO (6.34)

for some C(fy, 61) > 0. Substituting inequality (6.34) into (6.33) we get

/ PV |e(p,00) dp
R

01
C(60.01) / /6 Y (10(0, ) + 1000(p,0)%) 9 dp (6.35)
91 .
C(60.01) /0 / Y (1p(p,0) + 100 0(p, 0)%) dpdo.
0
Applying inequality (A.6) for fixed 0 yields
Clon,02) [ 0 IO dp e [ 0,000 0)Podp (6.36)
R R

where £ > 0 can be chosen arbitrarily small if R > 0 is large enough. Substituting this inequality
into (6.35) and using
2

1 |9¢
} —2 20 < |Vop|? (6.37)
we obtain
/ P (o, 90)|2dp§5/ Vol da (6.38)
R Kgr(Z,k,k")

for sufficiently large R > 0. We can estimate the other integrals on the r.h.s. of (6.32) by the
same arguments. Therefore, we obtain

| (VopP VIR el floP) doz <4 [ [FagPdn (639)
KR(Z K) KR(ZJQ’H/)

Summing inequality (6.39) over all partitions Z with |Z| = 2, inserting the resulting inequality
into the definition of L and using that the cones Kr(Z,«') and Kg(Z’,x’) do not intersect we
get

Lig > / (42Tl VIl — clalz ol (6.40)
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where K% (1) = Xo\ (B(R) UUz 21— K (2, n)). Note that K¢ (k) is the region in Xo, where all

particles are far away from each other. Therefore, we can estimate |V (z)| < C|z|;,2~". Moreover,
we can assume v < 2 and therefore |z|,,* < |z|,,27". Hence, we get

L] = / " (1 = 4)[Vopl® = (C +e)lal* ™" |pl?) da. (6.41)

Using polar coordinates (p, ) and |Vop| > ’%%’ we find

> [ [ (0= 421068 = (€ + 20716k papats (6.42)
wel JR

where I C [0,2n] is the set of angles corresponding to the region K§,(x). Now since ¢(p,8) =0
for p < R, we can apply inequality (A.6) to the function u(p) = ¢(p, ) for fixed § € I. Choosing
R sufficiently large completes the proof of Theorem 6.1. (I

6.2. Systems of three two-dimensional particles. Now we turn to systems of three two-
dimensional bosons or three non-identical two-dimensional particles. For systems of three spinless
fermions in dimension two there exists the so-called super Efimov effect, see [13]. We prove that
for systems without symmetry restrictions such an effect can not occur. Our result is the following

Theorem 6.5 (Absence of the Efimov effect for systems of three two-dimensional particles). Let
H be the Hamiltonian corresponding to a system of N = 3 two-dimensional particles. Assume
that H > 0 and that the pair potentials Vi; satisfy (2.2) and (2.9) and they are radially symmetric,
i.e. Vij(xij) = Vij(|zsj]). Then the discrete spectrum of H is finite.

First, we give some auxiliary Lemmas which are analogous to Lemma 6.2 and Lemma 6.3 for
d=2.

Lemma 6.6. Let d = 2 and consider the operator h = —A + V acting in L? (RQ), where h > 0
and V(x) = V(|z|) satisfies (2.2) and (2.9). Then there exists a constant ¢ > 0, such that for
any bo > A and for any function v € H'(R?) we have

TR, bo] = /{ o (VE@P 4 V@I o> g / o0 (6.43)

Remark. Lemma 6.6 does not hold if we restrict the operator i to anti-symmetric functions.
This is the reason why our proof of Theorem 6.5 does not work for a fermionic system.

Proof of Lemma 6.6. Let ¢ € H'(R?) and by > A. We introduce polar coordinates = = (p, )
and write () = Y ¥ (x) with 1, (z) = Ru(p)e™?.

n=—oo

For ke N, k> 2 let

Ry (p), p < bo,
RE(p) == ¢ R (bo)In (kbop™") (Ink)™", by < p < kbo, (6.44)
07 p > kbo

We set ¢F : R2 — C, ¥ (z) = RE(|z|)e™?. Then we have J[¢F, bo] = J[tn, bo] and therefore

J[,bo] = Z J[F bo] for any k > 2. (6.45)

n=—oo
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Now we estimate J[¢¥, by] for a fixed k > 2. Since h > 0, we have

TR0 bo) = (g k) — /{ o (@R S V@RE@P) o
rizbo (6.46)

>— [ (@R V@@ .
{lz[>bo}

Due to [V = [F2[2 + L[58 [2 > |52]2 and V(z) = V/(|z]) we can estimate
/{ b (VYR (@) + V(@) ()]?) dz < 27?/ (10,R5 2 (p) + V(p)| R (p)I?) pdp.  (6.47)
x|>bg
bo

Easy computation shows that

W (bo) (In(k) ™" p=t if b kb
9,Rk(p) = Ry (bo) (In(k))" " p 1 o < p < Kbo, (6.48)
0 if p > kby.
This implies
< kbo
[ 10,5 0)? pdo < |Baoo) Pn(0) 2 [ 5" dp = | R (bo) (1) (6.49)
bo bo
Since |V (p)| < C (14 p)~>7" for p > by, we get
o) kbo
_ —o_y 12
JIVOIRE) pdp < ClRA )P n) ™ [ (14 9)2 (tnlhbop™)” o
bo bO
o (6.50)
< IR [ (149)2 " b
bo
where in the last inequality we used (In(k)) =2 (ln(kbop_l))2 <1 for p € (bg, kbg). Due to
k‘bo o0
/(1 + )72 pdp < /p_l_” dp =by", (6.51)
b() bO
we get
[ IVOIRS ) o < YR 0o) 55 (6.52)

bo
Combining (6.46) with (6.47), (6.49) and (6.52) we obtain

T[tr: bo] = —27C| R (b0)[*bg " — 27| Ry (bo)| (In(k)) ™. (6.53)
Sending k to infinity and using

2x Y. IRl = [ " 0(bo, )2 d6 (6.54)

n=—oo

completes the proof of Lemma 6.6. O

The following lemma is analogous to Lemma 6.3
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Lemma 6.7. Let Cy > 0. Then for any sufficiently large b > 0 and for any ¢ € H*(R?) we
have

/ (V@) — Colz| 2 [¢(x)]?) dz > —QCOb’”(Qw)’l/ Wb 0)2dd.  (6.55)
{lz|>b} 0

Proof of Lemma 6.7. Let ¢ € H'(R?). We write 1) = g + 1 with ¢pg = P™=0% and ¢ =
PlmI=1y, where P™ is the projection onto the space of functions with angular momentum m.
Then for 1; we have

1 1
[Vipi|* = |0, + E|<9(91/11|2 > ?WJIF (6.56)
and therefore

/{ - (V1 (2)]? = Colz| > ¥ ¢ (2)?) dz >0 (6.57)

if b > 0 is sufficiently large. Hence, it suffices to prove inequality (6.55) for the spherically
symmetric function ¢g. For |z| > b let ¥(|z|) = vo(Jz|) — 1o(b), such that ¥ (b) = 0 and we
extend ¢ with zero to the region {|z| < b}. Then, similarly to the one-dimensional case we
obtain

/ (Vo (2)[* = Colz| > [ (2)]?) da
{lz|>b} 659)

~ 2 C —2—v|7 2 de — C oy b 2d .

> /{Izb}(|V¢(x)| 2C)|z| U ()| ) z /{Izb}Q olz| o(B)[? dae

Since 7,/;(|z|) =0 for |z| < b, we can apply the two-dimensional Hardy inequality to the function
1, which implies that the first integral on the r.h.s of (6.58) is non-negative. Hence, we arrive at

/ (V40 (@) 2 — Cola| ¥ o) [?) dz > —2C, / 22 o (B2 de. (659
{|z|>b}

{l=|=0}

Computing the integral on the r.h.s. of (6.59) completes the proof of Lemma 6.7. O

Proof of Theorem 6.5. In the proof we follow the same strategy as in the proof of Theorem 6.1.
Let

Lig] = / (IVol? + VIgf? - elalztof?) da. (6.60)

We show that L[¢] > 0 for all functions ¢ € H'(Xy) with supp (¢) C {|z|m > R} if e > 0 is
small enough and R > 0 is sufficiently large. First, we estimate the part of L[p] corresponding to
the cone K(Z, ) for an arbitrary partition Z into two clusters. Assume that Z = (C}, C2) with
Cy = {i,j} and C2 = {k}. Note that the spaces X¢(Z) and X.(Z) are both two-dimensional.
We choose orthonormal bases of Xy(Z) and X.(Z) and denote by §1, G2, &1, & the corresponding

coordinates. We write ¢ = (¢1,42), £ = (51,52) and ¢ = (g, €). Similarly to (6.20) we write

| (VopP VISP —elalfloP) do= [ ([ agl? + Viglel?) do
Kr(Z,k) Kr(Z,k)

(6.61)
[ (1Tl Vit Vilol? = elalP)
KR(Z,I{)

To estimate the integrals on the r.h.s of (6.61) we introduce polar coordinates ¢ = (p1,31) and

& = (p2, B2) in the planar spaces X¢(Z) and X.(Z). For the first integral on the r.h.s. of (6.61)
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we use Lemma 6.6 for fixed € with by = s|¢|. Then similarly to (6.22) we get

[ Vel VleP) do= [ (VapP 4 Vi) da
Kr(Z,r) {lel= 5} J{lal<xlel}

2m (6.62)
— ~7l/ ~ ~2d d~
= C/{ng}'&' /0 lp(rlE], B, €)I” dBs dé

for some C' > 0. For the second integral on the r.h.s. of (6.61) we use Lemma 6.7 for fixed ¢§ and
with b = £~1|q|, which similarly to (6.27) yields

[ (19l Vit Vil — elel 1ol do

KR(Z,KZ)

2 (663)

e[ ga [ letan Yl B asada,
0

{lal=n}

where n = (1+ r7?) 'Ris analogous to the proof of Theorem 6.1. Combining (6.62) and (6.63)
with (6.61) implies

| (Vopl VIl o) do
KR(Z,I{)
21
e |, 81, ) dBy dé |
> /{|§~,>§}'5' /O (o(RIE], Br, )2 By dé (6.64)

27
e 3 / oG 51, B2)|? Bz dd.
0

{1d1=n}
In the set {(|g], |¢]) € Ry xR} we introduce the polar coordinates (p, #), where p? = |G| +|€]? =
|z|2, and 6 = arctan(|q|) € [0,%). Then p; = psin(f) and py = pcos(f). We represent the

€]
function () as a function @(p,d, B1, B2). Note that the integrals on the r.h.s of (6.64) are

integrals of the function |@(z)|? over the set where |G| = x[€], i.e. where 6y = arctan(k).
Therefore, for the first integral on the r.h.s of (6.64) we get

/ o / (o(k12], 81, )2 By dé
{1€>% 0

}
/ / @(kp2, Br, p2, B2)|” dB1 dB2 padpo, (6.65)

/ /2” /% ¢(p, 0o, b1, B2)|” dB1 dB2 pdp,

where ¢ > 0 is a constant which comes from the transformation of variables if we represent the
function pa — @(kp2, b1, p2, B2) as function p — @(p, by, b1, f2), where 6y = arctan(k). In the
first equality in (6.65) we used that dim (X.(Z)) = 2, which implies that the Jacobian of the
transformation to polar coordinates in X.(Z) gives a factor ps. In the last equality of (6.65) we
used that the function ¢ is zero for p < R. Similarly we get

2m
Jo [ el ) P s di
talzn}

/ // 3(p. 60, B1, B2)|? dB1 dBa pdp

(6.66)
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for some ¢’ > 0 . Therefore, by combining (6.65) and (6.66) with (6.64) we obtain

/ (IWoul? + Vigl? — elzlztpf?) de
KR(Z,H)

e’} 27 27
—C/ / / p' Y |@(p, 00, B1, B2)|* dB1 dBa dp
r Jo Jo

for some C' > 0. Now as in the proof of Theorem 6.1 we estimate the integral on the r.h.s. of
(6.67), which is an integral over the edge of K (Z, k) given by {|g| = x|€|}, by an integral over the
set K(Z, k, k') for some k' which is slightly larger than . For this purpose let ¥’ > & be so small
that the cones Kr(Z, ') and Kg(Z', k') do not overlap for partitions Z # Z' with |Z| = |Z'| = 2
and let ; = arctan(x’). We apply Lemma 6.4 to the function ¢(p, -, 01, 02) for fixed p, 01, 63 and
with by = 0y, by = 01. Then we get

[e%s) 27 27
/ / / p' Y |@(p, 00, B1, B2)|* dB1 dBa dp (6.68)

(6.67)

27 p2w pB
<ceo,91/ / // V(130 0, Br, Ba)  + 106 3(p, 0, B, B2)[2) d0dBy dBa dp,

where C(fp,601) depends on 6y and 6 only. Using the scalar form of the four-dimensional Hardy
inequality [7, eq. (2.15)] we obtain

/ V130,08, Bo) 2 dp < / 510,(p, 0, B, B2) 2 dp. (6.69)
R R

Therefore, we get

/R plil/ (|¢(p797ﬂ1752>|2 + |8995(p59551752>|2) d

i (6.70)
a )9) ) 2
<R / (lapQD pae ﬁlaﬁQ |2 | Gsp(p pgﬁl 62)| ) dp
Recall that (p,6) are the polar coordinates corresponding to (|G|, |€]), which implies
. 999 (p, 0, b1, B2)|?
<|apso<p,o,ﬂl,ﬂ2>|2 + 2P IR g0 +l0gel < Vopl.  (67D)
This yields
2,27 ~ 2
a ’9’ )
R / / / / (lapso 00,51, 5o + 120812 pfl bl ) 6 dB; dBs dp
6o
< s/ |Vool|? dz, (6.72)
Kgr(Z,k,k")
where € > 0 can be chosen arbitrarily small if R > 0 is sufficiently large. Here we used that
the Jacobian of the transformation from the coordinates x = (q1,G2,&1,&2) to the variables
(p,0, 1, 32) is given by p3sin(f) cos(f) and we can estimate
0 < sin(fy) cos(fy) < sin(d) cos(0) (6.73)
for any 0 € (0y,61) if 0 < k < k' < 1. Combining (6.72) with (6.70), (6.68) and (6.67) we get
| (Ve 4 VieP - clal o) doz e [ (VapPdn (6
Kr(Z,k) Kgr(Z,k,k")

This inequality is an analogue to (6.38) in the proof of Theorem 6.1. Now we can complete the
proof of Theorem 6.5 by repeating the same steps as in the proof of Theorem 6.1 if we replace the
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scalar form of the two-dimensional Hardy inequality by the scalar form of the four-dimensional
one. O
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APPENDIX A. PROPERTIES OF THE SPACE H'(R%)

Here we collect some properties of the space H L(R?) for dimensions d = 1 and d = 2. These
spaces are intensively discussed in [7] and in [11].
Proposition A.1 (Properties of H'(R%), d =1,2). The following assertions hold.

(i) Let u € H'(R?) and let (un)nen be a sequence in H'(RY), such that u, — u weakly in

ﬁl(Rd). Then for every measurable set A C R with finite measure we have X Aty — X AU
in L%(R%). )
(ii) (Hardy’s inequality for the half-line, [7]) Let d =1 and u € H*(R), such that u(0) = 1.

Then
/ lul*(t)
t2
0

(iii) (Two-dimensional Hardy inequality, [28]) Let d = 2 and assume that w € H'(R?), repre-
sented in polar coordinates (r,0), satisfies

/MMmea (A.2)
0

dt < 4/|u’(t)|2dt. (A.1)

Then
/ [ul* dz <4 [ |Vud (A.3)
R [22(1+10%(2]) T Jee ' '
(iv) Let d = 1. Then there exists a constant C > 0, such that for all functions u € H'(R)
/OO u(@)l® dz < Cllull%, (A4)
1+a?

(v) Letd = 2. Then there exists a constant C > 0, such that for all functions u € H'(R?)

|U(.’I])|2 2
— 2 dx < g e A.
/]R2 1+ 552(111 |:L'|)2 v CHUHHl ( 5)

Remark. Inequality (A.3) is equivalent to the scalar inequality

O/t 1 +ln y &= 4/’5(“/@))2(“’ u(1) = 0. (A.6)

0
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Corollary A.2. It follows from Proposition A.1 (1v) and (v) that if V satisfies (2.2) and (2.9),
then there exists a constant C > 0, such that for all u € H*(R?) we have

[ Vi@l de < Cluly. (A7)

Corollary A.3. For any function v € H'(R?) with supp (u) C {z € R? : |z| < 1} and any
constant v € (0,1) we have

2
/ - [ul < 4/ V|2 dz. (A.8)
{lz|zv} |2[2(1 + In"(|z])) {lz|>v}

Proof of Corollary A.3. Since the function v(z) = |z|=2 (1 + (In (|:L'|)>2)71 is spherically symmet-
ric, due to the rearrangement inequality it suffices to show that the inequality holds for spherically
symmetric functions. Let v € H!(R?) be spherically symmetric with supp (u) C {z : |z| < 1}.

Then the function u given by
if |z| >
i(z) = {u(:c) if |2] > v, (A.9)

u(v) if|z| <v

is also an element of H'(R?). Applying the two-dimensional Hardy inequality (A.3) to the
function @, using that @ is constant for |z| < v and that @ and u coincide for |z| > v proves
(A.8). O

Remark. Analogously to the proof of Corollary A.3 one can see that if d > 3, then for any
function u € H(R4) we have

/ P gy 4 / Vul2d (A.10)
—F ax D ———— u xZ. .
(aizwy 1212 7 (d=2)% Sz

APPENDIX B. NECESSARY AND SUFFICIENT CONDITIONS FOR VIRTUAL LEVELS

In this section we prove Theorem 2.3, which is stated for one-particle Schrodinger operators
in dimension one or two. Afterwards, we give an analogue of this theorem for the multi-particle
case.

Proof of Theorem 2.3. We only need to prove that the absence of a virtual level of h implies
that (2.16) does not hold. The proof of the other direction follows from Theorem 2.2 and the
variational principle.

Let d = 1. Note that we can assume that U(x) = —(1 + |z|)~2. For ¢ € H'(R) we write

Yo(x) = ¢(x) — (0). (B.1)
Then, ¥(0) = 0 and we can apply Hardy’s inequality on the half line Ry to obtain
* [tho() 2 a2
/0 FE dz < 4/0 [tp(z)|* dz = 4/0 | (x)]* da. (B.2)
Furthermore, we have
Vo) = [ V@ROPde+ [ V@@ o+ 2Re [ Vi) do
- - o (B.3)

> [ V@O [ V@h@Ed -2 [ V@R d

— 00 — 00
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Note that for any 6 > 0

206(0) o (a)| < SHE(O)? + 6 [ (a) . (B.4)
which together with (B.3) implies
Vo0 2 BOP [ (V@) -3V dw+/|wo )=V (@)]) do
> WO)F [ (V) - oV do - (1457 / V@)l (@) da (8.5)
> [0 [ (Vi) = 8V (@) do ~ C(1+ 5ol

where in the last estimate we used Corollary A.2. Since 1(0) = 0, we have [|[¢0]|%, < Cllypl*.
This, together with (B.5) yields

oo

Vi, 8) > [9(0)2 / V(@) - 6|V (@) dz — C(5) / " ()P de. (B.6)

Since [V (z)dz > 0, we can choose the constant § > 0 sufficiently small, such that [*_(V(z)—
§|V(z)|)dz > § [0 V(x)dx =: Cy. This, together with ¢'(x) = 1) () implies

WO < Ca Vb, 9) + CLO)|I'|]” (B.7)
for some constant C7(6) > 0 which depends on V' and § only. This yields

Gy . [ [ (@)l
/ d <2l (0)|_ 1 RV ARE 2 d (B.8)
<er (2n[(0)]? + 8[|9']%) < er (20Cy (Vi 0) + C2(8)[[¢']1?)
where C3(8) = C1(d) + 8. We distinguish between two cases:
(i) If 27Cy (V) < Ca(6) ||¢’||2 then (B.8) yields
'1/’ e < 20, Go(0) ) (B.9)

Now since h does not have a virtual level, we can choose €7 > 0 sufficiently small to conclude
that

o] 2
(hp, ) — 51/_ Tfl dz > 0. (B.10)

(ii) If 27C5H (Vap, 1) > Co(0)||4']|?, we have (V4p,1p) > 0 and
€1 / % da < deymCyH VY, ). (B.11)

By choosing 0 < &1 < (47)~1Cpy we obtain

[ [b@P

. dz > [|9']|* > 0. (B.12)

<h¢a¢> -

— 00
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This implies (B.10) and therefore the statement of Theorem 2.3 for the case d = 1.
Now we assume that d = 2. For v € H'(R?) we write 1o(z) = 1(z) — ag, where

1 2

w=g | w10 (B.13)

Then f02 "4po(1,0)df = 0 and thus we can apply the two-dimensional Hardy inequality (A.3) to
the function . Proceeding as in the proof of the one-dimensional case yields the statement for
d = 2 and therefore completes the proof of Theorem 2.3. O

Now we extend Theorem 2.3 to the case of multi-particle Schrédinger operators.

Theorem B.1. Let H be the Schrédinger operator corresponding to a system of N > 2 one- or
two-dimensional particles, where the potentials Vi; # 0 satisfy (2.2) and (2.9) and let H > 0.
Then H has a virtual level at zero if and only if the following two assertions hold.
(i) There exists an g9 > 0, such that for any cluster C with 1 < |C| < N we have
1

H[C] — eo (1+ [q[C][7, (n(lg[Clm)?) = 0. (B.14)
(ii) For any € > 0 we have
inf S (H —e(1+]af?, 1n2(|z|m))’1) <0. (B.15)

Proof of Theorem B.1. For N = 2 the statement was proved in Theorem 2.3. Now assume that
N > 3. At first, we prove that if H has a virtual level at zero, then statement (i) of Theorem
B.1 holds. We prove this by induction over the number of particles N in the whole system.
Assuming that this statement is true for systems consisting of N particles, we show that it also
holds for systems of N + 1 particles. Suppose for a contradiction that there exists a cluster C'
with 1 < |C| < N + 1, such that for all £ > 0 inequality (B.14) does not hold. Among such
clusters we choose one with the smallest number of particles and denote it by Cy. If Cy consists
of only two particles, then by Theorem 2.3 the condition

inf S (H[Co] — 20 (1 + |alCo] 2, (n(la[Collm)*) ") < 0 (B.16)

implies that Cy has a virtual level at zero. However, by the remark after Definition 3.1 Hamil-
tonians of non-trivial clusters can not have virtual levels at zero if the Hamiltonian of the whole
system has a virtual level. Therefore, Cy must consist of at least three particles. Hence, by
definition C satisfies

inf S (H[CO] —e(1+ |q[Co]|$n(1n(|q[Co]|m))2)7l) <0 foranye >0 (B.17)

and for each cluster C' C Cy with |C| > 1 we have

- - -1

HIC) ~ 2o (14 lC)2,(n(1glCTm))?) =0 (B.18)
for some £y > 0. Hence, by the induction assumption H[Cy] has a virtual level at zero. Again,
this is a contradiction to the assumption that H has a virtual level at zero. Therefore, we have
shown that if H has a virtual level at zero, then statement (i) of Theorem B.1 holds.

Next, we prove that if H has a virtual level at zero, then statement (ii) of Theorem B.1 is also
true. By the results of Section 3 we know that in case of d = 1, N > 3 or d = 2, N > 4 zero
is an eigenvalue of H. Taking the corresponding eigenfunction as a trial function shows that
(B.15) holds for any € > 0. For d =2, N = 3 we do not know if zero is an eigenvalue. However,
by Theorem 4.1 we know that there is a function ¢o € H'(Xo) with [|[Vogo | + (Vo, @o) = 0
and therefore we get (B.15) in this case as well. Hence, if H has a virtual level at zero, then
statement (ii) of Theorem B.1 is also true.



46

Now we assume that (i) and (ii) of Theorem B.1 hold and prove that H has a virtual level at
zero. At first, we show that condition (i) of Definition 3.1 is fulfilled, namely that there exists a
constant €9 > 0, such that

inf Sess (H + Evo) =0. (B19)
Recall that this is equivalent to the absence of virtual levels for H[C] for all clusters C' with
1 < |C| < N. Assume for a contradiction that there exists a cluster Cy with 1 < |C;]| < N, such
that H[C7] has a virtual level at zero. Then, as we proved before, we have

inf S (H[C1] & (1+ |a[C)12,(n(lglCrllm))?) ') < 0. (B.20)

This is a contradiction to (B.14). Hence, condition (i) of Definition 3.1 is fulfilled.
Hence, it remains to prove that if conditions (i) and (ii) of Theorem B.1 hold, then condition
(ii) of Definition 3.1 is fulfilled, namely

inf S (H +eAo) <0 (B.21)

for any e > 0. Assume that (B.15) is fulfilled for any ¢ > 0. If dim(X,) > 3, we can use
Hardy’s inequality to conclude that (B.21) holds. If dim(Xy) < 3, i.e. the system consists
of three one-dimensional particles, we take a sequence of eigenfunctions v, corresponding to
negative eigenvalues of the operator H—n=" (1 + |:c|3n(ln(|x|m))2)f1 , normalized by [|¢,]| 71 = 1.
Applying the same arguments as in the proof of Theorem 3.5 we see that 1, converges in L?(X)
to a function vy which is an eigenfunction of the operator H corresponding to the eigenvalue
zero. For this function we have

(1= &) Vovoll* + (Vibo, 10) = —[| Votho||* <0 (B.22)
for any e > 0. This proves that condition (ii) of Definition 3.1 is fulfilled and completes the
proof of Theorem B.1. (I

APPENDIX C. A SUFFICIENT CONDITION FOR FINITENESS OF THE DISCRETE SPECTRUM

In this section we give a criterion for the finiteness of the number of negative eigenvalues,
which we used in the proofs of Theorem 5.1, Theorem 6.1 and Theorem 6.5. This criterion, in a
slightly different form, is due to G. Zhislin and is a part of the proof of the main result in [39].
For the convenience of the reader we give it here.

Lemma C.1. Let h = —A+V in L2(RF), k € N, where V satisfies (2.2). Assume there erist
constants B,e, b > 0, such that

(b, ) — e{|a =P, ) 2 0 (C.1)
holds for any v € HY(R*) with suppy C {x € R¥ |z| > b}. Then the following assertions hold.
(i) inf Se(h) > 0.
(ii) The operator h has at most a finite number of negative eigenvalues.
(iii) Zero is not an infinitely degenerate eigenvalue of h.

To prove Lemma C.1 we use the following

Lemma C.2. Assume that V satisfies (2.2). Let 5 >0, >0 and b>b>0. Then there exist
a constant C(g, B) and a function x; € C*(R¥), 0 < x1 < 1, with

17 | | S b’
= ~ C-2
x1(x) {0, 2| > b, (C.2)

such that for all ¢ € H(R*) we have
(h, ) > (hpxa,oxa) = Cle, B)lnall® + (hpxz, vx2) —elllal P vxellfye piapyp (C3)
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where x2 = /1 — x3.

Proof of Lemma C.2. Let 8,e > 0 and b,b > 0 with b > b be fixed. Furthermore, let w : Ry —
[0,1] be a C'-function, such that u(t) = 1,¢ < b and u(t) = 0, ¢ > b. We assume that u is
strictly monotonically decreasing on (b, l;) Let v = v/1 —u2. We choose v in such a way that
V() (1 —v2(t))"2 — 0 as t — b_. For z € R¥ let

xi1(@) = u(lz]),  x2(z) = v(lz]). (C.4)
Then we have
Vxol? _ ('(Jz])?

VX12+VX22= .
Val +1Vxal” = T2 = T

(C.5)

Since v'(|z])(1 — v2(Jz|))"2 — 0 as |z] — b_ and v(|z]) is close to one in a vicinity of |z = b, we

can choose b’ so close to b that

(v'(l=]))? 2 -8 / i
< b < <b. .
Ly < e(aDlel << (©6)
This, together with (C.5) implies
Vil + Vel < exg(@)lel =%, ¥ < 2| <b. (C.7)

Now we estimate |Vx1|? 4+ |Vxa|? for b < |z| < b'. Recall that u(t) > u(b') > 0 for b <t < V.
Hence, we get

WD) _ 2t ,
Ty < Cvela ™ <l < (©8)

for some C' > 0 which depends on b’ (which itself depends on € and 3). Due to the IMS formula
we have

(hap, ) = (hpx1,¥xa) + (hbxa, xe) — / (|VX1|2 + |VX2|2) y]? da. (C.9)
This, together with (C.7) and (C.8) completes the proof of Lemma C.2. O
Now we turn to the

Proof of Lemma C.1. We construct a finite-dimensional subspace M C L?(R¥), such that (hy, ) >
0 holds for any ¢ € H'(RF), ¢ # 0 which is orthogonal to M. Let ,3,b > 0, such that (C.1)
is fulfilled. Let x; and x2 be functions according to Lemma C.2. Then by assumption of the
lemma for any function ¢ € H'(R¥)

(hp, ) > (hpxa,9xa) = Cle, B)lvnall* + (hbxa, vx2) — elllel ™ vxelfye 0 <py
> (Mx1,¥xa) — Cle, Bllvxall,

because supp (x2) C {z € R¥ : |z| > b}. Thus, to prove statements (i)-(iii) it suffices to show
that

(C.10)

(hpx1,¥x1) = Cle, B)l¥xal* 2 0 (C.11)

holds for any function v € H'(RF) with ¢» L M (in L?(R¥)) for some finite-dimensional space
M C H'(RF). By condition (2.2) we get

(hpx1,vxa) = Cle, B)lvxall® = (1 =)V (¥xa) I* = C'(e, B)llvxa|l? (C.12)
for some C’(g, ) > 0. For [ € N let
M= {pix1,---, 011} (C.13)



48

where {¢1,..., ¢} is an orthonormal set of eigenfunctions corresponding to the [ lowest eigenval-
ues of the Laplacian, acting on L? ({|:c| < B}) with Dirichlet boundary conditions. For ¢ 1L M,
we have ¥x1 L ¢1,...p;, which for sufficiently large [ implies

IV@x)? = (1 =) O’ B)llva |- (C.14)
Therefore, we conclude L[tx1] > 0. This proves statements (i)-(iii) of Lemma C.1. O
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