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Abstract. In this work we introduce and analyze a new multiscale method for strongly nonlinear monotone
equations in the spirit of the Localized Orthogonal Decomposition. A problem-adapted multiscale space is con-
structed by solving linear local fine-scale problems which is then used in a generalized finite element method. The
linearity of the fine-scale problems allows their localization and, moreover, makes the method very efficient to use.
The new method gives optimal a priori error estimates up to linearization errors beyond periodicity and scale
separation and without assuming higher regularity of the solution. The effect of different linearization strategies
is discussed in theory and practice. Several numerical examples including stationary Richards equation confirm
the theory and underline the applicability of the method.
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1. Introduction

Linear constitutive laws like Hooke’s law in mechanics, Ohm’s law in electromagnetics, or Darcy’s
law in fluid flow are very popular, but they are often not accurate enough in practical applications,
for instance for high intensities. Instead, nonlinear effects in the constitutive laws have to be
taken into account which are often experimentally found and determined, see [40] for a general
overview. In this article, we consider as model problem the following nonlinear monotone elliptic
equation

−∇ ·
(
A(x,∇u)

)
= f,

where the exact assumptions as well as boundary conditions are specified later. It is a repre-
sentative model problem for quasilinear partial differential equations (PDEs) as they occur in
mean curvature flow or for non-Newtonian fluids. Note that this class of problems is far more
challenging than semilinear PDEs, where the nonlinearities do not appear in the highest deriva-
tive. The transition from linear to nonlinear problems comes with huge additional challenges
for the numerical treatment and analysis. As an illustrating example we mention optimal order
L2-estimates for the finite element method: The classical Aubin-Nitsche trick for linear problems
is not applicable, so that, for a long time, only optimal order estimates in the energy norm [10]
were known, see [5] and the discussion therein. A similar observation applies to the effect of
numerical integration, see [17].

∗Major parts of this work were carried out while the author was affiliated with the University of Augsburg.
Further, the work conducted at KIT was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 258734477 – SFB 1173.

†Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, Englerstr. 2, D-
76131 Karlsruhe
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With the view on practical applications such as fluid flow or elasticity, we do not only have to
consider nonlinear constitutive laws as discussed above, but also have to consider (spatial) multi-
scale features in the material coefficients (here, in A). For instance, a fluid such as groundwater
flows over large distances, while the properties of the soil changes over small distances and thereby
influences the overall groundwater flow, see, e.g., [37]. Hence, for applications such as the (quasi-
linear) porous medium equation, A is subject to rapid variations and/or discontinuities on fine
spatial scales or even a cascade of (non-separable) scales. This coincidence of multiscale features
and nonlinear material laws makes the problem intractable for standard (problem-independent)
methods. For example, the standard finite element method [2, 10, 17] will only give optimal
convergence in the asymptotic regime, i.e., if the mesh resolves all features and scales present in
the coefficient, which is prohibitively expensive even with today’s computational resources.

In the case of spatially periodic A (with period ε� 1), homogenization results using two-scale
convergence [7, 31] prove that the solutions of the above model problem converge to the solu-
tion of an again monotone elliptic (homogenized) problem for ε → 0 . The nonlinear effective
diffusion tensor can be computed by solving nonlinear so-called cell problems. The (finite ele-
ment) heterogeneous multiscale method is inspired by this analytical process and it is studied
successfully for nonlinear problems in a series of papers [1, 3, 4, 6, 21, 25]. In most cases, the
macroscopic nonlinear form involves nonlinear reconstruction operators which require the solu-
tion of nonlinear cell problems at each macroscopic quadrature point and thereby incorporate
the necessary fine-scale information. For parabolic equations, [4] linearizes the macroscopic and
cell computations using information from the previous time step. The sparse multiscale FEM
[27] is also motivated by homogenization results and tries to reduce the complexity of solving cell
problems and a homogenized equation by the introduction of sparse approximations. Another
idea to cope with multiscale problems is to modify or enrich the standard finite element basis
by problem-adapted functions. This idea is used for instance in the (generalized) multiscale
finite element method, for which nonlinear problems are discussed in [9, 12, 13]. Again nonlinear
problems have to be solved locally to construct the problem-adapted functions.

The main contribution of this article is the introduction of a new multiscale method for nonlin-
ear monotone elliptic problems and its numerical analysis. The idea is to construct a multiscale
space by solving local fine-scale problems in the spirit of the Localized Orthogonal Decompo-
sition (LOD) [32, 35]. In contrast to the above discussed methods, the basis construction only
requires the solution of linear problems and hence is embarrassingly easy to implement and
use. Moreover, this linearization idea drastically reduces the computational effort for generat-
ing a problem-dependent (multiscale) basis and thereby provides a conceptually new view on
the treatment of nonlinear multiscale problems. We derive optimal convergence rates (with re-
spect to the mesh size H) up to linearization errors without any assumption on the regularity
of the exact solution or special properties such as periodicity or scale separation for the coeffi-
cient. The occurring linearization errors and resulting possible choices of the linearization are
discussed and compared. Extensive numerical experiments show the good performance of the
method in agreement with the theoretical estimates. We study periodic as well as completely
random multiscale coefficients and also include a model for stationary Richards equation with
a high contrast channel. Because of the relation between the LOD and homogenization theory
for periodic coefficients on suitable meshes [18], our numerical experiments with locally periodic
diffusion tensors indicate that the presented idea of linearizing the fine-scale problems might be
transferable to the Heterogeneous Multiscale Method in [21, 28]. Besides several linear problem
classes, the LOD has already been studied for semilinear equations [23] and a nonlinear eigen-
value problem related to the Gross-Pitaevskii equation [24]. These problems, however, are only
semilinear and can therefore be handled easier. Yet, we emphasize that these previous works
can be re-interpreted in the current framework. We mention the close connections of the LOD
to (analytical) homogenization [18, 36], domain decomposition iterative solvers [29, 30, 36], and
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so-called gamblets [33, 34]. Hence, the current approach can give interesting and useful insights
in these areas for nonlinear problems as well, a direction that is not pursued further in this work.

The article is organized as follows: Section 2 introduces the setting and the standard finite ele-
ment discretization. We introduce the multiscale method including linearization and localization
in Section 3. The arising errors are analyzed in Section 4. Finally, we present several numerical
experiments confirming our theory and showing possible applications in Section 5.

2. Problem formulation and discretization

In this section we formulate the considered model problem and introduce necessary finite element
prerequisites. We use standard notation on Sobolev spaces. Throughout the whole article, let
Ω ⊂ Rd be a bounded Lipschitz domain. For a subdomain D ⊂ Ω, let ‖ · ‖0,D, ‖ · ‖1,D, and
| · |1,D denote the standard L2(D)-norm, H1(D)-norm, and H1(D)-semi norm, respectively.
Furthermore, (·, ·)D denotes the standard L2 scalar product on D. We will omit the subscript D
if it equals the full computational domain Ω.

2.1. Model problem

We consider the following nonlinear elliptic problem: Find u : Ω→ R such that

−∇ ·
(
A(x,∇u)

)
= f in Ω,

u = 0 on ∂Ω
(2.1)

with a right-hand side f ∈ L2(Ω). The corresponding weak formulation, with which we will work
in the following, reads: Find u ∈ H1

0 (Ω) such that

B(u; v) :=
(
A(x,∇u),∇v

)
Ω

= (f, v)Ω for all v ∈ H1
0 (D). (2.2)

For simplicity, we restrict ourselves to homogeneous Dirichlet boundary conditions, but non-
homogeneous and Neumann boundary conditions could be treated as well, see [22]. Moreover,
we focus on nonlinearities in the highest derivative only, additional (nonlinear) low-order terms
can easily be handled as well, cf. [23]. We now specify the assumptions on A, which guarantee
existence and uniqueness of a solution.

Assumption 2.1. The nonlinearity A : Ω× Rd → Rd satisfies

1. A(·, ξ) ∈ L∞(Ω;Rd) for all ξ ∈ Rd and A(x, ·) ∈ C1(Rd;Rd) for almost every x ∈ Ω;

2. there is Λ > 0 such that |A(x, ξ1) − A(x, ξ2)| ≤ Λ|ξ1 − ξ2| for almost every x ∈ Ω and all
ξ1, ξ2 ∈ Rd;

3. there is λ > 0 such that
(
A(x, ξ1)−A(x, ξ2)

)
· (ξ1− ξ2) ≥ λ|ξ1− ξ2|2 for almost every x ∈ Ω

and all ξ1, ξ2 ∈ Rd;

4. |A(x, 0)| ≤ C0 for almost every x ∈ Ω.

Assumption 2.1 implies that

|B(v1;ψ)− B(v2;ψ)| ≤ Λ|v1 − v2|1 |ψ|1 and B(v; v − ψ)− B(ψ; v − ψ) ≥ λ|v − ψ|21

for all v, v1, v2, ψ ∈ H1
0 (Ω). Therefore, the model problem (2.2) has a unique solution u ∈ H1

0 (Ω),
which satisfies

|u|1 ≤ Λ/λ‖f‖0, (2.3)
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see [10, Chapter 5]. As discussed in the introduction, we implicitly assume that A is subject to
rapid oscillations or discontinuities on a rather fine scale with respect to the spatial variable x.

We write a . b in short for a ≤ Cb with a constant C independent of the mesh size H and the
oversampling parameter m introduced later. However, C may depend on the monotonicity and
Lipschitz constants λ,Λ of A (cf. Assumption 2.1).

2.2. Finite element discretizations

We cover Ω with a regular mesh TH consisting of simplices; however, a mesh with quadrilaterals
would equally be possible. The mesh is assumed to be shape regular in the sense that the
aspect ratio of the elements of TH is bounded uniformly from below. We introduce the mesh size
H = maxT∈TH diamT and assume that this is rather coarse, in particular, TH does not resolve
the possible heterogeneities in A. We discretize the space H1

0 (Ω) with the lowest order Lagrange
elements over TH , and denote this space by VH . This means that VH = H1

0 (Ω) ∩ S1(TH), where
S1(TH) denotes the space of element-wise polynomials of total degree ≤ 1.

The standard finite element method now seeks a (discrete) solution uH ∈ VH such that

B(uH ; vH) = (f, vH)Ω for all vH ∈ VH .

This results in a nonlinear system which can be (approximatively) solved via an iteration such
as Newton’s method. If we neglect numerical errors introduced by the inexact solving due to the
iteration, it is well-known that the properties of A and Galerkin orthogonality imply

|u− uH |1 . inf
vH∈VH

|u− vH |1, (2.4)

see [10, Chapter 5]. This quasi-optimality by the way holds for any conforming subset ṼH ⊂
H1

0 (Ω). For the standard finite element method it is furthermore well-known to have the following
(a priori) error estimates with k > 0

‖u− uH‖1 ≤ CHk‖u‖H1+k(Ω) and ‖u− uH‖0 ≤ CHk+1‖u‖H1+k(Ω),

see [2]. In the above error estimates higher regularity (more than H1
0 (Ω)) of the exact solution

is required. However, the regularity of u may be very low for nonlinearities A with spatial
discontinuities. Even if the exact solution u satisfies sufficient higher regularity, the corresponding
norms ‖u‖Hk+1(Ω) depend on spatial derivatives of A which behave like ε−q for some q ≥ 1 for
coefficients varying on a scale ε. In practice this implies that H needs to be at least ε in order to
observe the linear convergence in the H1(Ω)-norm. In other words, for small ε, there is a large
pre-asymptotic region where no error estimates are available and the error stagnates (at a high
level) in practice.

The goal of the multiscale method presented in Section 3 is to circumvent both issues (higher
regularity of the solution and dependence on the variations of A). At the heart of the method is
the choice of a suitable interpolation operator and we now introduce the required properties as
well as an appropriate example. Let IH : H1

0 (Ω)→ VH denote a bounded local linear projection
operator, i.e., IH ◦ IH = IH , with the following stability and approximation properties for all
v ∈ H1

0 (Ω)

|IHv|1,T . |v|1,N(T ), (2.5)

‖v − IHv‖0,T . H|v|1,N(T ). (2.6)

where the constants are independent of H and N(T ) := {K ∈ TH : K ∩ T 6= ∅} denotes the
neighborhood of an element. A possible choice (which we use in our implementation of the
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method) is to define IH := EH ◦ ΠH . On each element T ∈ TH , the affine function (ΠHv)|T is
the best approximation of v ∈ H1

0 (Ω) in the ‖ · ‖0,T -norm, and EH is the averaging operator that
maps discontinuous functions in S1(TH) to VH by assigning to each free vertex the arithmetic
mean of the corresponding function values of the neighboring cells, that is, for any v ∈ S1(TH)
and any vertex z of TH ,

(EH(v))(z) =
∑

T∈TH , z∈T
v|T (z)

/
card{K ∈ TH , z ∈ K}.

For further details on suitable interpolation operators we refer to [16].

3. Computational multiscale method

In the following, we assume that an interpolation operator IH : H1
0 (Ω) → VH satisfying the

projection property as well as (2.5) and (2.6) is at hand. Abbreviating W := ker IH , we have the
splitting H1

0 (Ω) = VH ⊕W . The main idea of the Localized Orthogonal Decomposition [32, 35]
is to make this splitting problem-dependent. For instance, in the linear elliptic case the splitting
is orthogonalized with respect to the energy scalar product. Below, we discuss how this idea
can be transferred to the nonlinear case, which turns out to be highly non-trivial. We introduce
a linearization procedure in the next subsection which makes the computation of a multiscale
space in the spirit of the LOD possible. Afterwards, we present the localized computation of the
new multiscale basis functions.

3.1. An ideal method and its linearization

Motivated by linear elliptic equations, one could (naively) try to introduce a Galerkin method

over a subset V nl,ms
H ⊂ H1

0 (Ω), i.e., we seek unl,ms
H such that

B(unl,ms
H ; v) = (f, v)Ω for all v ∈ V nl,ms

H ,

where the set V nl,ms
H is defined via

B(vnl,ms
H ;w) = 0 for all vnl,ms

H ∈ V nl,ms
H and all w ∈W. (3.1)

This is the orthogonalization idea behind the original method, see [32, 35]. Due to the quasi-
optimality (2.4) and the properties (2.5) and (2.6) of IH , one obtains the a priori error estimate

|u− unl,ms
H |1 . H‖f‖0

with optimal rate in the mesh size, independent of the regularity of the continuous solution u.
This estimate is derived similar to the linear case and we refer to [32, 35] for details. Because

of the nonlinearity of B in its first argument, however, V nl,ms
H is no longer a linear subspace. To

be more precise, we consider the usual construction of V nl,ms
H : It holds V nl,ms

H = (id−Qnl)VH ,
where Qnl : VH →W solves

B(vH −QnlvH ;w) = 0 for all w ∈W. (3.2)

Here, we clearly see that Qnl is a nonlinear operator. Therefore, it is by no means clear whether
the proposed multiscale method is at all well defined. Even if this is the case, the method is very
complicated as it involves two coupled nonlinear problems, where the one for the generation of
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the correction is additionally posed on the fine scale. Hence, we need to simplify in particular
the generation of the problem-adapted multiscale basis.

Here, we propose the following simple yet effective linearization approach. We approximate
the nonlinearity A(x, ξ) by a function AL(x, ξ∗, ξ). Here, AL : Ω× Rd × Rd → Rd is affine in its
last argument and we call ξ∗ ∈ Rd the linearization point. We make the following assumption
on AL.

Assumption 3.1. Write AL(x, ξ∗, ξ) = AL(x, ξ∗)ξ + bL(x, ξ∗) with AL(x, ξ∗) ∈ Rd×d and
bL(x, ξ∗) ∈ Rd. We assume that

• AL(·, ξ∗) ∈ L∞(Ω;Rd×d) and bL(·, ξ∗) ∈ L∞(Ω;Rd) for all ξ∗ ∈ Rd;

• AL(x, ξ∗) is symmetric for all ξ∗ ∈ Rd;

• there exists 0 < λL ≤ ΛL such that

λL|ξ|2 ≤ AL(x, ξ∗)ξ · ξ ≤ ΛL|ξ|2 for all x ∈ Ω, ξ∗ ∈ Rd, ξ ∈ Rd;

• |bL(x, ξ∗)| ≤ Cb for all x ∈ Ω and all ξ∗ ∈ Rd.

The assumption of symmetry is only made for convenience and to avoid cluttering of notation
in the following. Although this linearization model may seem rather abstract, it is commonly
used when solving (discrete) nonlinear problems by an iterative method. More precisely, our
model for AL includes Newton-type as well as Kačanov-type linearizations as illustrated in the
example, cf. [14].

Example 3.2. Newton-type linearizations are based on a Taylor expansion up to the first order
of the nonlinearity around the linearization point. In particular, we approximate A(x, ξ) ≈
A(x, ξ∗)+DξA(x, ξ∗)∇(ξ−ξ∗), where DξA denotes the Jacobian of A with respect to the second
argument. In the notation of Assumption 3.1, this means that bL(x, ξ∗) = A(x, ξ∗)−DξA(x, ξ∗)ξ∗

and AL(x, ξ∗) = DξA(x, ξ∗). The assumptions of strict monotonicity and Lipschitz continuity
on A (cf. Assumption 2.1) imply that AL indeed satisfies Assumption 3.1, see [28, Lemma 6.5.2].

In the case that A takes the form A(x,∇u) = α(x, |∇u|2)∇u, Kačanov-type linearizations
are very popular, which “freeze the nonlinearity”. In the language of Assumption 3.1, one sets
AL(x, ξ∗, ξ) := α(x, |ξ∗|2)ξ, and, hence, AL(x, ξ∗) = α(x, |ξ∗|2) and bL(x, ξ∗) = 0.

Let us come back to the linearization of our corrector computation. We pick and fix a function
u∗ ∈ H1

0 (Ω) and set A := AL(·,∇u∗). Roughly speaking, this means that we select ∇u∗ as our
linearization point. We define the linear correction operator Q : VH →W via

A(vH −QvH , w) = 0 for all w ∈W, (3.3)

where the bilinear form A is defined as

A(v, ψ) := (A(x)∇v,∇ψ)Ω.

Due to Assumption 3.1, the linear corrector problem (3.3) has a unique solution. Further, note
that (3.3) can equivalently be written asˆ

Ω

AL(x,∇u∗,∇QvH) · ∇w dx =

ˆ
Ω

AL(x,∇u∗,∇vH) · ∇w dx for all w ∈W.

Having linearized the computation of the correction operator, we define the linear multiscale
space V ms

H := (id−Q)VH . This problem-adapted space is used in a Galerkin method to seek
ums
H ∈ V ms

H such that

B(ums
H ; vms

H ) = (f, vms
H )Ω for all vms

H ∈ V ms
H . (3.4)
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Let {λz}z be the nodal basis of VH (i.e., the standard hat functions). Then {λz −Qλz}z forms
a basis of V ms

H . Note that this requires only to solve linear problems. After this basis has been
(pre-)computed, the nonlinear problem (3.4) can be solved with any suitable iteration method
such as Newton’s method, which is rather cheap since the dimension of the multiscale space is
small (note dim(V ms

H ) = dim(VH)). We emphasize that although we linked nonlinear iterative
methods and linearization strategies in Example 3.2, the iterative method chosen to solve (3.4)
does not need to correspond to the linearization strategy chosen for the corrector computation.
In general, linear problems are much easier and cheaper to solve than nonlinear problems (of the
same dimension), which is the appealing advantage of (3.3) in comparison to (3.2) – apart from
the discussed well-posedness issues.

3.2. Localization of the basis generation

As in the linear case, the corrector problems (3.3) are global fine-scale problems, which are as
expensive to solve as the solution of a (linear) multiscale model problem on a fine-scale mesh
resolving the oscillations and discontinuities of A. However since the corrector problems are
standard elliptic problems (cf. Assumption 3.1), we can localize these corrector problems in the
well-known way for the linear case. To this end, we define the neighborhood

N(T ) =
⋃

K∈TH ,T∩K 6=∅

K

associated with an element T ∈ TH . Thereby, for any m ∈ N0, the m-layer patches are defined
inductively via Nm+1(T ) = N(Nm(T )) with N0(T ) := T . The shape regularity implies that there
is a bound Col,m (depending only on m) of the number of the elements in the m-layer patch, i.e.,

max
T∈TH

card{K ∈ TH : K ⊂ Nm(T )} ≤ Col,m. (3.5)

Throughout this article, we assume that TH is quasi-uniform, which implies that Col,m grows at
most polynomially with m.

We then define the truncated correction operator Qm : VH → W as Qm =
∑
T∈TH QT,m,

where for any vH ∈ VH the truncated element corrector QT,mvH ∈W (Nm(T )) := {w ∈W : w =
0 in Ω \Nm(T )} solves

ANm(T )(QT,mvH , w) = AT (vH , w) for all w ∈W (Nm(T )). (3.6)

Here, AD denotes the restriction of the bilinear form A to the subdomain D ⊂ Ω. With the
localized correction operator Qm, we set up the multiscale space VH,m := (id−Qm)VH . For each
element T ∈ TH , we only have to solve d problems of type (3.6) with vH |T = xj , j = 1, . . . , d, or

precisely, the following cell problems: Find q
(j)
T,m ∈W (Nm(T )), j = 1, . . . , d, such that

ˆ
Nm(T )

A∇q(j)
T,m · ∇w dx =

ˆ
T

Aej · ∇w dx for all w ∈W (Nm(T )),

where ej denotes the jth canonical unit vector. Denoting by {λz}z the standard hat functions,
a basis of VH,m is hence given by

{
λz −

∑
T∈TH , z∈T

d∑
j=1

( ∂

∂xj
λz|T

)
q

(j)
T,m

}
z
.
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The localized multiscale method consists of replacing V ms
H by VH,m in (3.4). More precisely,

we seek (in a Galerkin method) uH,m ∈ VH,m such that

B(uH,m; vH,m) = (f, vH,m)Ω for all vH,m ∈ VH,m. (3.7)

As mentioned before, problem (3.7) is solved with an iterative method, e.g., Newton’s method,
where the multiscale basis can be pre-computed. This requires the storage of all correctors,

which can be very memory consuming since q
(j)
T,m includes fine-scale features. If memory is a

limiting factor, the correctors should better be computed on the fly inside each Newton iteration
(less memory consuming, but potentially slightly slower). Note that Qm and therefore also the
solution uH,m depends on A and thereby, they implicitly depend on (i) the chosen linearization
model and (ii) the chosen “linearization point” u∗ in Section 3.1. The choice of u∗ and its
consequences will be discussed in Section 4.2 below.

Remark 3.3. To avoid communication between the correctors, one can also consider the Petrov-
Galerkin method to seek uPGH,m ∈ VH such that

B(uPGH,m; vH,m) = (f, vH,m)Ω for all vH,m ∈ VH,m.

In the Petrov-Galerkin method, qT,j and qT ′,j for T, T ′ ∈ TH with T 6= T ′ are never needed
at the same time. Hence, these correctors can immediately be discarded once the contributions
of element T to the linear system (which is set up in each Newton iteration) are assembled.
Hence, when memory becomes the limiting factor, the Petrov-Galerkin variant is highly preferable
in comparison to the Galerkin variant, see [15, 16]. Note, however, that uPGH,m only contains
information on the coarse scale H. The following error analysis will be restricted to the Galerkin
case for simplicity.

Remark 3.4. The present method is still semi-discrete since the corrector problems (3.6) are
infinite-dimensional. The discretization procedure for them is equivalent to the case of linear
elliptic equations: We introduce a second (fine) simplicial mesh Th of Ω which resolves all features
of A. Denoting by Vh = H1

0 (Ω)∩S1(Th) the corresponding lowest order Lagrange finite element
space, we set Wh(Nm(T )) := {wh ∈ Vh : wh = 0 in Ω \ Nm(T ), IHwh = 0} and discretize (3.6)
by solving over the space Wh(Nm(T )) instead of W (Nm(T )). In the following, we work with
the semi-discrete version and emphasize that similar error estimates (with respect to a reference
solution uh ∈ Vh) can be shown in the fully discrete variant, as illustrated for the linear case, see
[22, 26, 32].

4. Error analysis

In this section, let the linear model A be fixed, i.e., the linearization model AL and the “lin-
earization point” u∗ ∈ H1

0 (Ω) are fixed. Occasionally, we will also use Au := AL(·,∇u) with
the above fixed linearization model AL and the exact solution u to (2.2). Qum then denotes the
corrector associated with Au, i.e., Qum is defined via (3.6) with A replaced by Au.

Since the linearized corrector problem (3.3) is a standard elliptic problem, we have the following
result on the localization error.

Proposition 4.1. Assume that Assumptions 2.1 and 3.1 are fulfilled. Let Q be the ideal lin-
earized correction operator defined in (3.3) and Qm its truncated/localized version as defined via
(3.6). There exists 0 < β < 1 such that for any vH ∈ VH

|(Q−Qm)vH |1 . C
1/2
ol,m β

m |vH |1.
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Proposition 4.1 follows from the standard linear elliptic case in [22, 32, 35]. The main idea
is that the ideal element corrector QT , which is defined via (3.6) with Nm(T ) = Ω, decays
exponentially fast (measured in m) away from T . With a slightly different localization strategy,
the procedure can also be interpreted in the spirit of an iterative domain decomposition solver,
see [29, 30]. Since Assumption 3.1 holds for all ξ∗ ∈ Rd, Proposition 4.1 is still valid if we replace
Q and Qm by Qu and Qum, respectively.

We first discuss estimates for the Galerkin method (3.7) in Section 4.1. (Additional) error
terms arise from the linearization, which we discuss separately in Section 4.2 together with the
choice of u∗.

4.1. A priori error estimates

Since VH,m is a linear subspace of H1
0 (Ω), the Galerkin method (3.4) is automatically well defined,

i.e., there exists a unique solution uH,m. Its error to the exact solution in the H1-semi norm can
be estimated as follows.

Theorem 4.2. Let Assumptions 2.1 and 3.1 be fulfilled. Let u be the solution to (2.2) and uH,m
the solution to (3.7). Then it holds that

|u− uH,m|1 . (H + C
1/2
ol,m β

m)‖f‖0 + ηlin((id−Q)IHu) (4.1)

as well as
|u− uH,m|1 . (H + C

1/2
ol,m β

m)‖f‖0 + ηlin(u) (4.2)

with, for any v ∈ H1
0 (Ω), the linearization error

ηlin(v) := sup
w∈W,|w|1=1

∣∣∣ˆ
Ω

[
A(x,∇v)−AL(x,∇u∗,∇v)

]
· ∇w dx

∣∣∣.
Further, if AL(x,∇u,∇u) = A(x,∇u), it also holds that

|u− uH,m|1 . (H + C
1/2
ol,m β

m)‖f‖0 + |(Qm −Qum)IHu|1. (4.3)

Note that the assumption AL(x,∇u,∇u) = A(x,∇u) is satisfied for the Newton-type and the
Kačanov-type linearization introduced in Example 3.2.

Proof of Theorem 4.2. Since (3.7) defines a Galerkin method, the quasi-optimality (2.4) leads to

|u− uH,m|1 . inf
vH,m∈VH,m

|u− vH,m|1.

Proof of (4.1): We choose vH,m = (id−Qm)IHu = (id−Q)IHu+ (Q−Qm)IHu and observe
that the second term can directly be estimated using Proposition 4.1, the stability of IH and (2.3).
Note that by definition u− (id−Q)IHu ∈W . Hence we obtain with the strong monotonicity of
A (cf. Assumption 2.1), the approximation property (2.6) and (3.3) that

|u− (id−Q)IHu|21

.
ˆ

Ω

[A(x,∇u)−A(x,∇(id−Q)IHu)] · ∇(u− (id−Q)IHu) dx

= (f, u− (id−Q)IHu)Ω −
ˆ

Ω

A(x,∇(id−Q)IHu) · ∇(u− (id−Q)IHu) dx

. (H‖f‖0 + ηlin((id−Q)IHu)) |u− (id−Q)IHu|1.
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Combination of this estimate with Proposition 4.1 as described above leads to (4.1).
Proof of (4.2): We again choose vH,m = (id−Qm)IHu = (id−Q)IHu+ (Q−Qm)IHu, but we

treat the first term in a slightly different manner. Namely, employing Assumption 3.1 and the
definition of Q in (3.3), we deduce

|u− (id−Q)IHu|21 .
ˆ

Ω

AL(x,∇u∗)∇(u− (id−Q)IHu) · ∇(u− (id−Q)IHu) dx

=

ˆ
Ω

[
AL(x,∇u∗,∇u)−AL(x,∇u∗,∇(id−Q)IHu)

]
· ∇(u− (id−Q)IHu) dx

=

ˆ
Ω

[
AL(x,∇u∗,∇u)−A(x,∇u) +A(x,∇u)

]
· ∇(u− (id−Q)IHu) dx

= (f, u− (id−Q)IHu)Ω

+

ˆ
Ω

[
AL(x,∇u∗,∇u)−A(x,∇u)

]
· ∇(u− (id−Q)IHu) dx

. (H‖f‖0 + ηlin(u))|u− (id−Q)IHu|1.

Combination of this estimate with Proposition 4.1 leads to (4.2).
Proof of (4.3): Again, we choose vH,m := (id−Qm)IHu, but we split it in a different way this

time. We write

(id−Qm)IHu = (id−Qu)IHu+ (Qu −Qum)IHu+ (Qum −Qm)IHu,

where we recall that Qu and Qum are the solutions to (3.3) and (3.6), respectively, with coefficient
Au := AL(x,∇u). The last term (Qum −Qm)IHu is directly included in (4.3), while the second
term (Qu − Qum)IHu is again estimated with Proposition 4.1. For the first term (id−Qu)IHu,
we observe due to Assumption 3.1 that

|u− (id−Qu)IHu|21 .
ˆ

Ω

AL(x,∇u)∇(u− (id−Qu)IHu) · ∇(u− (id−Qu)IHu) dx

=

ˆ
Ω

[
AL(x,∇u,∇u)−AL(x,∇u,∇(id−Qu)IHu)

]
·∇(u− (id−Qu)IHu) dx.

Since u− (id−Qu)IHu ∈W , the definition of Qu implies that

ˆ
Ω

AL(x,∇u,∇(id−Qu)IHu) · ∇(u− (id−Qu)IHu) dx = 0.

Hence, employing the assumption AL(x,∇u,∇u) = A(x,∇u) and (2.6), we deduce

|u− (id−Qu)IHu|21 .
ˆ

Ω

AL(x,∇u,∇u) · ∇(u− (id−Qu)IHu) dx

=

ˆ
Ω

A(x,∇u) · ∇(u− (id−Qu)IHu) dx

= (f, u− (id−Qu)IHu)Ω

. H‖f‖0 |u− (id−Qu)IHu|1.

This finishes the proof.

Up to the linearization errors, which are discussed in Section 4.2, all variants of the previous
theorem are identical to the linear elliptic case [32]. In particular, if we choose m ≈ | log(H)|, we
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have linear convergence of the approximate solution to the exact one without any assumptions
on the regularity of u or the variations of A. By Friedrich’s inequality, the same estimate also
holds for the L2-norm. In contrast to the linear case, the Aubin-Nitsche trick cannot be applied
so that higher order convergence for nonlinear problems is rather difficult to achieve, see the
discussion in [2]. Using the idea of the elliptic projection in [2], we obtain an L2-estimate in
Theorem A.1 in the Appendix. Roughly speaking, it yields quadratic convergence (up to (new)
linearization errors) for the choice m ≈ | log(H)|.

By the stability of IH we deduce an estimate for the error to IHuH,m, which describes the
finite element part of the Galerkin solution.

Corollary 4.3. Let Assumptions 2.1 and 3.1 be fulfilled. Let u be the solution to (2.2) and uH,m
the solution to (3.7). Then it holds that

‖u− IHuH,m‖0 . H inf
vH∈VH

|u− vH |1 + ‖u− uH,m‖0 +H|u− uH,m|1. (4.4)

Proof. With the triangle inequality we split

‖u− IHuH,m‖0 ≤ ‖u− IHu‖0 + ‖IH(u− uH,m)‖0,

which finishes the proof together with the properties (stability, approximation, and projection)
of IH .

Note that the two last terms in (4.4) can be estimated via Theorem 4.2. For the L2-norm we
also have the estimates from Theorem A.1 in the appendix. For m ≈ | log(H)|, these terms are
at least of order H (up to linearization errors) and may even be of order H2 (cf. the discussion
in the appendix). Hence, the error ‖u − IHuH,m‖0 is at least of order H and might be up to
order H2 if u is sufficiently regular. If we assume L2-stability of IH , i.e., ‖IHv‖0 . ‖v‖0 for all
v ∈ H1

0 (Ω), the estimate in Corollary 4.3 simplifies to

‖u− IHuH,m‖0 . inf
vH∈VH

‖u− vH‖0 + ‖u− uH,m‖0.

Together with Theorem A.1 this implies that the error in the finite element part of uH,m is
dominated by the L2-best-approximation error in the finite element space.

4.2. Linearization errors and choice of linearization points

In this section, we discuss estimates for the linearization errors of Theorem 4.2, namely ηlin(v)
and |(Qm −Qum)IHu|1, and their implication on the choice of the “linearization point” u∗.

Linearization error ηlin(v). First, we note that due to Assumptions 2.1 and 3.1, ηlin(v) can
always be bounded as follows

ηlin(v) ≤ ‖A(x,∇v)−AL(x,∇u∗,∇v)‖0
≤ ‖A(x,∇v)−A(x, 0)‖0 + ‖AL(x,∇u∗)∇v‖0 + ‖A(x, 0)‖0 + ‖bL(x,∇u∗)‖0
. (Λ + ΛL)|v|1 + C0 + Cb.

Hence, the stabilities of Q and IH as well as (2.3) directly imply that ηlin(u) ≤ C‖f‖0 + C
and ηlin((id−Q)IHu) ≤ C‖f‖0 + C, i.e., this linearization error is bounded from above without
any further assumptions. As a consequence, if the nonlinearity and the right-hand side data are
small, the linearization error is negligible and the discretization error is dominating in (4.1) and
(4.2). This of course is a rather restrictive assumption since it basically means that we are still
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in the almost linear case with only a small nonlinear perturbation. Note that the above bound
on ηlin(v) can be simplified in the case v = (id−Q)IHu because due to (3.3)

ˆ
Ω

AL(x,∇u∗, (id−Q)IHu) · ∇w dx = 0 for all w ∈W.

Next, we will show that ηlin(v) is small for the linearizations of Example 3.2 if u∗ is close to
the exact solution u.

Lemma 4.4 (Linearization error for Kačanov-type linearization). Let A(x, ξ) = α(x, |ξ|2)ξ and
set AL(x, ξ∗) = α(x, |ξ∗|2) and bL(x, ξ∗) = 0. Then,

ηlin(v) ≤ (Λ + ΛL)|v − u∗|1.

Proof. Assumptions 2.1 and 3.1 directly yield

ηlin(v) ≤ ‖α(x, |∇v|2)∇v − α(x, |∇u∗|2)∇v‖0
≤ ‖A(x,∇v)−A(x,∇u∗)‖0 + ‖α(x, |∇u∗|2)∇(u∗ − v)‖0
≤ (Λ + ΛL)‖∇(v − u∗)‖0,

which finishes the proof.

Lemma 4.5 (Linearization error for Newton-type linearization). Set AL(x, ξ∗) = DξA(x, ξ∗)
and bL(x, ξ∗) = A(x, ξ∗) − DξA(x, ξ∗)ξ∗. Assume that DξA is Lipschitz continuous in its last
argument, i.e., there is LA > 0 such that

|DξA(x, ξ1)−DξA(x, ξ2)| ≤ LA|ξ1 − ξ2| for all ξ1, ξ2 ∈ Rd and almost all x ∈ Ω. (4.5)

Then,
ηlin(v) ≤ LA‖∇(v − u∗)‖L∞(Ω) |v − u∗|1.

Proof. We perform a Taylor expansion of A around u∗ and obtain that for any w ∈ H1
0 (Ω) it

holds thatˆ
Ω

[
A(x,∇v)−A(x,∇u∗) +DξA(x,∇u∗)∇(v − u∗)

]
· ∇w dx

=

ˆ
Ω

ˆ 1

0

[
DξA(x,∇u∗ + τ∇(v − u∗))−DξA(x,∇u∗)

]
∇(v − u∗) · ∇w dτ dx.

The assumed Lipschitz continuity of DξA (4.5) finishes the proof.

Note that we did not exploit w ∈W in the estimates for ηlin(v). Lemmas 4.4 and 4.5 underline
that u∗ should be close to u, which can be seen as a local convergence result and motivates the
discussion of different linearization points further below in this section.

Linearization error |(Qm − Qum)IHu|1. In case of a Kačanoc-type linearization from Example
3.2, we observe that ηlin(u) in (4.2) can be bounded as ηlin(u) ≤ ‖Au − A‖L∞(Ω)|u|1. Hence,
this linearization error can be expressed as the L∞(Ω)-error between the “true” coefficient Au

and the “reference” coefficient A used in practice for computing the corrector Qm. The error
|(Qm −Qum)IHu|1 in (4.3) is obviously also closely related to the error between the coefficients
Au and A. However, estimating directly the error between the correction operators allows for
a refined estimate in the sense that not merely the global L∞-error, which is of the order one
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already for a local change in the coefficient, will be taken into account. Before we present the
estimate in detail, let us first note that, obviously,

|(Qm −Qum)IHu|1 ≤ sup
vH∈VH ,|vH |1=1

|(Qm −Qum)vH |1 |IHu|1

so that we will estimate (Qm − Qum)vH for an arbitrary vH ∈ VH in the following. Further, by
the definition of Qm and Qum as sums of element correctors with support only in Nm(T ) we have

|(Qm −Qum)vH |21 . Col,m

∑
T∈TH

|(QT,m −QuT,m)vH |21.

We now have the following estimate for the error between the correction operators, the proof is
postponed to the Appendix B.

Proposition 4.6. Fix T ∈ TH and vH ∈ VH . For any a ∈ L∞(Nm(T ),Rd×d) denote by a the
average of the trace, i.e., a :=

ffl
Nm(T )

tr(a) dx, and denote by â ∈ L∞(Nm(T ),Rd×d) the scaled

coefficient, i.e., â := a
/
a. Define

E2
Q,T :=

∑
T ′∈TH ,T ′⊂Nm(T )

‖Âu − Â‖2L∞(T ′) max
ψ|T ,ψ∈VH

‖(χT∇ψ −∇QT,mψ)‖20,T ′
|ψ|21,T

.

Then,
|(QT,m −QuT,m)vH |1 . EQ,T |vH |1,T .

We emphasize that Proposition 4.6 relates the error between the element correctors to the error
between the coefficients A and Au, but (i) locally on each element or element patch, respectively,
and (ii) only the L∞-error between the scaled coefficients is relevant. The latter point is possible
because (3.6) can be multiplied by the scalar-valued constant A without changing the element
corrector. Note that this is only possible for scalar-valued constants which is the reason for taking
the trace of A in the definition of a. Hence, if a coefficient is (locally) multiplied by a constant,
the error between the associated correction operators is zero while the error between the unscaled
coefficients can become very large. This is the second advantage we see in estimating the error
between the correction operators.

Error indicators similar to EQ,T in Proposition 4.6 were already presented in [19, 20] in the
context of time-changing or perturbed diffusion coefficients. We point out the following differ-
ences between Proposition 4.6 and the results in [19, 20]: First, the idea of studying the scaled
coefficients is new in Proposition 4.6. Second, since Au is not available in practice in our case,
Proposition 4.6 is an a priori result and aims at linking the error between the correction opera-
tors to the error between the coefficients. This is in sharp contrast to the previous works, which
use EQ,T as a practical indicator to steer re-computation of element correctors. For this reason,
some terms in [19, 20] are different or additional to (i) estimate the error between the element
correctors in the energy norm and (ii) to avoid constants depending on the upper and lower
spectral bounds of the diffusion coefficients in the error estimate. The result of Proposition 4.6
with the scaled coefficients can probably be refined in this spirit as well, but we omit this for
simplicity.

Choice of linearization points u∗. The previous discussion of the linearization errors has shown
that the choice of u∗ is crucial for the performance of the method and that, ideally, u∗ should be
chosen close the exact, but unknown, solution u. With this in mind, let us discuss and compare
some possible choices of u∗.
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1. We can select for u∗ the initial value of the nonlinear iteration, for instance u∗ = 0. This
results in a multiscale space VH,m that can be computed a priori. Since VH,m is rather
low-dimensional, this is a very cheap method. The overall error of course will only be
dominated by the discretization error of order H + βm if u∗ is already close to the exact
solution. For instance, a similar assumption is also needed to guarantee convergence of
Newton’s iteration method for the nonlinear problem. In particular the choice u∗ = 0
should yield satisfactory results for problems without steep gradients. We discuss this
issue also in the numerical examples.

2. Since choosing u∗ a priori will work only in rather restrictive settings, another option is to
compute the finite element solution uH using VH and to use it as u∗. Since VH is associated
with a coarse mesh, the computation of uH is rather cheap. Due to the finescale features
of A, however, uH alone will not be a satisfactory approximation of u in general, not even
in the L2(Ω)-norm. The finescale features of A are then taken into account in the ensuing
LOD solution. To estimate the linearization error in this case, we can combine Lemmas 4.4
or 4.5, respectively, with standard a priori estimates for the finite element solution. Finite
element error estimates in the L2(Ω)-norm and H1(Ω)-semi norm are briefly presented in
Section 2.2. In case of the Newton-type linearization, Lemma 4.5 also requires a W 1,∞(Ω)-
estimate, where we obtain from [8, Chapter 8]

‖u− uH‖W 1,∞(Ω) ≤ CH‖u‖W 2,∞(Ω).

Note that for all finite element error estimates, higher regularity of u is required and that
the constants will depend on the finescale parameter ε, cf. the discussion in Section 2.2.
We emphasize that this approach is different from [39] where uH is “post-processed” by
solving a linear problem on a fine mesh.

3. Finally, one can compute a whole cascade of LOD solutions by starting with some u∗,
computing the solution uH,m to (3.7), and using this solution or its FE part IHuH,m
as new u∗. For this cascade, we can inductively combine (4.2) and Lemmas 4.4 or 4.5,
respectively, to obtain an a priori error estimate, which consists of the discretization error
of order H+βm and the linearization error for the initial choice of u∗. This straightforward
procedure of estimating the error, however, does not seem to be optimal because the initial
linearization error will always remain and one does not exploit that the LOD solution
should be closer to the exact solution with each step.

When computing a whole cascade of LOD solutions by a nonlinear solve of (3.7) and an
update of the linearization point, an error indicator in the spirit of Proposition 4.6 – with
Qum replaced by QuH,m

m with the current LOD solution – can be used to locally determine
which element correctors should be recomputed with the new linearization point. Since
(3.7) is solved by an iterative method as well, one can also imagine to already update
some element correctors during this nonlinear iteration. A detailed study of such iterative
generalized finite element approaches – for instance concerning convergence of the iteration,
suitable stopping criteria and a priori error analysis – is a future research topic of its own
and beyond the scope of the present contribution.

In the numerical experiments, we will compare the solution to (3.7) with (i) u∗ = 0 as in the
first point, (ii) u∗ = uH as in the second point, (iii) u∗ = uH,m or u∗ = IHuH,m with uH,m the
LOD solution with linearization point zero as in the third point.
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Figure 5.1: Spatial part of the coefficient (left) and reference solutions uh for f1(middle) and f2

(right) in the experiment of Section 5.1.

5. Numerical experiments

We present the results of several numerical experiments, subject to different multiscale coefficients
and nonlinearities. In all cases, the computational domain is Ω = [0, 1]2. Since no exact solution
is known in any of the examples, we compute a reference solution uh ∈ Vh using a standard
finite element method on a fine mesh Th that resolves all multiscale features. Specifically, the
reference mesh size is fixed as h = 2−8 in all experiments and the coarse mesh size varies as
H = 2−2, 2−3, . . . 2−6. We present results for oversampling parameters m = 1, 2, 3 and already
point out that m = 2, 3 is a sufficient choice in most experiments. To solve the nonlinear
problems, we use Newton’s method with tolerance 10−11 for the residual as stopping criterion.
Sections 5.1 and 5.2 consider nonlinearities of the type A(x,∇u), where Assumption 2.1 is only
satisfied in Section 5.1. Further, we consider a model for the stationary Richards equation with
a quasilinear coefficient of the form a(x, u)∇u in Section 5.3. Note that the resulting nonlinear
form B is no longer monotone such that the above proof techniques do not directly transfer, see
[5, 6]. Nevertheless, we use the presented multiscale method with the obvious modifications for
(3.7) and A := a(x, 0) in the corrector problems.

5.1. Periodic coefficient

We choose a model problem similar to [2]. The nonlinear coefficient is defined as

A(x, ξ) =
(

1 + x1x2 +
1.1 + π

3 + sin(2π xε )

1.1 + sin(2π xε )

)(
1 +

1(
1 + |ξ|2

)1/2)ξ
with ε = 2−5 and sources f1(x) = 10 exp(−0.1|x− x0|2) or f2(x) = 100 exp(−0.1|x− x0|2) with
x0 = (0.45, 0.5)T in our case. The coefficient and the reference solutions uh are depicted in
Figure 5.1. We will consider the two right-hand sides f1 and f2 to study the influence of higher
values of the solution u and its gradient on our method and the linearization errors. Note that
one can hope for higher regularity of the exact solution u in this experiment.

We use the Galerkin method (3.7) and obtain a solution uH,m ∈ VH,m, where the correctors
are computed using the Newton-type linearization at u∗, which is specified below. We focus on
two (relative) errors in the following: The so-called (relative) upscaled error

eLOD :=
|uh − uH,m|1
|uh|1
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Figure 5.2: Convergence histories for the (relative) macroscopic error eH (in L2-norm) (left) and
the (relative) upscaled error eLOD (in H1-semi norm) (right) with f1 (top) and f2

(bottom) for the experiment of Section 5.1.

between the reference and the LOD solution in the H1-semi norm, for which we expect a linear
convergence rate (cf. Theorem 4.2); and the so-called (relative) macroscopic error

eH :=
‖uh − IHuH,m‖0

‖uh‖0

between the reference and the FE part of the LOD solution in the L2-norm, for which we expect
the same behavior as the L2-best approximation in VH (cf. Theorem 4.3).

For the simple choice u∗ = 0, these two errors are depicted for the two right-hand sides in
Figure 5.2. We note that the (relative) macroscopic errors eH in the left column closely follow
the error of the (relative) L2-best approximation in the space VH for m = 2, 3 (cf. the discussion
after Corollary 4.3). Since IHuH,m lies in the same space, we cannot hope for anything better.
In particular, the reduced convergence rate for H between

√
ε and ε is no defect of the method,

but intrinsic to the problem, see also the discussion of this so-called resonance effect in [18]. We
emphasize that in the pre-asymptotic range H � ε, the standard finite element method does
not produce faithful results and also shows no convergence rates, while the presented multiscale
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Figure 5.3: Convergence histories for the (relative) macroscopic error eH (in L2-norm) (left) and
the (relative) upscaled error eLOD (in H1-semi norm) (right) with f2 and different
choices of the linearization point for the experiment of Section 5.1.

method follows the best approximation error and converges with linear rate. For approximations
in the H1-semi norm, the (coarse-scale) space VH is no longer sufficient, as also underlined
by homogenization theory, but fine-scale features have to be taken in account. Therefore, we
consider the (relative) upscaled error eLOD in the right column of Figure 5.2. This error for
the LOD solution uH,m overall converges linearly as expected from Theorem 4.2. All in all, the
experiment clearly confirms the predicted convergence rates of Theorem 4.2 and Corollary 4.3.

When comparing the top and bottom row of Figure 5.2, we also observe that the higher values
of uh and thereby larger gradients of uh caused by f2 influence the performance of the method.
In particular the relative upscaled error eLOD in H1-semi norm shows some deviation from the
optimal linear convergence most probably because the linearization error starts to dominate.
Therefore, we compare the behavior of eH and eLOD for different linearization points with fixed
m = 3 in Figure 5.3. We consider the following choices of u∗ as discussed in Section 4.2: u∗ = 0,
u∗ = uH with the standard FE solution uH on the coarse mesh TH and u∗ = uH,m as well as
u∗ = IHuH,m, where uH,m is the LOD solution with linearization at zero. All these solutions show
a similar qualitative behavior, but in the quantitative errors we observe clear differences between
the linearization points, especially for eLOD. The choices u∗ = uH and u∗ = IHuH,m result in
almost identical results, probably because they lie in the same space VH . A bit surprisingly,
those choices even perform slightly worse than the simple choice u∗ = 0. A possible explanation
is that while IHuH,m is already a good approximation of u in the L2-sense, the gradients are
relevant for the nonlinearity, where the space VH does not provide sufficient approximations.
Both for eH and eLOD, the choice u∗ = uH,m performs best, which motivates to study iterative
LOD approximations as discussed in Section 4.2 in more detail in future research.

5.2. Random coefficient

We choose the nonlinear coefficient as

A(x, ξ) = c(x)

(
ξ1 + 1

3ξ
3
1

ξ2 + 1
3ξ

3
2

)
,
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Figure 5.4: Spatial part of the coefficient (left) and reference solution uh (right) for the experi-
ment of Section 5.2.

where c(x) is piece-wise constant on a quadrilateral mesh Tε with ε = 2−6 and the values are
random numbers in [0.1, 1]. The right-hand side is

f(x) =

{
5 x2 ≤ 0.1,

50 else,

see [21] for the nonlinearity and a similar right-hand side. Note that we clearly cannot expect
higher regularity than H1

0 (Ω) for the exact solution in this case because of the spatial discon-
tinuities in A. Further, A is only locally Lipschitz constant in its second argument. Thus,
Assumption 2.1 is violated and we even have |A| → ∞ for |ξ| → ∞. The coefficient and corre-
sponding reference solution uh are depicted in Figure 5.4.

For this example, we study the Petrov-Galerkin LOD as briefly discussed in Remark 3.3.
Precisely, we compute uPGH,m ∈ VH as the solution of

B(uPGH,m; vH) = (f, vH)Ω for all vH ∈ VH,m,

where VH,m is defined as in the Galerkin case. Hence, the solution uPGH,m lies in the FE space and

we expect the relative macroscopic error eH :=
‖uh−uH,m‖0
‖uh‖0 to follow the L2-best approximation

error as predicted in Corollary 4.3 for the FE part of the (Galerkin) LOD solution.
We first consider the convergence history of eH for the linearization u∗ = 0 and different

choices of m in Figure 5.5 (left). The multiscale method performs obviously better than the
standard FEM. The error of the Petrov-Galerkin LOD is following the L2-best approximation
as expected up to a saturation or stagnation for the last considered mesh, where most probably
the linearization error starts to dominate. As in the previous example, we also consider eH for
fixed m and different linearization points u∗ in Figure 5.5 (right). The considered choices are
u∗ = 0, u∗ = uH with the FE solution uH on the coarse mesh as before and u∗ = uPGH,m as well

as u∗ = (id−Qm)uPGH,m, where uPGH,m is the Petrov-Galerkin LOD solution with u∗ = 0 and Qm is
the corrector computed with u∗ = 0. The latter two linearization points play roles comparable
to IHuH,m and uH,m in the Galerkin setting discussed in the previous experiment. Although
the linearization with zero shows a saturation at the end, it performs best of the considered
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Figure 5.5: Convergence histories for the (relative) macroscopic error eH (in L2-norm) for fixed
u∗ = 0 and different m (left) and for fixed m = 3 and different u∗ (right) for the
experiment of Section 5.2.

linearization points. We emphasize that the impractical choice of u∗ = uh would lead to an
eH completely following the L2-best approximation error (data not shown). This illustrates the
validity of our error estimates also for the Petrov-Galerkin LOD, but also stresses the influence of
the chosen linearization point. Moreover, this example confirms and underlines that the present
multiscale method does not rely on assumptions such as periodicity or scale separation and thus
also works in situations where no homogenization results are available.

5.3. Stationary Richards equation

We now test the applicability of our method to quasilinear non-monotone problems, which, for
instance, are frequently encountered in (unsaturated) groundwater flow and can be modeled
by the (stationary) Richards equation. Here, we consider a quasilinear coefficient of the form
A(x, u,∇u) = c(x)k(u)∇u. For c we choose a spatial multiscale model with a channel as depicted
in Figure 5.6 left, which is often present in geophysical applications. Note that this can easily
be extended to the case of several channels. For the nonlinearity k, we consider the following
so-called van Genuchten model [38]

k(s) =
(1− α|s|(1 + (α|s|)2)−1/2)2

1 + (α|s|)2

with α = 0.005, see also [11]. The right-hand side is

f(x) =

{
0.1 x2 ≤ 0.1,

1 else,

The reference solution for the present setting is depicted in Figure 5.6 right. Note the influence
of the channel, which analytically manifests itself in a low regularity of the solution.

As a consequence, we observe exactly the (worst-case) convergence rates as predicted by our
theory (for the monotone case only), but not more. In particular, the L2-error for IHuH,m follows
the best-approximation error, which in this case is “only” linear as discussed after Corollary 4.3.
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Figure 5.6: Coefficient c(x) (left) and reference solution (right) for the experiment of Section 5.3.

Furthermore, we see the expected linear convergence of the upscaled error eLOD up to a slight
saturation for small H. This is most probably caused again by a dominating linearization error,
which could be cured by a different choice of the linearization point as discussed in the previous
experiments and in Section 4.2. This experiment clearly underlines the applicability of the
approach also beyond the strictly monotone case and indicates that similar convergence rates as
in Theorem 4.2 and Corollary 4.3 can be expected.

Conclusion

We presented a multiscale method for nonlinear monotone elliptic problems with spatial multi-
scale features. A problem-adapted multiscale basis is constructed by solving local linear fine-scale
problems for each coarse-scale mesh element. Numerical analysis shows optimal error estimates
up to linearization errors and we discussed choices of the linearization. Several numerical experi-
ments underline and confirm the applicability of the method as well as the expected convergence
rates. We also numerically compared the influence of the chosen linearization on the perfor-
mance of the method. As mentioned, iterative (adaptive) LOD methods where either a cascade
of LOD solutions to different linearization points is computed or the correctors are (partially)
updated during the nonlinear iteration are interesting extensions of the presented method and
will be subject of future research. Also the numerical analysis for the quasilinear non-monotone
problems, where the numerical example has shown promising results, will be studied in the fu-
ture. A generalization of the method to other nonlinear problems seems possible, here we note
as interesting applications (besides Richards equation) porous media flow, nonlinear elasticity,
and wave propagation in nonlinear media (e.g., of Kerr-type).
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[32] A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp.,
83(290):2583–2603, 2014.

[33] H. Owhadi. Multigrid with rough coefficients and multiresolution operator decomposition
from hierarchical information games. SIAM Rev., 59(1):99–149, 2017.

[34] H. Owhadi and L. Zhang. Localized bases for finite-dimensional homogenization approxima-
tions with nonseparated scales and high contrast. Multiscale Model. Simul., 9(4):1373–1398,
2011.

[35] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale
correctors. In Building bridges: connections and challenges in modern approaches to nu-
merical partial differential equations, volume 114 of Lect. Notes Comput. Sci. Eng., pages
341–367. Springer, Cham, 2016.

[36] D. Peterseim, D. Varga, and B. Verfürth. From domain decomposition to homogenization
theory. In DD25 proceedings (to appear). Springer, 2019.

[37] L. A. Richards. Capillary conduction of liquids through porous mediums. Physics, 1(5):318–
333, 1931.

[38] M. van Genuchten. A closed form equations for predicting the hydraulic conductivity of
unsaturated soils. Soil Sci. Soc. Am. J., 40:892–898, 1980.

[39] J. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer.
Anal., 33(5):1759–1777, 1996.

[40] E. Zeidler. Nonlinear functional analysis and its applications. IV. Applications to mathe-
matical physics. Springer-Verlag, New York, 1988.

A. L2-error estimate for the Galerkin method

In this appendix, we prove an L2-estimate for the Galerkin method (3.4).

Theorem A.1. Let Assumptions 2.1 and 3.1 be fulfilled and suppose further that A(x,∇u) =
AL(x,∇u,∇u). Let u be the solution to (2.2) and uH,m the solution to (3.7). Then it holds that

‖u− uH,m‖0 .
(
H + C

1/2
ol,mβ

m + sup
vH∈VH

|(Qm −Qum)vH |1
)
|u− uH,m|1 + ‖ηlin,1(u, ũH,m)‖H−1(Ω)
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with the linearization error ηlin,1 defined as

〈ηlin,1(u, v), ψ〉 :=

ˆ
Ω

(
AL(x,∇u,∇v)−A(x,∇v)

)
· ∇ψ dx

and where ũH,m is defined via (A.1) below.

The first term of the above error estimate presumably is of O(H2) for the choice m ≈ | logH|
(up to the linearization error |(Qm −Qum)vH |1 discussed in Section 4.2). The linearization error
ηlin,1(u, v) can be estimated in the same way as in Lemmas 4.4 and 4.5 by replacing u∗ with u.
According to those lemmas, we then need to estimate |u− ũH,m|1 and ‖∇(u− ũH,m)‖L∞(Ω). As
shown below, |u− ũH,m|1 is of the same order as |u−uH,m|1 discussed in Theorem 4.2. However,
it is not clear whether W 1,∞-estimates for the multiscale space VH,m can be established in the
spirit of [8, Chapter 8] to obtain a quadratic rate for ηlin,1 in case of a Newton-type linearization.

Proof. Let ũH,m ∈ VH,m be the unique solution to(
Au∇ũH,m,∇vH,m

)
Ω

=
(
Au∇u,∇vH,m

)
Ω

for all vH,m ∈ VH,m, (A.1)

cf. [2]. Note that this can equivalently be written as(
AL(x,∇u,∇ũH,m),∇vH,m

)
Ω

=
(
AL(x,∇u,∇u),∇vH,m

)
Ω

for all vH,m ∈ VH,m.

We split the error u− uH,m into u− ũH,m and ũH,m− uH,m and estimate both parts separately.
First step: Estimate of ũH,m − uH,m: By the monotonicity of A, Galerkin orthogonality, the

assumption A(x,∇u) = AL(x,∇u,∇u) and (A.1), we deduce

|uH,m − ũH,m|21 .
(
A(x,∇uH,m)−A(x,∇ũH,m),∇(uH,m − ũH,m)

)
Ω

=
(
A(x,∇u)−A(x,∇ũH,m),∇(uH,m − ũH,m)

)
Ω

=
(
AL(x,∇u,∇u)−A(x,∇ũH,m),∇(uH,m − ũH,m)

)
Ω

=
(
AL(x,∇u,∇ũH,m)−A(x,∇ũH,m),∇(uH,m − ũH,m)

)
Ω

≤ ‖ηlin,1(u, ũH,m)‖H−1(Ω)|uH,m − ũH,m|1.

The L2-estimate is obtained by applying Friedrich’s inequality.
Second step: Estimate of u− ũH,m: This is in principle an L2-estimate for a Galerkin LOD for

an elliptic diffusion problem. The main issue, however, is that the multiscale space VH,m is not
built with respect to the diffusion tensor Au = AL(x,∇u) but with respect to A = AL(x,∇u∗).
We first of all note that due to the projection, we have

|u− ũH,m|1 . inf
vH,m∈VH,m

|u− vH,m|1 ≤ |u− uH,m|1.

Let now z ∈ H1
0 (Ω) and zH,m ∈ VH,m be the solutions of the following dual problems(

Au∇v,∇z
)

Ω
= (v, u− ũH,m)Ω for all v ∈ H1

0 (Ω),

and
(
Au∇vH,m,∇zH,m

)
Ω

= (vH,m, u− ũH,m)Ω for all vH,m ∈ VH,m.

Assumption 3.1 and Galerkin orthogonality imply

|z − zH,m|1 . inf
vH,m∈VH,m

|z − vH,m|1 ≤ |z − (id−Qm)IHz|1

≤ |z − (id−Qu)IHz|1 + |(Qu −Qum)IHz|1 + |(Qum −Qm)IHz|1,
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where the second term is estimated with Proposition 4.1. Employing (2.5) and the a priori
(stability) estimate for z, the last term yields

|(Qum −Qm)IHz|1 .
(

sup
vH∈VH

|(Qum −Qm)vH |1
)
‖u− ũH,m‖0.

For the first term, we obtain with the ellipticity of Au as well as the definitions of Qu and z that

|z − (id−Qu)IHz|21 .
(
Au∇(z − (id−Qu)IHz),∇(z − (id−Qu)IHz)

)
Ω

=
(
Au∇z,∇(z − (id−Qu)IHz)

)
Ω

= (u− ũH,m, z − (id−Qu)IHz)Ω

. H ‖u− ũH,m‖0 |z − (id−Qu)IHz|1.

Combining the foregoing estimates, we conclude

|z − zH,m|1 .
(
H + C

1/2
ol,mβ

m + sup
vH∈VH

|(Qm −Qum)vH |1
)
‖u− ũH,m‖0.

Finally, the definition of the dual problems yields

‖u− ũH,m‖20 =
(
Au∇(u− ũH,m),∇z

)
Ω

=
(
Au∇(u− ũH,m),∇(z − zH,m)

)
Ω

. |z − zH,m|1|u− ũH,m|1,

which in combination with the already derived estimates finishes the proof.

B. Proof of Proposition 4.6

The proof of Proposition 4.6 simply relies on the definition of the element correctors and is
similar to the results in [19, 20].

Proof of Proposition 4.6. Let T ∈ TH and vH ∈ VH be fixed. Abbreviate w := (QT,m−QuT,m)vH
and note that w ∈W (Nm(T )). We deduce by the definition of QT,m and QuT,m that

|w|21 .
(
Âu∇w,∇w

)
Nm(T )

=
(
Âu∇QT,mvH ,∇w

)
Nm(T )

−
(
Â∇QT,mvH ,∇w

)
Nm(T )

+
(
Â∇vH ,∇w

)
T
−
(
Âu∇vH ,∇w

)
T

=
(
(Â− Âu)(χT∇−∇QT,m)vH ,∇w

)
Nm(T )

≤ ‖(Â− Âu)(χT∇−∇QT,m)vH‖0,Nm(T ) |w|1.

We then proceed as follows

|w|21 . ‖(Â− Âu)(χT∇−∇QT,m)vH‖20,Nm(T )

≤ max
ψ|T ,ψ∈VH

‖(Â− Âu)(χT∇−∇QT,m)ψ‖20,Nm(T )

|ψ|21,T
|w|21,T

≤
∑

T ′∈TH ,T ′⊂Nm(T )

‖Â− Âu‖2L∞(T ′) max
ψ|T ,ψ∈VH

‖(χT∇−∇QT,m)ψ‖20,T ′
|ψ|21,T

|w|21,T

= E2
Q,T |w|21,T ,

which finishes the proof. Note that only in the very first step we hide the lower spectral bound

of Âu|Nm(T ) in the notation ., all other estimates are constant-free.

25


