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Parallel space-time solutions for the linear
visco-acoustic and visco-elastic wave equation

W. Dörfler, C. Wieners and D. Ziegler

Abstract We present parallel adaptive results for a discontinuous Galerkin space-
time discretization for acoustic and elastic waves with attenuation. The method is
based on p-adaptive polynomial discontinuous ansatz and test spaces and a first-order
formulation with full upwind fluxes. Adaptivity is controlled by dual-primal error
estimation, and the full linear system is solved by a Krylov method with space-time
multilevel preconditioning. The discretization and solution method is introduced
in Dörfler-Findeisen-Wieners (Comput. Meth. Appl. Math. 2016) for general linear
hyperbolic systems and applied to acoustic and elastic waves in Dörfler-Findeisen-
Wieners-Ziegler (Radon Series Comp. Appl. Math. 2019); attenuation effects were
included in Ziegler (PhD thesis 2019, Karlsruhe Institute of Technology). Here, we
consider the evaluation of this method for a benchmark configuration in geophysics,
where the convergence is testedwith respect to seismograms.We consider the scaling
on parallel machines and we show that the adaptive method based on goal-oriented
error estimation is able to reduce the computational effort substantially.

1 Introduction

Classically, wave equations are considered as evolution equations where the deriva-
tive with respect to time is treated in a stronger way than the spatial differential
operators. This results in an ordinary differential equation (ODE) with values in a
function space with respect to the spatial variable. For example, acoustic waves in a
spatial domain Ω ⊂ Rd for a given right-hand side b can be considered in terms of
the following ODE

∂tu = Au + b in [0,T] , u(0) = 0 , A =
(
0 div
∇ 0

)
,
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where the solution u is an element of the spaceC0 (0,T ;D (A)
)
∩C1 (0,T ; L2(Ω)1+d)

withD (A) ⊂ H1(Ω) ×H0(div,Ω). In order to analyze this ODE, space and time are
treated separately and hence tools for partial differential equations are used in space
and tools for ODEs are used in time.

Since time integration is a sequential process, we consider here for the paral-
lelization the space-time operator

L(p, v) =
(
∂tp + div v
∂tv + ∇p

)
,

in Q = (0,T )×Ω as a whole treating time and space dependence simultaneously in a
variationalmanner. Using this approach, we constructed the space-timeHilbert space
H(L,Q) that allows for irregular solutions, e.g., with space-time discontinuities. We
select a space V ⊂ H(L,Q) including homogeneous initial and boundary conditions
such that the full space-time operator L : V −→ L2(Ω)d+1 defines an isomorphism.
As a result, for every given right-hand side b ∈ L2(Ω)d+1, the problem of finding
u ∈ V such that

Lu = b

is well-posed in our framework.
Many applications rely on accurate numerical simulations of waves through com-

plex material structures. For instance, geophysical structures like the earth’s crust
below the sea bed feature complex varying material properties. A typical example
is the problem of full waveform inversion (FWI), where the material distribution
is reconstructed from measurements of the wave field close to the surface. This is
achieved by minimizing a misfit functional. The evaluation of this functional and its
gradient require wave solutions forward and backward, where the adjoint problem
relies on the full information in space and time.

The forward problem for this application is considered in this work for acoustic,
visco-acoustic, and visco-elasticwaves.A discretization in space and time is provided
by a Discontinuous Galerkin approach presented in [5]. An alternative method is the
Discontinuous Petrov-Galerkin (DPG)method,whichwas introduced byDemkowicz
et al. and provides a framework for the discretization of general linear first-order
systems, see [7]. The application to acoustic waves is presented in [8, 10] and
extended to heterogeneous media in [11].

2 Solving the visco-elastic wave equation in space and time

For the parallel approximation we use a space-time discretization with discontinuous
ansatz functions in space and continuous ansatz functions in time together with an
adaptive algorithm using dual weighted residual estimators and a multilevel precon-
ditioner. We call this discretization the dG-cPG method, since it is discontinuous
in space and continuous in time, but combined with discontinuous test functions in
space and time, resulting in an Petrov–Galerkin method. A more detailed version
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can be found in [6]. This discretization is applied to the acoustic and elastic wave
equation in [9]. A discretization using discontinuous ansatz functions in space and
time is presented in [12] and applied to the visco-acoustic and visco-elastic wave
equation. We call this discretization the dG-dG method. We want to remark that the
dG-cPG(q) and dG-dG(q − 1) method have the same amount of degrees of freedom,
where q denotes the polynomial degree in time.

The wave equations including attenuation effects can be written in the compact
operator formulation

Lu = b a.e. in (0,T )

with L = M∂t + A + D. In the case of visco-elasticity we get

M (v,σ0, . . . ,σG ) =
(
ρv,C−1

0 σ0, . . . ,C−1
G σG

)
,

A(v,σ0, . . . ,σG ) = − (∇ · (σ0 + . . . + σG ), ε (v), . . . , ε (v)) ,

D(v,σ0, . . . ,σG ) =
(
0, 0, τ−1

1 C−1
1 σ1, . . . , τ

−1
G C−1

G σG

)
.

In the special case of isotropic materials the elasticity tensors Cg = C(µg, κg) for
g = 0, . . . ,G, with

C(µ, κ)ε = 2µ dev(ε) + κ trace(ε)I , dev(ε) = ε −
1
3

trace(ε)I,

only depend on the shear moduli µg and the compression moduli κg = λg + 2
3 µg.

In the limit of vanishing shear forces one obtains for the hydrostatic pressure p =
1
3 trace(σ) = p0 + · · · + pG the visco-acoustic system

ρ ∂tv = ∇p0 + · · · + ∇pG + b ,
∂tp0 = κ0∇ · v ,

∂tpg = κg∇ · v −
1
τg

pg, g = 1, . . . ,G .

For the discretization, we assume thatΩ is a bounded polyhedral Lipschitz domain
decomposed into a finite number of open elements K ⊂ Ω such that Ω =

⋃
K ∈K K ,

whereK is the set of elements in space. Let Q =
⋃

R∈R R be a decomposition of the
space-time cylinder into space-time cells R = K × I with K ∈ K and I ⊂ [0,T] an
interval; R denotes the set of space-time cells. For the fixed mesh K in space and a
time series 0 = t0 < t1 < · · · < tN = T , the space-time mesh is defined by

R =
⋃

n=1,...,N
Rn , Rn =

{
K × In : In := (tn−1, tn], K ∈ K

}
.

On each cell R we define the local space

Vh,R = PpR (K ;RJ ) ⊗ PqR (In;RJ ) ⊂ L2(R;RJ )

and the global space
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Algorithm 1
RCB_st(cells R, weightsW , factor m, bisections b, sort c)
Require: m, b ∈ N, c ∈ {t, x, y, z }
1: if b == 0 then
2: send cells in R to process m distribute cells
3: return
4: end if
5: sort and bisect set of cells
6: sort R by coordinate c
7: split R into R1 and R2 such that
8:

∑
R1∈R1 WR1 ≈

∑
R2∈R2 WR2

9: define coordinate for next bisection
10: if c == z then
11: c := t
12: else if c == y then
13: if dim == 3 then
14: c := z
15: else
16: c := t
17: end if
18: else if c == x then
19: if dim > 1 then
20: c := y
21: else
22: c := t
23: end if
24: else
25: c := x
26: end if
27: recursive call
28: RCB_st(R1,W , m, b − 1, c)
29: RCB_st(R2,W , m + 2b−1, b − 1, c)

Vh =
{
vh ∈ L2((0,T ); L2(Ω;RJ )) : vh,R = vh |R ∈ Vh,R

}
.

The polynomial degree in space and time (pR, qR) in each cell can be arbitrary and
is chosen by an (p, q)-adaptive algorithm. The space-time cells are distributed on 2b
processes using the recursive bisection algorithm presented in Alg. 1. The algorithm
combined with the appropriate choice of weights WR, based on the polynomial
degrees (pR, qR), leads to a distribution, where every process has to handle the same
computational effort. The space-time system is solved with a multilevel precondi-
tioner in space and time, see [6, Chap. 6]. The parallel direct solver [2, 3, 4] is used
on the coarse level.
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2.1 A geophysical benchmark in heterogeneous media

The benchmark problem Marmousi II [13] for geophysical applications provides
realistic structures in two space dimensions with heterogeneous media, see Fig. 1 for
the density distribution in this benchmark configuration.

Fig. 1 Density distribution for theMarmousi II benchmark: The graphic shows the fullMarmousi II
benchmark with a domain size of 17 km × 3.5 km. The red subdomain 10 km × 3 km is used in the
adaptive numerical experiments and the smaller yellow subdomain 3 km×3 km for the convergence
tests in space and time on uniform discretizations.

For the numerical experiments, we simulate maritime measurements in seismic
exploration with a local source initiating a wave by a smooth pulse in space of width
ws = 100 [m] located at xs ∈ Ω

φ(x) =



cos6
(
π |xs − x|

2ws

)
|xs − x| < ws ,

0 else.
(1)

and a Ricker wavelet in time

ψ(t) =
(
1 − 2π2(t − ts)2 f 2

)
exp

(
−π2(t − ts)2 f 2

)
with frequency f and time delay ts = 0.15 [s]. This results in the right-hand side
b(t, x) = ψ(t) φ(x) e with e = (0, 1, 0, . . . , 0) ∈ Rdim+1+G in the acoustic case, and
e = (0, I3, 0, . . . , 0) ∈ Rdim × Rdim× dim

sym × · · · × Rdim× dim
sym for elasticity.

In our tests, the solution is compared for different discretizations by the resulting
pressure evaluated at the receivers positions xr,i ∈ Ω, i = 0, . . . , Nr. This defines a
seismogram s ∈ L2(0,T ;RNr ), i.e., si (t) = p(t, xr,i).

The Marmousi model prescribes a density distribution ρ ∈ (1010, 2627) [kg/m3]
and reference values for the velocities of shear waves vS ∈ (0, 2802) [m/s] and
compressional waves vP ∈ (1028, 4700) [m/s]. This defines the parameters µ = ρv2

S
and κ = ρv2

P −
4
3 µ for isotropic elasticity. We fix this material parameters cellwise

constant on a spatial mesh with mesh size 125 [m].
We set κ0 =

κ
1+GτP and κ1 = · · · = κG = κ0τP with τP = 0.1, and we set

µ0 =
µ

1+GτS and µ1 = · · · = µG = µ0τS with τS = 0.1, Furthermore, we use the
relaxation time τg = 1

2π fg with reference frequencies f1 = 0.151 [Hz], f2 = 1.93
[Hz], and f3 = 18.9 [Hz], for G = 3 and f1 = 10 [Hz] for G = 1.
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S
R0

...

R14

S R0 · · · R16

Fig. 2 Marmousi II: Sketch of location of source and receivers for the uniform computations used
in the first numerical experiment on the left and for the adaptive computations used in the second
experiment on the right.

2.2 Visco-acoustic equation with three damping mechanisms and
uniform p-refinement

We compare the dG-dGmethod with the dG-cPGmethod on uniform discretizations
with polynomial degrees p and q in space and time for the visco-acoustic model
with three damping mechanisms (G = 3) in this numerical test. Here, we use from
the full Marmousi II benchmark configuration the subdomain Ω = (4000, 7000) ×
(−3000, 0) ⊂ (0, 17000) × (−3500, 0) [m2] (see the yellow dashed box in Fig. 1)
and the time interval (0,T ) with T = 1.5 [s]. We use a coarse mesh in space
and time with h0 = 1000 [m] and Mt0 = 0.25 [s]. The initial pulse is located
at xs = (5500,−250). The seismograms are measured at the receivers with the
positions xr,i = (5500,−750 − 125i) for i = 0, . . . , 14.

Since we have no analytical solution for the problem, we compute the reference
seismogram by extrapolation. The order of convergence on the space-time mesh of
level l can be estimated from the factor

f l =
‖sl−1 − sl−2‖(0,T )

‖sl − sl−1‖(0,T )
,

where sl denotes the seismogram on level l combined with the L2-norm. With this
factor a better approximation can be constructed by extrapolation as

sex =
f l

f l − 1
sl −

1
f l − 1

sl−1 .

Here we choose the fixed polynomial degrees (p, q) = (3, 2) and the space-time
levels l = 3, . . . , 5 obtained by uniform refinement in space-time. All quantities in
this test are normalized with respect to the reference value ‖sex‖(0,T ) .

A selection of the results of this numerical experiment are shown in Tab. 1. The
results indicate, that the cPG version gives more accurate results than the dGmethod
with one order lower in time, although bothmethods have the same amount of degrees
of freedom. The advantage of the dG-dGmethod over the dG-cPGmethod is that the
system matrix is less dense. As a result, the total time to solve the system is lower. In
addition, less total system memory is required in particular with higher polynomials



Space-time discretizations for wave equations 7

dG-cPG on space-time mesh level 4
(p,q) e RAM DoF ML time
(2,2) 26.9% 387 GB 23 887 872 10 0:15:04
(2,3) 28.7% 753 GB 35 831 808 9 0:27:35
(3,2) 4.6% 1.0 TB 42 467 328 15 1:06:22
(3,3) 4.8% 2.2 TB 63 700 992 15 2:21:11

dG-dG on space-time mesh level 4
(p,q) e ê RAM DoF ML time
(2,1) 39.4% 39.1% 248 GB 23 887 872 10 0:06:48
(2,2) 28.8% 28.8% 473 GB 35 831 808 10 0:13:38
(2,3) 28.7% 28.7% 768 GB 47 775 744 10 0:22:55
(3,1) 31.1% 30.9% 636 GB 42 467 328 16 0:29:54
(3,2) 5.1% 5.1% 1.3 TB 63 700 992 15 1:02:34

Table 1 Marmousi II dG vs. cPG: comparison of the two methods on uniform discretizations.
The error e = ‖s − sex ‖(0,T )/‖sex ‖(0,T ) is given in percent and in case of using the dG-dG
method also the error of the seismogram obtained by evaluation of the conforming reconstruction
ê = ‖̂s − sex ‖(0,T )/‖sex ‖(0,T ) . ML denotes the GMRES steps with the multilevel preconditioner.
We use 10 smoothing steps if coarsened in time and 20 if coarsened in space. The time to solve the
space-time system on 256 parallel cores is given in [hh:mm:ss].

in time, since the dG-dG scheme has fewer coupling between the space-time cells
and thus the matrix graph is more sparse.

In Fig. 3 we illustrate the conforming reconstruction working on linear ansatz
functions in time and resulting in conforming quadratic functions. The conforming
reconstruction operator interpolates the ansatz functions, which are discontinuous
in time, resulting in functions, which are continuous in time of one order higher as
the ansatz functions. This serves the approximation order of the solution.

Fig. 3 Sketch of the feature using conforming reconstruction: the solution discontinuous in time
obtained by the dG(p)-dG(q) method with (p, q) = (3, 1) (blue) is reconstructed with Radau IIA
integration points (orange).
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2.3 A parallel adaptive visco-elastic computation

This numerical test demonstrates the parallel efficiency of the method. The visco-
elastic system with one damping mechanism (G = 1) is solved using one adaptive
step and the dG-cPG method.

Here we choose the domain Ω = (4000, 13000) × (−3000, 0) ⊂ (0, 17000) ×
(−3500, 0) [m2] (marked red in Fig. 1) and the time interval (0,T ) with T = 3 [s].
The source is located at xs = (7000,−250), and the receivers positions are xr, j =
(9000 + 125 j,−250) for j = 0, . . . , 16. For the adaptive simulations we use the goal
functional

Jelastic(v,σ) =
1
|ΩRoI |

∫
ΩRoI×{T }

traceσ dx with σ = σ0 + σ1 ,

together with the region of interest ΩRoI = (4750, 100) × (7250, 400). We start with
piecewise linear functions in space and time and solve the primal and dual problem.
In all space-time cells where the error indicator ηR is larger than θ = 1·10−9 times the
largest error indicator ηmax = maxR∈R ηR, i.e., ηR > ηcrit = θηmax, the polynomial
degree is increased in space and time. In contrast the polynomial degree is decreased
if η < 0.01 · ηcrit.

The visco-elastic adaptive space-time dG-cPG simulation tracks the propagation
of the wave from the source to the receivers. The first stress component (column 1)
and the distribution of the polynomial degrees (p, q) (column 2) are visualized
in Fig. 4. In the blue area we have (p, q) = (0, 1), gray (p, q) = (1, 1) and red
(p, q) = (2, 2).

This results into 364Mio. degrees of freedom and the full linear space-time system
is solvedwith 14GMRES steps using themultilevel preconditioner (50Gauss–Seidel
smoothing steps in space and 25 Jacobi smoothing steps in time). The p-adaptive
method reduces the degrees of freedomby approximately 78%compared to a uniform
computation (1 968Mio. degrees of freedom). On 4096 parallel processes the system
was solved in 30 minutes and 53 seconds whereas on 8192 parallel processes the
time was 15 minutes and 47 seconds. The solving time was cut nearly in half by
doubling the number of processes demonstrating very good strong scaling behavior.

Conclusion

We demonstrated a nearly optimal scaling behavior for an adaptive space-time
method for first-order linear hyperbolic systems. The method is realized in the paral-
lel finite element software system M++ [1], which provides a framework for various
numerical challenges such as elasticity, plasticity and electromagnetic waves. The
parallel scaling for these applications which be considered in future work.
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t = 0.375

t = 0.75

t = 1.125

t = 1.5

t = 1.875

t = 2.25

t = 2.625

t = 3.0

Fig. 4 Slices through the space-time solution for the visco-elastic adaptive computation at different
times. On the left is the first stress component and on the right the corresponding polynomial order
in space and time.
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