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ON A PROBABILISTIC MODEL FOR MARTENSITIC

AVALANCHES INCORPORATING MECHANICAL

COMPATIBILITY

FRANCESCO DELLA PORTA, ANGKANA RÜLAND, JAMIE M TAYLOR,

AND CHRISTIAN ZILLINGER

Abstract. Building on the work in [BCH15, CH18, TIVP17], in this ar-

ticle we propose and study a simple, geometrically constrained, probabilis-
tic algorithm geared towards capturing some aspects of the nucleation in

shape-memory alloys. As a main novelty with respect to the algorithms in

[BCH15, CH18, TIVP17] we include mechanical compatibility. The mechanical
compatibility here is guaranteed by using convex integration building blocks in

the nucleation steps. We analytically investigate the algorithm’s convergence
and the solutions’ regularity, viewing the latter as a measure for the fractality

of the resulting microstructure. We complement our analysis with a numer-

ical implemenation of the scheme and compare it to the numerical results in
[BCH15, CH18, TIVP17].

1. Introduction

Shape-memory alloys are materials displaying a striking thermodynamical be-
haviour on the one hand and a rich mathematical structure on the other hand. Phys-
ically, these materials undergo a first-order, diffusionless, solid-solid phase transfor-
mation in which symmetry is reduced upon the passage from the high temperature
phase, austenite, to the low temperature phase, martensite. This reduction of sym-
metry gives rise to various variants of martensite in the low temperature regime.

Mathematically, these materials have been successfully described within the cal-
culus of variations by minimization problems of the form

minimize

ˆ

Ω

W (∇y, θ)dx,(1)

for instance, with prescribed displacement boundary conditions [Bal04, BJ92, Bal02,
BJ89, Bha03, Mül99]. Here Ω ⊂ Rn is the reference configuration, θ : [0,∞) →
[0,∞) denotes temperature and y : Ω→ Rn is the deformation describing how the
reference configuration is deformed. Defining Rn×n+ to be the set of n by n matrices

with positive determinant, the stored energy function W : Rn×n+ × [0,∞) → R+

describes the energetic cost of a deformation at a given temperature. Physical
requirements on it are frame indifference, i.e. the fact that

W (F) = W (QF) for all F ∈ Rn×n+ , Q ∈ SO(n),

and material symmetry, i.e. the fact that

W (F) = W (FH) for all F ∈ Rn×n+ , H ∈ P,
where P denotes the (discrete) symmetry group which sends the austenite lattice
into itself.

In particular, the zero set – or physically the set of exactly stress-free strains –
associated with W is typically of the form
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K(θ) =


α(θ)SO(n)Id for θ > θc,
N⋃
m=1

SO(n)Uj(θc) ∪ α(θc)SO(n)Id for θ = θc,

α(θ)
N⋃
m=1

SO(n)Uj(θ) for θ ≤ θc.

Here the matrices Uj(θ) ⊂ Rn×n+ are obtained through conjugation of U1(θ) by
elements from P and represent the N variants of martensite, while α(θ) : R+ → R+

models the thermal expansion of the underlying lattice depending on temperature,
with the convention that α(θc) = 1. In order to study low energy configurations
of (1), a common strategy [BJ89, Bha03, CDK07, DM95, Kir03, Kir98, Rül16a,
Rül16b, Sim17] is to first study exactly stress-free deformations by investigating
the differential inclusion

∇y ∈ K(θ).(2)

While the study of the minimization problem (1) has proved very successful and
influential, e.g. in predicting interfaces between variants of martensite and scaling
laws [BJ92, KM94, KKO13, KK11, Con00, CO12, CO09, Rül16b], it is often the
case that the dynamics of the phase transition play an important role in the forma-
tion of the complex microstructures observed in experiments (see e.g., [SCD+13]
and related comments in [DP19a]). Indeed, observed microstructures are often
the result of different smaller microstructures, nucleating at different points of the
domain and expanding. In order to preserve continuity of the deformation, and
hence compatibility, these microstructures become finer and more complex when
they encounter. However, they do not globally minimise an energy functional pe-
nalising interfaces between martensitic junctions. Such complex evolution has been
observed both with optical microscopy, a common tool to analyse martensitic mi-
crostructure, and by phonon emission measurements, a second method based on
the observation that every nucleation event is accompanied by an acoustic emission
(see e.g., [BBG+20]). In particular, both methods have thus been used for track-
ing the dynamics of nucleation phenomena. High time resolution measurements
of the described type display strongly intermittend behaviour and the presence of
“avalanches” [PMV13a, SKR+09] with “universal”, power law behaviour for cen-
tral statistical quantities. Based on these and related observations, it has been
the objective of several recent works to study simplified dynamic models of phase
transformations in shape-memory alloys: On the one hand, the continuum mechan-
ical models in [DP19a, DP19b] seek to capture the evolution of the microstructures
and the mechanical effects that the dynamics may have on them based on optical
microscopy observations. On the other hand, in parallel, simplified probabilistic,
geometrically constrained dynamic models have been proposed and investigated in
the literature [BCH15, CH18, TIVP17] – both in the mathematical and the physics
community. The latter aim at predicting the above mentioned acoustic observa-
tions and at deriving an improved understanding of the “universal”, power law
behavior for central statistical quantities. As shown in [TIVP17, Figure 1], these
probabilistic, geometrically constrained models sometimes also successfully reflect
the “wild”, “random”, irregular microstructures observed in optical microscopy.

In order to capture the avalanching phase transformation dynamics, the models
proposed in [BCH15, CH18, TIVP17] take into account two key features which are
believed to be characteristic of many martensitic phase transformations:

• During the phase transformation a domain which has transformed from
austenite to martensite does not transform back (see also the moving mask
hypotheses in [DP19a]).
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• The nucleation domains are given by long (needle-like) domains (“plates”)
which are oriented according to the rank-one connections which are present
between the wells (see e.g., the experimetal results in [IHM13] and c.f. once
more the moving mask hypotheses in [DP19a]).

Based on this, the models in [BCH15, CH18, TIVP17] roughly propose the following
simplified, geometrically constrained nucleation mechanisms:

(i) Choose a point randomly out of the sample/reference configuration and
choose a direction (out of the possible rank-one directions, i.e. out of the
directions of compatibility between austenite and a martensitic plate) ran-
domly.

(ii) Nucleate a martensitic plate in the chosen direction through the chosen
point until it hits another plate or the boundary of the sample.

(iii) Iterate this.

We emphasize that this leads to a purely “scalar” model which is not formu-
lated on the level of the deformation gradients and, in particular, does not take
into account any compatibility of the associated deformation gradients beyond the
fact that the nucleated plates should roughly be aligned with the rank-one direc-
tions. Numerical simulations of these dynamics lead to highly fractal, self-organized,
“wild” structures in the martensitic materials. Based on the described dynamics, in
their analysis and simulations in [BCH15, CH18, TIVP17] the authors derive prop-
erties of the statistical distribution of martensitic plates and deduce self-similarity
and power law behaviour in certain regimes. This may indicate that, in spite of the
drastic simplifications, the geometrically imposed constraints could indeed provide
insights into the experimentally measured universal exponents in the nucleation
experiments.

It is the objective of this article, to propose and investigate an intermediate
model, capturing both the random, geometrically constrained, self-organizing be-
haviour discussed in [BCH15, CH18, TIVP17] and including the key mechanical
aspect of compatibility. In the previous works the latter had only been taken into
account in terms of fixing the orientation of the martensitic plate and not in terms
of the associated deformation. As in [BCH15, CH18, TIVP17] we are also interested
in studying the universality properties of solutions. In contrast to these results we
however focus on the regularity of solutions as a measurement for this and the
“wildness” of the microstructure, and interpret regularity as the main quantity
from which statistical properties could be deduced (see Section 1.3 below). We
further link this to our recent investigation of deterministic “wild” microstructures
obtained through the method of convex integration.

1.1. The model and the main results. In the sequel, as a model setting, we
focus on the geometrically non-linear, two-dimensional two-well problem. Exten-
sions to other models would not pose any difficulties as pointed out in our discussion
below. Fixing temperature below the transformation temperature, we thus consider

(3) K = SO(2)F0 ∪ SO(2)F−1
0

where F0,F
−1
0 ∈ R2×2 are respectively given by

F0 =

[
1 γ
0 1

]
, F−1

0 =

[
1 −γ
0 1

]
,(4)

and γ > 0.
In the present work we propose dynamics which are strongly inspired by the

ones in [BCH15, CH18, TIVP17] but which take mechanical compatibility into ac-
count. More precisely, essentially our nucleation algorithms still follow the steps
(i)-(iii) from above, with the main difference that condition (ii) is now formulated
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Figure 1. The quasiconvex hull Kqc, i.e. the set of all macroscop-
ically realizable deformations, associated with the set K, depicted
in Cauchy-Green space, see Section 3 for more detailed definitions.
Here the wells from (3) correspond to the two corners of the pa-
raboloid (and are coloured cyan and green, respectively). All other
matrices in the depicted set are obtained as Cauchy-Green tensors
of first or second order laminates (corresponding to the boundaries
of the paraboloid and its relative interior, respectively). The colour
coding here is the colour coding which is used for vertical twins (see
the explanations below). In order to illustrate the difference be-
tween horizontal and vertical twins (in the sense of [DPR20]), we
use a second colour scheme (see Figure 3).

on the level of the full deformation gradients (instead of the scalar order parame-
ters from [CH18, TIVP17]). Therefore, the plates which are nucleated in (ii) are
now prescribed in a compatible way (in the sense of not creating any stresses).
This is achieved by relying on convex integration building blocks which are exactly
stress-free solutions to the differential inclusion (2) at a fixed temperature (in our
case below the critical temperature) and with prescribed displacement boundary
conditions. As in [BCH15, CH18, TIVP17] for the setting of the two-well prob-
lem this gives rise to two specific orientations of the martensitic plates which are
however now exact solutions to the differential inclusion. In the infinite itera-
tion/time limit, we thus obtain exactly stress-free solutions resembling those of
[BCH15, CH18, TIVP17] which now however are defined on the level of the defor-
mations and in particular include compatibility and (up to a set of measure zero)
fully transform Ω. The precise algorithms used in our dynamics are described in
Algorithms 3.2 and 3.3 in Section 3 below. Let us remark that such a behaviour re-
minds of experimental observations in TiNbAl (see e.g., [Ia]) where, after the phase
transition, it is possible to observe different colonies of “wild” microstructures.

As in [BCH15, CH18, TIVP17], we seek to show that these dynamics give rise
to “power-law” behaviour and self-organized structures in a probabilistic sense (see
Section 9.3 for some numerical evaluations of the length scale statistics). As already
indicated above, we do not aim at proving direct power-law distributions for the
present lengths scales but view the regularity of solutions as a proxy for this which
encodes important statistical information (e.g. in terms of the solutions’ heavy
tailed Fourier distribution etc).

Our main analytical result for these dynamics is summarized in the following
theorem:

Theorem 1. Let K be as in (3)–(4) and let Ω̃ = (0, 1)2 ⊂ R2 Let {yk} denote the
sequences obtained in Algorithms 3.2 or 3.3 (defined in Section 3) and let µ denote
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Figure 2. The radom convex integration solutions produced by
(a variant) of our algorithms (the picture here is generated by
means of the modifications explained in Section 9.1). The colour
coding uses cyan and green for vertical and magenta and orange
for horizontal twins. In addition to the fractal behavior originat-
ing from the random (greedy type) covering which is observed in
[BCH15, CH18, TIVP17], we here have a second source of frac-
tality originating from the use of the convex integration building
blocks within the random rectangle covering (see Section 3 below
for more comments on this).

the corresponding probability measure (constructed in detail in Section 4). Then
there exists θA,B > 0 such that for all s ∈ (0, 1), p ∈ (1,∞) with sp < θA,B and
for all M ∈ intKqc and µ-almost every sequence {yk} there exists a deformation
y : Ω→ R2 such that yk → y in W 1,1(Ω) and

∇y ∈ K a.e. in Ω̃,

y = Mx on ∂Ω̃,
(5)

with y ∈W 1,∞(Ω̃;R2) ∩W 1+s,p(Ω̃;R2).

Remark 1.1. It would be possible to extend the result to domains Ω̃ ⊂ R2 which
are more complicated (e.g. domains which can be written as controlled (in-)finite
unions of rectangles). In order to avoid dealing with the associated issues and as
the domain geometry does not constitute our main focus in this article, we restrict
to the above model setting in which Ω̃ = (0, 1)2.

We emphasize that essentially all sequences (in terms of µ) produced in our
dynamics in the infinite iteration/long time limit lead to exactly stress-free solutions
of the differential inclusion. Moreover, they have a certain fractality (and are in this
sense self-organized and not completely random) as encoded in the higher Sobolev

regularity result with ∇y ∈ W s,p(Ω̃,R2) (see also the remarks below). Numerical
evaluations of the algorithms are presented in Section 9, in which we also discuss the
lengths scale statistics involved in the solutions. We hope that this may eventually
allow for comparisons with the measured length scale (and avalanche) distributions
in experimental settings.

1.2. Context. Self-organized, critical systems and cellular automata have attracted
substantial interest in systems undergoing phase transformations (see [BTW87] and
the large amount of literature building on this). Also in the mechanical literature
there have been substantial endeavours towards understanding this more precisely,
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see for instance [PRTZ08, PRTZ07, PRTZ09, BBB+15, PRTZT16, BUZZ16] and
the references therein. In the context of martensitic phase transformations and
self-similarity we highlight the early works [RSS95, MRSS95, PLKK97] in which
random, geometrically constrained models had been proposed and analyzed in the
study of self-organized structures in martensitic phase transformations. Already in
these, the emergence of self-similar, fractal microstructures was observed.

The models proposed in this article follow the line of ideas introduced in [RSS95,
MRSS95, PLKK97, BCH15, CH18, TIVP17]. It is our main objective to explore
how simplified dynamics may lead to universal power law behaviour in nucle-
ation processes as observed, for instance, through acoustic emission measurements.
While previous models did not take into account mechanical compatibility condi-
tions, by connecting the probabilistic models from above with convex integration
building blocks, our model does take this into account. In particular it allows us
to link the “self-organized” model dynamics from [BCH15, CH18, TIVP17], con-
vex integration schemes [MŠ98, MS01, MŠ99] – which have a natural dynamic
interpretation – and the recently obtained higher Sobolev regularity results for
convex integration solutions [RZZ19, RZZ18, RTZ18, DPR20]. It is our hope
that with further simulations, experiments and analytical investigations these con-
nections can be strengthened and that eventually the obtained regularity expo-
nents can be compared to the observed universal exponents of the (length scale)
statistics in the experiments. From a mathematically point of view, the con-
nection of the proposed model and “random”, average convex integration algo-
rithms in which only the average instead of tailor-made packings are considered
also seems to be of independent interest (we also refer to [Kir03] and [Pom] for
random walk interpretations of convex integration procedures). We emphasize
that our model should be viewed as a hybrid model connecting the ideas from
[PRTZ08, PRTZ07, PRTZ09, BBB+15, PRTZT16, BUZZ16] and from convex inte-
gration with higher Sobolev regularity from [RZZ19, RZZ18, RTZ18, DPR20]. For
the sake of mathematical simplicity in this first treatment of probabilistic models
involving convex integration we separate the two ingredients, the probabilistic point
of view and the convex integration scheme as much as possible. Building on this, as
next steps, possibly slightly more natural algorithms could include a simultaneous
iteration of the convex integration schemes and the random choice of the nucleation
spots and the building block directions. These (possibly energetically more justi-
fied) models however lead to significantly more complicated analytical problems.
Seeking to introduce a coupling between the ideas of convex integration (and thus of
compatibility) and the random, geometrically contrained (and thus self-organized)
structures from [PRTZ08, PRTZ07, PRTZ09, BBB+15, PRTZT16, BUZZ16], we
here focus on the simplest possible setting, but plan to study the indicated, more
complex structures in future projects.

1.3. Regularity, self-similarity and power law length scale distributions.
Last but not least, we seek to heuristically connect the regularity of solutions to (5)
and the power-law behaviour of statistical quantities such as length scale distribu-
tions. Precise relations between the (maximal) regularity of solutions and scaling
laws are deduced in [RTZ18]. On an L2 based level the higher Hs Sobolev regularity
of the deformation gradient ∇y corresponds to the finiteness of the integralˆ

R2

|k|2+2s|Fy(k)|2dk.(6)

In particular this implies that Fy(k) (the Fourier transform of y at k) necessarily
has a decay rate that (in an average sense) is determined by the Sobolev regularity of
y. Assuming that Fy(k) is of a power law distribution, i.e. that |Fy(k)| ∼ |k|−α/2
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for |k| ≥ 1 and some α ∈ R, the finiteness condition for (6) would imply a power
law behavior of the length scales involved in Fy(k) of the order at least α > 4+2s.
Combined with scaling laws for the associated elastic and surfac energies, one would
also be able to provide upper bounds on α as explained in [RTZ18]. In this sense,
the Sobolev regularity captures the degree of self-organization in a precise sense.
Similar, Fourier based considerations (for two-point functions) as a measure of the
fractality or degree of self-organization of a solution can be found in [PLKK97].

1.4. Outline of the remainder of the article. The remainder of the article
is organized as follows: After briefly collecting our most important notation in
Section 2, we present our models in Section 3. In order to fix the precise setting
these are complemented with the precise probabilistic set-up in Section 4. A first
convergence result for our algorithms is discussed in Section 5. In Sections 6 and
7 the higher Sobolev regularity and the µ-almost everywhere convergence of the
algorithms is studied. In Section 8, as our final analytic section, we explain how
(for a slight variant) of Algorithm 3.2 it is possible to dispose of the non-degeneracy
condition in the algorithms and to replace this by appropriate “tail estimates”. Last
but not least, we provide several illustrations of the numerical implementation of
our algorithms and their statistics. We hope that these are of use in eventually
comparing our results with experimental data.

2. Notation

For the convenience of the reader, we collect some of the notation which will
be used in the following sections. We first collect the central notation from the
Algorithms 3.2 and 3.3 at step k:

• Vk – this is the still not transformed part of the domain (0, 1)2 in the
iteration step k, it consists of a finite union of open rectangles,

• C(Vk) – this is the set of connected components of Vk,
• pk – this is the randomly chosen point in the algorithms,
• C(Vk,pk) – is the connected component of Vk containing pk,
• dk – this is the randomly chosen orientation in the algorithms,
• yk – this is the current deformation,
• zjk – this is the replacement building block given by Theorem 2,

• Bk, Bjk – these are the sets on which the current deformation is replaced by
a deformation which is in the wells.

In our discussion of the probabilistic background we use the following notation:

• Ωk := Ω×· · ·×Ω (k-times) – the k-fold Cartesian product of a set Ω ⊂ R2,
• B(Ω) – the Borel sets on Ω,
• µ, µk, ρk – the measures constructed in Lemmas 4.1 and 4.2,
• E, Ek – expectations with respect to the measures µ and µk, by construction
µ is an extension of µk, so E reduces to Ek for finite iterations of our
algorithms,

• |A| – Lebesgue measure of a Lebesgue measurable subset A ⊂ Rn,
• D(D) – the descendents of a set D, see Definition 5.5.

3. The models

As a model setting, we consider the energy wells determined by the strains F0

and F−1
0 from (3) and (4). We remark that, as shown in [BJ92, Sec. 5], given two

wells with two rank-one connections (and the physically natural condition of equal
determinant), one can always reduce the problem to our case via an affine change
of variables.

Below we are going to rely on the following theorem:
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Figure 3. Representation of the iterative steps of the convex
iteration algorithm in [DPR20] with boundary conditions M ≈
diag(0.939, 1.064), γ = 0.5 are shown in terms of the Cauchy-
Green tensors. Here the coordinates are x = (MTM)11 ∈ (0, 1), y =
(MTM)22 ∈ (0, 1+γ2) for the plane directions and z = (MTM)12 =
(MTM)21 = ±√1− xy for the vertical direction. The closer the
steps are to F0,F

−1
0 (that is to the points with (x, y) = (1, 1 + γ2))

the closer the algorithm is to convergence. Here we use a magenta-
orange-black color coding for the horizontal replacement (horizon-
tal rectangle) and cyan-green-black for the vertical one (vertical
rectangle).

Figure 4. Given the matrix decomposition, we employ “rhombi-
construction” on a diamond-shaped domain. The green colour cod-
ing of Figure 3 right corresponds to vertical twins, the magenta
colour coding of Figure 3 left to horizontal twins. In the nota-
tion of [DPR20] these correspond to the coordinates F1 and F2,
respectively.

Theorem 2 (Thm. 1, [DPR20]). Let K be as in (3)–(4). Let Ω̃ ⊂ R2 satisfy

(D)
Ω̃ is open, connected, and can be covered (up to a set of
measure zero) by finitely many open disjoint triangles.

Then there exists θ0 > 0 (independent of Ω̃) such that for all s ∈ (0, 1), p ∈ (1,∞)

with sp < θ0 and for all M ∈ intKqc there exists a deformation u : Ω̃ → R2 such
that

∇u ∈ K a.e. in Ω̃,

u = Mx on ∂Ω̃,

u ∈W 1,∞(Ω̃;R2) ∩W 1+s,p(Ω̃;R2).
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We will use the solutions from Theorem 2 as building blocks for our “plates” (see
Step (ii) of the probabilistic nucleation algorithms explained in the introduction,

see also Figure 5 for an illustration of a building block for M ≈
(

0.939 0
0 1.064

)
and γ = 0.5).

Figure 5. We use Theorem 2 to construct building blocks in
the shape of rectangles (which themselves are covered by rhombi-
constructions in the form of diamonds, see Figure 4). Different
colours here correspond to different values of ∇u with the colour
coding given as in Figure 3. For horizontal rectangles in the algo-
rithms below we always begin with a decomposition along horizon-
tal laminates, i.e. in the magenta-orange colour coding scheme. In
particular from the colours in this figure it is clear that the under-
lying deformation is not yet a full solution (but only a subsolution,
roughly speaking an approximate solution) to the differential inclu-
sion. The construction of solutions to Theorem 2 is iterative. We
have here depicted a subsolution obtained after three iterations.

The solutions from Theorem 2 are obtained iteratively through the method of
convex integration, by iteratively deforming the current gradient distribution into
an increasingly favourable one, eventually in the infinite iteration limit passing to
a solution of the full differential inclusion (5) (see Figure 3).

Here in each step we cover a rectangle in the given domain by “rhombi-con-
structions” (see Lemma 4.1 and Figure 4 in [DPR20], building on the rhombi-
constructions from the works [Con08, CT05, MŠ98]) which are needle-like basic
building blocks (see Figure 4).

We remark that in this iterative replacement of deformation gradients, there
are two favoured orientations for the rhombi-constructions (and thus for building
blocks). These correspond to the horizontal and vertical rank-one directions which
are present between the wells (see Lemma 4.1 and Figure 4 in [DPR20]). Thus,
the choice of the orientation (of the needle-like nucleation domains) which was only
heuristically justified in (ii) in [BCH15, CH18, TIVP17] now becomes a rigorously
justified consequence of compatibility. In order to avoid additional difficulties in the
covering estimates and to keep closer to the models from [BCH15, CH18, TIVP17],
we do not directly work with the diamond-shaped rhombi-constructions as the
basic building blocks but consider rectangles oriented according to the rhombi-
constructions which are then themselves covered by rhombi-constructions (see Fig-
ures 4 and 5).

Remark 3.1. Instead of focusing on the geometrically non-linear two-well problem,
we could also have used the results in [RZZ19] or in [RZZ18] instead of Theorem
1 in [DPR20]. As a consequence, all the results which are deduced below for the
geometrically non-linear two-well problem would similarly hold in these settings.

With this background, we next introduce two possible models for simplified,
geometrically constrained, mechanically compatible nucleation dynamics. We em-
phasize that these dynamics are purely phenomenological and are not derived from



10 F. DELLA PORTA, A. RÜLAND, J. TAYLOR, AND C. ZILLINGER

C(Vk−1,pk)

pk

edk

Bk

C(Vk−1,pk)

pk

edk

Bk

C(Vk−1,pk)pk
edk Bk

Figure 6. Given a point pk ∈ C(Vk,pk) and a direction edk we
insert a maximal rectangle Bk 3 pk of aspect ratio 1 : δ. Here,
generically the rectangle is centered around pk (left). If pk is too
close to the boundary, we instead shift the rectangle Bk to touch the
boundary (right). If the domain C(Vk,pk) is too narrow (pictured
on the bottom), we instead pick Bk = C(Vk,pk).

first principles. Their main objective is to provide further insight into the observed
phenomena of universal exponents in martensitic phase transformation by means
of simplified dynamics now including compatibility. Further we seek to indicate
how convex integration algorithms could naturally play a role in these types of
dynamics.

Algorithm 3.2 (Model A). Let Ω = (0, 1)2, δ ∈ (0, 1) and:

• M ∈ Kqc;
• y0 := Mx in Ω;
• V0 = Ω.

Then, for any k ∈ N
• let C(Vk−1) be the set of connected components of Vk−1 (these are at most

2k rectangles)

• let pk : C(Vk−1) → R2 be a function associating to each element Dj
k−1 ∈

C(Vk−1) a point pjk chosen uniformly at random in Dj
k−1

• let dk : C(Vk−1)→ {1, 2} be a function associating to each Dj
k−1 ∈ C(Vk−1)

an orientation djk (horizontal vs vertical; modelled by the numbers 1,2)
which is equal to 1 with probability p ∈ (0, 1) and equal to 2 with proba-

bility 1− p. We define (djk)⊥ := {1, 2} \ djk
• for each Dj

k ∈ C(Vk−1) (which is a rectangle of sides-length `j1, `
j
2) we set

Bjk :=


{
x ∈ Dj

k : x · e⊥
djk
∈ (pjk · e⊥djk − δδ

j
k`
j

djk
,pjk · e⊥djk + δ(1− δjk)`j

djk
)
}
,

if δ`j
djk
< `j

(djk)⊥
,

Dj
k, if δ`j

djk
≥ `j

(djk)⊥
,

where

δjk := argmin

{∣∣∣∣s− 1

2

∣∣∣∣ : s ∈ (0, 1) and both pjk − s`
j

djk
e⊥
djk
,pjk + (1− s)`j

djk
e⊥
djk
∈ Dj

k

}
• we set Vk := Vk−1 \

⋃
j B

j
k and

yk :=

{
yk−1, on Ω \⋃j Bjk,
zjk, on Bjk,

where zjk ∈W 1,∞(Bjk;R2) is given by Theorem 2.
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Let us comment on this algorithm and its dynamics: We begin with a sample
Ω which represents our material at the beginning of the nucleation process (e.g.
with the sample being in the austenite phase or possibly also being under some
prestrain). As illustrated in Figure 6, in each iteration step of the algorithm, in
each connected component of Vk we randomly choose a point and an orientation,
and consider a set Bjk (ideally centered at the chosen point and oriented in the
chosen direction, see Figure 6) on which we replace the current deformation yk
by a deformation zjk which itself is given by Theorem 2. We iterate this infinitely
many times, eventually obtaining a deformation which is increasingly close to being
a solution to (5) (and being an exact solution in the limit k →∞).

We remark that the main idea of the dynamics of the described algorithm is very
similar to the ones proposed and analyzed in [RSS95, MRSS95, PLKK97, BCH15,
CH18, TIVP17]. One main difference here is that instead of just “declaring” the

domains Bjk to be filled with martensite, our domains Bjk are actually filled with
martensite by replacing the deformation yk−1 from the previous step by the new

deformation zjk which is obtained by virtue of Theorem 2. With respect to the
algorithms from [RSS95, MRSS95, PLKK97, BCH15, CH18, TIVP17] by prescrib-
ing the precise deformation, our algorithm thus takes care of an additional layer of
complexity which had been ignored in the previous models.

We remark that there are several natural ways of achieving this. In our algorithm
the domains Bjk are immediately completely covered by a stress-free martensite con-

figuration. As a consequence, the fully transformed sets Bjk will never be modified by
the algorithm again (the material is already in the energy wells). As an alternative
one could, for instance, have considered an algorithm in which the diamond-shaped
rhombi-constructions (see Figure 4) are iteratively applied and which thus improve
the stress distribution but do not directly yield completely stress-free configura-
tions. In this scenario, one would then try to improve the strain distribution in the
sets Bjk iteratively again in later steps of the algorithm. Mathematically the latter
model would thus correspond to a “full, random convex integration model”, while
our algorithm is rather a “hybrid, random convex integration model”, where the
convex integration part is taken as a full, black-box building block as a consequence
of Theorem 2. Due to the additional difficulties in combining the probabilistic per-
spective and the detailed convex integration estimates, we postpone the study of
“full, random convex integration algorithms” to future work.

In studying the length scale distribution in the sense of understanding the regu-
larity of the final solution y (in expectation or µ-almost everywhere), we thus need
to combine an analysis of the covering algorithm (determined by the generation

of the sets Bjk) which is essentially a probabilistic fragmentation process (and thus
related to the problems in for instance [FGRV95, Ber06] and the references therein)
with the regularity of the building blocks from Theorem 2.

We stress that in our definition of the “nucleation sets” Bjk we allow for degenerate
sets as long as their long axis is oriented perpendicular to the long axis of the sets
which are introduced through nucleation. We however exclude degenerate, too long,
thin sets, if their long axis is oriented in the same direction as the sets which are
inserted in the nucleation step (see the second condition in the definition of the sets

Bjk which is a non-degeneracy condition). From a technical point of view this allows
us to estimate the gain in volume fraction in each iteration step without discussing
tail estimates which originate from increasingly degenerate domains. For these the
perimeter would still be controlled, the gain in the volume would however not a
priori yield exponential gains in the sense of Propositions 5.1 and 5.4. From a
physical point of view, the degenerate vs non-degenerate choice of the rectangles
Bjk at this point is ad hoc. However, we believe that in more sophisticated models
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control on the possible degeneracies can be deduced from surface energy constraints,
thus giving some credence to these type of simplifications. As an indication in the
direction of being able to derive sufficiently strong tail estimates which allow us
to drop the non-degeneracy assumption, in Section 8 we establish such estimates
for a slightly modified algorithm. We believe that with some further effort similar
results could also hold for the unmodified algorithm (see Remark 8.7).

Let us next discuss a second variant of our nucleation mechanism:

Algorithm 3.3 (Model B). Let Ω = (0, 1)2, δ ∈ (0, 1) and:

• M ∈ Kqc;
• y0 := Mx in Ω;
• V0 = Ω.

Then, for any k ∈ N
• let pk be a point chosen uniformly at random in Vk−1 and we define C(Vk−1,pk)

to be the connected component of Vk−1 containing pk (we remark that
C(Vk−1,pk) is always a rectangle of size `1 × `2, with `1, `2 ∈ (0, 1))

• let dk ∈ {1, 2} be equal to 1 with probability p ∈ (0, 1) and be equal to 2 with
probability 1− p. We define d⊥k := {1, 2} \ dk

• we set

Bk :=


{
x ∈ C(Vk−1,pk) : x · e⊥dk ∈ (pk · e⊥dk − δk`dk ,pk · e⊥dk + (1− δk)`dk)

}
,

if δ`dk < `d⊥k ,

C(Vk−1,pk), if δ`dk ≥ `d⊥k ,
where

δk := argmin

{∣∣∣∣s− 1

2

∣∣∣∣ : s ∈ (0, 1)

and both pk − s`dke⊥dk ,pk + (1− s)`dke⊥dk ∈ C(Vk−1,pk)
}

• we set Vk := Vk−1 \ Bk and

yk :=

{
yk−1, on Ω \ Bk,
zk, on Bk,

where zk ∈W 1,∞(Bk;R2) is given by Theorem 2.

In contrast to the Algorithm 3.2 this algorithm does not nucleate a new marten-
sitic plate in each connected component of Vk but considers the more realistic (but
mathematically slightly more involved) situation of a single nucleation event in each
step. The position of the nucleation here is determined by the volume of the largest
undeformed piece in the sample (see Figure 7 for an illustration of the differences
between the two algorithms).

In the following sections we analyse both algorithms, study their convergence
properties (in expectation) and the regularity of the resulting deformations.

4. Probability spaces and extensions

In the following we define the probability spaces associated to the Algorithms
3.2 and 3.3 for each finite step k ∈ N and a common probability space (X,F , µ)
which includes all finite steps. We thus consider our convex integration algorithms
as stochastic processes with k being interpreted as a discrete time step. In Section
5 we then study the convergence of the algorithm in Lp by computing expectations
of various norms of (differences of) the sequences obtained in the constructions. In
Sections 6 and 7 we further study higher regularity of the solutions and in particular
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Figure 7. In Algorithm 3.3 (pictured on the right) in each step
we randomly pick a point in the remaining area according to the
normalized Lebesgue measure and insert a maximal rectangle B
containing this point. In Algorithm 3.2 (pictured on the left) in
each step we independently pick a random point for each connected
component. In this schematic illustration of our algorithms the
colours of the rectangles correspond to the iteration step k of our
algorithm. In particular, we observe that in Algorithm B (right)
only one set Bk is introduced in the step k while in the Algorithm
A (left) we introduce 2k new sets Bjk in the k-th iteration step.
As a consequence, on average, the microstructure produced in Al-
gorithm 3.3 provides a much more uniform covering than the one
from Algorithm 3.2, see also Figures 12, 13 in Section 9.

show that our algorithms µ-almost surely produce a W 1+s,p regular solution of the
differential inclusion.

Our probability spaces consider the sequences of points xk ∈ Ω (produced by
pk) and directions dk ∈ {1, 2} chosen in the algorithms. To each such sequence we
may then associate a sequence of sets

Vk = Vk(x1, d1, x2, d2, . . . , xk, dk)

by constructing the rectangles Bk(x1, d1, . . . , xj , dj) as prescribed in the algorithm.
We will show that this function is measurable and that (Vk)k∈N can therefore be
considered a random variable.

4.1. The probabilistic set-up for Algorithm 3.3. For simplicity of notation in
the following we first discuss Algorithm 3.3 where k steps correspond to choosing
k points (x1, . . . , xk) ∈ Ωk and directions (d1, . . . , dk) ∈ {1, 2}k.

Lemma 4.1. Consider the sequences of points (x1, x2, . . . ) and directions (d1, d2, . . . )
generated by Algorithm 3.3 as a stochastic process. Then the corresponding (pull-
back probability) measure can be expressed as a density. More precisely, for each
k ∈ N there exists a probability density

ρk : (Ω× {1, 2})k → [0,∞),

such that for every Borel set B ∈ B(Ωk) and every (d′1, . . . , d
′
k) ∈ {1, 2}k the proba-

bility that Algorithm 3.3 produces a sequence with (x1, . . . , xk) ∈ B and (d1, . . . , dk) =
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(d′1, . . . , d
′
k) is given by

µk(B × {d′1, . . . , d′k}) :=

ˆ
B

ρk(x1, . . . , xk; d′1, . . . , d
′
k)dx1 . . . dxk

k∏
j=1

P (d′j),

where P (1) = p and P (2) = 1− p. That is, our probability measure can be written
as a density with respect to the Lebesgue measure and a series of Bernoulli trials
determining the direction of the rectangles. Furthermore, it holds that for any k > 1

p

ˆ
Ω

dxkρk(x1, . . . xk; d1, . . . , dk−1, 1)

+ (1− p)
ˆ

Ω

dxkρk(x1, . . . xk; d1, . . . , dk−1, 2)

= ρk−1(x1, . . . xk−1; d1, . . . , dk−1),

(7)

that is µk−1 is given by the marginal of µk.

Proof. The first point x1 generated in Algorithm 3.3 is chosen uniformly at random
in Ω (with respect to the Lebesgue measure) and the direction d1 ∈ {1, 2} is chosen
independently with probability (p, 1− p). Thus, in this case

µ1(x1, d1) =

{
p
|Ω|dx1 if d1 = 1,
1−p
|Ω| dx1 if d1 = 2.

(8)

Given a point and direction (x1, d1) ∈ Ω × {1, 2}, in Algorithm 3.3 we obtain
a rectangle B1(x1, d1) and choose x2 uniformly at random (with respect to the
Lebesgue measure) in Ω \ B1(x1, d1) with probability density:

1

|Ω \ B1(x1, d1)| (1− 1B1(x1,d1)(x2))dx2,(9)

and choose d2 independently. Thus, given d′1, d
′
2, we may compute

µ2(x1, x2; d′1, d
′
2) = P (d′1)P (d′2)

1

|Ω \ B1(x1, d′1)| (1− 1B1(x1,d′1)(x2))dx1dx2,(10)

where we note that B1(x1, d
′
1) is prescribed in a measurable way.

More generally, given (x1, . . . , xk), (d′1, . . . , d
′
k), and a set B = B1 × · · · × Bk

the conditional probability for the choice of the point xk+1 is given by the normal-
ized Lebesgue measure on Ω with k rectangles (Ri(x1, . . . , xk, d

′
1, . . . , d

′
k))i∈{1,...,2k}

removed and, for product sets,

µk+1(B ×Bk+1 ×
(
d′1, . . . , d

′
k, d
′
k+1

)
)

= P (d′k+1)

ˆ

Bk+1

1Ω\∪Ri(x1,...xk,d′1,...,d
′
k)(xk+1)

|Ω \ ∪Ri(x1, . . . xk, d′1, . . . , d
′
k)|dxk+1 µk(B × {d′1, . . . , d′k}).(11)

In particular, as the conditional probabilities are normalized, the marginal property
(7) immediately follows. �

Having constructed probability spaces for each finite k, we now construct an
extension ((Ω×{1, 2})N,F , µ) which includes all these measures as restrictions. In
the case of independent measures this would correspond to identifying the above
measures with a premeasure on cylinder sets, constructing the product σ algebra
and using Caratheodory’s extension theorem. For our case we rely on the following
more general extension theorem for discrete time stochastic processes.

Theorem 3 (Theorem 3.3.6 in [CZ01]). Let m,n ∈ N, 1 ≤ m < n and define πmn
to be the embedding map of the Borel σ algebra Bm on Rm into Bn given by

∀B ∈ Bm : πmn(B) = {(x1, . . . , xn) : (x1, . . . , xm) ∈ B}.
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Suppose that for each n ∈ N, µn is a probability measure on (Rn,Bn) such that

∀m < n : µn ◦ πmn = µm.(12)

Then there exists a probability space (X,F , µ) and a sequence of random variables
Xj such that for each n, µn is the n-dimensional probability measure of the vector
(X1, . . . , Xn).

Following the argument in [CZ01], we may apply this extension theorem to the
sequence of probability measures generated by Algorithm 3.3, obtaining a proba-
bility measure on the space of sequences (Ω× {1, 2})N.

Lemma 4.2. Let µk be the sequence of probability measures on (Ω × {1, 2})k as
in Lemma 4.1 with the product Borel σ algebra for each k. Let X = (Ω× {1, 2})N
be the Cartesian product equipped with the product σ algebra. Then there exists
a measure µ on X and a sequence of random variables Xj such that µk is the
probability measure of the vector (X1, . . . , Xk).

Proof. We consider probability measures on Ω×{1, 2}, which can be considered as
a (two-dimensional) subset of R3. The marginal property (12) is satisfied by (7)
and we hence conclude by applying Theorem 3. �

4.2. The probabilistic set-up for Algorithm 3.2. It remains to discuss Algo-
rithm 3.2. Here, the choice of (x1, d1) is identical to Algorithm 3.3, but in the k-th

step we choose not just one point xk but rather 2k points (xik)2k

i=1, one for each
connected component.

Lemma 4.3. Let µk be the sequence of probability measures on (Ω × {1, 2})2k

generated by k steps of Algorithm 3.2. Then there exists a measure µ on (Ω×{1, 2})N
and a sequence of random variables Xj such that µk is the probability measure of
the vector (X1, . . . , X2k).

Proof. We note that given the points obtained in step k, the algorithm picks all
these points independently at the same time. In view of the extension of Theorem
3 we further construct a sequence of intermediate measures

µ1
k((xik−1), x1

k), µ2
k((xik−1), x1

k, x
2
k), . . . ,

where we pick them sequentially from the connected components (since these points
are chosen independently we may pick in any order). Each such measure can be
written in terms of a density expressing conditional probabilities as in (11), where
instead of all of Ω \ ∪Ri(x1, . . . , x

i
k, d1, . . . , d

i
k), we now consider the (Lebesgue)

normalized densities on each connected component.
With this convention the measures considered in Algorithm 3.2 correspond to

the subsequence µk := µ2k

k . As the points are chosen independently accord-
ing to a probability measure (which is normalized), the sequence of measures

µ1
k, . . . µ

2k

k , µ
1
k+1, . . . , µ

2k+1

k+1 , µ
1
k+2, . . . satisfies the marginal property and hence µ

can be obtained by applying Theorem 3. �

5. Convergence of the algorithms

In this section we study the convergence of the Algorithms 3.2 and 3.3 with
respect to Lp norms. More precisely we show that the expected value (with respect
to the measure µ of Section 4) of the Lebesgue measure of the sets Vk tends to
zero as k → ∞. In Section 6 we further show that the expected value of the BV
norms of the associated characteristic functions does not grow too quickly and that,
as a result, the expectations of the W 1+s,p norms of the differences ∇yk+1 −∇yk
form a Cauchy sequence (in R). In Section 7 we then pass from statements about



16 F. DELLA PORTA, A. RÜLAND, J. TAYLOR, AND C. ZILLINGER

expectations to statements about sequences and in particular establish convergence
and higher regularity for µ-almost every sequence.

5.1. Convergence of Model A. In this section we prove the following result:

Proposition 5.1. Consider the Algorithm 3.2 (Model A), let µ be the probability
measure constructed in Lemma 4.3 and let E(·) denote the expectation with respect
to µ. Then for each k ≥ 0, Vk is a random variable with respect to µ and it holds
that

E (|Vk|) ≤ c̃kA|Ω|,

where c̃A := max {p+ (1− p)(1− δ), (1− p) + p(1− δ)} ∈ (0, 1) and p ∈ (0, 1) is
as in Algorithm 3.2.

We note that Vk only depends on ((x1, d1), (x2, d2), . . . ) in terms of the points
and directions chosen up to step k. Hence, the expectation E may equivalently be
computed in terms of the measures µk in which case we work with Ek (see Section
2 for the notation).

Proof. Let Dj
k ∈ C(Vk−1). We notice that

Ek+1

(
|Dj

k \B
j
k|
∣∣∣Dj

k

)
≤
{
p(1− δ)|Dj

k|+ (1− p)|Dj
k|, if `j1 > `j2

(1− p)(1− δ)|Dj
k|+ p|Dj

k|, if `j1 ≤ `j2

}
≤ c̃A|Dj

k|,

since the new rectangle covers a fraction δ of the area if a favourable orientation is
chosen by the algorithm. Here, E(V |Dj

k) corresponds to the conditional expecta-
tion with (x1, d1, . . . , xk, dk) prescribed (see (11) for the corresponding probability
density).

Integrating this estimate with respect to (x1, d1, . . . , xk, dk) (and µk) we obtain
the expected value inequality

Ek+1

(
|Dj

k \B
j
k|
)
≤ c̃AEk

(
|Dj

k|
)
.

Thus, taking the union over j and exploiting the fact that V0 = Ω and that |Vk| =⋃
j |D

j
k \B

j
k| proves the claim. �

In particular, Proposition 5.1 implies the following convergence result:

Corollary 5.2. Algorithm 3.2 (Model A) converges in expectation, i.e.,

lim
k→∞

E (|Vk|) = 0, lim
(k,l)→(∞,∞)

E
(
‖yk − yl‖L∞(Ω)

)
= 0.

Remark 5.3. We emphasize that this corollary only constitutes the very first step
of our analysis of the generated sequences {yk}k∈N. In particular, the corollary
does not yet ensure the convergence of the sequence {yk}k∈N to a solution of the
differential inclusion (2).

Proof. The first statement is clear from Proposition 5.1. For the second statement,
we just notice that (supposing without loss of generality that k < l)

E‖yk − yl‖L∞(Ω) = E‖yk − yl‖L∞(Vk\Vl)

≤ cE(‖∇yk −∇yl‖L∞(Ω) |Vk \ Vl|
1
2 ) ≤ cc̃

k
2

A|Ω|,
for some c > 0, and where we have used that, since K,Kqc are bounded, ∇yj is
bounded in L∞(Ω) for each l ≥ 0. The claim thus follows. �
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5.2. Convergence of Model B. In this section we prove the following result
(which does not yet ensure that yk converges to a solution of (2), see Theorems 4
and 6 for this).

Proposition 5.4. Consider the Algorithm 3.3 (Model B), let µ be the probability
measure constructed in Lemma 4.2 and let E(·) denote the expectation with respect
to µ. Then for each k ≥ 0, Vk is a random variable with respect to µ and it holds
that

E (|V2k+1|) ≤ c̃BE (|Vk|) ,

where c̃B := c̃A + (1− c̃A) 1+e−
1
2

2 ∈ (0, 1) and c̃A is as in Proposition 5.1.

In order to work with a concise notation, we recall the concept of a descendant
of a domain:

Definition 5.5 (Def. 3.3 in [RZZ18]). Let D̂ ∈ C(Vk) for some k ≥ 0. Then we

say that Ď ∈ C(Vl) for some l ≥ k is a descendant of D̂ if Ď ⊂ D̂. We denote the

set of all descendants of D̂ by D(D̂).

Proof of Proposition 5.4. We know that, in the setting of Model 3.3, Vk has at most
k + 1 connected components Dj

k. After k + 1 iterations of the algorithm we thus
obtain that

E
(
|V2k+1|

∣∣∣Vk) =
∑
j

E
(∣∣D(Dj

k) ∩ V2k+1

∣∣∣∣∣Vk)
≤
∑
j

p̄jE
(∣∣D(Dj

k) ∩ V2k+1

∣∣∣∣∣Vk and pl ∈ Dj
k for some l ∈ {k + 1, . . . , 2k + 1}

)
+
∑
j

(1− p̄j)|Dj
k|,

where p̄j is the probability that pl ∈ Dj
k for some l ∈ {k+ 1, . . . , 2k+ 1}. This can

be computed by noticing that

1− p̄j =

2k+1∏
l=k+1

(
1− |D

j
k|

|Vl−1|

)
≤
(

1− |D
j
k|
|Vk|

)k+1

,

from which we obtain that

p̄j ≥ 1−
(

1− |D
j
k|
|Vk|

)k+1

=: pj .

Therefore, setting c̃A := min {p+ (1− p)(1− δ), (1− p) + p(1− δ)} ∈ (0, 1) and
arguing as in the proof of Proposition 5.1, we deduce that

E
(∣∣D(Dj

k) ∩ V2k+1

∣∣∣∣∣Vk and pl ∈ Dj
k for some l ∈ {k + 1, . . . , 2k + 1}

)
≤ c̃A|Dj

k|,

which allows us to estimate

E
(
|V2k+1|

∣∣∣Vk) ≤∑
j

(p̄j c̃A + (1− p̄j)) |Dj
k|

≤
∑
j

(pj c̃A + (1− pj)) |Dj
k| ≤ |Vk|+ (c̃A − 1)

∑
j

pj |Dj
k|

≤ c̃A|Vk|+ (1− c̃A)
∑
j

(
1− |D

j
k|
|Vk|

)k+1

|Dj
k|.

(13)
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Let now rj :=
|Dj

k|
|Vk| . We now claim that

(14)
∑
j

(1− rj)k+1
rj ≤ ĉB

for some ĉB ∈ (0, 1). Indeed, let

J1 :=

{
j : rj ≥

1

2(k + 1)

}
, J2 :=

{
j : rj <

1

2(k + 1)

}
,

and note that J := J1 ∪ J2 has k + 1 elements. We have∑
j∈J1

(1− rj)k+1
rj ≤

∑
j∈J1

(
1− 1

2(k + 1)

)k+1

rj ≤ e−
1
2

∑
j∈J1

rj ,

and ∑
j∈J2

(1− rj)k+1
rj ≤

∑
j∈J2

rj .

Since #J = k + 1,∑
j∈J2

rj ≤
1

2(k + 1)

∑
j∈J2

1 ≤ 1

2(k + 1)

∑
j∈J

1 ≤ 1

2
,

and since
∑
j∈J1

rj = 1−∑j∈J2
rj , we have∑

j∈J
(1− rj)k+1

rj ≤
∑
j∈J1

(1− rj)k+1
rj +

∑
j∈J2

(1− rj)k+1
rj

≤ e− 1
2

∑
j∈J1

rj +
∑
j∈J2

rj

≤ e− 1
2 + (1− e− 1

2 )
∑
j∈J2

rj ≤ e−
1
2 + (1− e− 1

2 )
1

2
,

which is (14) with ĉB := 1+e−
1
2

2 . Therefore, combining (13) and (14) we deduce

E
(
|V2k+1|

∣∣∣Vk) ≤ |Vk|(c̃A + (1− c̃A)ĉB) =: c̃B |Vk|.

We remark that c̃B ∈ (0, 1) is independent of k. Thus, taking expectation, we
deduce

E (|V2k+1|) ≤ c̃BE (|Vk|) .
�

In particular, Proposition 5.4 implies the desired convergence result.

Corollary 5.6. Algorithm 3.3 (Model B) converges in expectation. That means

lim
k→∞

E (|Vk|) = 0, lim
(k,l)→(∞,∞)

E
(
‖yk − yl‖L∞(Ω)

)
= 0.

Proof. Let k ≥ 1, and n̄, k̄ be defined by

n̄ := sup {n ∈ N : 2n − 1 ≤ k} , k̄ := 2n − 1.

Then, by Proposition 5.4 we have

E (|Vk|) ≤ E (|Vk̄|) ≤ c̃n̄B |Ω|,
which implies the first claim. The second claim follows by arguing as in the case of
Model A in Corollary 5.2. �
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6. Regularity of the solutions

After having discussed the convergence in expectation of the algorithms from
Model A and Model B in the previous section, we now study their expected higher
regularity properties.

Again we begin by considering Model A first and then pass on to Model B.

Theorem 4. There exists θA ∈ (0, 1) such that, for each (s, p) ∈ (0, 1) × [1,∞)
satisfying sp < θA we have that yk constructed as in Algorithm 3.2 (Model A)
satisfies

E
(
‖∇yk −∇yk+1‖W s,p(Ω)

)
≤ C2−kα

for some C,α > 0 depending on θA, p and M ∈ Kqc only.

Proof. Let us first recall that for any f ∈W s,p(Ω) we have

‖f‖pW s,p(Ω) = ‖f‖pLp(Ω) +

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p
|x− y|2+sp

dx dy.

Let us start by assuming that sp < θ0, where θ0 is as in Theorem 2. On the one
hand, since ∇yl(x) ∈ K for x ∈ Ω \ Vl and any l ≥ 0 (and as ∇yk will not be
changed along the iteration on that set any more) and as both K and Kqc are
compact, we have

‖∇yk −∇yk+1‖pLp(Ω) ≤ c|Vk \ Vk+1| ≤ c|Vk|.

On the other hand, setting vk := ∇yk − ∇yk+1 and using that ∇yk = ∇yk+1 on

(
⋃
j

Bjk)c, we observe that

ˆ
Ω

ˆ
Ω

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy

≤
∑
j

ˆ
Bj

k

ˆ
Bj

k

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy + 2
∑
j

ˆ
Bj

k

ˆ
(Bj

k)c

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy.

(15)

The first term in (15) can be bounded thanks to Theorem 2. Indeed,∑
j

ˆ
Bj

k

ˆ
Bj

k

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy ≤
∑
j

(
‖∇yk+1‖pW s,p(Bj

k)
+ ‖∇yk‖pW s,p(Bj

k)

)
.

Now building on the interpolation estimate (see [RZZ19, Corollary 3])

‖u‖W s,p(Ω) ≤ ‖u‖
1− 1

p

L∞(Ω)(‖u‖
1−θ̃0
L1(Ω)‖u‖

θ̃0
BV (Ω))

1
p ,(16)

with θ̃0 = sp, as well as the estimates (see [DPR20, Proposition 7.1] and [DPR20,
Lemma 7.1], where in the latter |Ω| has to be replaced by Per(Ω))

‖∇uk‖BV (Ω) ≤ C2k Per(Ω),

‖∇uk‖L1(Ω) ≤ Cck|Ω|,
(17)

for some constant c ∈ (0, 1) which is independent of Ω and where uk is the defor-
mation from [DPR20], we obtain that for our deformation, by combining (16) and
(17), we have for sp < θ0 (where θ0 > 0 is the regularity threshold from [DPR20]
and Theorem 2)

‖∇yk‖W s,p(Bj
k) + ‖∇yk+1‖W s,p(Bj

k) ≤ C Per(Bjk)s|Bjk|
1
p−s.(18)
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Hence, Cauchy-Schwarz and the fact that in the k-th iteration step there are 2k

sets Bjk in which yk is modified, implies that

∑
j

ˆ
Bj

k

ˆ
Bj

k

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy ≤
∑
j

‖∇yk‖pW s,p(Bj
k)
≤ Per(Ω)sp

2k∑
j=1

|Bjk|1−sp

≤ Per(Ω)sp2ksp|Vk \ Vk+1|1−sp.
Regarding the second term in (15), exploiting the boundedness of the vk, we

have for each j thatˆ
Bj

k

ˆ
(Bj

k)c

|vk(x)− vk(y)|p
|x− y|2+sp

dy dx ≤ c
ˆ
Bj

k

ˆ
(Bj

k)c

1

|x− y|2+sp
dy dx

≤ c
ˆ
Bj

k

ˆ
(B(x,dist(x,∂Bj

k)))
c

1

|x− y|2+sp
dy dx

≤ c
ˆ
Bj

k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx

≤ cPer(Bjk) min{`j1, `j2}1−sp

≤ cPer(Bjk)sp|Bjk|1−sp.
Here the estimate in the second to last line is a consequence of the following con-
siderations: Splitting

ˆ
Bj

k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx =

2∑
i=1

ˆ
∆i

j,k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx

+

2∑
i=1

ˆ
T i
j,k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx,

where ∆i
j,k denote the triangles and T ij,k the trapezoids from Figure 8. Further,

in the triangle ∆i
j,k in Figure 8 we estimate from above by the estimate over the

rectangle [0, `j2]× [0, `j2]:

ˆ
∆i

j,k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx ≤ `j2

ˆ `j2

0

x−sp1 dx1 =
1

1− sp`
j
2(`j2)1−sp,

where we used that the integral with respect to r is given by a constant times
dist−sp. Similarly, for the trapezoids on the bottom in Figure 8 we similarly estimate
by

ˆ
T i
j,k

ˆ ∞
dist(x,∂Bj

k)

1

r1+sp
dr dx ≤ `j1

ˆ `j2

0

x−sp2 dx2 =
1

1− sp`
j
1(`j2)1−sp.

Thus, the integral is controlled by

max(`j1, `
j
2) min(`j1, `

j
2)1−sp ≤ Per(Bjk) min(`j1, `

j
2)1−sp.

Thus, by Hölder’s inequality and (18) we infer∑
j

ˆ
Bj

k

ˆ
(Bj

k)c

|vk(x)− vk(y)|p
|x− y|2+sp

dx dy ≤ c
∑
j

Per(Bjk)sp|Bjk|1−sp

≤ c

∑
j

Per(Bjk)

sp∑
j

|Bjk|

1−sp

≤ c
(
2k
)sp |Vk|1−sp.
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` j
1

` j
2

dist(x,∂B) = x2

dist(x,∂B)
= x1

Figure 8. In order to estimate the W s,p seminorm over Bjk × B
j
k

we split the rectangle into the depicted four regions. In each of
these regions the distance to the boundary is explicitly given in
terms of the Cartesian coordinates.

By collecting all the above estimates we obtain for c = c(Per(Ω)) > 0

(19) ‖∇yk −∇yk+1‖pW s,p(Ω) ≤ c2ksp|Vk \ Vk+1|1−sp + c2ksp|Vk|1−sp,
which by taking the expected value and by Proposition 5.1 becomes

E
(
‖∇yk −∇yk+1‖pW s,p(Ω)

)
≤ c

(
2k
)sp (

c̃kA|Ω|
)1−sp

.

Therefore, choosing θA := sp ∈ (0, θ0) such that 2θA · c̃1−θAA < 1, we deduce the
existence of α > 0 satisfying

E
(
‖∇yk −∇yk+1‖pW s,p(Ω)

)
≤ c2−αk.

�

Arguing similarly as for Model A, regarding Model B we have:

Theorem 5. There exists θB ∈ (0, 1) such that, for each (s, p) ∈ (0, 1) × [1,∞)
satisfying sp < θB we have that yk constructed as in Algorithm 3.3 (Model B)
satisfies

E
(
‖∇yk −∇y2k+1‖W s,p(Ω)

)
≤ C2−α log2(k+1)

for any k ≥ 1, and for some C,α > 0 depending on θA, p and M ∈ Kqc only.

We remark that for k = 2l−1 it holds that 2k+ 1 = 2l+1−1 and 2−α log2(k+1) =
2−αl. Hence, we may consider the subsequence ỹl := y2l−1 to obtain an estimate of
the same form as in Theorem 4.

Proof. The proof follows the approach devised in the proof of Theorem 4. Again,
we start by assuming that sp < θ0, where θ0 is as in Theorem 2. Then, by arguing
as in the proof of Theorem 4 we deduce

‖∇yk −∇y2k+1‖pW s,p(Ω) ≤ cPer(Ω)sp(k + 1)sp|Vk \ V2k+1|1−sp

+ c

 2k+1∑
j=k+1

Per(Bj)

sp

|Vk|1−sp

≤ cPer(Ω)sp(k + 1)sp|Vk \ V2k+1|1−sp

+ c (k + 1)
sp |Vk|1−sp,

where, in order to infer the estimate for the W s,p semi-norm, we bound the dif-
ference of ∇yk − ∇y2k+1 in the different Bj , with j ∈ {k + 1, . . . , 2k + 1}, rather
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than in the sets Bjk. Thus, taking the expected value and using the estimate from
Proposition 5.4, we arrive at

E
(
‖∇yk −∇y2k+1‖pW s,p(Ω)

)
≤ c

(
(c̃n̄B |Ω|)1−sp(k + 1)sp + (k + 1)

sp (
c̃n̄B |Ω|

)1−sp)
≤ c(2θB · c̃

n̄
n (1−θB)

B )n,

where n := log2(k + 1), n̄ := bnc and θB = sp. Since n̄
n ≥ 1

2 , whenever k ≥ 1, by

choosing θB := sp ∈ (0, θ0) such that 2θB · c̃
1
2 (1−θB)

B < 1, we thus infer the claimed
result. �

7. Almost sure convergence and higher regularity

In Sections 4-6 we have established estimates on solutions, their regularity and
their convergence in expectation. As a consequence of these results we further
obtain convergence along sequences for µ-almost every sequence produced by the
algorithms.

The following theorem converts the results on expectations of Theorem 4 into a
statement on µ-almost every sequence.

Theorem 6. Consider Algorithm 3.3 and let µ be as in Lemma 4.2 (or Algorithm
3.2 and µ as in Lemma 4.3). Then there exists α′ > 0 such that for µ-almost every
sequence (x1, d1, . . . ) obtained in the algorithm, there exists K <∞ (depending on
the sequence) such that for all k ≥ K it holds that

‖∇yk −∇yk+1‖W s,p(Ω) ≤ C̃2−α
′k,(20)

for some constant C̃ independent of k (in the case of Algorithm 3.2 we estimate
∇y2k−1 − ∇y2k+1−1 instead). In particular, µ-almost every generated sequence
{yk}k∈N is Cauchy in W 1+s,p(Ω) and has a limit y ∈ W 1+s,p(Ω). The function y
satisfies the differential inclusion problem (5).

Proof of Theorem 6. In Theorem 4 we had shown that there exists α > 0 such that

E(‖∇yk −∇yk+1‖W s,p(Ω)) ≤ C̃2−αk.

Let now 0 < α′ < α and define C > 1 such that 2−α
′k = Ck2−αk. Then by

Chebychev’s inequality it holds that

µ({(x1, d1, . . . ) : ‖∇yk −∇yk+1‖W s,p(Ω) ≥ 2−α
′k}) ≤ C̃C−k.

In particular, given K ∈ N we may define the exceptional sets

UK =
⋃
k≥K

{(x1, d1, . . . ) : ‖∇yk −∇yk+1‖W s,p(Ω) ≥ 2−α
′k}

and by subadditivity of the measure and the geometric series we obtain that

µ(UK) ≤ C̃
∑
k≥K

C−k = C̃C−K
1

1− C−1
.

Thus for every ε > 0 we may find K ∈ N sufficiently large such that µ(UK) ≤ ε and
therefore

Wε := (Ω× {1, 2})N \ UK
has measure at least 1 − ε and by construction of Wε the estimate (20) holds for
each sequence in Wε for all k ≥ K.

Let now εj be some sequence with εj → 0 and define

W ? =
⋃
j

Wεj .
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This set has full measure since

µ((Ω× {1, 2})N \W ?) ≤ inf
j
µ((Ω× {1, 2})N \Wεj ) ≤ inf

j
εj = 0,

and therefore any sequence µ-almost surely is in W ?. By construction, for any
(x1, d1, . . . ) ∈W ? there exists εj and hence K such that (20) is valid for k ≥ K.

As a consequence, ∇yk → ∇y in W s,p(Ω) for µ-almost every sequence con-
structed in Algorithm 3.2 and y ∈W 1+s,p(Ω) ∩W 1,∞(Ω) µ-almost surely.

In order to observe that ∇y ∈ K for µ-almost every sequence (x1, d1, . . . ), we
argue analogously: By Proposition 5.1 we have that E(|Vk|) ≤ ck for some c ∈ (0, 1).
Then, as above, Chebychev’s inequality again yields that for some d > 1

µ({(x1, d1, x2, d2, . . . ) : |Vk| ≥ dkck}) ≤ d−k.
Given K ∈ N, we again define exceptional sets

ŨK =
⋃
k≥K

{(x1, d1, . . . ) : |Vk| ≥ (dc)k},

and obtain that

µ(ŨK) ≤ d−k 1

1− d−1
.

Defining sets W̃ε and W̃ ? as above, and noticing that the union of two null sets is
again a null set, concludes the proof in the case of Model A.

The result for Algorithm 3.3 follows analogously from Theorem 5. �

Proof of Theorem 1. The proof of Theorem 1 is an immediate consequence of The-
orem 6. �

8. On large aspect ratios and tail estimates

As remarked in Section 3 in our Algorithms 3.2 and 3.3 we opted to completely
cover the rectangle Dj

k, if

`j
djk
≥ δ−1`j

(djk)⊥
,

that is, if the length of the rectangle in the direction edjk
we picked is too long.

This cut-off simplifies the covering arguments and allows us to more easily deduce
uniform bounds on volume fractions which are iteratively covered (as proved for
instance in Propositions 5.1 and 5.4).

In the following we show that for a slightly modified version of our algorithm
such a cut-off is not required. These modifications are made precise in Algorithm
8.1 below and are illustrated in Figure 9. All other, not explicitly defined quantities
are defined in the same way as in Algorithm 3.2.

Algorithm 8.1. We consider Algorithm 3.2 but make the following two modifica-
tions with respect to its dynamics:

(1) for each Dj
k ∈ C(Vk−1) (which is a rectangle of side lengths `j1, `

j
2) we define

Bjk as follows. If `j
djk
< 1

2δ
−1`j

(djk)⊥
, we keep the previous definition:

Bjk :=
{
x ∈ Dj

k : x · e⊥
djk
∈ (pjk · e⊥djk − δδ

j
k`
j

djk
,pjk · e⊥djk + δ(1− δjk)`j

djk
)
}
,(21)

where δjk is chosen such that Bjk is contained in Dj
k:

δjk := argmin

{∣∣∣∣s− 1

2

∣∣∣∣ : s ∈ (0, 1) and both pjk − s`
j

djk
e⊥
djk
,pjk + (1− s)`j

djk
e⊥
djk
∈ Dj

k

}
.

See Figure 9 (top) for an illustration.
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C(Vk−1,pk)

pk

edk

Bk

1

1≤ L≤ δ−1

δ

C(Vk−1,pk)

pk

edkBk

1

1≤ L≤ δ−1

Lδ ≤ 1

C(Vk−1,pk)

pk

edk

Bk

1

L≥ δ−1

δ

C(Vk−1,pk)

pk

edk

Bk

1

L≥ δ−1

δ−1

C(Vk−1,pk)

pk
edk Bk

Figure 9. Top: If the rectangle Dj
k has aspect ratio 1 : L with

1 ≤ L ≤ δ−1 the inserted rectangles are translates of (0, δ)× (0, 1)
and (0, L) × (0, Lδ). Center: If the aspect ratio is too long, that
is L > δ−1, a rectangle (0, L) × (0, Lδ) is too tall to fit. We thus
instead insert a translate of (0, δ−1)× (0, 1). Bottom: If the aspect
ratio satisfies 1

2δ
−1 ≤ L ≤ 2δ−1 we only modify the quadrant

Q ⊂ Dj
k which contains the picked point pjk. More precisely, we

use the constructions on the top and center with Dj
k replaced by

Q.

If δ`j
djk
> 2`j

(djk)⊥
, we cannot insert a translate of (0, `j

djk
)×(0, δ`j

djk
), since

(0, δ`j
djk

) 6⊂ (0, `j
(djk)⊥

). We thus instead insert a translate of (0, δ−1`j
(djk)⊥

)×
(0, `j

(djk)⊥
) according to the following definition:

Bjk :=
{
x ∈ Dj

k :

x · edjk ∈ (pjk · edjk − λ
j
kδ
−1`(djk)⊥ ,p

j
k · edjk + (1− λjk)δ−1`(djk)⊥)

}
,

(22)

where

λjk := argmin{|s− 1

2
| : s ∈ (0, 1)

and both pjk − sδ−1`(djk)⊥edjk
,pjk + (1− s)δ−1`(djk)⊥edjk

∈ Dj
k}.

See Figure 9 (center) for an illustration.

(2) Suppose that Dj
k ∈ C(Vk−1) has lengths `1, `2 with δ−1/2 ≤ `1

`2
≤ 2δ−1

and we picked djk = 1. Then we divide Dj
k into four quadrants and consider

only the quadrant Q which contains the point pjk which had been picked. All
other three quadrants remain unchanged and are added to the remainder set
Vk+1. In the picked quadrant Q, we define Bjk
• by the formula (21) (with Dj

k replaced by Q) if δ−1 ≥ `1
`2

,

• and by the formula (22) (with Dj
k replaced by Q) if `1

`2
≥ δ−1.

See Figure 9 (bottom) for an illustration.

For simplicity of presentation in the following we further restrict to the case
where the horizontal and vertical directions are chosen with equal probabilities
p = 1− p = 1

2 .



25

Remark 8.2. The first point (1) in Algorithm 8.1 is a relaxation of Algorithm 3.2
where we allow for rectangles with large aspect ratio also in the case of alignment
with the replacement. The condition (2) is a technical assumption which we do not
expect to be necessary. It ensures that we do not cover “too much” volume, see
Lemma 8.5 and Remark 8.8.

We show that for the modified Algorithm 8.1 in expectation only a (uniformly
bounded) fraction of the total volume is covered by very long rectangles while most
of the volume is covered by non-degenerate rectangles. In order to make this more
precise we sort rectangles into buckets according to their aspect ratio.

Definition 8.3. Let Vk be a collection of rectangles (defined in Algorithm 8.1),
let 0 < δ < 1 and 1 < λ be given and for simplicity of notation assume that
δ = λ−J+1/2 for some positive integer J ∈ N. We then say that a rectangle R ∈ Vk
is in the class Cj , j ∈ {J, J − 1, . . . , 0,−1, . . . } ⊂ Z, if its aspect ratios 1 : L, L ≥ 1
satisfies

λ−j−1/2δ−1 ≤ L < λ−j+1/2δ−1.

We note that Cl with l > 0 corresponds to aspect ratios 1 : L with 1 ≤ L < δ−1λ−1/2

and Cl with l < 0 corresponds to “long” rectangles with aspect ratio L > δ−1λ1/2.
Furthermore, we introduce the corresponding volumes

V kj =
∑

R∈Vk:R∈Cj

|R|.

We note that the the total volume |Vk| satisfies

|Vk| =
∑

−∞≤j≤J

V kj =
∑
R∈Vk

|R|.

Our objective in the following is to show that if Vk is the random variable given
by our Algorithm 8.1, then there exists J1 < 0 such that for all k it holds that∑

j≤J1

E(V kj ) ≤ 0.1 E(|Vk|).(23)

We call this a tail estimate since it shows that the contribution of j ≤ J1 (which
corresponds to long, thin rectangles) to the sum of the sequence (E(V kj ))j≤J is
small.

Supposing for the moment that this estimate holds, we deduce that the expec-
tation of the remaining volume decreases at an exponential rate.

Theorem 7. Suppose that for some J1 < 0 the random process generated by Algo-
rithm 8.1 satisfies the estimate (23) for all k ∈ N. Let δ ∈ (0, 0.1) be the threshold
from Algorithms 3.2 and 8.1. Then there exists c = c(J1, δ) ∈ (0, 1) such that for
all k

E(|Vk+1|) ≤ c E(|Vk|)
and, as a consequence,

E(|Vk|) ≤ ck|Ω|.
We thus obtain similar results as in Section 5.1 even without completely covering

long rectangles, however possibly with worse rates.

Proof of Theorem 7. We recall that in Algorithm 8.1 we independently insert a
building block into each rectangle. For any given rectangle R (= Dj

k ∈ Vk) we
may thus compute the expected volume fraction (of R) covered by the inserted
building block and subsequently sum over all rectangles. We note that, by scaling,
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this volume fraction only depends on the aspect ratio of R which is comparable to
λ−lδ−1 if R ∈ Cl.

We claim that there exists a sequence of coefficients cj ∈ (0, 1) (which is inde-
pendent of k) such that

E(|Vk|)− E(|Vk+1|) ≥
∑

J1<j≤J

cjE(V kj ).(24)

We remark that the quantity on the left equals the total volume covered by building
blocks when passing from step k to k+ 1 (since only building blocks are removed).
In the following we will thus have to estimate the expected volume fraction covered
by building blocks for any given rectangle R ∈ Vk. Before proving (24) let us discuss
how it allows us to conclude our proof. To this end, we may further estimate the
right-hand-side of (24) by invoking (23)

min(cj)
∑

J1<j≤J

E(V kj ) ≥ 0.9 min(cj)E(|Vk|).

Inserting this estimate back into (24) we deduce that

E(|Vk+1|) ≤ (1− 0.9 min(cj))E(|Vk|),

which yields the result of Theorem 7.
It hence remains to prove the claimed inequality (24). Let thus R be a given

rectangle of lengths `1, `2 and for simplicity of notation denote L = max(`1,`2)
min(`1,`2) ≥ 1.

Then after rescaling, translation and possibly rotating by π
2 we may assume that

R = (0, L)× (0, 1).

Let j ∈ {. . . ,−1, 0, 1, . . . , J} such that R ∈ Cj and hence

λ−j−1/2δ−1 ≤ L ≤ λ−j+1/2δ−1.(25)

We then estimate the expected volume covered by the inserted building block as
follows:

If the direction edjk
picked is vertical, edjk

= e2, and L 6∈ ( 1
2δ
−1, 2δ−1) then we

insert a translate of (0, δ) × (0, 1) into a rectangle (0, L) × (0, 1) (see Figure 9 on
the left side of the top and center rows). If instead L ∈ ( 1

2δ
−1, 2δ−1), then by point

(2) of Algorithm 8.1 we only modify a quadrant and hence insert a translate of
(0, δ/2)× (0, 1/2) (see Figure 9 bottom). In both cases we cover at most a volume
fraction

δ

L
≤ λj−1/2δ2(26)

and recall that we picked the direction edjk
= e2 with a probability 1

2 .

Suppose the direction picked is horizontal, that is edjk
= e1, and let again without

loss of generality R = (0, L)× (0, 1) ∈ Cj . Then we distinguish three cases:

• If L ≤ 1
2δ
−1 (which implies that j ≥ 0 in (25)), we insert a translate of

(0, L)×(0, Lδ) and hence cover a volume fraction Lδ ≤ λ−j−1/2 = λ−|j|−1/2.
• If L ≥ 2δ−1 (which implies that j ≤ 0 in (25)), we insert a translate of

(0, δ−1)×(0, 1) and hence cover a volume fraction δ−1

L ≤ λj−1/2 = λ−|j|−1/2.

• Finally, if 1
2δ
−1 ≤ L ≤ 2δ−1 (which implies that |j| is small in (25)), we

only modify R inside a quadrant and hence may bound the volume fraction
covered from above by 1

4 .
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We thus cover at most a volume fraction max( 1
4 , λ
−|j|−1/2) and recall that we picked

edjk
= e1 with probability 1

2 . Combining this estimate and (26), we may thus choose

cj =
1

2
δ2λj−1/2 +

1

2
max(

1

4
, λ−|j|−1/2) ∈ (0, 1).(27)

This establishes the claimed inequality (24) and hence concludes the proof. �

Remark 8.4. We remark that our computations of E(|Vk|) − E(|Vk+1|) in (24)
are close to being sharp. More precisely, given the aspect ratio of a rectangle R we
can precisely compute the expected volume fraction (of R) which is covered by the
building block. Since in our buckets Cj we group ratios which differ by at most a
factor λ±1, we may bound these volume fractions from above and below by constants
c∗j and cj which differ from each other by a factor at most λ±1 (see Lemma 8.6 for
a calculation of lower bounds).

The remainder of this section is concerned with establishing the claimed estimate
(23). More precisely, we make the stronger claim that there exists a constant C > 1
(for our purpose the constant can, for instance, be chosen to be C = 100) such that
for all k ≥ 0 and all j ≤ J1 it holds that

E(V kj ) ≤ CλjE(|Vk|).(28)

That is, rectangles with a very large aspect ratio comparable to λ|j|δ−1 cover an
exponentially decreasing amount of the total volume E(|Vk|). As j ≤ J1 < 0 is
negative, we may relate this to the geometric series in 1

λ < 1 (starting at |J1|) and
after possibly choosing J1 even more negative it holds that

C
∑
j≤J1

λj = C
λJ1

1− λ−1
≤ 0.1,

which implies the desired result (23). In order to prove (28) we proceed by induction
using an upper and a lower bound given by the following two lemmas.

Lemma 8.5. Let Vk be as above. Suppose that (28) holds for a given k and C
large (C = 100) and λ = 1.1. Then for all j ≤ J1 < 0 it holds that

E(V k+1
j ) ≤ 0.7 CλjE(|Vk|).(29)

Lemma 8.6. Let Vk be as above. Then it holds that

E(|Vk+1|) ≥ 0.7 E(|Vk|).(30)

Remark 8.7. We remark that a failure of the lower bound (30) corresponds to
covering a large volume fraction in a single iteration step of the algorithm, which
at first sight seems very desirable. However, by covering this large volume fraction
we might possibly loose control of relative volume fractions (e.g. it might be that
the tail is not anymore relatively small). We believe that (30) remains true also
for Algorithm 3.2, but our current method of proof for that case only allows to
derive a suboptimal lower bound by 0.6 E(|Vk|), which is not sufficient to close the
argument. For simplicity of presentation we hence opted to modify the algorithm to
cover a lower fraction in the “best case” (leading to the condition (2) in Algorithm
8.1). We comment on some partial results for the unmodified case at the end of
this section in Remark 8.8.

We emphasize that in contrast to Lemma 8.6 the result of Lemma 8.5 is valid
for both Algorithms 3.2 and 8.1 and, in particular, does not need the modifications
from Algorithm 8.1.

The combination of Lemmas 8.5 and 8.6 allows us to prove (28).
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Proof of the claim (28) using Lemmas 8.5 and 8.6. We note that initially, that is
for k = 0, V kj = 0 for all j ≤ J1 and thus (28) is trivially satisfied. We then aim
to proceed by induction. Suppose that (28) holds for a given k and with λ = 1.1.
Then by Lemma 8.5 and Lemma 8.6 it holds that

E(V k+1
j )

(29)

≤ C0.7λjE(|Vk|)
(30)

≤ Cλj
0.7

0.7
E(|Vk+1|) = CλjE(|Vk+1|),

and the estimate (28) therefore also holds for k+1. We thus conclude by induction.
�

It remains to prove Lemma 8.5 and Lemma 8.6.

Proof of Lemma 8.5. We argue similarly as in equation (24) in the proof of Theorem

7 and estimate E(V k+1
j ) in terms of E(V kl ), l ∈ Z∩{m ≤ J}. Here we use that every

rectangle in Vk+1 is obtained as one of the connected components of a rectangle
R ∈ Vk generated by inserting a building block (see Figure 9). More precisely, let
j ≤ J1 be arbitrary but fixed and let R ∈ Vk be a given rectangle. As in the proof
of Theorem 7 after rescaling and rotation we may assume that

R = (0, L)× (0, 1), L ≥ 1.

Then given the random point p ∈ R and direction ed ∈ {e1, e2} we insert a building
block B = B(p, ed) ⊂ R, which divides

R \ B =: R1 ∪R2,

into two connected components R1 = R1(p, ed) and R2 = R2(p, ed) (if B touches
the boundary of R some of these components might be trivial). We then compute

the contribution of R ∈ Vk to E(V k+1
j ) by determining for which p and ed it

holds that R1 ∈ Cj or R2 ∈ Cj (and integrating |R1| and |R2| with respect to the
probability density) and finally sum over all R.

More precisely, we claim that for any j ≤ J1 it holds that

E(V k+1
j ) ≤ (0.5λj+1/2δ + 0.5λj+1/2)E(V k≥0)

+ δ2λj+1/2E(V k0≥l>j)

+ (1− λ−2)E(V kj )

+
∑
l<j

λ2l−2j(1− λ−2)E(V kl ).

(31)

Here we used the short-hand notation

E(V k≥0) :=
∑
l≥0

E(V kl ), E(V k0≥l>j) :=
∑

0≥l>j

E(V kl ).

Using (28) and the fact that C is large, we will argue that the main contribution on
the right-hand-side of (31) is given by the last two terms. More precisely, inserting
the estimate (28), the last two contributions are controlled by

(1− λ−2)
∑
l≥j

Cλ2j−3lE(|Vk|) = Cλ−j
1− λ−2

1− λ−3
E(|Vk|).

In particular, we observe that

β(λ) :=
1− λ−2

1− λ−3
=

λ−1 + 1

λ−2 + λ−1 + 1

approaches 2
3 as λ approaches 1. Inserting these estimates into (31) and choosing

λ = 1.1, we may thus deduce that

E(V k+1
j ) ≤ λj(δλ 1

2 + δ2λ
1
2 + 0.5λ

1
2 + 0.68C)E(|Vk|) < 0.7Cλj E(|Vk|),
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provided C is sufficiently large compared to 0.5.
It thus remains to prove the estimate (31). Let thus j ≤ J1 be arbitrary but fixed.

As discussed above, for any R ∈ Vk we determine with which probability R1 and
R2 are in Cj by estimating the probability of the associated sets of (p, ed). Using
this, we compute the expectations of |R1|1R1∈Cj

+ |R2|1R2∈Cj
and then compare

these to the volume |R| of R.
We remark that if the aspect ratio 1 : L, L ≥ 1 of R satisfies 1

2δ
−1 ≤ L ≤ 2δ−1

and we are thus in case (2) of Algorithm 8.1, then the rectangles R1, R2 are further
rescaled by a factor 1

2 and hence cover 1
4 of the volume which they would else

have occupied without this modification. Since we only require upper bounds on
|R1|1R1∈Cj

+ |R2|1R2∈Cj
, this gain of a factor 1

4 only improves the estimates. Thus,
for simplicity of notation in the following we establish the stronger estimate for the
algorithm without this second modification.

In the following let always R ∈ Vk and without loss of generality, after rescaling,
rotating and translating let

R = (0, L)× (0, 1)

with L ≥ 1.
The contribution by V k≥0: Suppose that R is such that 1 ≤ L ≤ δ−1 (and hence

R ∈ Cl for some l ≥ 0). We then want to estimate the volume of the generated
rectangles R1, R2 if they are in Cj . Here we say that R1 (or R2) is vertical if it is a
translate of (0, a)× (0, 1) for some a ∈ (0, 1) (that is the e2 direction is the longest)
and otherwise call it horizontal.

Let us first consider the case when R1 (or R2) is in Cj and vertical. Then R1 is

a translate of (0, λjδγ)× (0, 1) (see Figure 9 left) with γ ∈ (λ−1/2, λ+1/2) (since the
class Cj was defined in this way). We may thus roughly bound its volume fraction
by

λj+1/2δ

L
≤ λj+1/2δ.

Next suppose that R1 (or R2) is in Cj and horizontal. Then (by the definition
of V k≥0 and Cj as well as the replacements explained in Algorithm 8.1) R1 is a

translate of (0, L)× (0, α) (see Figure 9 top right) with α
L ∈ (λj−1/2δ−1, λj+1/2δ−1)

and thus in particular covers a volume fraction less than

α ≤ λj+1/2.

The contribution by V kl with 0 ≥ l > j: Let again R ∈ Vk and suppose that

δ−1 ≤ L < δ−1λ−j−1/2 (and thus R ∈ Cl, 0 ≥ l > j). Since L ≥ δ−1, the
generated rectangles R1, R2 have height 1 and are thus translates of (0, α)× (0, 1)
for some α ∈ (0, L) (see Figure 9 center). As α < L < δ−1λ−j−1/2, it is not possible
for R1 or R2 to be horizontal rectangles in Cj (since α is too small for the rectangles
to be in Cj). If R1 (or R2) is a vertical rectangle and in Cj , it is a translate of

(0, λjδγ)× (0, 1) with γ ∈ (λ−1/2, λ1/2) and hence covers a volume fraction at most

λjδγ

L
≤ λj+1/2δ2.

The contribution by V kl with l ≤ j: Finally, let again R ∈ Vk and suppose that

R ∈ Cl and thus

λ−l−1/2δ−1 ≤ L < λ−l+1/2δ−1.
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If the generated rectangle R1 (or R2) is vertical, it will only cover a volume fraction

δλjγ

L
≤ δ2λ1+j+l,(32)

which is negibible.
In the following we thus focus on estimating the expected volume fraction covered

by R1 in Cj being a horizontal rectangle (which by symmetry is the same volume
fraction as covered by R2). Here for concreteness we again fix

R = (0, L)× (0, 1)

and let R1 = R1(p, ed) be the rectangle generated on the left of the building block
B which had been removed from R (see Figure 9).

The case l = j: By construction the building block B inserted depends on p only
in terms of its e1 component p1. We thus ask for which p1 (for given ed) it holds that
R1 ∈ Cj and require an estimate of |R1(p1, ed)| in that case. Since p1 was chosen
according to the Lebesgue measure, we then can compute the volume fraction for
a given ed′ by

E
( |R1|
|R| : R1 ∈ Cj is horizontal, d = d′

)
=

1

|R|

ˆ L

0

|R1(p1, ed′)|1R1∈Cj

dp1

L

=
1

L2

ˆ L

0

|R1(p1, ed′)|1R1∈Cj
dp1.

We first discuss the case when p1 is not close to 0 or L and the building block B
is thus centered at p (see the definitions of δjk and λjk in Algorithm 8.1). Then if
ed = e1, B = (p1 − δ−1/2, p1 + δ−1/2) × (0, 1) and R1 = (0, p1 − δ−1/2) × (0, 1).
Similarly, if ed = e2, B = (p1−δ/2, p1 +δ/2)× (0, 1) and R1 = (0, p1−δ/2)× (0, 1).
Thus, for R1 to be in Cj , we need that either p1−δ−1/2 ∈ (λ−j−1/2δ−1, λ−j+1/2δ−1)

or p1 − δ/2 ∈ (λ−j−1/2δ−1, λ−j+1/2δ−1), respectively.
We remark that if B is not centered in p1, it touches the right-boundary. Hence,

the generated rectangle R1 will only be shorter than it would be otherwise and we
may hence bound from above by the previously derived formula.

Introducing the new variables of integration x1 = p1 − δ−1/2 ≤ L or x1 =
p1 − δ/2 ≤ L, we may thus bound

1

L2

ˆ L

0

|R1(p1, ed)|1R1∈Cj
dp1 ≤

1

L2

ˆ L

λ−j−1/2δ−1

x1dx1

=
x2

1

2L2
|Lλ−j−1/2δ−1 .

(33)

We recall that by symmetry the volume fraction due to R2 on the right-hand-side
is of the same size and we can hence estimate the full volume fraction by:

E
( |R1|
|R| : R1 ∈ Cj is horizontal

)
+ E

( |R2|
|R| : R2 ∈ Cj is horizontal

)
≤ x2

1

L2
|Lλ−j−1/2δ−1 = 1− (

λ−j−1/2δ−1

L
)2.

We recall that L ∈ (λ−j−1/2δ−1, λ−j+1/2δ−1) and thus this is zero if L is on the
smaller end of the range and bounded above by

1− λ−2.

The case l < j: We argue analogously as in the case l = j except that the upper

limit of the interval of integration in the analogue of (33) is given by λ−j+1/2δ−1 < L
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instead: Thus, in this case,

E
( |R1|
|R| : R1 ∈ Cj is horizontal

)
+ E

( |R2|
|R| : R2 ∈ Cj is horizontal

)
≤ x2

1

L2
|λ−j+1/2δ−1

λ−j−1/2δ−1 =
λ−2j+1δ−2 − λ−2j−1δ−2

L2
.

Since L2 ≥ λ−2l−1δ−2 and l ≤ j − 1 this can be estimated by

λ−2j+1 − λ−2j−1

λ−2l−1
≤ λ−2j+2l(1− λ−2).

This concludes the proof of the claim (31) and thus of the lemma. �

It remains to prove Lemma 8.6. Due to the modification (2) in the definition
of Algorithm 8.1 we here obtain a very short, straightforward proof. Subsequently
we discuss how to obtain similar results for Algorithm 3.2 using more sophisticated
methods.

Proof of Lemma 8.6. We argue similarly as in the derivation of equation (24) and
claim that there exist constants such that we obtain the following upper bound on
the volume covered:

E(|Vk|)− E(|Vk+1|) ≤
∑
j

cjE(V kj ),(34)

for constants cj > 0 which are independent of k. Since
∑
j E(V kj ) = E(|Vk|), a

(possibly highly suboptimal) upper bound of the right-hand-side is given by

max(cj)E(|Vk|).
It hence follows that

E(|Vk+1|) ≥ (1−max(cj))E(|Vk|).
We now claim that due to the second modification in the definition of Algorithm
8.1 it holds that max(cj) ≤ 0.3 and the result hence follows.

In order to compute the constants cj , we again individually consider each rec-
tangle R ∈ Vk and after rescaling and possibly rotating by π

2 may assume that

R = (0, L)× (0, 1)

with L ≥ 1. If we pick the vertical direction, ed = e2, (which occurs with probability
1
2 ), we insert a translate of (0, δ)× (0, 1) and hence cover a very small fraction

δ

L
≤ δ.

If we instead pick the horizontal direction, ed = e1, (which also occurs with
probability 1

2 ), we expect to cover a larger volume fraction of R. We distinguish
three cases:

• If L < δ−1/2, the inserted rectangle is a translate of (0, L) × (0, Lδ) and
hence covers a volume fraction

Lδ ≤ 1

2
.

See Figure 9 top right.
• Similarly, if L ≥ 2δ−1, we insert a translate of (0, δ−1) × (0, 1) and thus

cover a volume fraction
δ−1

L
≤ 1

2
.

See Figure 9 center right.
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• Finally, if δ−1

2 ≤ L < 2δ−1, we are in the case (2) of Algorithm 8.1 (see
Figure 9 bottom). As we only modify R inside one quadrant we cover at
most

1

4
of the volume.

Thus, in all theses cases for ed = e1 we cover at most 1
2 of the volume.

Combining the estimates for ed = e2 and ed = e1 (each with probability 1/2),
then yields the bound

cj ≤
1

2
δ +

1

2

1

2
=

1

2
δ +

1

4
≤ 0.3,

provided δ ≤ 0.1. �

Remark 8.8. Finally, let us briefly comment on some additional challenges in
carrying out the tail estimates (28) without the quadrant modification (2) in Algo-
rithm 8.1. Consider a rectangle R ∈ Vk, R = (0, L)× (0, 1) with 1

2δ
−1 ≤ L ≤ 2δ−1

and suppose we picked ed = e1. Then, if 1
2δ
−1 ≤ L ≤ δ−1, we insert a translate of

(0, L) × (0, Lδ) and cover a fraction Lδ ∈ [ 1
2 , 1]. Similarly, if δ−1 ≤ L ≤ 2δ−1, we

insert a translate of (0, δ−1) × (0, 1) and cover a fraction δ−1

L ∈ [ 1
2 , 1]. Therefore,

the best naive upper bound for max(cj) as in the proof of Lemma 8.5 we can achieve
is given by

1

2
δ +

1

2
1,

and hence

E(|Vk+1|) ≥ (1− 1

2
δ − 1

2
1)E(|Vk|) = (0.5− 1

2
δ)E(|Vk|).

Unlike the factor 0.7 obtained in Lemma 8.6 this estimate is not sufficient to close
the inductive argument for (28).

In order to improve this bound, we thus need to exploit that the estimate in
terms of max(cj) is very rough and not actually attained. Indeed, we may employ
an approach similar to the one of Lemma 8.5 to show that

E(V k0 ) ≤ θ E(|Vk|),
for an explicit constant θ ∈ (0, 1). That is, only some part of the total volume is
covered by rectangles R ∈ C0. Then instead of bounding by max(cj) we may use

θ(
1

2
δ +

1

2
1) + (1− θ) max

j 6=0
cj .

Unfortunately, while these and further improvements allow us to deduce that E(|Vk+1|) ≥
0.6 E(|Vk|), this still is not sufficient to close the inductive estimate (28). We thus
opted to simplify discussions by considering the modified Algorithm 8.1.

9. Simulations

In this final section, we discuss the numerical implementation of our models from
Algorithms 3.2 and 3.3 and compare it to the results in [BCH15] and [TIVP17] on
the one hand and to our simulations from [RTZ18] on the other hand.

9.1. Strategy. In order to run the simulations, we perform the two following sim-
plifications to our models, which significantly reduce the computational cost of the
algorithms.
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Change 1: For Model A we change the definition of the sets Bjk whenever δ`j
djk
≥

`j
(djk)⊥

(this is the degenerate case). In this case we define αjk :=
`j
(d

j
k

)⊥

`j
d
j
k

, N j
k =

⌊
δ

αj
k

⌋
and

Bjk :=
{
x ∈ Dj

k : x · edjk ∈ (pjk · edjk − δ
j
kN

j
k`
j

(djk)⊥
,pjk · edjk + (1− δjk)N j

k`
j

(djk)⊥
)
}
,

where

δjk := argmin

{∣∣∣∣s− 1

2

∣∣∣∣ : s ∈ (0, 1)

and both pjk − sN
j
k`
j

(djk)⊥
edjk

,pjk + (1− s)N j
k`
j

(djk)⊥
edjk
∈ Dj

k

}
.

See Figure 10 for an illustration. Similarly, for Model B we set αk :=
`
(dk)⊥

`dk
,

Nk =
⌊
δ
αk

⌋
and

Bk :=
{
x ∈ C(Vk−1,pk) : x·edk ∈ (pk ·edk−δkNk`(dk)⊥ ,pk ·edk +(1−δk)Nk`(dk)⊥)

}
,

whenever δ`dk ≥ `(dk)⊥ . Again, here

δk := argmin

{∣∣∣∣s− 1

2

∣∣∣∣ : s ∈ (0, 1)

and both pk − sNk`(dk)⊥edk ,pk + (1− s)Nk`(dk)⊥edk ∈ C(Vk−1,pk)
}
.

We remark that, in both cases, one can repeat exactly the same proofs as in
Section 5, where the only difference here is that

c̃A := max
{
p+ (1− p) max{2−1, (1− δ)}, (1− p) + pmax{2−1, (1− δ)}

}
∈ (0, 1).

That means, this change deteriorates the rate of convergence in the case that δ > 1
2 .

C(Vk−1,pk)pk
edk Bk

Figure 10. If δlj
djk
≥ lj

(djk)⊥
, that is, in the degenerate case, in

the Algorithms 3.2 and 3.3 we prescribed that we cover all of Dj
k.

In order to simplify the numerical implementation we modify our
construction to instead insert a maximal number of copies of the
building blocks (in this example N j

k = 3).

Change 2: We define

Ω1 = (0, 1)× (0, δ), Ω2 = (0, δ)× (0, 1),

and we construct, following [DPR20], two solutions z1, z2 ∈W 1,∞(Ωi;R2)∩W 1+s,p(Ωi;R2)
to

∇u ∈ K a.e. in Ωi,

u = Mx on ∂Ωi,

for i = 1, 2, and where K is given by (3) and M ∈ Kqc. Here, as in Theorem 2,
θ0 ∈ (0, 1) and (s, p) ∈ [0, 1) × (1,∞) are arbitrary and such that sp < θ0. Then,
every time we have to make a replacement construction in the rectangle B (that is

in one of the rectangles Bjk in Model A, or in one of the rectangles Bk for Model B)
we argue as follow:
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(i) if B = c0 +λΩi for some c0 ∈ R2, λ ∈ (0, 1], then we set yk(x) = λzi
(
x−c0

λ

)
in B. Indeed, we remark that, in B, zB(x) := λzi

(
x−c0

λ

)
satisfies ∇zB ∈ K

a.e., zB(x) = Mx on ∂Ω. Therefore, the convergence of the model to the
desired limiting stress free deformation is not affected by this change.

(ii) if B 6= c0 + λΩi for any c0 ∈ R2, λ ∈ (0, 1], according to the changes to
the model in the above paragraph, we have the existence of c0 ∈ R2, λ ∈
(0, 1], N ∈ N such that B =

⋃N−1
n=0 (c0 + nλei + λΩi). In this case, as in the

above one, we set yk(x) = λzi
(
x−c0−nλei

λ

)
for any c0 + nλei + λΩi and

n = 0, . . . , N − 1. Again the convergence of the algorithm to the desired
limiting stress free deformation is not affected by this change.

Regarding the regularity of the resulting microstructure, as in the proof of Theorem
4, we have to ensure that the modification of our construction still satisfies an
estimate of the form

ˆ

Ω

ˆ

Ω

|∇vk(x)−∇vk(y)|p
|x− y|2+sp

dxdy ≤
∑
j

ˆ

Bj
k

ˆ

Bj
k

|∇vk(x)−∇vk(y)|p
|x− y|2+sp

dxdy

+ 2
∑
j

ˆ

Bj
k

ˆ

(Bj
k)c

|∇vk(x)−∇vk(y)|p
|x− y|2+sp

dxdy

≤ c
∑
j

Per(Bjk)|Bjk|1−sp,

where, in our modified construction, we have to replace the old building blocks
Bjk by the blocks B described above. Since the second contribution is estimated
“generically”, not using properties of vk (see the proof of Theorem 4), it suffices to
discuss contributions of the form

ˆ

B

ˆ

B

|∇vk(x)−∇vk(y)|p
|x− y|2+sp

dxdy.

To this end, we consider the two cases (i), (ii) described above: First, by stacking
N blocks of the microstructures on top of each other (that means in case B =⋃N−1
n=0 (c0 + nλei + λΩi) =:

N−1⋃
n=1

Ωni ), we have that for vk := yk+1 − yk (cf. proof

of Theorem 4)

ˆ
B

ˆ
B

|∇vk(x)−∇vk(x̂)|p
|x− x̂|2+sp

dx dx̂

=

N−1∑
n=0

ˆ

Ωn
i

ˆ

Ωn
i

|∇vk(x)− vk(x̂)|p
|x− x̂|2+sp

dx dx̂ +

N−1∑
n=0

ˆ

B\Ωn
i

ˆ

Ωn
i

|∇vk(x)−∇vk(x̂)|p
|x− x̂|2+sp

dx dx̂

≤ N
∣∣∣∣∇zi

(
x− c0

λ

)∣∣∣∣p
Ẇ s,p(c0+λΩi)

+ cN Per(Ωni )sp|Ωni |1−sp

≤ N
∣∣∣∣∇zi

(
x− c0

λ

)∣∣∣∣p
Ẇ s,p(c0+λΩi)

+ C (Nα`d)
sp

(|B|)1−sp

≤ N
∣∣∣∣∇zi

(
x− c0

λ

)∣∣∣∣p
Ẇ s,p(c0+λΩi)

+ C (Per(B))
sp

(|B|)1−sp.
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Figure 11. The vertical building blocks: The thin needle struc-
tures in their actually used size (left) and a blown-up version of
this (right). The illustration shows the building block after several
iterations of the convex integration scheme.

But sinceˆ
λΩi

ˆ
λΩi

|∇zi(λ
−1x)−∇zi(λ

−1x̂)|p
|x− x̂|2+sp

dx dx̂

= λ2−sp
ˆ

Ωi

ˆ
Ωi

|∇zi(x)−∇zi(x̂)|p
|x− x̂|2+sp

dx dx̂ ≤ λ2−sp |∇zi|pW s,p(Ωi)
,

(35)

and since in this case

Nλ2−sp = (Nλ)sp(Nλ2)1−sp ≤ c (Per(B))
sp |B|1−sp,

we obtain ˆ
B

ˆ
B

|∇vk(x)−∇vk(x̂)|p
|x− x̂|2+sp

dx dx̂

≤ c(Per(B))sp|B|1−sp |∇zi|pW s,p(Ωi)
+ (Per(B))

sp |B|1−sp.
We now notice that, by (35), also when B = c0 + λΩi we have

|∇vk|pW s,p(B) ≤ λ2−sp |∇zi|pW s,p(Ωi)
≤ c|B|1−sp (Per(B))

sp |∇zi|pW s,p(Ωi)
.

Therefore, we still infer (19) in the proof of Theorem 4, and hence we deduce the
same regularity result as in Section 6 above also under this implementation of the
model.

The outlined modifications of the algorithms thus have the computational ad-
vantage that in the degenerate case it suffices to have the two “standard” convex
integration solutions z1, z2 which can be inserted into the covering instead of hav-
ing to produce new convex integration solutions for each aspect ratio. This is a
substantial numerical improvement, since the production of the convex integration
building blocks is the computationally most expensive part in our simulations. As
explained this change does not effect major changes in our theoretical regularity
estimates for the solutions.

9.2. Output of the simulations and comparison. In this section, we present
some of the output of our simulations of the described Algorithms 3.2 and 3.3.
As explained above, this combines a random covering by horizontal or vertical
rectangles of a fixed width-to-length ratio δ > 0 and the filling of these by the
convex integration building blocks from Theorem 2. For given boundary data M ≈(

0.939 0
0 1.064

)
and γ = 0.5, the horizontal and vertical convex integration building

blocks are illustrated in Figures 5 and 11, respectively.
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For the Algorithm 3.2 this yields structures as depicted in Figure 12 left. Here
fractal structures emerge similarly as in [BCH15, CH18] and [TIVP17] with the
main difference that the use of convex integration building blocks results in a stress-
free solution in the limit k → ∞ (which thus involves further fine length scales in
the building blocks from Theorem 2).

Figure 12. The random convex integration solution produced by
Algorithm 3.2 (left) and a random packing without interior struc-
ture generated by the same random covering arguments as in Al-
gorithm 3.2 (right) for M ≈ diag(0.939, 1.064), γ = 0.5. By using
the building blocks from Theorem 2, the structures which are ob-
tained in the limit k → ∞ of the Algorithm 3.2 become exactly
stress-free solutions to the differential inclusion (5). The illustra-
tion shows the microstructure after 11 iterations of the covering
procedure. Thus, we have inserted roughly 2000 building block
structures according to the iteration rules of Algorithm 3.2.

For the Algorithm 3.3 we also obtain highly fractal structures (see Figure 13).
As already observed in [CH18], after inserting the same number of rectangles, these
however are more homogeneous than the ones from Algorithm 3.3. Compared to
the illustrations in [CH18] this is still strongly observable but possibly slightly less
pronounced in our illustrations than in [CH18] due to the presence of a finite width.

9.3. Length scale statistics obtained in the Algorithms 3.2 and 3.3. In
order to eventually compare our results to the experimental data (see for instance
[VOM+94, CMO+98], where universal exponents are obtained for each phase trans-
formation), below we present length scale statistics of our solutions after a finite
number of iterations of our algorithms. Here as a measure of the lengths we consider
the long side of the rhombi-constructions as a respective measure. The distribution
of the lengths involved in the random covering is analogous to the ones obtained
in [CH18] or [TIVP17]. Further, finer length scales are however involved in the in-
dividual rhombi-building blocks (which themselves are obtained through iterative
algorithms, see for instance [DPR20] or [RZZ18], which here are illustrated up to a
third order iteration). Due to the use of the “infinite iteration building blocks” in
the rhombi-constructions (see [RTZ18] for this notation), we however remark that
while these statistics may eventually serve as a comparison to the experimental
data, they are not directly linked to the regularity exponents of the convex integra-
tion solutions as in the case of the “finite convex iteration building blocks” which
had been discussed in [RTZ18].
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Figure 13. The random convex integration solution for the
boundary data M ≈ diag(0.939, 1.064), γ = 0.5. produced by Al-
gorithm 3.3 (left) and a random packing without interior structure
generated by the same random covering arguments as in Algorithm
3.3 (right). As in the setting of the Algorithm 3.2 the fact that we
rely on building blocks with convex integration structure implies
that in the limit k → ∞ the deformations are exactly stress-free
solutions to the differential inclusion (5). In the illustration here
we have iterated the algorithm roughly 1000 times and have thus
introduced roughly 1000 covering rectangles. Due to the iteration
scheme of Algorithm 3.3 the covering boxes are distributed much
more uniformly than in Algorithm 3.2 and, on average, cover a
larger volume fraction of the domain after the same number of
boxes have been introduced.

9.4. Combined length scale distributions. A quantity that is of considerable
experimental interest is the number and strength of acoustic emissions during
the nucleation process [PMV13b, VOM+94]. It is believed that this is related to
the length scale distribution of the microstructure which emerges upon nucleation
[CH18]. In order to eventually allow for comparisons of our theoretic findings with
experimental results, we also analyze this quantity and present some numerical
experiments on its computation.

In our algorithms essentially two length scale distributions enter in the compu-
tation of the overall length scale distribution: On the one hand, we consider the
lengths scales of the outer random packing (this essentially has the same distribu-
tion as the length scale distribution from [TIVP17]). On the other hand these also
have an internal length scale distribution, since there is structure also within our
building blocks. The inner structure in turn is again determined by two lengths
scale distributions which consist of a covering of the given domain by model rect-
angles and the covering of the model rectangles by the rhombi-constructions.

A heuristic computation shows that in general the length scale distribution will
be given by a competition of the involved length scales. We next discuss this for
the case of two nested scales: Let us assume that for y ∈ (0, 1) the length scale
distribution of the outer blocks is described by a function f(y) which counts the
number of blocks (of ratio δ) of size y (in this back-of-the-envelope calculation we
exclude the degenerate setting). Let us further suppose that each block of the size
(0, 1)× (0, δ) has an interior length scale distribution modelled by a function g(x)
which assigns to every structure of length scale x the number g(x) of such scales
(again we assume that there is a certain non-degeneracy of our structures here).
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Thus, for every fixed outer structure of the size (0, y)× (0, δy) (up to translation),
by scaling, the inner structure has a length scale distribution given by g(xy ).

As a consequence, the overall number of structures of lengths x are roughly

given by
1́

0

f(y)g(xy )dy. If both distributions f, g are power laws, e.g. f(y) = yα,

g(x) = xβ , we thus infer that

1ˆ

0

f(y)g

(
x

y

)
dy = c(α, β)xβ(1− xα+1−β) ∼ max{xα+1, xβ}.(36)

Numerically, we observe that, indeed, at least at our finite numerical resolution of
the random convex integration scheme, the length scales can be well-approximated
by power laws: Considering the boundary data

M ≈
(

0.939 0
0 1.064

)
,

and γ = 0.5 we obtain the following length scale distributions:

(i) The histrogram of the length scale distribution inside a diamond building
block (as in Figure 11) is shown in Figure 15. A least square fit gives
g(x) ∼ Cx−2.107.

(ii) Using this diamond we dyadically fill a rectangle as in Figure 16, which
yields a length scale distribution f(y) ∼ Cy−1 (see Lemma A.1 below for a
more detailed argument).

(iii) These rectangles then serve as building blocks in our stochastic packing,
which itself exhibits length scale distribitions hA(z) ∼ Cz−1.49 and hB(z) ∼
Cz−1.48 (see Figure 14) for the Algorithms 3.2 and 3.3, respectively.

The combination of the first two items (i), (ii) provides the overall length scale
distribution of the building block constructions from Theorem 2.

Inserting the described distributions into (an iterated version of) (36), we obtain
an overall power law with exponent α = −2.107. It is thus the length scale of the
convex integration building blocks which dominate the overall length scales in our
model.

Although, in general, it is not yet proven that the functions f(y) and g(x) must
be power laws, we conclude from the back-of-the-envelope computation from above,
that the details of the interior structure and thus of the compatibility requirement
has an interesting, measureable impact on the experimentally measured length scale
distributions in the described covering algorithms. In particular including compat-
ibility thus provides important new and experimentally measurable information on
the models of [BCH15, CH18, TIVP17].

Appendix A. A covering result

Last but not least, for completeness, we discuss the covering result used in (ii)
in Section 9.4.

Lemma A.1. Consider an axis-parallel rectangle R of lengths 1 : δ and its greedy
covering by dyadically rescaled copies of our diamond domain (illustrated in Figure
16). Then for any n ≥ 1 there are 8 · 2n diamonds with length scale 4−12−n+1.

Proof. We note that the largest diamond in the center has length scale 1 and covers
1
2 of the total volume. In each of the four remaining regions we then insert two

copies of diamond rescaled by a factor 1
4 , which corresponds to the case n = 1. As

illustrated in Figure 16 starting from each of these 8 diamonds we obtain a tree-like
structure of 2n diamonds rescaled by a factor

(
1
2

)n
, which concludes the proof.
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(a) Histogram of length scales from Al-
gorithm 3.2, with fitting 22.55

x1.486 . An av-
erage volume fraction of approximately
0.914 was covered over these realisations.
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(b) Histogram of length scales from Al-
gorithm 3.3, with fitting 10.34

x1.470 . An av-
erage volume fraction of approximately
0.926 was covered over these realisations.

Figure 14. Histograms of length scales of inclusions from the
Algorithms 3.2, 3.3 on a rectangle of aspect ratio 0.05. The par-
ticular implementation is exact, in the sense that the algorithm
terminates only when it is impossible to generate an inclusion of
length greater than 10−2, which is the range shown. In both cases,
the histograms are generated over 10 realisations. Fitting curves
are found by least squares regression of the histograms, using only
the data range of 10−1 to 10−2 to avoid noise during the burn-in
of the algorithm.
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Figure 15. Histogram of length scales for the convex integration
algorithm using the matrix M ≈ diag(0.939, 1.064), γ = 0.5. This
corresponds to the positive definite square root of C1 for the pa-
rameters λ, µ = 0.1 in the construction of [DPR20]. The histogram
is shown with a fit of the form 2.47

x2.107 , obtained by linear regression

on the log-log histograms, using only data between 3.5 × 10−4 to
10−2 to avoid noise from burn-in. The data is exact on the data
shown, in the sense that the implementation only terminates when
all possible inclusions of length scale greater than 3.5× 10−4 have
been generated.

We remark that by the same argument at step N we have covered a total volume

1

2
+

1

2

N∑
n=1

2n4−n = 1− 2−N−2,

while the size of the boundary grows proportionally to N . �
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Figure 16. Example of the dyadic packing, showing two lineages.
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