Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$

Leonid Chaichenets, Dirk Hundertmark, Peer Kunstmann, Nikolaos Pattakos

CRC Preprint 2019/27, December 2019
Participating universities

Universität Stuttgart

Funded by

DFG

ISSN 2365-662X
LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION IN THE INTERSECTION OF MODULATION SPACES $M^s_{p,q}(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract. We introduce a Littlewood-Paley characterization of modulation spaces and use it to give an alternative proof of the algebra property, implicitly contained in [STWi], of the intersection $M^s_{p,q}(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$ for $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \geq 0$. We employ this algebra property to show the local well-posedness of the Cauchy problem for the cubic nonlinear Schrödinger equation in the above intersection. This improves [BO09, Theorem 1.1] by Bényi and Okoudjou, where only the case $q = 1$ is considered, and closes a gap in the literature. If $q > 1$ and $s > d \left(1 - \frac{1}{q}\right)$ or if $q = 1$ and $s \geq 0$ then $M^s_{p,q}(\mathbb{R}^d) \hookrightarrow M_{\infty,1}(\mathbb{R}^d)$ and the above intersection is superfluous. For this case we also obtain a new Hölder-type inequality for modulation spaces.

1. Introduction

In this paper we contribute to the general theory of modulation spaces. Modulation spaces $M^s_{p,q}(\mathbb{R}^d)$ were introduced by Feichtinger in [Fei83]. Here, we only briefly recall their definition and refer to Section 2 and the literature mentioned there for more information. Fix a so-called window function $g \in \mathcal{S}(\mathbb{R}^d) \setminus \{0\}$. The short-time Fourier transform $V_g f$ of a tempered distribution $f \in \mathcal{S}'(\mathbb{R}^d)$ with respect to the window g is defined by

$$
(V_g f)(x, \xi) = \frac{1}{(2\pi)^d} \langle f, M_{\xi} S_x g \rangle \quad \forall x, \xi \in \mathbb{R}^d,
$$

where $S_x g(y) = g(y - x)$ denotes the right-shift by $x \in \mathbb{R}^d$, $(M_{\xi} g)(y) = e^{ik \cdot y} g(y)$ the modulation by $\xi \in \mathbb{R}^d$ and $(f, g) = \int_{\mathbb{R}^d} f(x) g(x) dx$ for $f \in L^1_{\text{loc}}(\mathbb{R}^d), g \in \mathcal{S}(\mathbb{R}^d)$. We define

$$
M^s_{p,q}(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \left| \| f \|_{M^s_{p,q}(\mathbb{R}^d)} < \infty \right. \right\},
$$

where

$$
\| f \|_{M^s_{p,q}(\mathbb{R}^d)} = \left\| \xi \mapsto \langle \xi \rangle^s \| V_g f(\cdot, \xi) \|_p \right\|_q
$$

for $s \in \mathbb{R}$, $p, q \in [1, \infty]$. As usual in the literature, we set $M_{p,q}(\mathbb{R}^d) := M^0_{p,q}(\mathbb{R}^d)$ and often shorten the notation for $M^s_{p,q}(\mathbb{R}^d)$ to $M^s_{p,q}$. It can be shown, that the $M^s_{p,q}(\mathbb{R}^d)$ are Banach spaces and that different choices of the window function g lead to equivalent norms.

To state our first result, let us recall the definition of the Littlewood-Paley decomposition. Consider a smooth radial function $\phi_0 \in C^\infty_c(\mathbb{R}^d)$ with $\phi_0(\xi) = 1$ for
all $|\xi| \leq \frac{1}{2}$ and supp$(\phi_0) \subseteq B_1(0)$. Set $\phi_1 = \phi_0 \left(\frac{1}{2}\right) - \phi_0$ and $\phi_l = \phi_1 \left(\frac{1}{2^{l-1}}\right)$ for all $l \in \mathbb{N}$. The multiplier operators defined by

$$\Delta_l f := \frac{1}{(2\pi)^2} \hat{\phi}_l \ast f = F(\phi_l F f) \quad \forall \in N_0 \forall f \in S'([\mathbb{R}^d])$$

are called dyadic decomposition operators and the sequence $(\Delta_l f)_{l \in N_0}$ is called the Littlewood–Paley decomposition of $f \in S'([\mathbb{R}^d])$. Above, F denotes the usual Fourier transform and F^{-1} its inverse.

Our first result is

Theorem 1 (Littlewood–Paley characterization). Let $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \in \mathbb{R}$. Then

$$\|f\| := \left(\sum_{l \in \mathbb{N}_0} \| \Delta_l f \|_{M^{p,q}_s([\mathbb{R}^d])}^q\right)^{\frac{1}{q}} \quad \forall f \in S'([\mathbb{R}^d])$$

defines an equivalent norm on $M^{s,q}_p([\mathbb{R}^d])$. The constants of the norm equivalence depend only on d and s.

The above characterization of modulation spaces is new and we shall use it to prove that the intersections $M^{s,q}_p([\mathbb{R}^d]) \cap M^{0,1}_{\infty}([\mathbb{R}^d])$ are Banach $*$-algebras. To state this second result, let us denote by $C_0([\mathbb{R}^d])$ the space of bounded complex-valued continuous functions on $[\mathbb{R}^d]$, where $d \in \mathbb{N}$. We then have

Theorem 2 (Algebra property). Let $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \geq 0$. Then $M^{s,q}_p([\mathbb{R}^d]) \cap M^{0,1}_{\infty}([\mathbb{R}^d])$ is a Banach $*$-algebra with respect to pointwise multiplication and complex conjugation. These operations are well-defined due to the embedding $M^{0,1}_{\infty}([\mathbb{R}^d]) \hookrightarrow C_0([\mathbb{R}^d])$. Furthermore, if $q > 1$ and $s > d \left(1 - \frac{1}{q}\right)$ or if $q = 1$, then $M^{s,q}_p([\mathbb{R}^d]) \hookrightarrow M^{0,1}_{\infty}([\mathbb{R}^d])$, so in particular $M^{s,q}_p([\mathbb{R}^d])$ is a Banach $*$-algebra, in that case.

The latter case of Theorem 2 had been observed already in 1983 by Feichtinger in his aforementioned pioneering work on modulation spaces (cf. [Fei83, Proposition 6.9]), where he proves it using a rather abstract approach via Banach convolution triples. The case $q > 1$ and $s \in \left[0, d \left(1 - \frac{1}{q}\right)^{-1}\right]$ seems to be new, at least as a statement. A different proof of Theorem 2 can be given following the idea of proof of [STW11, Proposition 3.2], see [Cha18, Proposition 4.2].

Our third result is a Hölder-type inequality for modulation spaces, which is stated in

Theorem 3 (Hölder-type inequality). Let $d \in \mathbb{N}$ and $p, p_1, p_2, q, q \in [1, \infty]$ be such that $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$. For $q > 1$ let $s > d \left(1 - \frac{1}{q}\right)$ and for $q = 1$ let $s \geq 0$. Then there is a $C > 0$ such that for any $f \in M^{s,q}_{p_1}([\mathbb{R}^d])$ and any $g \in M^{s,q}_{p_2}([\mathbb{R}^d])$ one has

$$\|fg\|_{M^{s,q}_{p_3}([\mathbb{R}^d])} \leq C \|f\|_{M^{s,q}_{p_1}([\mathbb{R}^d])} \|g\|_{M^{s,q}_{p_2}([\mathbb{R}^d])}.$$

The above pointwise multiplication fg is well-defined due to the embedding formulated in Theorem 2. The constant C does not depend on p, p_1 or p_2.

Theorem 3 easily generalizes to $m \in \mathbb{N}$ factors and $p, p_1, \ldots, p_m \in (0, \infty]$. Hence, it extends the multilinear estimate from [BO09, Equation 2.4] to the case $q_0 = \ldots = q_m > 1$.

\footnote{For us, a Banach $*$-algebra X is a Banach algebra over \mathbb{C} on which a continuous involution $*$ is defined, i.e. $(x + y)^* = x^* + y^*$, $(\lambda x)^* = \overline{\lambda} x^*$ and $(x^*)^* = x$ for any $x, y \in X$ and $\lambda \in \mathbb{C}$. We neither require X to have a unit nor $C = 1$ in the estimates $\|x \cdot y\| \leq C \|x\| \|y\|$, $\|x^*\| \leq C \|x\|$.}
Here we present a direct proof of Theorem 4 close to the approach found in [WZG06, Corollary 4.2] and involving an application of Theorem 2. For a proof avoiding the Littlewood-Paley characterization see the proof of [Cha13, Theorem 4.3]. A yet another and more abstract proof could be given by invoking [Fei80, Theorem 1.1] for a specific choice of Banach convolution triples.

Lastly, we employ Theorem 2 to study the Cauchy problem for the cubic nonlinear Schrödinger equation (NLS)

\[
\begin{cases}
\frac{\partial u}{\partial t}(x,t) + \Delta u(x,t) \pm |u|^2 u(x,t) = 0 & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\
u(x,0) = u_0(x) & x \in \mathbb{R}^d,
\end{cases}
\]

where the initial data \(u_0\) is in an intersection of modulation spaces \(M^s_{p,q}(\mathbb{R}^d) \cap M^1_{\infty,1}(\mathbb{R}^d)\). We are interested in mild solutions \(u\) of (3), i.e.

\[u \in C([0,T), M^s_{p,q}(\mathbb{R}^d) \cap M^1_{\infty,1}(\mathbb{R}^d))\]

for some \(T > 0\) which satisfy the corresponding integral equation

\[u(\cdot,t) = e^{i\Delta}u_0 \pm i \int_0^t e^{i(t-\tau)\Delta} \left(|u|^2 u(\cdot,\tau)\right) d\tau \quad \forall t \in [0,T].\]

Our last result is stated in

Theorem 4 (Local well-posedness). Let \(d \in \mathbb{N}, p \in [1,\infty], q \in [1,\infty)\) and \(s \geq 0\). Set \(X = M^s_{p,q}(\mathbb{R}^d) \cap M^1_{\infty,1}(\mathbb{R}^d)\) and \(X(T) = C([0,T], X), X_s(T) = C([0,T], X)\) for any \(T > 0\). Assume that \(u_0 \in X\). Then, there exists a unique maximal mild solution \(u \in X_s(T_*)\) of (3) and the blow-up alternative

\[T_* < \infty \quad \Rightarrow \quad \limsup_{t \to T_*} \|u(\cdot,t)\|_X = \infty\]

holds. Moreover, for any \(T' \in (0,T_*)\) there exists a neighborhood \(V\) of \(u_0\) in \(X\), such that the initial-data-to-solution-map \(V \to X(T')\), \(v_0 \mapsto v\) is Lipschitz continuous.

As already stated in Theorem 2 one has that, if \(q > 1\) and \(s > d \left(1 - \frac{1}{q}\right)\) or if \(q = 1\), then \(M^s_{p,q}(\mathbb{R}^d) \hookrightarrow M^1_{\infty,1}(\mathbb{R}^d)\) and so \(X = M^s_{p,q}(\mathbb{R}^d)\), in that case.

In the case \(q = \infty\) excluded in Theorem 4 the situation is more subtle. Following our proof, one obtains local well-posedness in the larger space

\[L^\infty([0,T), M^s_{p,\infty}(\mathbb{R}^d) \cap M^1_{\infty,1}(\mathbb{R}^d)).\]

The missing continuity in time is due to the properties of the free Schrödinger evolution and we refer to the remarks after Theorem 10.

The precursors of Theorem 4 are [WZG06, Theorem 1.1] by Wang, Zhao and Guo for the space \(M^s_{p,1}(\mathbb{R}^d)\) and [BO09, Theorem 1.1] due to Bényi and Okoudjou for the space \(M^s_{p,1}(\mathbb{R}^d)\) with \(p \in [1,\infty]\) and \(s \geq 0\). In fact, Theorem 4 generalizes [BO09, Theorem 1.1] to \(q \geq 1\): Although our theorem is stated for the cubic nonlinearity, this is for simplicity of the presentation only. The proof allows for an easy generalization to algebraic nonlinearities considered in [BO09], which are of the form

\[f(u) = g(|u|^2)u = \sum_{k=0}^{\infty} c_k |u|^{2k} u,\]

where \(g\) is an entire function. Also, [BO09, Theorems 1.2 and 1.3], which concern the nonlinear wave and the nonlinear Klein-Gordon equation respectively, can be generalized in the same spirit. The reason for this is that the proof of these results is based on the well-known Banach’s contraction principle, on the fact that the free propagator is a \(C_0\)-group, and on the algebra property of the spaces under
with compact support we write
\[C\]

tempered distributions

Notation. We denote generic constants by \(C\). To emphasize on which quantities a constant depends we write e.g. \(C = C(d)\) or \(C = C(d,s)\). Sometimes we omit a positive constant from an inequality by writing “\(\lesssim\)”, e.g. \(A \lesssim d B\) instead of \(A \leq C(d)B\). By \(A \approx B\) we mean \(A \leq B\) and \(B \leq A\). Special constants are \(d \in \mathbb{N}\) for the dimension, \(p, q \in [1,\infty]\) for the Lebesgue exponents and \(s \in \mathbb{R}\) for the regularity exponent. By \(p'\) we mean the dual exponent of \(p\), that is the number satisfying \(\frac{1}{p} + \frac{1}{p'} = 1\).

We denote by \(\mathcal{S}(\mathbb{R}^d)\) the set of Schwartz functions and by \(\mathcal{S}'(\mathbb{R}^d)\) the space of tempered distributions. Furthermore, we denote the Bessel potential spaces or simply \(L^2\)-based Sobolev spaces by \(H^s = H^s(\mathbb{R}^d)\). For the space of smooth functions with compact support we write \(C^\infty_c\). The letters \(f, g, h\) denote either generic functions \(\mathbb{R}^d \to \mathbb{C}\) or generic tempered distributions and \((a_k)_{k \in \mathbb{Z}^d} = (a_k)_k = (a_k), (b_k)_{k \in \mathbb{Z}^d} = (b_k)_k = (b_k)\) denote generic complex-valued sequences. By \(\langle \cdot \rangle = \sqrt{1 + |\cdot|^2}\) we mean the Japanese bracket.

For a Banach space \(X\) we write \(X^*\) for its dual and \(\| \cdot \|_X\) for the norm it is canonically equipped with. By \(\mathcal{L}(X,Y)\) we denote the space of all bounded linear maps from \(X\) to \(Y\), where \(Y\) is another Banach space, and set \(\mathcal{L}_b(X,Y) = \mathcal{L}(X,Y,\mathbb{C})\). By \([X,Y]_\theta\) we mean complex interpolation between \(X\) and \(Y\), if \((X,Y)\) is an interpolation couple. For brevity we write \(\| \cdot \|_p\) for the \(p\)-norm on the Lebesgue space \(L^p = L^p(\mathbb{R}^d)\), the sequence space \(l^p = l^p(\mathbb{Z}^d)\) or \(l^p = l^p(\mathbb{N})\) and \(\| (a_k) \|_{q,s} := \|(k)^s a_k\|_q\) for the norm on \(\langle \cdot \rangle^s\)-weighted sequence spaces \(l^p_s = l^p_s(\mathbb{Z}^d)\). If the norm is apparent from the context, we write \(B_r(x)\) for a ball of radius \(r\) around \(x \in X\).

We use the symmetric choice of constants for the Fourier transform and also write
\[
\hat{f}(\xi) := (\mathcal{F}f)(\xi) = \frac{1}{(2\pi)^\frac{d}{2}} \int_{\mathbb{R}^d} e^{-i\xi \cdot x} f(x) dx,
\]
\[
g(x) := (\mathcal{F}^{-1}g)(x) = \frac{1}{(2\pi)^\frac{d}{2}} \int_{\mathbb{R}^d} e^{i\xi \cdot x} g(\xi) d\xi.
\]

2. Preliminaries

As already mentioned in the introduction, modulation spaces were introduced by Feichtinger in [F83] in the setting of locally compact Abelian groups. A thorough introduction is given in the textbook [G01] by Gröchenig. A presentation
Proof. (1) One can change indices one by one. The inclusion for “\(q\) is by
monotonicity and the inclusion for “\(q\) is by the embeddings of the \(l^p\)
spaces. For the \(p\)-embedding consider \(\tau \in C_0^\infty(\mathbb{R}^d)\) such that \(\tau|_{B_1} \equiv 1\) and
\(\text{supp}(\tau) \subseteq B_d\). For every \(k \in \mathbb{Z}^d\), consider the shifted symbol \(\tau_k = S_k\tau\),
define the corresponding multiplier operator \(\tilde{\tau}_k = F(-1)\tau_k F\) and observe,
that \(\tilde{\tau}_k = M_k \tau\). Hence, by Lemma 5 the family \((\tilde{\tau}_k)_{k \in \mathbb{Z}^d}\) is bounded
in \(\mathcal{L}(L^p(\mathbb{R}^d), L^{p_2}(\mathbb{R}^d))\). So, \(\|\tilde{\tau}_k f\|_{L^{p_2}} \leq \|\tilde{\tau}_k\|_{L^{p_1}(\mathbb{R}^d)} \|\tau\|_{L^{p_2}(\mathbb{R}^d)}\) for any
\(k \in \mathbb{Z}^d\). Recalling (6) completes the argument.

(2) \(M_{p_1,q_1}(\mathbb{R}^d) \subseteq M_{p_2,q_2}(\mathbb{R}^d)\) and the embedding is continuous,
and \(M_{p_1,q}(\mathbb{R}^d) \subseteq M_{p_1,1}(\mathbb{R}^d)\) and the embedding is continuous,
and \(M_{p_1,1}(\mathbb{R}^d) \hookrightarrow C_b(\mathbb{R}^d)\).

Lemma 6 is well-known (cf. WH07 Proposition 2.5, 2.7), but for convenience
we sketch a

Proof. (1) One can change indices one by one. The inclusion for “\(s\) is by
monotonicity and the inclusion for “\(q\) is by the embeddings of the \(l^p\)
spaces. For the \(p\)-embedding consider \(\tau \in C_0^\infty(\mathbb{R}^d)\) such that \(\tau|_{B_1} \equiv 1\) and
\(\text{supp}(\tau) \subseteq B_d\). For every \(k \in \mathbb{Z}^d\), consider the shifted symbol \(\tau_k = S_k\tau\),
define the corresponding multiplier operator \(\tilde{\tau}_k = F(-1)\tau_k F\) and observe,
that \(\tilde{\tau}_k = M_k \tau\). Hence, by Lemma 5 the family \((\tilde{\tau}_k)_{k \in \mathbb{Z}^d}\) is bounded
in \(\mathcal{L}(L^p(\mathbb{R}^d), L^{p_2}(\mathbb{R}^d))\). So, \(\|\tilde{\tau}_k f\|_{L^{p_2}} \leq \|\tilde{\tau}_k\|_{L^{p_1}(\mathbb{R}^d)} \|\tau\|_{L^{p_2}(\mathbb{R}^d)}\) for any
\(k \in \mathbb{Z}^d\). Recalling (6) completes the argument.
Indeed, for any A as the supports of the partition of unity are compact, many summands vanish.

Proof. We use (6) to estimate the modulation space norm of the left-hand side. Fix k we have

$$\|\sigma_k f\|_{p,1} \approx \sum_{k \in \mathbb{Z}^d} \|\Delta_k f\|_{p,1} \leq \left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{-sq'} \right)^{\frac{1}{p'}} \left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{sq} \|\Delta_k f\|_p^q \right)^{\frac{1}{q}}$$

and the first factor is finite for $s > \frac{d}{q}$ by comparison with the integral $\int_{\mathbb{R}^d} (x)^{-sq} \, dx$.

(3) By H"older’s inequality we immediately have

$$\|f\|_{p,1} \approx \|\sigma_k f\|_{p,1} \leq \left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{-sq'} \right)^{\frac{1}{p'}} \|f\|_{M^{p,q}}.$$

For the proof of Theorem 2 we will need the following (cf. [BO09, eqn. (2.4)])

Lemma 7 (Bilinear estimate). Let $d \in \mathbb{N}$ and $1 \leq p \leq \infty$. Assume $f \in M_{p,q}(\mathbb{R}^d)$ and $g \in M_{\infty,1}(\mathbb{R}^d)$. Then

$$\|fg\|_{M_{p,q}(\mathbb{R}^d)} \lesssim \|f\|_{M_{p,q}(\mathbb{R}^d)} \|g\|_{M_{\infty,1}(\mathbb{R}^d)},$$

where the implicit constant does not depend on p or q.

For convenience, and because we will generalize Lemma 7 to Theorem 3, we present a proof close to the one of [WZ06, Corollary 4.2].

Proof. We use (6) to estimate the modulation space norm of the left-hand side. Fix $k \in \mathbb{Z}^d$. By the definition of the operator Δ_k we have

$$\Delta_k(fg) = \frac{1}{(2\pi)^d} \mathcal{F}^{(-1)} \left(\sigma_k (f \ast \hat{g}) \right) = \frac{1}{(2\pi)^d} \sum_{l,m \in \mathbb{Z}^d} \mathcal{F}^{(-1)} \left(\sigma_k ((\sigma_l f) \ast (\sigma_m \hat{g})) \right).$$

As the supports of the partition of unity are compact, many summands vanish. Indeed, for any $k,l,m \in \mathbb{Z}^d$

$$\text{supp} \left(\sigma_k ((\sigma_l f) \ast (\sigma_m \hat{g})) \right) \subseteq \text{supp}(\sigma_k) \cap (\text{supp}(\sigma_l) + \text{supp}(\sigma_m)) \subseteq B_{\sqrt{d}}(k) \cap B_{2\sqrt{d}}(l+m)$$

and so $\sigma_k ((\sigma_l f) \ast (\sigma_m \hat{g})) \equiv 0$ if $|l-m| > 3\sqrt{d}$. Hence, the double series over $l,m \in \mathbb{Z}^d$ boils down to a finite sum of discrete convolutions

$$\Delta_k(fg) = \frac{1}{(2\pi)^d} \mathcal{F}^{(-1)} \left(\sigma_k \sum_{m \in M} \sum_{l \in \mathbb{Z}^d} (\sigma_l f) \ast (\sigma_{k-l+m} \hat{g}) \right)$$

$$= \Delta_k \left(\sum_{m \in M} \sum_{l \in \mathbb{Z}^d} (\mathcal{F} f) \cdot (\mathcal{F} \Delta_{k+m-l} g) \right),$$

where $M = \left\{ m \in \mathbb{Z}^d \mid |m| \leq 3\sqrt{d} \right\}$ and $\#M \leq \left(6\sqrt{d} + 1 \right)^d < \infty$. That was the job of Δ_k and we now get rid of it,

$$\|\Delta_k(fg)\|_p \lesssim \sum_{m \in M} \sum_{l \in \mathbb{Z}^d} \|\mathcal{F} f \cdot (\mathcal{F} \Delta_{k+m-l} g)\|_p.$$
using the Bernstein multiplier estimate from Lemma [4].

Invoking Hölder’s inequality we further estimate
\[
\|\square_k(fg)\|_p \leq \sum_{m \in M} \left(\left(\|\square_l(f)\|_p \right)^* \left(\|\square_{n+m}(g)\|_\infty \right)_n \right) (k)
\]
pointwise in \(k \in \mathbb{Z}^d \), where * denotes the convolution of sequences, and hence obtain
\[
\|fg\|_{M_{p,q}} \leq \left\| \left(\|\square_l(f)\|_p \right)^* \left(\|\square_{n}(g)\|_\infty \right)_n \right\|_1
\]
by Young’s inequality. \(\square \)

Lemma 8 (Dual space). For \(s \in \mathbb{R} \), \(p, q \in [1, \infty) \) we have
\[
(M_{p,q}^s(\mathbb{R}^d))^* = M_{p,q}^s(\mathbb{R}^d)
\]
(see [WH07] Theorem 3.1).

Theorem 9 (Complex interpolation). For \(p_1, q_1 \in [1, \infty) \), \(p_2, q_2 \in [1, \infty) \), \(s_1, s_2 \in \mathbb{R} \) and \(\theta \in (0, 1) \) one has
\[
[M_{p_1,q_1}^{s_1}(\mathbb{R}^d), M_{p_2,q_2}^{s_2}(\mathbb{R}^d)]_{\theta} = M_{p,q}^s(\mathbb{R}^d),
\]
with
\[
\frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_2}, \quad \frac{1}{q} = \frac{1-\theta}{q_1} + \frac{\theta}{q_2}, \quad s = (1-\theta)s_1 + \theta s_2
\]
(see [Fei83] Theorem 6.1(D)).

We are now ready to state and prove the following

Theorem 10 (Schrödinger propagator bound). There is a constant \(C > 0 \) such that for any \(d \in \mathbb{N} \), \(p, q \in [1, \infty] \) and \(s \in \mathbb{R} \) the inequality
\[
\|e^{it\Delta}\|_{L^p(M_{p,q}^s(\mathbb{R}^d))} \leq C_d(1 + |t|)^{\frac{d}{2} - \frac{s}{2}}
\]
holds for all \(t \in \mathbb{R} \). Furthermore, the exponent of the time dependence is sharp.

The boundedness has been obtained e.g. in [BGOR07] Theorem 1 whereas the sharpness was proven in [CN09] Proposition 4.1. If \(q < \infty \), then \((e^{it\Delta})_{t \in \mathbb{R}} \) is a \(C_0 \)-group on \(M_{p,q}^s \), i.e.
\[
\lim_{t \to 0} \|e^{it\Delta}f - f\|_{M_{p,q}^s} = 0 \quad \forall f \in M_{p,q}^s
\]
(see e.g. [Cha18] Proposition 3.5). This is not true for \(q = \infty \) and we refer to [Kum19] for this more subtle case.

Theorem 11. By definition, we have
\[
\|V_0 e^{it\Delta}f(x, \xi)\|_p = e^{-|t|\xi^2} \|V_0 \Delta g(x + 2it\xi, \xi)\|
\]
for any \(f \in \mathcal{S}(\mathbb{R}^d) \), any \((x, \xi) \in \mathbb{R}^d \times \mathbb{R}^d \), and any \(t \in \mathbb{R} \), i.e., the Schrödinger time evolution of the initial data can be interpreted as the time evolution of the window function. The price for changing from window \(g_0 \) to window \(g_1 \) is \(\|V_0 g_1\|_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} \) by [Grö01] Proposition 11.3.2 (c)). For \(g(x) = e^{-|x|^2} \) one explicitly calculates
\[
\|V_0 e^{-|t|\Delta}g\|_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} = C_d (1 + |t|)^{\frac{d}{2}},
\]
which proves the claimed bound for \(p \in [1, \infty) \). Conservation for \(p = 2 \) is easily seen from [4]. Complex interpolation between the cases \(p = 2 \) and \(p = \infty \) yields \([5] \) for \(p \in [2, \infty] \). The remaining case \(p \in (1, 2] \) is covered by duality.

Optimality in the case \(p \in [1, 2] \) is proven by choosing the window \(g \) and the argument \(f \) to be a Gaussian and explicitly calculating \(\|e^{it\Delta}f\|_{M_{p,q}^s} \approx (1 + |t|)^d \left(\frac{1}{2} - \frac{s}{2} \right) \). This implies the optimality for \(p \in (2, \infty] \) by duality. \(\square \)
3. Littlewood-Paley theory

In this section we extend some ideas of the Littlewood-Paley decomposition from Sobolev spaces $H^s(\mathbb{R}^d)$ to modulation spaces $M^s_{p,q}(\mathbb{R}^d)$. The inspiration for this was Chapter II.

Observe, that for any $\xi \in \mathbb{R}^d$ one has
\[\sum_{l=0}^{\infty} \phi_l(\xi) = \phi_0(\xi) + \lim_{N \to \infty} \sum_{l=1}^{N} \left[\phi_l \left(\frac{\xi}{2^l} \right) - \phi_1 \left(\frac{\xi}{2^{l-1}} \right) \right] = \lim_{N \to \infty} \phi_0 \left(\frac{\xi}{2^N} \right) = 1, \]
\text{i.e. } \{\phi_0, \phi_1, \phi_2, \ldots\} \text{ is a smooth partition of unity. Moreover, supp}(\phi_l) \subseteq A_l \text{ for any } l \in \mathbb{N}, \text{ where}
\[A_0 := \{ \xi \in \mathbb{R}^d | |\xi| \leq 1 \} \quad \text{and} \quad A_l := \{ \xi \in \mathbb{R}^d | 2^{l-2} \leq |\xi| \leq 2^l \} \quad \forall l \in \mathbb{N}. \]
The symbols of the dyadic decomposition operators satisfy
\[\| \hat{\phi}_l \|_1 = \left\| \mathcal{F} \left[\phi_l \left(\frac{\xi}{2^{l-1}} \right) \right] \right\|_1 = \left\| 2^{l-1} \hat{\phi}_l \left(2^{l-2} \xi \right) \right\|_1 = \left\| \hat{\phi}_1 \right\|_1 \leq 2 \left\| \hat{\phi}_0 \right\|_1 \]
for all $l \in \mathbb{N}$. Applying Lemma 3 shows that for any $l \in \mathbb{N}_0$ and any $f \in S'(\mathbb{R}^d)$ one has that $\Delta_l f \in C^\infty$ and any of its derivates has at most polynomial growth. Furthermore, $\| \Delta_l \|_{L^p(L^q(\mathbb{R}^d))}$ is bounded independently of $l \in \mathbb{N}_0$ and $p \in [1, \infty]$.

Theorem 7 We start by gathering some useful facts. Fix $l \in \mathbb{N}_0$ and $k \in \mathbb{Z}^d$. Recall, that supp(ϕ_l) $\subseteq A_l$ and supp(σ_k) $\subseteq B_{\sqrt{d}}(k)$. Hence,
\[(9) \quad \square_k \Delta_l \neq 0 \Rightarrow k \in A_l^c := \left\{ k' \in \mathbb{Z}^d | 2^{l-2} - \sqrt{d} \leq |k'| \leq 2^l + \sqrt{d} \right\}. \]

On A_l^c the Japanese bracket can be controlled. In fact, for all $t \in \mathbb{R}$ we have
\[(10) \quad \langle k \rangle^t \approx 2^t, \]
where the implicit constant does not depend on l.

Finally, observe that $k \in A_l^c$ is satisfied for only finitely many $l \in \mathbb{N}_0$, whose number is independent of $k \in \mathbb{Z}^d$, i.e.
\[(11) \quad \sum_{l=0}^{\infty} \mathbb{1}_{A_l^c}(k) \lesssim 1, \]
where the implicit constant depends on d only.

- \geq: Consider $q < \infty$ first. By (6), (9), Bernstein multiplier estimate, (10) and (11) we have
\[\left\| \left(2^{ls} \| \Delta_l f \|_{M^s_{p,q}} \right) \right\|_q \approx \left(\sum_{l=0}^{\infty} 2^{lsq} \left\| \square_k \Delta_l f \right\|_q^q \right)^{\frac{1}{q}} \lesssim \left(\sum_{l=0}^{\infty} 2^{lsq} \left\| \square_k f \right\|_p^q \right)^{\frac{1}{q}} \approx \| f \|_{M^s_{p,q}}. \]

Similarly, for $q = \infty$, we have
\[\left\| \left(2^{ls} \| \Delta_l f \|_{M^s_{p,\infty}} \right) \right\|_\infty \approx \sup_{l \in \mathbb{N}_0} \left(\sup_{k \in \mathbb{Z}^d} 2^{ls} \| \square_k \Delta_l f \|_p \right) \lesssim \sup_{l \in \mathbb{N}_0} \left(\sup_{k \in A_l^c} \langle k \rangle^s \| \square_k f \|_p \right) \approx \| f \|_{M^s_{p,\infty}}. \]
\[LWP\ \text{for the NLS in } M_{p,q}^* \cap M_{\infty,1} \]

- \[\lesssim \]: Again, consider \(q < \infty \) first. By (6), \(f = \sum_{l=0}^{\infty} \Delta_l f \) in \(S' \) and (9) we have
 \[\|f\|_{M_{p,q}^*} \lesssim \left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{qs} \left(\sum_{l=0}^{\infty} \left\| \square_k \Delta_l f \right\|_p^q \right)^{\frac{1}{q}} \right)^{\frac{1}{p'}} \]

 \[\lesssim \left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{qs} \left(\sum_{l=0}^{\infty} \lambda_{A_l}(k) \left\| \square_k \Delta_l f \right\|_p^q \right)^{\frac{1}{q}} \right)^{\frac{1}{p'}} \]

 For each \(k \in \mathbb{Z}^d \) the sum over \(l \) contains only finitely many non-vanishing summands and their number is independent of \(k \) by (11). Hölder’s inequality estimates the last term against

 \[\left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{qs} \left(\sum_{l=0}^{\infty} \lambda_{A_l}(k) \left\| \square_k \Delta_l f \right\|_p^q \right)^{\frac{1}{q}} \right)^{\frac{1}{p'}} \lesssim \left(\sum_{l=0}^{\infty} \| \Delta_l f \|_{M_{p,q}^*} \right)^{\frac{1}{q'}} \]

 where we additionally used (10). The proof for \(q = \infty \) is along the same lines.

\[\square \]

The individual parts of the Littlewood-Paley decomposition had their Fourier transform supported in almost disjoint dyadic annuli. Theorem 1 characterized elements of modulation spaces by the decay of these parts. The following lemma provides a sufficient condition for the case of non-disjoint balls.

Lemma 11 (Sufficient condition). Let \(1 \leq q \leq \infty \) and \(s > 0 \). For \(m \in \mathbb{N}_0 \) let \(f_m \in S'([\mathbb{R}^d]) \) be such that

\[\text{supp}(\hat{f}_m) \subseteq B_m := \{ \xi \in \mathbb{R}^d \mid |\xi| \leq 2^m \} \quad \forall m \in \mathbb{N}_0. \]

Set \(f := \sum_{m=0}^{\infty} f_m \) in \(S'([\mathbb{R}^d]) \). Then

\[\|f\|_{M_{p,q}^*([\mathbb{R}^d])} \lesssim \left\| \left(2^{ms} \| f_m \|_{M_{p,q}([\mathbb{R}^d])} \right)_{m \in \mathbb{N}_0} \right\|_q, \]

where the implicit constant depends on \(d \) and \(s \) only.

Proof. Observe, that \(A_l \cap B_m = \emptyset \) if \(l > m + 2 \). Hence, we have

\[\|f\|_{M_{p,q}^*} \approx \left\| \left(2^{ls} \| \Delta_l f \|_{M_{p,q}^*} \right)_{l \in \mathbb{N}_0} \right\|_q \lesssim \left\| \left(2^{ls} \sum_{m=l}^{\infty} \| \Delta_l f_m \|_{M_{p,q}^*} \right)_{l \in \mathbb{N}_0} \right\|_q \]

where we additionally used Theorem 1 and Bernstein multiplier estimate. From now on, we assume \(q \in (1, \infty) \), as the proof for the other cases is easier and follows the same lines. Hölder’s inequality and geometric sum formula estimates the last
term against
\[
\left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{ls} \|f_m\|_{M_{p,q}} \right)^q \right)^{\frac{1}{q}}
\]
\[
= \left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{l(l-m)s} \times 2^{(l-m)s} 2^{ms} \|f_m\|_{M_{p,q}} \right)^q \right)^{\frac{1}{q}}
\]
\[
\leq \left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{l(l-m)s} 2^{ms} \|f_m\|_{M_{p,q}} \right) \right)^{\frac{1}{q}}
\]
\[
\approx \left(\sum_{m=0}^{m} \sum_{l=0}^{m} 2^{l(l-m)s} 2^{ms} \|f_m\|_{M_{p,q}} \right)^{\frac{1}{q}}
\]
\[
\approx \left(||2^{ms} \|f_m\|_{M_{p,q}}\|_m \right)\|_q ,
\]
finishing the proof. \[\square\]

4. Algebra property and Hölder-type inequality

Main goal of this section is to prove Theorem 2, which was inspired by the fact that $H^s(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ is a Banach *-algebra with respect to pointwise multiplication for $s \geq 0$.

Theorem 2 Parts 2 and 3 of Lemma 6 prove the claimed embedding. Continuity of complex conjugation is obvious from (6). Continuity of multiplication follows by the paraproduct argument

\[
fg = \left(\sum_{l=0}^{\infty} \Delta_l f \right) \left(\sum_{m=0}^{\infty} \Delta_m g \right) = \sum_{l=0}^{\infty} \Delta_l f \sum_{m=0}^{l} \Delta_m g + \sum_{m=1}^{\infty} \Delta_m g \sum_{l=0}^{m-1} \Delta_l f.
\]

Observe, that for any $l, m \in \mathbb{N}_0$ we have supp(\hat{u}_l) \subseteq B_{l+1} and supp(\hat{v}_m) \subseteq B_m by the properties of convolution. Hence, Lemma 11 could be applied. Bilinear estimate from Lemma 7 and Theorem 1 show

\[
\left\| \left(2^{ls} \|u\|_{M_{p,q}} \right) \right\|_q \leq \left\| \left(2^{ls} \|\Delta_l f\|_{M_{p,q}} \right) \right\|_q \sum_{l=0}^{\infty} ||\Delta_m g||_{M_{\infty,1}} \approx ||f||_{M_{p,q}} \|g\|_{M_{\infty,1}}.
\]

The same argument yields $||\sum_{m=1}^{\infty} v_m ||_{M_{p,q}} \leq ||f||_{M_{\infty,1}} \|g\|_{M_{p,q}}$ and finishes the proof. \[\square\]

The analogon of Theorem 2 for sequence spaces is stated in

Lemma 12 (Algebra property). Let $1 \leq q \leq \infty$ and $s \geq 0$. Then $l^q_2(\mathbb{Z}^d) \cap l^1(\mathbb{Z}^d)$ is a Banach algebra with respect to convolution

\[
(a_l) * (b_m) = \left(\sum_{m \in \mathbb{Z}^d} a_{k-m} b_m \right),
\]

which is well-defined, as the series above always converge absolutely.

Furthermore, if $q > 1$ and $s > d \left(1 - \frac{1}{q} \right)$ or $q = 1$, then $l^q_2(\mathbb{Z}^d) \hookrightarrow l^1(\mathbb{Z}^d)$, so in particular $l^1_2(\mathbb{Z}^d)$ is a Banach algebra, in that case.
Theorem 3. We arrive, as for equation (7) in the proof of Lemma 7, at

$$p \approx \| \sum_{k \in \mathbb{Z}^d} a_k e^{i k x} \| \approx \| a_k \|_{M_{\infty,q}^\ast}$$

and hence, by Theorem 2, one has

$$\| (a_k) * (b_k) \|_{M_{\infty,q}^\ast} \approx \left(\sum_{k \in \mathbb{Z}^d} a_k e^{i k x} \right) \cdot \left(\sum_{k \in \mathbb{Z}^d} b_k e^{i k x} \right)$$

and the first factor is already

$$\approx \| (a_k) \|_{M_{\infty,q}^\ast} \quad \text{by Peetre’s inequality}$$

Second factor

$$\sum_{k \in \mathbb{Z}^d} a_k e^{i k x} \sum_{k \in \mathbb{Z}^d} b_k e^{i k x} \sum_{k \in \mathbb{Z}^d} a_k e^{i k x} \sum_{k \in \mathbb{Z}^d} b_k e^{i k x}$$

$$\approx \| (a_k) \|_{M_{\infty,q}^\ast} \| (b_k) \|_1 + \| (a_k) \|_1 \| (b_k) \|_{M_{\infty,q}^\ast}.$$

We are now ready to give a

Theorem 3 We arrive, as for equation (7) in the proof of Lemma 7 at

$$\| \Box_k (f g) \| \approx \sum_{m \in M} \left(\left(\Box_l (f) \right) \right)_l + \left(\left(\Box_n (g) \right) \right)_n$$

pointwise in $k \in \mathbb{Z}^d$. By the algebra property from Lemma 12, it follows that

$$\| f g \|_{M_{p,q}^\ast} \lesssim \left(\left(\Box_l f \right) \right)_l \left(\sum_{m \in M} \left(\left(\Box_n (g) \right) \right)_n \right)$$

and the first factor is already $\| f \|_{M_{p,q}^\ast}$. Finally, we remove the sum over m in the second factor

$$\sum_{m \in M} \left(\left(\Box_n (g) \right) \right)_n \lesssim \| g \|_{M_{p,q}^\ast}$$

applying Peetre’s inequality $\langle k + l \rangle \lesssim 2^{|s|} \langle k \rangle^s |t|^s$ (see e.g. [RT10, Proposition 3.3.31]).

Let us finish the proof remarking that the only estimate involving “p” we used was Hölder’s inequality and thus the implicit constant indeed does not depend on p, p_1 or p_2.

\[\square \]

5. **Proof of the local well-posedness, Theorem 4**

Theorem 2 immediately implies that $X(T)$ is a Banach *-algebra, i.e.

$$\| u v \|_{X(T)} = \sup_{0 \leq t \leq T} \| u v (\cdot, t) \|_{X} \lesssim \left(\sup_{0 \leq s \leq T} \| u (\cdot, s) \|_{X} \right) \left(\sup_{0 \leq t \leq T} \| v (\cdot, t) \|_{X} \right)$$

and

$$= \| u \|_{X(T)} \| v \|_{X(T)}.$$
To that end, let us observe that Theorem 10 implies the homogeneous estimate
\[\|t \mapsto e^{t\Delta} v\|_X \leq C_0 (1 + T)^{\frac{3}{2}} \|v\|_X \quad (\forall v \in X), \]
which, together with the algebra property of \(X(T)\), proves the inhomogeneous estimate
\[\left\| \int_0^t e^{(t-\tau)\Delta} \left(|u|^2 u(\cdot, \tau) \right) \, d\tau \right\|_X \leq C_0 (1 + T)^{\frac{3}{2}} \|v\|_X, \]
holding for \(0 \leq t \leq T\) and \(u \in X(T)\).

Applying the triangle inequality in (13) yields
\[\|Tu\|_X \leq C_0 (1 + T)^{\frac{3}{2}} (\|u_0\|_X + C_1 T R^3) \]
for any \(u \in M(R, T)\). Thus, \(T\) maps \(M(R, T)\) into itself for \(R = 2C_0C_1\|u_0\|_X\) and \(T\) small enough. Furthermore,
\[|u|^2 - |v|^2 v = (u - v) |u|^2 + (\overline{u} - \overline{v}) v = (u - v) (|u|^2 + \overline{u} v) + (\overline{u} - \overline{v}) v^2 \]
and hence
\[\|Tu - Tv\|_{X(T)} \leq T (1 + T)^{\frac{3}{2}} R^2 \|u - v\|_{X(T)} \]
for \(u, v \in M(R, T)\), where we additionally used the algebra property of \(X(T)\) and the homogeneous estimate. Taking \(T\) sufficiently small makes \(T\) a contraction.

Banach’s fixed-point theorem implies the existence and uniqueness of a mild solution up to the guaranteed time of existence \(T_0 = T_0 (\|u_0\|_X) \approx \|u_0\|_X^{-2} > 0\). Uniqueness of the maximal solution and the blow-up alternative now follow easily by the usual contradiction argument.

For the proof of the Lipschitz continuity, let us notice that for any \(r > \|u_0\|_X\), \(v_0 \in B_r(0)\) and \(0 < T \leq T_0(r)\) we have
\[\|u - v\|_{X(T)} = \|T(u_0)u - T(v_0)v\|_{X(T)} \leq (1 + T)^{\frac{3}{2}} \|u_0 - v_0\|_X + T (1 + T)^{\frac{3}{2}} R^2 \|u - v\|_{X(T)}, \]
where \(v\) is the mild solution corresponding to the initial data \(v_0\) and \(R = 2Cr\), similar to the above. Collecting terms containing \(\|u - v\|_{X(T)}\) shows Lipschitz continuity with constant \(L = L(r)\) for sufficiently small \(T\), say \(T_1 = T_1 (r)\). For arbitrary \(0 < T' < T_1\), put \(r = 2 \|u\|_{X(T')}\) and divide \([0, T']\) into \(n\) subintervals of length \(\leq T_1\). The claim follows for \(V = B_3(u_0)\) where \(\delta = \frac{\|u_0\|_X}{2}\) by iteration. This concludes the proof.

\[\square \]

Acknowledgments

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

References

