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Dual variational methods for an indefinite nonlinear

Helmholtz equation

Rainer Mandel, Dominic Scheider, Tolga Yeşil

Abstract

We prove new existence results for a Nonlinear Helmholtz equation with sign-

changing nonlinearity of the form

−∆u− k2u = Q(x)|u|p−2u, u ∈ W 2,p(RN )

with k > 0, N ≥ 3, p ∈
[

2(N+1)
N−1 , 2N

N−2

)

and Q ∈ L∞(RN ). Due to the sign-changes

of Q, our solutions have infinite Morse-Index in the corresponding dual variational

formulation.

1 Introduction

In the present article, we consider nonlinear Helmholtz equations of the form

(1.1) −∆u− k2u = Q(x)|u|p−2u on R
N

for p ∈
[

2(N+1)
N−1

, 2N
N−2

)

and k > 0 with a weight function Q ∈ L∞(RN) that may change

sign. To allow for the latter is nontrivial given that one of the main tools for proving the

existence of solutions is the dual variational method that, in its classical form, relies on the

nonnegativity of the weight function. In the context of Nonlinear Helmholtz equations it

was first implemented in a paper by Evéquoz and Weth [4]. To highlight the role of the

nonnegativity of Q we briefly recapitulate the approach. To simplify formulas and notation

we set the wavenumber k = 1. The analysis of the general case then results from a rescaling.
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Instead of (1.1) one considers a reformulation as the integral equation

(1.2) u = R(Q|u|p−2u) u ∈ Lp(RN),

where R is the real part of a resolvent type operator R, i.e., a right inverse of the Helmholtz

operator on R
N . For f ∈ S(RN ) the operator R is given by R(f) = Φ ∗ f where

Φ(x) :=
i

4
(2π|x|)

2−N
2 H

(1)
N−2

2

(|x|), x ∈ R
N \ {0}

is the fundamental solution of the Helmholtz equation associated with Sommerfeld’s outgoing

radiation condition

(1.3)

∣

∣

∣

∣

∇Φ(x)− iΦ(x)
x

|x|

∣

∣

∣

∣

= o(|x|
1−N

2 ), as |x| → ∞.

Here, H
(1)
N−2

2

denotes the Hankel function of the first kind and order N−2
2

. So the operator R

from (1.2) is given by R(f) = Ψ ∗ f where Ψ := Re(Φ) is given by

(1.4) Ψ(x) = −
1

4
(2π|x|)

2−N
2 Y 2−N

2

(|x|), x ∈ R
N \ {0}

It is known [7, Theorem 2.3] that R extends as a continuous linear map from Lp
′

(RN) →

Lp(RN) precisely for p ∈
[

2(N+1)
N−1

, 2N
N−2

]

. One then introduces the dual variable ũ := Q1/p′ |u|p−2u

and observes that solutions of (1.2) are precisely the critical points of the (dual) energy func-

tional I : Lp
′

(RN) → Lp(RN) given by

I(ũ) :=
1

p′
‖ũ‖p

′

p′ −
1

2

∫

RN

ũKũ dx.

Here, K : Lp
′

(RN) → Lp(RN), ũ 7→ Q
1

pR(Q
1

p ũ) is a symmetric operator in the sense of

(1.5)

∫

RN

f Kg dx =

∫

RN

gKf dx for all f, g ∈ Lp
′

(RN),

see [4, Lemma 4.1]. Under the additional assumption that Q vanishes at infinity, one obtains

that I is an odd functional of class C1 that has the Mountain Pass Geometry and satisfies

2



the Palais-Smale Condition. So the existence of an unbounded sequence of solutions to (1.2)

follows from the Symmetric Mountain Pass Theorem. Inverting the transformation u 7→ ũ one

thus obtains an unbounded sequence of solutions to the nonlinear Helmholtz equation (1.1).

This is the strategy proposed by Evéquoz and Weth [4] for the focusing nonlinear Helmholtz

equation Q ≥ 0. We refer to [9] for analogous results in the defocusing case Q ≤ 0, where

the dual variational approach can be implemented for the dual variable ũ := |Q|1/p
′

|u|p−2u.

In view of these two results it is natural to ask for a dual variational approach work in the

intermediate case of sign-changing Q. In this paper, we provide a solution for this problem.

To treat sign-changing coefficients Q ∈ L∞(RN) we have to come up with a new idea to make

the dual variation approach work. We write Q = Q+ −Q− where Q± := |Q|1A±
and

(1.6) A+ := {Q > 0}, A− := {Q ≤ 0}.

In fact we will consider Qλ := λQ+ − Q− for λ > 0 in the following. Our main idea is to

introduce a tuple of dual variables (ϕ, ψ) ∈ Lp
′

(A+)× Lp
′

(A−) associated with (u|A+
, u|A−

)

and to derive a coupled system of nonlinear integral equations the solutions of which are

precisely the critical points of an associated strongly indefinite dual energy functional. We

will see that the indefiniteness comes from the presence of Q− and thus vanishes in the case of

a nonnegative function Q ≥ 0. In particular, the critical points of this dual energy functional

will have infinite Morse index, which clearly distinguishes these solutions from the dual bound

and ground states obtained in [4] in the case Q ≥ 0. We will explain the dual variational

framework in detail in Section 2. Our conditions for the existence of critical points involve

the linear operator K : Lp
′

(RN) → Lp(RN), f 7→ |Q|
1

pR(|Q|
1

pf) as well as the numbers

(1.7) α := max
‖ϕ‖p′=1

∫

RN

ϕKϕ dx, β := max
‖ϕ‖p′=‖ψ‖p′=1

∫

RN

ϕKψ dx.

Since we will assume K to be compact, both values are indeed attained. Moreover we have

β ≥ 0 and [4, Lemma 4.2(ii)] gives α > 0 once we assume that A+ has positive measure, i.e.,

Q+ 6≡ 0. Our main result reads as follows.

3



Theorem 1.1. Let p ∈ [2(N+1)
N−1

, 2N
N−2

) and Q ∈ L∞(RN), Q+ 6≡ 0. Moreover assume that

(1.8) K : Lp
′

(RN) → Lp(RN) is compact and

∫

RN

ψKψ dx ≥ 0 for all ψ ∈ Lp
′

(A−).

Then for almost all λ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈ W 2,q(RN )∩

C1,γ(RN) for all q ∈
(

2N
N−1

,∞
)

and γ ∈ (0, 1) of

(1.9) −∆u− u = Qλ(x)|u|
p−2u on R

N .

The proof relies on a combination of a saddle-point reduction and the abstract monotonicity

trick by Jeanjean-Toland [6], which provides bounded Palais-Smale sequences (only) for al-

most all λ > λ0. It would clearly be desirable to extend our result to all λ > λ0, but related

a priori bounds seem to be out of reach. Notice also that [9, Theorem 1.4] suggests the ex-

istence of nontrivial solutions also for small λ > 0, possibly assuming the set {Q > 0} to be

small enough and following a different variational approach. Let us point out that λ0 is small

provided that the number β, which is the same as the operator norm ‖1A+
K(1A−

)‖p′→p,

is small compared to α > 0. In the case p > 2(N+1)
N−1

this can be achieved by considering

coefficient functions Q such that dist(A−, A+) is large enough, see [5, Lemma 2.6].

In the following Corollary, we show that the abstract conditions (1.8) hold for a reasonable

class of sign-changing functions Q ∈ L∞(RN). If for instance Q vanishes at infinity, then

[4, Lemma 4.1(ii)] applied to |Q| implies that K : Lp
′

(RN) → Lp(RN ) is compact. It is less

immediate to verify the non-negativity assumption on the bilinear form f 7→
∫

RN

fKf dx on

Lp
′

(A−). From [2, Corollary 5.4] we infer that this condition holds for measurable sets A−

with small enough diameter. To be more precise, if yN−2

2

denotes the first (positive) zero

of the Bessel function YN−2

2

, then the condition diam(A−) ≤ yN−2

2

is sufficient. We thus

conclude as follows.

Corollary 1.2. Assume p ∈ [2(N+1)
N−1

, 2N
N−2

) and Q ∈ L∞(RN), Q+ 6≡ 0 . Moreover assume

lim
R→∞

esssup|x|≥R |Q| = 0 and diam (A−) ≤ yN−2

2

.

Then for almost all λ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈ W 2,q(RN )∩
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C1,γ(RN) for all q ∈
(

2N
N−1

,∞
)

and γ ∈ (0, 1) of (1.9).

Let us remark that for the general case k > 0 the condition on the diameter of A− changes to

diam(A−) ≤ k−1yN−2

2

. To put this condition into perspective, note that for N = 3 we have

Y 1

2

(t) = −
√

2
πt
cos t, thus y1/2 = π/2 and yN−2

2

> y1/2 for N > 3 (see [1, Section 9.5]). The

regularity results in Theorem 1.1 and Corollary 1.2 are direct consequences of [4, Lemma

4.3] and of the iteration procedure from Step 3 in the proof of [8, Theorem 1]. Notice that

this theorem provides solutions to far more general Nonlinear Helmholtz equations than (1.1)

regardless of whether sign-changes occur or not, but the constructed solutions are small. This

result relies on a fixed point approach. Let us also mention [3] where nontrivial solutions of

Nonlinear Helmholtz equations are constructed for rather general and possibly sign-changing

nonlinearities vanishing identically outside some compact subset of R
N . Our method is

entirely different from any of these approaches.

This paper is organzied as follows: In Section 2 we introduce our basic tools and develop the

dual variational framework by reformulating the indefinite Nonlinear Helmholtz equation as

a coupled system of integral equations. Then we prove that nontrivial critical points of the

associated energy functional Jλ are indeed nontrivial solutions u ∈ Lp(RN) of the integral

equation u = R(Qλ|u|
p−2u). This motivates the search for critical points of Jλ. In Section 3

we perform the saddle-point reduction of (ϕ, ψ) 7→ Jλ(ϕ, ψ) leading to a reduced function

J̃λ that depends on ϕ only. In Section 4 we establish the existence of bounded Palais-Smale

sequences for these reduced functionals for almost all λ > λ0. As mentioned above, this step

entirely relies on the monotonicity trick by Jeanjean and Toland [6]. Finally, we combine all

the auxiliary results to prove Theorem 1.1 and Corollary 1.2 in Section 5.

Let us close this introduction by fixing some notation: Throughout the paper we denote

by Br(x) the open ball in R
N with radius r > 0 and center at x ∈ R

N . Moreover, we set

Br = Br(0) for any r > 0. For 1 ≤ s ≤ ∞, we abbreviate the standard norm on Ls(RN) by

‖·‖s. The Schwartz-class of rapidly decreasing functions on R
N is denoted by S(RN ). For

any p ∈ (1,∞) we always denote by p′ := p
p−1

the Hölder conjugate of p. The indicator

function of a measurable set B ⊂ R
N is 1B. By diam (B) we always denote the diametere of

a set. We will always use the symbols ϕ, ψ to denote Lp
′

(A+)− and Lp
′

(A−)-functions that

are continued trivially to the whole of RN .

Acknowledgements
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2 Dual variational formulation

In this section we will formulate a variational framework to the equation (1.9). We recall

from the introduction that solutions of our problem are obtained as solutions of the integral

equation

(2.1) u = R(Qλ|u|
p−2u), u ∈ Lp(RN).

where R(f) = Ψ ∗ f for the function Ψ introduced in (1.4) and

(2.2) ‖R(f)‖Lp(RN ) ≤ C ‖f‖Lp′ (RN )

for all p ∈
[

2(N+1)
N−1

, 2N
N−2

]

and some constant C > 0.

To obtain the dual variational formualation of (2.1) we introduce v := 1A+
u and w := 1A−

u.

Then (2.1) is equivalent to the system

v = λ1A+
R
[

Q+|v|
p−2v

]

− 1A+
R
[

Q−|w|
p−2w

]

,

w = λ1A−
R
[

Q+|v|
p−2v

]

− 1A−
R
[

Q−|w|
p−2w

]

.

Setting
ϕ := λQ

1/p′

+ |v|p−2v ∈ Lp
′

(A+), ψ := Q
1/p′

− |w|p−2w ∈ Lp
′

(A−)

we deduce

λ1−p
′

|ϕ|p
′−2ϕ = Q

1/p
+ v

= λQ
1/p
+ R

[

Q+|v|
p−2v

]

−Q
1/p
+ R

[

Q−|w|
p−2w

]

= Q
1/p
+ R

[

Q
1/p
+ ϕ

]

−Q
1/p
+ R

[

Q
1/p
− ψ

]

= Q
1/p
+ R

[

|Q|1/p(ϕ− ψ)
]

.

Similarly
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|ψ|p
′−2ψ = Q

1/p
− R

[

|Q|1/p(ϕ− ψ)
]

.

In terms of the Birman-Schwinger operator K : f 7→ |Q|
1

pR
(

|Q|
1

pf
)

introduced above this

can be reformulated as

λ1−p
′

|ϕ|p
′−2ϕ = 1A+

K(ϕ− ψ),

|ψ|p
′−2ψ = 1A−

K(ϕ− ψ)

and therefore carries a variational structure through the (dual) energy functional Jλ on

Lp
′

(A+)× Lp
′

(A−) given by

(2.3) Jλ(ϕ, ψ) :=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψ‖p

′

p′ −
1

2

∫

RN

(ϕ− ψ)K(ϕ− ψ) dx.

This functional is of class C1 with

∂1Jλ(ϕ, ψ)[h1] =

∫

RN

(

λ1−p
′

|ϕ|p
′−2ϕ−K(ϕ− ψ)

)

h1 dx, h1 ∈ Lp
′

(A+)

∂2Jλ(ϕ, ψ)[h2] =

∫

RN

(

−|ψ|p
′−2ψ −K(ϕ− ψ)

)

h2 dx, h2 ∈ Lp
′

(A−).

Here ∂1, ∂2 standard for partial derivatives with respect to ϕ and ψ. For this reason we will

look for critical points of Jλ. These solve the integral equation (2.1). Thus by the regularity

results [4, Lemma 4.3] and [8, p.13] these are indeed strong solutions to our original problem

(1.9).

Proposition 2.1. Let (ϕ, ψ) ∈ Lp
′

(A+) × Lp
′

(A−) \ {(0, 0)} be a critical point of Jλ where

λ > 0. Then

u := R
(

|Q|
1

p (ϕ− ψ)
)

∈ Lp(RN)

is a nontrivial solution of (2.1).

Proof. Let (ϕ, ψ) ∈ Lp
′

(A+)× Lp
′

(A−) \ {(0, 0)} be a critical point of Jλ. Thus we have

λ1−p
′

|ϕ|p
′−2ϕ = 1A+

K(ϕ− ψ), |ψ|p
′−2ψ = 1A−

K(ϕ− ψ)
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as well as

Qλ|u|
p−2u = (λ1A+

− 1A−
)|Q||u|p−2u

= (λ1A+
− 1A−

)|Q|
1

p · ||Q|
1

pu|p−2 · |Q|
1

pu

= (λ1A+
− 1A−

)|Q|
1

p · ||Q|
1

pR
[

|Q|1/p(ϕ− ψ)
]

|p−2 · |Q|
1

pR
[

|Q|1/p(ϕ− ψ)
]

= (λ1A+
− 1A−

)|Q|
1

p · |K [ϕ− ψ] |p−2 · K [ϕ− ψ]

= (λ1A+
− 1A−

)|Q|
1

p ·
∣

∣

∣
λ1−p

′

|ϕ|p
′−2ϕ+ |ψ|p

′−2ψ
∣

∣

∣

p−2

·
(

λ1−p
′

|ϕ|p
′−2ϕ+ |ψ|p

′−2ψ
)

= (λ1A+
− 1A−

)|Q|
1

p ·
(

λ(1−p
′)(p−1)ϕ+ ψ

)

= |Q|
1

p · (ϕ− ψ) .

Applying R then gives R (Qλ|u|
p−2u) = R

(

|Q|
1

p (ϕ− ψ)
)

= u. Hence u solves (2.1).

So we conclude that it remains to find nontrivial critical points of the functionals Jλ for as

many λ > 0 as possible. This will be achieved with the Mountain Pass Theorem for families

of C1-functionals by Jeanjean and Toland [6].

3 Saddle-point reduction

In this section we perform the saddle-point reduction of Jλ with respect to the ψ-variable.

To this end, we prove that for any fixed ϕ ∈ Lp
′

(A+) the functional ψ 7→ Jλ(ϕ, ψ) attains

its maximum at some uniquely defined function in Lp
′

(A−) that we will call Z(ϕ) in the

following. We shall see that the positivity assumption
∫

RN

ψKψ dx ≥ 0 for all ψ ∈ Lp
′

(A−)

ensures that the functional ψ 7→ Jλ(ϕ, ψ) is strictly concave so that the global maximization

with respect to ψ is the only reasonable approach to perform a saddle point reduction. We

introduce the reduced functional J̃λ : L
p′(A+) → R via

(3.1) J̃λ(ϕ) := sup
ψ∈Lp′ (A−)

Jλ(ϕ, ψ).

Proposition 3.1. Assume that K : Lp
′

(RN ) → Lp(RN ) is compact and that
∫

A−

ψKψ dx ≥ 0

for all ψ ∈ Lp
′

(A−). Then for every ϕ ∈ Lp
′

(A+) there exists a unique Z(ϕ) ∈ Lp
′

(A−) such

8



that for all λ > 0 we have

J̃λ(ϕ) = Jλ(ϕ, Z(ϕ)).

Moreover:

(i) For any ϕ ∈ Lp
′

(A+) the corresponding maximizer Z(ϕ) satisfies

(3.2) ‖Z(ϕ)‖p′ ≤
(

p′β ‖ϕ‖p′
)

1

p′−1

where β is defined in (1.7).

(ii) The map Z : Lp
′

(A+) → Lp
′

(A−) is continuous.

(iii) The reduced functional J̃λ : L
p′(A+) → R is of class C1 with derivative

J̃ ′
λ[h] = ∂1Jλ(ϕ, Z(ϕ))[h].

Proof. We first establish the existence of a maximizer. So fix ϕ ∈ Lp
′

(A+) and consider a

maximizing sequence (ψn)n ⊂ Lp
′

(A−). Using Jλ(ϕ, 0) ≤ sup
ψ∈Lp′ (A−)

Jλ(ϕ, ψ) = Jλ(ϕ, ψn)+o(1)

as n→ ∞ we obtain

o(1) ≤ −
1

p′
‖ψn‖

p′

p′ +

∫

RN

ϕKψn −
1

2

∫

RN

ψnKψn ≤ −
1

p′
‖ψn‖

p′

p′ + β‖ϕ‖p′‖ψn‖p′ (n→ ∞).

Here we used the nonnegativity assumption on K as well as (2.2). Hence,

(3.3) ‖ψn‖p′ ≤ (p′β‖ϕ‖)
1

p′−1 + o(1) (n→ ∞),

so (ψn)n is bounded. Passing to a subsequence we find ψ∗ ∈ Lp
′

(A−) such that ψn ⇀ ψ∗ in

Lp
′

(A−) as n → ∞. Using the compactness of K and the weak lower semicontinuity of the

norm we find

sup
ψ
Jλ(ϕ, ψ)

=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψn‖

p′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψn dx−
1

2

∫

RN

ψnKψn dx+ o(1)

9



=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψn‖

p′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψ∗ dx−
1

2

∫

RN

ψ∗Kψ∗ dx+ o(1)

≤
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψ∗‖p

′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψ∗ dx−
1

2

∫

RN

ψ∗Kψ∗ dx+ o(1)

= Jλ(ϕ, ψ
∗) + o(1).

Hence the supremum is attained at ψ∗. Since equality must hold in the above estimate we

conclude ‖ψn‖p′ → ‖ψ∗‖p′, whence ψn → ψ∗ in Lp
′

(A−) as n→ ∞. This shows the existence

of a maximizer satisfying the estimate stated in (i). So (i) is proved once we have established

the uniqueness of the maximizer.

To this end assume that ψ∗, ψ† ∈ Lp
′

(A−) are maximizers. Then we have

0 ≤
1

2
Jλ(ϕ, ψ

∗) +
1

2
Jλ(ϕ, ψ

†)− Jλ

(

ϕ,
1

2
(ψ∗ + ψ†)

)

=
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

+
1

2

(
∫

RN

ψ∗ + ψ†

2
K

[

ψ∗ + ψ†

2

]

dx−
1

2

∫

RN

ψ∗Kψ∗ dx−
1

2

∫

RN

ψ†Kψ† dx

)

=
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

−
1

8

∫

RN

(ψ∗ − ψ†)K[ψ∗ − ψ†] dx

≤
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

≤ 0,

where we have used the non-negativity condition in the second last step and the convexity

of z 7→ |z|p
′

in the last step. So we have equality in each estimate and conclude ψ∗ = ψ†.

Note that the maximizer does not depend on λ since the only λ-dependent term in Jλ(ϕ, ψ)

is λ1−p′

p′
‖ϕ‖p

′

p′, which is independent of ψ.

We now prove (ii), i.e., the continuity of the map Z: Assume ϕn → ϕ in Lp
′

(A+) and let

(ψn)n := (Z(ϕn))n ⊂ Lp
′

(A−) be the associated maximizers. By (3.3), the sequence (ψn)n is

bounded and after passing to a subsequence we may assume ψn ⇀ ψ0 in Lp
′

(A−) as n→ ∞.

10



Arguing as above we deduce

(3.4) lim sup
n→∞

J̃λ(ϕn) = lim sup
n→∞

Jλ(ϕn, ψn) = lim sup
n→∞

Jλ(ϕ, ψn) ≤ Jλ(ϕ, ψ0) ≤ J̃λ(ϕ).

using weak lower semicontinuity and lim inf
n→∞

‖ψn‖p′ ≥ ‖ψ0‖p′. On the other hand, with the

special choice ψ = Z(ϕ) we obtain

(3.5) lim inf
n→∞

J̃λ(ϕn) ≥ Jλ(ϕ, ψ) = Jλ(ϕ, Z(ϕ)) = J̃λ(ϕ).

Combining both estimates gives ‖ψn‖p′ → ‖ψ0‖p′ as well as J̃λ(ϕn) → J̃λ(ϕ) as n→ ∞. Thus

we have equality in (3.4), (3.5). Since maximizers are unique, we obtain ψ0 = Z(ϕ) and in

particular Z(ϕn) = ψn → ψ0 = Z(ϕ0) in L
p′(A−) as n→ ∞.

We are left to prove (iii). Let h ∈ Lp
′

(A+) be arbitrary. We can estimate the difference

quotients as follows:

lim inf
τ→0

J̃λ(ϕ+ τh)− J̃λ(ϕ)

τ
≥ lim inf

τ→0

Jλ(ϕ+ τh, Z(ϕ))− Jλ(ϕ, Z(ϕ))

τ

= lim inf
τ→0

∫ 1

0

∂1Jλ(ϕ+ τσh, Z(ϕ))[h] dσ

= ∂1Jλ(ϕ, Z(ϕ))[h],

lim sup
τ→0

J̃λ(ϕ+ τh)− J̃λ(ϕ)

τ
≤ lim sup

τ→0

Jλ(ϕ+ τh, Z(ϕ+ τh))− Jλ(ϕ̃, Z(ϕ+ τh))

τ

= lim sup
τ→0

∫ 1

0

∂1Jλ(ϕ
∗ + τσh, Z(ϕ + τh))[h] dσ

= ∂1Jλ(ϕ, Z(ϕ))[h].

Here we used that Z is continuous and that ∂1Jλ is continuous, see [10, Proposition 9]

for a similar computation. We conclude that J̃λ is Gâteaux-differentiable with continuous

derivative ϕ 7→ ∂1Jλ(ϕ, Z(ϕ))[·], see Proposition 3.1 (iii). Hence, the reduced functional J̃λ

is continuously (Fréchet-)differentiable with

J̃ ′
λ(ϕ)[h] = ∂1Jλ(ϕ, Z(ϕ))[h] ∀h ∈ Lp

′

(A+)

as claimed.
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Notice that the condition
∫

RN ψKψ dx ≥ 0 is also necessary for the existence of a global

maximizer of ψ 7→ Jλ(ϕ, ψ) because otherwise this functional is unbounded from above.

4 Palais-Smale sequences for the reduced functional

In view of the results of the previous sections, we obtain a solution to our problem by proving

the existence of a nontrivial critical point of the reduced functional J̃λ : Lp
′

(A+) → R

introduced in (3.1). This will be done via Mountain-pass techniques for monotone families

of functionals originating from the work of Jeanjean and Toland [6].

Definition 4.1. Let X be a Banach space, M ⊂ R a compact interval. Then the family

(Iν)ν∈M of C1-functionals on X is said to have the Mountain Pass Geometry if there exist

v1, v2 ∈ X such that for all ν ∈M it holds

cν := inf
γ∈Γ

sup
t∈[0,1]

Iν(γ(t)) > max{Iν(v1), Iν(v2)},

where Γ := {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Theorem 4.2. (Jeanjean, Toland) [6, Theorem 2.1] Assume that X is a Banach space,

M ⊂ R a compact interval and (Iν)ν∈M a family of C1-functionals on X having the Mountain

Pass Geometry. Assume further that (Iν)ν∈M has the following property:

For every sequence (νn, ϕn) ∈M ×X with νn ր ν∗ ∈M and with

− Iν∗(ϕn), Iνn(ϕn),
Iνn(ϕn)− Iν∗(ϕn)

ν∗ − νn
bounded from above,

the sequence (ϕn) is bounded itself, and lim sup
n→∞

(Iν∗(ϕn)− Iνn(ϕn)) ≤ 0.

(H)

Then for almost all ν ∈ M there is a bounded Palais-Smale sequence (BPS) for Iν at the

level cν.

We shall apply this result to X = Lp
′

(A+) and the family of C1-functionals Iλ := J̃λ : X → R.

We first verify the Mountain Pass Geometry for parameters λ ∈ (λ0,∞) where λ0 = (2βα−1)p.

12



Let us recall that α, β were defined as

α = max
‖ϕ‖p′=1

∫

RN

ϕKϕ dx > 0, β = max
‖ϕ‖p′=‖ψ‖p′=1

∫

RN

ϕKψ dx ≥ 0.

Proposition 4.3. Let K : Lp
′

(RN ) → Lp(RN) be compact and assume
∫

RN

ψKψ dx ≥ 0

for all ψ ∈ Lp
′

(A−). Then, for any given compact subinterval M ⊂ (λ0,∞), the family of

functionals (J̃λ)λ∈M has the Mountain Pass Geometry according to Definition 4.1.

Proof. For λ ∈M we define rλ := (λp
′−1α)1/(p

′−2). Then we have

inf
‖ϕ‖p′=rλ

J̃λ(ϕ) = inf
‖ϕ‖p′=rλ

sup
ψ
Jλ(ϕ, ψ) ≥ inf

‖ϕ‖p′=rλ
Jλ(ϕ, 0)

= inf
‖ϕ‖p′=rλ

λ1−p
′

p′
‖ϕ‖p

′

p′ −
1

2

∫

RN

ϕKϕ dx

=
λ1−p

′

p′
rp

′

λ −
α

2
r2λ = α

(

1

p′
−

1

2

)

(λp
′−1α)

2

p′−2

> 0.

On the other hand, we have

J̃λ(0) = sup
ψ
Jλ(0, ψ) = sup

ψ

[

−
1

p′
‖ψ‖p

′

p′ −
1

2

∫

RN

ψKψ dx

]

= 0.

According to Definition 4.1 it therefore remains to find some ϕ∗ ∈ Lp
′

(A+) with ‖ϕ∗‖p′ ≥ rλ0

such that J̃λ0(ϕ
∗) ≤ 0 holds. Notice that in this case we actually have J̃λ(ϕ

∗) < J̃λ0(ϕ
∗) ≤ 0

for all λ ∈M ⊂ (λ0,∞). To achieve this we estimate J̃λ0 from above as follows

J̃λ0(ϕ) = Jλ0(ϕ, 0)−
1

p′
‖Z(ϕ)‖p

′

p′ +

∫

RN

ϕK(Z(ϕ))−
1

2

∫

RN

Z(ϕ)K(Z(ϕ))

≤ Jλ0(ϕ, 0)−
1

p′
‖Z(ϕ)‖p

′

p′ + β‖ϕ‖p′‖Z(ϕ)‖p′

≤ Jλ0(ϕ, 0) +
βp

p
‖ϕ‖pp′

where we have used that max
c≥0

(

− cp
′

p′
+ β ‖ϕ‖p

′

p′ c
)

= βp

p
‖ϕ‖pp′. We choose ϕ∗ = r0ϕ0 where the
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function ϕ0 ∈ Lp
′

(A+), ‖ϕ0‖p′ = 1 attains the maximum α =
∫

RN ϕ0Kϕ0 dx > 0. Then the

choice R := (1
2
αβ−p)1/(p−2) yields after some computations (recall λ0 = (2βα−1)p)

‖ϕ∗‖p′ = R =

(

1

2
αβ−p

)
1

p−2

≥ (λp
′−1

0 α)
1

p′−2 > (λp
′−1α)

1

p′−2 = rλ for all λ ∈M.

Using again the explicit formulas for R, λ0 we find

J̃λ0(Rϕ0) ≤ Jλ0(Rϕ0) +
βpRp

p

=
λ1−p

′

0

p′
Rp′ −

α

2
R2 +

βp

p
Rp

=
Rp′

p′
·

(

λ1−p
′

0 −
pα

2(p− 1)
R2−p′ +

βp

p− 1
Rp−p′

)

=
Rp′

p′
·

(

λ1−p
′

0 −
1

2
αR2−p′

)

=
Rp′

p′
·

(

(2βα−1)−
p

p−1 −
1

2
α ·

(

1

2
αβ−p

)
1

p−1

)

= 0

and thus the claim holds with v1 = 0 and v2 = ϕ∗ = Rϕ0.

Having established the Mountain Pass Geometry of our functionals we now verify the condi-

tion (H) in order to use Theorem 4.2

Proposition 4.4. For any compact subinterval M ⊂ (λ0,∞) the family of C1−functionals

(J̃λ)λ∈M satisfies the condition (H).

Proof. Consider a sequence (ϕn, λn) ∈ Lp
′

(A+)×M with λn ր λ∗ and

−J̃λ∗(ϕn) ≤ C, J̃λn(ϕn) ≤ C,
J̃λn(ϕn)− J̃λ∗(ϕn)

ν∗ − νn
≤ C

for all n ∈ N. Then we have

C ≥
J̃λn(ϕn)− J̃λ∗(ϕn)

λ∗ − λn
=
λ1−p

′

n − λ1−p
′

∗

λ∗ − λn
‖ϕn‖

p′

p′ =
(

(p′ − 1)λ−p
′

∗ + o(1)
)

‖ϕn‖
p′

p′ (n→ ∞)
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So we conclude that (ϕn) is bounded. Furthermore, λn → λ∗ > 0 gives

lim sup
n→∞

(Iλ∗(ϕn)− Iλn(ϕn)) = lim sup
n→∞

(λ1−p
′

n − λ1−p
′

∗ )‖ϕn‖
p′

p′ = 0,

which is all we had to show.

We thus conclude that Theorem 4.2 applies in our context and yields BPS sequences for J̃λ

at the corresponding Mountain pass levels cλ for almost all λ ∈ (λ0,∞). From the existence

of BPS sequences we deduce rather easily the existence of critical points at the corresponding

Mountain Pass level.

Proposition 4.5. Let K : Lp
′

(RN) → Lp(RN) be compact and assume
∫

RN

ψKψ dx ≥ 0 for

all ψ ∈ Lp
′

(A−). Then for all λ ∈ (λ0,∞) every BPS sequence of J̃λ at its Mountain Pass

level cλ converges to a critical point of J̃λ at the level cλ.

Proof. Let (ϕj)j in L
p′(A+) be a BPS sequence for J̃λ, i.e., J̃λ(ϕj) → c > 0 and J̃ ′

λ(ϕj) → 0.

We may thus assume w.l.o.g. ϕj ⇀ ϕ∗. Moreover, Proposition 3.1 (i) implies the boundedness

of (ψj)j := (Z(ϕj))j and hence w.l.o.g. also weak convergence. For all h ∈ Lp
′

(A+) we then

have, in view of the formula for J̃ ′
λ from Proposition 3.1 (iii),

∣

∣

∣

∣

∫

RN

|ϕj|
p′−2ϕjh− |ϕk|

p′−2ϕkh dx

∣

∣

∣

∣

=

∣

∣

∣

∣

J̃ ′
λ(ϕj)h− J̃ ′(ϕk)h+

∫

RN

hK[ϕj − ϕk] dx−

∫

RN

hK[ψj − ψk] dx

∣

∣

∣

∣

≤ ‖h‖p′ ·
[

‖J̃ ′
λ(ϕj)‖+ ‖J̃ ′

λ(ϕk)‖+ ‖K[ϕj − ϕk]‖p + ‖K[ψj − ψk]‖p

]

= ‖h‖p′ · o(1) (j, k → ∞).

We infer that (|ϕj|
p′−2ϕj)j converges strongly in Lp(A+). By uniqueness of weak limits, we

infer |ϕj|
p′−2ϕj → |ϕ∗|p

′−2ϕ∗ strongly in Lp(A+) and hence in particular ‖ϕj‖p′ → ‖ϕ∗‖p′.

This finally implies ϕj → ϕ∗ strongly in Lp
′

(A+). A standard computation finally shows

J̃λ(ϕ
∗) = cλ as well as J̃ ′

λ(ϕ
∗) = 0.

5 Proof of Theorem 1.1 and Corollary 1.2

We finally combine all auxiliary results to prove Theorem 1.1.
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Proof of Theorem 1.1. From Proposition 2.1 and Proposition 3.1 we infer that for almost all

λ ∈ (λ0,∞) a nontrivial solution u ∈ Lp(RN) of the nonlinear Helmholtz equation (1.9) is

found once we have proved the existence of nontrivial critical points of the reduced functional

J̃λ for almost all λ ∈ M where M is an arbitrary compact subinterval of (λ0,∞). From

Proposition 4.3 we infer that the family (J̃λ)λ∈M has the Mountain Pass Geometry. Moreover,

by Proposition 4.4, condition (H) holds. So Theorem 4.2 yields for almost all λ ∈M a BPS

sequence for J̃λ at the corresponding Mountain Pass level. By Proposition 4.5 each of these

BPS sequences converges to a critical point ϕλ of J̃λ at the Mountain Pass level. Since this

critical point is necessarily nontrivial, we have thus obtained the desired claim for Lp(RN)-

solutions of (1.9). From [4, Lemma 4.3] we infer that each of these solutions belongs to

W 2,q(RN) ∩ C1,α(RN) for all p ≤ q < ∞ and α ∈ (0, 1). Arguing as in Step 3 and Step 4

[8, p.13] one even obtains that these solutions belong to W 2,q(RN) for all q ∈ ( 2N
N−1

, p). In

particular, these solutions are strong solutions of (1.9), which finishes the proof.

Proof of Collorary 1.2. We will prove that δ := diam (A−) ≤ yN−2

2

implies
∫

RN

ψKψ dx ≥ 0

for all ψ ∈ Lp
′

(A−). Note that due to (2.2), K = |Q|1/pR(|Q|1/p·) and Q ∈ L∞(RN) it suffices

to prove

(5.1)

∫

RN

ψRψ dx ≥ 0, for all ψ ∈ S(A−).

Using that x, y ∈ A− implies x− y ∈ Bδ and Corollary 5.4 in [2] we infer

∫

RN

ψRψ dx =

∫

RN

ψ[1Bδ
Ψ ∗ ψ](x) dx ≥ 0,

which proves the nonnegativity. Moreover, esssup|x|≥R |Q(x)| → 0 implies the compactness

of K as was shown in Lemma 4.2 in [4]. So the assumptions of Theorem 1.1 are satisfied and

the result follows.
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