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FINITE ELEMENT DISCRETIZATION OF SEMILINEAR ACOUSTIC WAVE
EQUATIONS WITH KINETIC BOUNDARY CONDITIONS∗

MARLIS HOCHBRUCK† AND JAN LEIBOLD†

Abstract.
We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic

boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems
are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to
provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular,
we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error
bounds in terms of interpolation, data and conformity errors. The theory applies to a large class of problems and
discretizations that fit into the abstract framework.

The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by
inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis.

Key words. wave equation, dynamic boundary conditions, nonconforming space discretization, error analysis,
a-priori error bounds, semilinear evolution equations, operator semigroups, isoparametric finite elements
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1. Introduction. The aim of this paper is to introduce and analyze finite element dis-
cretizations of semilinear acoustic wave equations with kinetic boundary conditions. Kinetic
boundary conditions serve as an effective model for the interaction of waves with obstacles or
boundaries that are covered by materials with distinctive elastic or damping properties where
the wave length is large compared to the width of the boundary layer, see e.g. [11, Section
3.2]. We refer to [13, 14] and references therein for more information and analytical results
about these equations.

Kinetic boundary conditions are a special case of dynamic boundary conditions that con-
tain tangential derivatives and are intrinsically posed on domains with (piecewise) smooth and
therefore possibly curved boundaries. Hence, most methods are applied on an approximated
domain rendering the approximation nonconforming. This makes the error analysis much
more involved. Such problems were addressed in [7, 6] where an unified error analysis (UEA)
was introduced that allows to analyze nonconforming space discretizations of linear wave
equations in a systematic way. The UEA yields an abstract error result that can be used to
prove convergence rates for specific equations and discretizations by plugging in geometric and
interpolation error results. Finite element discretizations of linear wave equations with linear
kinetic boundary conditions are only specific examples fitting into the abstract framework.
Several others are discussed in [7, 6].

To analyze semilinear wave equations with kinetic boundary conditions we present an
extension of the UEA for linear problems [7, 6]. The main difficulty in discretizing and
analyzing semilinear problems compared to linear ones is the discretization of the nonlinear
term. This has to be done in such a way that the discretization preserves the Lipschitz
continuity of the nonlinearity with a Lipschitz constant that is independent of the underlying
mesh. Additionally it has to be shown, that the discretization error has the correct order of
convergence.
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To the best of our knowledge this is the first error analysis for semilinear wave equations
with kinetic boundary conditions. In [9] semilinear parabolic problems with dynamic boundary
conditions were analyzed, but the techniques do not apply to the hyperbolic case.

The paper is organized as follows: In Section 2 we introduce semilinear acoustic wave
equations with kinetic boundary conditions and their space discretization with isoparametric
finite elements. Furthermore, we state the main result of the paper, namely a space discretiza-
tion error bound of order p in the energy norm for order p isoparametric elements. In Section
3 we present the unified error analysis and prove abstract error bounds for nonconforming
space discretizations of semilinear evolution equations. These bounds are used in Section 4
to provide error estimates for the discretizations of semilinear wave equations with kinetic
boundary conditions. Finally, in Section 5 we conclude with a numerical experiment.

2. Wave equations with kinetic boundary conditions: problem statement. In this
section we introduce wave equations with kinetic boundary conditions. After formulating the
equations in a suitable analytical setting, we present a finite element space discretization and
the main error result which will be proven in Section 4. Wave equations with kinetic boundary
conditions were already studied in [6] in the linear case.

2.1. Formulation of the equations. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with
smooth boundary Γ = ∂Ω. With ∆Γ we denote the Laplace-Beltrami operator on Γ and with
n the outer normal vector.

For semilinear wave equations with kinetic boundary conditions we seek u : [0, T ] ×
Ω→ R satisfying

(2.1)


utt + (αΩ + βΩ · ∇)ut −∆u = f̃Ω(t,x, u), in (0, T )× Ω,

utt + ∂nu+ (αΓ + βΓ · ∇Γ)ut −∆Γu = f̃Γ(t,x, u), in (0, T )× ∂Ω,

u(0,x) = u0(x), ut(0,x) = v0(x), in Ω.

More general problems, for instance, containing material parameters can be found in [6].
For the sake of presentation we omit these here and focus on the additional difficulties caused
by the nonlinearity.

We require the following assumptions throughout the rest of the paper:
ASSUMPTION 2.1.
(a) The nonlinearities satisfy

(i) f̃Ω ∈ C1([0, T ]× Ω× R;R),
(ii) f̃Γ ∈ C1([0, T ]× Γ× R;R),

and the following growth condition: There exist

(2.2) ζΩ

{
<∞, d = 2,

≤ d
d−2 , d ≥ 3,

and ζΓ

{
<∞, d = 2, 3,

≤ d−1
d−3 , d ≥ 4,

such that for all (t,x, u) ∈ [0, T ]× Ω× R

(2.3)
|f̃Ω(t,x, u)| ≤ C(1 + |u|ζΩ),

|∇f̃Ω(t,x, u)| ≤ C(1 + |u|ζΩ−1
),

and for all (t,x, u) ∈ [0, T ]× Γ× R

|f̃Γ(t,x, u)| ≤ C(1 + |u|ζΓ),

|∇f̃Γ(t,x, u)| ≤ C(1 + |u|ζΓ−1
)

hold true.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ERROR ANALYSIS FOR DISCRETIZATIONS OF SEMILINEAR WAVE EQUATIONS 3

(b) The coefficients αΩ ∈ C(Ω), βΩ ∈ C1(Ω)d, αΓ ∈ C(Γ) and βΓ ∈ C1(Γ)d are
non-negative and satisfy

αΩ −
1

2
div βΩ ≥ 0 in Ω, αΓ +

1

2
(βΩ · n− divΓ βΓ) ≥ 0 on Γ.

Because of (2.2) we have by the Sobolev embedding theorem, cf., e.g., [1, Theorem 4.12]

H1(Ω) ↪→ L2ζΩ(Ω) and H1(Γ) ↪→ L2ζΓ(Γ).(2.4)

We continue by presenting the weak formulation of (2.1). For this we define

H := L2(Ω)× L2(Γ),

V := H1(Ω; Γ) := {v ∈ H1(Ω) | γ(v) ∈ H1(Γ)} ⊂ H1(Ω)×H1(Γ),

where γ denotes the trace operator. It can be proven, that V is a Hilbert space (cf. [8, Lemma
2.5]) which is densely embedded in H . Further we define bilinear forms m : H ×H → R,
b : V ×H → R, and a : V × V → R via

m
(
v, ϕ

)
=

∫
Ω

vϕdx +

∫
Γ

vϕds,

b
(
v, ϕ

)
=

∫
Ω

(αΩv + βΩ · ∇v)ϕdx +

∫
Γ

(αΓv + βΓ · ∇Γv)ϕds,

a
(
v, ϕ

)
=

∫
Ω

∇v∇ϕdx +

∫
Γ

∇Γv∇Γϕds,

and the nonlinear function f : [0, T ]× V → H via

(2.5) m
(
f(t, v), ϕ

)
=

∫
Ω

(
f̃Ω(t, ·, v(·))

)
ϕdx +

∫
Γ

(
f̃Γ(t, ·, v(·))

)
ϕds.

The weak formulation of (2.1) is a special case of the more general variational problem

(2.6)
m
(
u′′, ϕ

)
+ b
(
u′, ϕ

)
+ a
(
u, ϕ

)
= m

(
f(t, u, u′), ϕ

)
for all ϕ ∈ V, t ∈ (0, T ],

u(0) = u0, u′(0) = v0,

where f does not depend on u′. The bilinear forms and the nonlinearity satisfy the following
more general assumption.

ASSUMPTION 2.2.
(a) The bilinear form m is a scalar product on H with induced norm ‖·‖m.
(b) a : V × V → R is a symmetric bilinear form and there exists a constant cG ≥ 0 s.t.

ã := a+ cGm

is a scalar product on V with induced norm ‖·‖ã.
(c) The bilinear form b : V ×H → R is continuous and there exists a βqm ≥ 0 s.t.

b
(
v, v
)

+ βqm‖v‖2m ≥ 0 for all v ∈ V.

(d) The nonlinearity f satisfies f ∈ C1([0, T ] × V × H;H) and is locally Lipschitz-
continuous on V × H with Lipschitz-constant LT,M , i.e., for all t ∈ [0, T ] and
x, y ∈ V ×H with ‖x‖V×H , ‖y‖V×H ≤M :

‖f(t, x)− f(t, y)‖X ≤ LT,M‖x− y‖V×H .

In [6] was shown that for (2.1) we have cG = 1 and βqm = 0. The Lipschitz-continuity of
f was proven in [10, Lemma 4.2], more general results can be found in [5].

We will see in Section 4 that under Assumption 2.2, (2.6) is (locally) well-posed.
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2.2. Space discretization. To discretize (2.1) in space, we use the bulk-surface finite
element method presented in [4]. This discretization was also considered in [6] for linear
problems. The additional difficulty here is the discretization of the nonlinearity.

We start by giving a short summary of the bulk-surface finite element method, cf. [4, 6]
for more details.

Bulk-surface finite element method. Let Th be a consistent quasi-uniform mesh of
isoparametric elements K of degree p with mesh width h. The discretized domain and its
boundary are denoted by

Ωh :=
⋃

K∈Th

K ≈ Ω and Γh := ∂Ωh.

We define the bulk and the surface finite element space of order p ≥ 1 via

V Ω
h,p :=

{
vh ∈ C(Ωh) | vh

∣∣
K

= v̂h ◦ (FK)−1 with v̂h ∈ Pp(K̂) for all K ∈ Th
}
,

V Γ
h,p :=

{
ϑh ∈ C(Γh) | ϑh = vh

∣∣
Γh

with vh ∈ V Ω
h,p

}
.

Here Pp(K̂) denotes the space of polynomial of degree p on a reference triangle K̂ and FK is
a transformation from K̂ to K. Since this discretization is nonconforming due to Ωh 6= Ω, we
need a lift operator to relate the analytical and the numerical solution. In [4] an elementwise
smooth homeomorphism Gh : Ωh → Ω with

Gh
∣∣
K
∈ Cp+1(K), for all p ≤ k and K ∈ Th

is constructed. This allows us to define lifted versions of vh ∈ V Ω
h,p and ϑh ∈ V Γ

h,p as

(2.7) v`h := vh ◦G−1
h and ϑ`h := ϑh ◦G−1

h .

The mapping Gh is constructed in such a way, that Gh(ai) = ai, i = 1, . . . , N = dimVh,
where a1, . . . , aN ∈ Ωh are the nodes corresponding to the finite element discretization. This
implies v`h(ai) = vh(ai) for i = 1, . . . , N and for all vh ∈ V Ω

h,p. Furthermore, it was shown
in [4] that there exist constants cΩ,Ωh , cΓ,Γh , CΩ,Ωh , CΓ,Γh > 0 independent of h s.t. for all
vh ∈ V Ω

h,p, ϑh ∈ V Γ
h,p the following norm equivalences

(2.8)

cΩ,Ωh‖vh‖L2(Ωh) ≤ ‖v
`
h‖L2(Ω) ≤ CΩ,Ωh‖vh‖L2(Ωh),

cΩ,Ωh‖∇vh‖L2(Ωh) ≤ ‖∇v
`
h‖L2(Ω) ≤ CΩ,Ωh‖∇vh‖L2(Ωh),

cΓ,Γh‖ϑh‖L2(Γh) ≤ ‖ϑ
`
h‖L2(Γ) ≤ CΓ,Γh‖ϑh‖L2(Γh),

cΓ,Γh‖∇Γϑh‖L2(Γh) ≤ ‖∇Γϑ
`
h‖L2(Γ) ≤ CΓ,Γh‖∇Γϑh‖L2(Γh)

holds true.
With Ih,Ω : C(Ω) → V Ω

h,p and Ih,Γ : C(Γ) → V Γ
h,p we denote the nodal interpolation

operator in Ω and on Γ, respectively. The interpolation operators satisfy

(2.9)
‖v − (Ih,Ωv)`‖L2(Ω) + h‖v − (Ih,Ωv)`‖H1(Ω) ≤ Ch

r+1‖v‖Hr+1(Ω),

‖ϑ− (Ih,Γϑ)`‖L2(Γ) + h‖ϑ− (Ih,Γϑ)`‖H1(Γ) ≤ Ch
r+1‖ϑ‖Hr+1(Γ),

for all v ∈ Hr+1(Ω) and ϑ ∈ Hr+1(Γ) with 1 ≤ r ≤ p, cf. [4, Prop. 5.4]. By construction,
the nodes on the surface coincide with the bulk nodes and therefore we have

γ(Ih,Ωv) = Ih,Γγ(v) for all v ∈ C(Ω).
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The semidiscretized equation. As finite element space we choose Vh = V Ω
h,p. The

discretizations mh, bh, ah : Vh × Vh → R of m, b, and a are defined via

mh

(
vh, ϕh

)
:=

∫
Ωh

vhϕh dx +

∫
Γh

vhϕh ds,

bh
(
vh, ϕh

)
:=

∫
Ωh

(Ih,ΩαΩvh + Ih,ΩβΩ · ∇vh)ϕh dx

+

∫
Γh

(Ih,ΓαΓvh + Ih,ΓβΓ · ∇Γvh)ϕh ds,

ah
(
vh, ϕh

)
:=

∫
Ωh

∇vh∇ϕh dx +

∫
Γh

∇Γhuh∇Γhϕh ds,

and we discretize the nonlinearity fh : [0, T ]× Vh → Hh via

(2.10)
mh

(
fh(t, vh), ϕh

)
:=

∫
Ωh

Ih,Ωf̃Ω

(
t, ·, v`h(·)

)
(x)ϕh(x) dx

+

∫
Γh

Ih,Γf̃Γ

(
t, ·, v`h(·)

)
(x)ϕh(x) ds

for all ϕh ∈ Vh.
REMARK 2.3. The nodal interpolation only requires function evaluations in the nodes

a1, . . . , aN . Since these are invariant under the lift operator, the computation of v`h is not
necessary. It is only needed for the definition of fh since the interpolation operator acts on
functions over Ω.

The discretized version of (2.6) is then given as a special case of

(2.11)
mh

(
u′′h, ϕh

)
+ bh

(
u′h, ϕh

)
+ ah

(
uh, ϕh

)
= mh

(
fh(t, uh, u

′
h), ϕh

)
,

uh(0) = u0
h, u′h(0) = v0

h.

The discrete quantities then satisfy similar assumptions as their continuous counterparts:
ASSUMPTION 2.4.
(a) The bilinear form ah : Vh×Vh → R is symmetric and there exists a constant ĉG ≥ 0

s.t.

ãh := ah + ĉGmh

is a scalar product on Vh with induced norm ‖·‖ãh .
(b) The bilinear form mh is also a scalar product on Vh. We denote Vh equipped with

this scalar product mh by Hh and the induced norm by ‖·‖mh
(c) The bilinear form bh : Vh ×Hh → R is bounded independent of h and there exists a

β̂qm ≥ 0 s.t.

bh
(
vh, vh

)
+ β̂qm‖vh‖2mh ≥ 0 for all vh ∈ Vh.

(d) The nonlinearity fh : [0, T ] × Vh × Hh → Hh is locally Lipschitz-continuous on
Vh ×Hh with constant L̂T,M .

(e) There exists a constant ĈH,V > 0 s.t. ‖vh‖mh ≤ ĈH,V ‖vh‖ãh for all vh ∈ Vh.
All constants in this assumption should be independent of h.

REMARK 2.5. In a finite dimensional space, all norms are equivalent. The crucial point
in the last assumption is, that the constants are independent of h, which corresponds to the
continuous embedding V ↪→ H .
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In our specific example we have cG = 1, ĉqm = 0, ĈH,V = 1, cf. [6]. The Lipschitz-
continuity of fh is proven in the following lemma.

LEMMA 2.6. The discretized nonlinearity fh : [0, T ] × Vh → Hh defined in (2.10) is
locally Lipschitz-continuous on Vh with Lipschitz constant

L̂T,M = C

(
σ(Ω)

ζΩ−1

2ζΩ + σ(Γ)
ζΓ−1

2ζΓ + 2MζΩ−1 + 2MζΓ−1

)
,

i.e., for all uh, vh ∈ Vh with ‖uh‖ãh , ‖vh‖ãh ≤M , and for all t ∈ [0, T ],

‖fh(t, uh)− fh(t, vh)‖mh ≤ L̂T,M‖uh − vh‖ãh .

The constantC is independent of h, σ(Ω) and σ(Γ) denote the measure of Ω and Γ, respectively,
and ζΩ and ζΓ are defined in (2.2).

Proof. LetM > 0, t < T , and uh, vh ∈ Vh s.t. ‖uh‖ãh , ‖vh‖ãh < M . With the definition
of fh in (2.10) and the Cauchy–Schwarz inequality we obtain

‖fh(t, uh)− fh(t, vh)‖mh = sup
‖ϕh‖mh=1

mh

(
fh(t, uh)− fh(t, vh), ϕh

)
≤ ‖Ih,Ωf̃Ω(t, ·, u`h(·))− Ih,Ωf̃Ω(t, ·, v`h(·))‖L2(Ωh)

+ ‖Ih,Γf̃Γ(t, ·, u`h(·))− Ih,Γf̃Γ(t, ·, v`h(·))‖L2(Γh).

In the following we show a bound for the first term. The second one can be bounded
analogously.

This proof is more involved than for the continuous nonlinearity since the appearing
interpolation operator is not continuous with respect to L2. To work around this problem, we
use discrete Lq-norms defined via

(2.12) |||vh|||q := h
d
q

(
N∑
i=1

|vh(ai)|q
) 1
q

.

Because of the scaling with h
d
q and the mesh regularity we have that the norm |||·|||q is equivalent

to ‖·‖Lq(Ωh) on V Ω
h,p for all q ∈ [2,∞) with constants independent of h. This is well known

for q = 2. The generalization to q 6= 2 is straightforward, cf. [10, Lemma 5.2]. Combining
this with the Sobolev embedding theorem (2.4) (with Ωh instead of Ω), we have

|||vh|||2ζΩ . C‖vh‖L2ζΩ (Ωh) . C‖vh‖H1(Ωh) for all vh ∈ Vh(2.13)

with constants C independent of h.
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The definition of the discrete norms, the growth conditions (2.3), and (2.13) yield

‖Ih,Ωf̃Ω(t, ·, u`h(·))− Ih,Ωf̃Ω(t, ·, v`h(·))‖2L2(Ωh)

≤ C|||Ih,Ωf̃Ω(t, ·, uh(·))− Ih,Ωf̃Ω(t, ·, vh(·))|||22

= Chd

(
N∑
i=1

∣∣f̃Ω(t, ai, uh(ai))− f̃Ω(t, ai, vh(ai))
∣∣2)

= Chd

(
N∑
i=1

∣∣∣∣(uh(ai)− vh(ai)
) ∫ 1

0

∂3f̃Ω

(
t, ai, vh(ai) + s(uh(ai)− vh(ai))

)
ds

∣∣∣∣2
)

≤ Ch
d(ζΩ−1)

ζΩ

(
N∑
i=1

(
1 + (|uh(ai)|+ |vh(ai)|)ζΩ−1

) 2ζΩ
ζΩ−1

) ζΩ−1

ζΩ

|||uh − vh|||22ζΩ

≤ C
(
|||1||| 2ζΩ

ζΩ−1

+ |||uh|||ζΩ−1
2ζΩ

+ |||vh|||ζΩ−1
2ζΩ

)2

|||uh − vh|||22ζΩ

≤ C
(
‖1‖

L
2ζΩ
ζΩ−1 (Ωh)

+ ‖uh‖ζΩ−1

L2ζΩ (Ωh)
+ ‖vh‖ζΩ−1

L2ζΩ (Ωh)

)
‖uh − vh‖2H1(Ωh)

≤ C
(
σ(Ω)

ζΩ−1

2ζΩ + 2MζΩ−1

)
‖uh − vh‖2H1(Ωh),

where we additionally used the bound

σ(Ωh) ≤ Cσ(Ω)

which is satisfied independent of h.

2.3. Main result. We can now state the main result of the paper, namely the error bound
for the bulk-surface discretization of wave equations with kinetic boundary conditions. The
proof will be done in Section 4.

THEOREM 2.7. Let Γ ∈ Cp+1, αΩ ∈ Hp(Ω), βΩ ∈ Hp(Ω)d, αΓ ∈ Hp(Γ), and βΓ ∈
Hp(Γ)d. Furthermore let u be a solution of (2.1) on [0, T ] with

(a) u ∈ C2
(
[0, T ];H2(Ω; Γ)

)
∩ L∞

(
[0, T ];Hmax{4,p+2}(Ω; Γ)

)
,

(b) u′ ∈ L∞
(
[0, T ];Hp+1(Ω; Γ)

)
, and

(c) u′′ ∈ L∞
(
[0, T ];Hp(Ω; Γ)

)
.

Then there exist h∗,M > 0 s.t. for all h < h∗, the solution uh of (2.11) exists on [0, T ] and
satisfies the error bound

(2.14) ‖u`h(t)− u(t)‖H1(Ω;Γ) + ‖(u′h)`(t)− u′(t)‖L2(Ω)×L2(Γ) ≤ Ce(L̂T,M+ 1
2 )t(1 + t)hp

with L̂T,M from Lemma 2.6 and a constant C independent of h and t.

3. Unified error analysis (UEA) for nonconforming discretizations. In this section
we present the UEA for a general class of nonconforming space discretizations of semilinear
wave equations in time-domain. It is a tool that provides a priori error bounds in terms of
interpolation, data and conformity errors of the method. These bounds can be used to derive
convergence rates for a large class of problems in a simple, systematic and modular way.
The idea is to treat wave equations abstractly as evolution equations in Hilbert spaces and
their space discretizations as differential equations in finite dimensional Hilbert spaces and to
perform the error analysis in this abstract setting.
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Here we briefly recall the setting used in [7, 6] and extend it to the semilinear case. As in
[7] we start by proving an error bound for discretizations of first order evolution equations
in Section 3.1 and then use this result to prove error bounds for second-order equations in
Section 3.2. This result will then be used in the next section to prove Theorem 2.7.

More applications of the unified error analysis can be found in [7].

3.1. Semilinear evolution equations with monotone operators. We start by stating an
abstract evolution equation and introduce a general space discretization afterwards.

The continuous problem. Let X be a Hilbert space with scalar product p. We consider
the evolution equation

(3.1)
x′(t) + Sx(t) = g(t, x(t)), t ∈ (0, T ],

x(0) = x0.

ASSUMPTION 3.1.
(a) The linear operator S : D(S)→ X is the generator of a C0-semigroup with

(3.2)
∥∥∥e−tS

∥∥∥
X←X

≤ ecqmt.

(b) The nonlinearity g ∈ C1([0, T ] × X;X) is locally Lipschitz continuous w.r.t. the
second component.

The following classical well-posedness result can be found in [12], for example:
LEMMA 3.2. If Assumption 3.1 holds true, then (3.1) is locally well-posed, i.e., for every

x0 ∈ X there exists t∗
(
x0
)
> 0 s.t. for all T < t∗

(
x0
)
, (3.1) has a unique solution

x ∈ C1
(
[0, T ];X

)
∩ C

(
[0, T ];D(S)

)
.

Abstract space discretization. We consider a general space discretization of (3.1) and
show an abstract error result for a large class of equations and discretizations.

Let Xh be a finite dimensional Hilbert space with scalar product ph. In this space we
seek the numerical approximation xh. Furthermore let Sh ∈ L(Xh, Xh) and gh : [0, T ] ×
Xh → Xh be discretizations of S and g, respectively. Similar to their continuous counterparts
we require that Sh and gh satisfy Assumption 3.1 with Xh instead of X and constants
ĉqm, L̂T,M independent of h.

Then the discretized version of the evolution equation (3.1) is given by

(3.3)
x′h(t) + Shxh(t) = gh(t, xh(t)), t ∈ (0, T ],

xh(0) = x0
h.

Due to the Picard–Lindelöf theorem, (3.3) is locally well-posed and we denote the maximal
existence time of the solution by t∗h(x0

h).

Error analysis. Our framework allows us to treat nonconforming space discretizations,
where Xh * X . To relate the continuous and discrete quantities we therefore assume that
there exists a lift operator Lh : Xh → X which satisfies

(3.4) ‖Lhyh‖X ≤ CX‖yh‖Xh for all yh ∈ Xh

with CX independent of h. We then define the lifted discrete space

X`
h := Lh(Xh) ⊂ X.
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Z X

Xh

Lh(Xh)⊃

L∗h
Jh Lh

FIG. 3.1. Overview of spaces and operators, cf. [7].

Let L∗h : X → Xh be the adjoint of the lift operator, i.e.,

ph
(
L∗hy, yh

)
= p
(
y,Lhyh

)
for all y ∈ X, yh ∈ Xh.

Furthermore, for a Hilbert space Z which is densely and continuously embedded in X we
make use of a reference operator Jh ∈ L(Z,Xh) satisfying

(3.5) ‖Jh‖Xh←Z ≤ CJ

with a constant CJ independent of h. The reference operator should satisfy LhJhz ≈ z for all
z ∈ Z and could, e.g., be an interpolation or a projection operator. Figure 3.1 illustrates the
operators between the spaces.

Finally we define linear remainder operator

Rh := L∗hS − ShJh : D(S) ∩ Z → Xh

and the nonlinear remainder operator rh : [0, T ]× Z → Xh via

rh(t, z) := L∗hg(t, z)− gh(t, Jhz).(3.6)

If the solution of the discretized equation (3.3) is bounded, we can state an error bound in
terms of the approximation error of x0, of x and x′, and of the remainder operators Rh, rh.

We make the following regularity assumption on the continuous solution:
ASSUMPTION 3.3. The solution x of (3.1) satisfy x ∈ C1

(
[0, t∗(x0));Z

)
.

THEOREM 3.4. Let Assumption 3.3 be satisfied, T < min
{
t∗
(
x0
)
, t∗h
(
x0
h

)}
, and

Mh = max
{
CJ‖x‖L∞([0,T ];Z), ‖xh‖L∞([0,T ];Xh)

}
.

Then, for all t ∈ [0, T ], the lifted discrete solution of (3.3) satisfies the error bound

‖Lhxh(t)− x(t)‖X ≤ Ce(L̂Mh+ĉqm)tEh(t) + ‖(I−LhJh)x(t)‖X(3.7)

with

Eh(t) =
∥∥∥x0

h − Jhx0
∥∥∥
Xh

+ t
∥∥(L∗h − Jh)x′

∥∥
L∞([0,T ];Xh)

+ t‖Rhx‖L∞([0,T ];Xh) + t‖rh(·, x(·))‖L∞([0,T ];Xh).

Proof. The proof consists of four steps.
(I) Splitting of the error: We split the error into

Lhxh − x = Lheh + eJh
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with the discrete error

eh = xh − Jhx ∈ Xh

and the reference error

eJh = (LhJh − I)x.

This splitting yields

(3.8) ‖Lhxh − x‖X ≤ CX‖eh‖Xh + ‖(LhJh − I)x‖X

where the second term only depends on the choice of the reference and the lift operator.
(II) Derivation of an evolution equation for the error eh: Since x ∈ C1([0, T ], Z) and

Jh ∈ L(Z,Xh) we have eh ∈ C1([0, T ];Xh) and

e′h = x′h − Jhx′ = (x′h − L∗hx′) + (L∗h − Jh)x′.

Using the continuous and the discrete equations (3.1) and (3.3) we can rewrite the first term as

x′h − L∗hx′ = −Shxh + gh(·, xh)− L∗h(−Sx+ g(·, x))

= −Sheh + gh(·, xh)− L∗hg(·, x) + (L∗hS − ShJh)x.

So, we end up with the following equation for the discrete error:

e′h + Sheh = (L∗h − Jh)x′ +Rhx+ gh(·, xh)− L∗hg(·, x)

= (L∗h − Jh)x′ +Rhx− rh(·, x) + gh(·, xh)− gh(·, Jhx)

=: dh.

Hence eh satisfies a linear evolution equation in Xh.
(III) Stability: By the variation-of-constants formula we have

(3.9)
‖eh(t)‖Xh ≤ ‖e

−tSheh(0)‖Xh +

∫ t

0

‖e−(t−s)Shdh(s)‖Xh ds

≤ eĉqmt‖eh(0)‖Xh + eĉqmt

∫ t

0

e−ĉqms‖dh(s)‖Xh ds.

Using the Lipschitz-continuity of gh and the definition of the nonlinear remainder (3.6),
we are able to bound the defect dg by

(3.10)
‖dh(s)‖Xh ≤ ‖(L

∗
h − Jh)x′(s)‖Xh + ‖Rhx(s)‖Xh

+ ‖rh(s, x(s))‖Xh + L̂T,Mh
‖eh(s)‖Xh .

(IV) Abstract error estimate: Inserting (3.10) into (3.9) yields

e−ĉqmt‖eh(t)‖Xh ≤‖eh(0)‖Xh + t‖(L∗h − Jh)x′‖L∞([0,T ];Xh) + t‖Rhx‖L∞([0,T ];Xh)

+ t‖rh(·, x(·))‖L∞([0,T ];Xh) + L̂T,Mh

∫ t

0

e−ĉqms‖eh(s)‖Xh ds

=Eh(t) + L̂T,Mh

∫ t

0

e−ĉqms‖eh(s)‖Xh ds.
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With a Gronwall Lemma we finally obtain

‖eh(t)‖Xh ≤ e(L̂T,Mh+ĉqm)tEh(t).

Together with (3.8) this proves the error bound (3.7).
The following corollary shows under additional consistency assumptions, that the dis-

cretized equation remains bounded for sufficiently small h, and that the discrete solution
converges to the continuous one.

COROLLARY 3.5. Let Assumption 3.3 be satisfied and T < t∗
(
x0
)
. Moreover, assume

that

lim
h→0

Eh(t)→ 0 for all t ∈ [0, T ].

Then there exists h∗ > 0, such that xh exists for all h < h∗ on [0, T ] with

‖xh‖L∞([0,T ];Xh) ≤M := 2CJ‖x‖L∞([0,T ];Z).

Furthermore the error bound (3.7) holds true with Mh = M .
If additionally

lim
h→0
‖(I−LhJh)x(t)‖X → 0 for all t ∈ [0, T ]

holds true, then the lifted numerical solution converges, i.e.,

‖Lhxh(t)− x(t)‖X
h→0−→ 0, t ∈ [0, T ].

Proof. We only have to show that xh exists for all h < h∗ on [0, T ] with

‖xh‖L∞([0,T ];Xh) ≤M.

The other assertion then follows immediately from Theorem 3.4.
We define

Th := sup
{
t ∈
(
0, t∗h

(
x0
h

))
| ‖xh‖L∞([0,t];Xh) ≤M

}
as the maximal time, for which the discrete solution stays bounded by M . Clearly we have
Th < t∗h(x0

h) and further by Theorem 3.4, for all t ≤ min{T, Th}

‖xh(t)‖Xh ≤ ‖xh(t)− Jhx(t)‖Xh + ‖Jhx(t)‖Xh

≤ ‖eh(t)‖Xh +
M

2

≤ Ce(L̂T,M+ĉqm)tEh(t) +
M

2

h→0−→ M

2
.

Hence there exists a h∗ > 0 s.t. ‖xh(t)‖Xh ≤
3
4M for all h < h∗ and t ≤ min{T, Th}. Since

xh is continuous and by the definition of Th we thus get

t∗h(x0
h) > Th > T and ‖xh‖L∞([0,T ];Xh) < M

for all h < h∗.

3.2. Second-order semilinear wave-type equations. Next, we apply the results of Sec-
tion 3.1 to general second-order wave equations. Again, we start by stating the framework.
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The continuous problem. Let V
d
↪→ H be Hilbert spaces. We consider the variational

differential equation (2.6) as a prototype for weak formulations of second-order wave equations
and assume that Assumption 2.2 holds true. By the dense embedding of the Hilbert spaces
there exists a constant CH,V > 0 s.t.

‖v‖m ≤ CH,V ‖v‖ã for all v ∈ V.

In order to reformulate the problem as an evolution equation on H we define operators
A : D(A)→ H and B : V → H corresponding to a and b via

m
(
Av,w

)
= a

(
v, w

)
, for all v ∈ D(A), w ∈ V,

m
(
Bv,w

)
= b
(
v, w

)
, for all v ∈ V,w ∈ H,

with

D(A) =
{
v ∈ V | ∃C = C(v) > 0 s.t. ∀w ∈ V : |a

(
v, w

)
| ≤ C‖w‖m

}
.

(2.6) then reads: Find u ∈ C2
(
[0, T ];H

)
∩ C1

(
[0, T ];V

)
∩ C

(
[0, T ];D

(
A)
)

s.t.

(3.11) u′′(t) +Bu′(t) +Au(t) = f(t, u(t), u′(t)), u(0) = u0, u′(0) = v0.

By construction a solution of (3.11) is also a solution of (2.6).

First-order formulation. To analyze the well-posedness and space discretizations of
(3.11) we want to apply the theory of Section 3.1 and therefore rewrite (3.11) as a first-order
equation. Let u′ = v and define

x =

[
u
v

]
, S =

[
0 − I
A B

]
, g (t, x) =

[
0

f(t, u, v)

]
, x0 =

[
u0

v0

]
.

The linear operator S is defined on its domain D(S) = D(A)× V . With X = V ×H , (3.11)
is equivalent to (3.1).

LEMMA 3.6. The operator−S is the generator of a C0-semigroup on X = V ×H which
satisfies (3.2) with constant cqm = 1

2cGCH,V + βqm.
Proof. This follows from a combination of Lemma 4.2 (with α = 1), Lemma 2.3, and

Theorem 2.4 in [7].
Since f ∈ C1([0, T ]× V ×H;H) implies g ∈ C1([0, T ]×X;X), the problem (3.11)

is locally well-posed by Lemma 3.2. We denote the maximal existence time by t∗(u0, v0).

Space discretization. Let Vh be a finite dimensional vector space. We consider (2.11)
as a space discretization of (2.6) and assume that Assumption 2.4 is satisfied.

To reformulate (2.11) as an evolution equation we define Ah, Bh ∈ L(Vh;Vh) via

mh

(
Ahvh, ϕh

)
= ah

(
vh, ϕh

)
, mh

(
Bhvh, ϕh

)
= bh

(
vh, ϕh

)
for all vh, ϕh ∈ Vh.

Then, (2.11) is equivalent to

(3.12)
u′′h(t) +Bhu

′
h(t) +Ahuh(t) = fh(t, uh(t), u′h(t)),

uh(0) = u0
h, u′h(0) = v0

h.

Analogously to the continuous case we can rewrite this as a first-order equation. With the
Hilbert space Xh = Vh ×Hh and

xh(t) =

[
uh(t)
vh(t)

]
, Sh =

[
0 − I
Ah Bh

]
, gh (t, xh(t)) =

[
0

fh(t, uh(t), vh(t))

]
,
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(3.12) has the form (3.3). Similarly to Lemma 3.6 we obtain that −Sh is the generator of a
C0-semigroup on Xh which satisfies (3.2) with constant ĉqm = 1

2 ĉGĈH,V + β̂qm independent
of h.

Due to the Picard–Lindelöf theorem, (3.12) is locally well-posed and we denote the
maximal existence time of the solution by t∗h(u0

h, v
0
h).

Error analysis. To apply the error result from Section 3.1 we have to specify the opera-
tors occurring there.

We assume that there exists a lift operator LVh ∈ L(Vh;V ) satisfying

(3.13) ‖LVh vh‖m ≤ CH‖vh‖mh , ‖LVh vh‖ã ≤ CV ‖vh‖ãh ,

for all vh ∈ Vh with constants CH , CV > 0 independent of h. Using this, we define the
first-order lift operator Lh : Xh → X by

Lh
[
vh
wh

]
:=

[
LVh vh
LVh wh

]
.

Note that one lift operator LVh is sufficient since V ↪→ H , but we have to distinguish adjoints
LV ∗h : V → Vh and LH∗h : H → Hh w.r.t. the scalar products in V and H . They are defined
via

mh

(
LH∗h v, wh

)
= m

(
v,LVh wh

)
for all v ∈ H,wh ∈ Hh,

ãh
(
LV ∗h v, wh

)
= ã

(
v,LVh wh

)
for all v ∈ V,wh ∈ Vh.

Let ZV
d
↪→ V be a subspace of V and Ih ∈ L(ZV ;Vh) be an interpolation operator

satisfying

(3.14) ‖Ih‖Hh←ZV ≤ CI

with CI > 0 independent of h. We define the first-order reference operator Jh : Z → Xh by

Jh

[
v
w

]
:=

[
LV ∗h v
Ihw

]
,

on Z = V × ZV d
↪→ X .

REMARK 3.7. We used Ih instead of LH∗h in the second component of the reference
operator because the adjoint lift operator only leads to suboptimal error bounds.

By (3.13) and (3.14), conditions (3.4) and (3.5) are satisfied with CX = max{CV , CH}
and CJ = max{CV , CI}.

For vh, wh ∈ Vh, the errors in the scalar products are defined via

∆m
(
vh, wh

)
:= m

(
LVh vh,LVh wh

)
−mh

(
vh, wh

)
,

∆ã
(
vh, wh

)
:= ã

(
LVh vh,LVh wh

)
− ãh

(
vh, wh

)
,

and for z = (u, v) ∈ Z, the linear and nonlinear remainder term are given by

Rhz = (L∗hS − ShJh) z =

[
−(LV ∗h − Ih)v

LH∗h (Au+Bv)− (AhLV ∗h u+BhIhv)

]
,

rh(t, z) = L∗hg(t, z)− gh(t, Jhz) =

[
0

LH∗h f(t, u, v)− fh(t,LV ∗h u, Ihv)

]
.
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To obtain an error bound for the semi discretization from Theorem 3.4 we have to bound
the remainder terms. The nonlinear one is obviously bounded by

(3.15) ‖rh(t, z)‖Xh = ‖LH∗h f(t, u, v)− fh(t,LV ∗h u, Ihv)‖mh , z = (u, v) ∈ Z.

For the linear one we get∥∥∥∥∥Rh
[
u
v

]∥∥∥∥∥
Xh

≤ C
(

max
‖ϕh‖ãh=1

∣∣∆ã(Ihv, ϕh)∣∣+ max
‖ϕh‖ãh=1

∣∣∆ã(Ihu, ϕh)∣∣
+ max
‖ψh‖mh=1

∣∣∆m(Ihu, ψh)∣∣+ ‖(I−LVh Ih)u‖ã(3.16)

+ ‖
(
I−LVh Ih

)
v‖ã + max

‖ψh‖mh=1

∣∣b(v,LVh ψh)− bh(Ihv, ψh)∣∣),
i.e., it can be bounded against errors in the bilinear forms and interpolation errors. The bound
(3.16) is proven in Lemma 4.7 in [7] (with our choice of the reference operator Jh). Proving
the final error bound requires a sufficiently regular solution.

ASSUMPTION 3.8. The solution u of (3.11) satisfies u ∈ C2
([

0, t∗(u0, v0)
)
;ZV

)
.

The following two results are direct consequences of Theorem 3.4 and Corollary 3.5.
THEOREM 3.9. Let Assumption 3.8 be satisfied and T < min

{
t∗
(
u0, v0

)
, t∗h
(
u0
h, v

0
h

)}
.

Then, for all t ∈ [0, T ] the lifted semidiscrete solution LVh uh of (3.12) satisfies the error
bound

(3.17) ‖LVh uh(t)− u(t)‖ã + ‖LVh u′h(t)− u′(t)‖m ≤ Ce(L̂T,Mh+ĉqm)t(1 + t)

5∑
i=1

Ei.

with a constant C that is independent of h and t. The other constants are given by
ĉqm = 1

2 ĉGĈH,V + β̂qm ,

Mh = max

max
{
CV , CI

}∥∥∥∥∥
[
u
u′

]∥∥∥∥∥
L∞([0,T ];V×ZV )

,

∥∥∥∥∥
[
uh
u′h

]∥∥∥∥∥
L∞([0,T ];Vh×Hh)

 ,

and

E1 :=‖u0
h − LV ∗h u0‖ãh + ‖v0

h − Ihv0‖mh ,
E2 :=‖LH∗h f(·, u(·), u′(·))− fh(·,LV ∗h u(·), Ihu′(·))‖L∞([0,T ];Hh),

E3 :=‖(I−LVh Ih)u‖L∞([0,T ];V ) + ‖(I−LVh Ih)u′‖L∞([0,T ];V )

+ ‖(I−LVh Ih)u′′‖L∞([0,T ];H),

E4 :=
∥∥∥ max
‖ϕh‖ãh=1

∆ã
(
Ihu, ϕh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ψh‖mh=1

∆m
(
Ihu, ψh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ϕh‖ãh=1

∆ã
(
Ihu
′, ϕh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ψh‖mh=1

∆m
(
Ihu
′′, ψh

)∥∥∥
L∞(0,t)

,

E5 :=
∥∥∥ max
‖ψh‖mh=1

|b
(
u′,LVh ψh

)
− bh

(
Ihu
′, ψh

)
|
∥∥∥
L∞(0,t)

.

If Ei → 0, i = 1, . . . , 5, we can conclude convergence.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ERROR ANALYSIS FOR DISCRETIZATIONS OF SEMILINEAR WAVE EQUATIONS 15

COROLLARY 3.10. Let Assumption 3.8 be satisfied, T < t∗
(
u0, v0

)
, and

M := 2 max
{
CV , CI

}∥∥∥∥∥
[
u
u′

]∥∥∥∥∥
L∞([0,T ];V×ZV )

.

Further let Ei
h→0−→ 0 for i = 1, . . . , 5. Then there exists h∗ > 0, s.t. uh exists in [0, T ] for all

h < h∗ with ∥∥∥∥∥
[
uh
u′h

]∥∥∥∥∥
L∞([0,T ];Vh×Hh)

≤M.

Additionally the error bound (3.17) holds true with Mh = M and the lifted semidiscrete
solution converges, i.e.,

lim
h→0
‖LVh uh(t)− u(t)‖ã + ‖LVh u′h(t)− u′(t)‖m = 0, t ∈ [0, T ].

Proof of Theorem 3.9. We apply Theorem 3.4. Recall that we have

CX = max{CV , CH}, CJ = max{CV , CI}, ĉqm =
1

2
ĉGĈH,V + β̂qm.

As in the proof of Theorem 4.8 in [7] we obtain (3.17) by applying the error estimate (3.7)
and using (3.15) and (3.16).

Corollary 3.10 follows directly from Corollary 3.5.

4. Proof of Theorem 2.7. For the proof we use the results of Section 3.2.
Proof of Theorem 2.7. In Section 2 we already showed, that the weak formulation of

wave equations with kinetic boundary conditions (2.6) as well as their discretizations with the
bulk-surface FEM fit into the general setting presented in Section 3.2.

We define the space

ZV := H2(Ω; Γ)
d
↪→ V = H1(Ω; Γ),

the interpolation operator Ih := Ih,Ω, and the lift operator via

LVh v := v`

with v` given in (2.7). By (2.8) we have Lh ∈ L(Vh;V ). Moreover, (3.13) is satisfied and Ih
satisfies (3.14) by (2.9).

Hence, all assumptions of Corollary 3.10 are satisfied. It remains to bound the error terms
by O(hp) to obtain the desired error bound. In [6, Theorem 7.4] it was shown that

E1, E3, E4, E5 ≤ Chp,

so that we only have to study the nonlinear error term. By Lemma (2.6) we have

E2 = ‖LH∗h f(·, u)− fh(·,LV ∗h u)‖L∞([0,T ];Hh)

≤ ‖LH∗h f(·, u)− fh(·, Ihu)‖L∞([0,T ];Hh) + ‖fh(·, Ihu)− fh(·,LV ∗h u)‖L∞([0,T ];Hh)

≤ ‖LH∗h f(·, u)− fh(·, Ihu)‖L∞([0,T ];Hh) + L̂T,M‖(Ih − LV ∗h )u‖L∞([0,T ];Hh).
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The second term is of order hp+1 and for the first we obtain by definition of f and fh

‖LH∗h f(t, u)− fh(t, Ihu)‖mh
= sup
‖ϕh‖mh=1

mh

(
LH∗h f(t, u)− fh(t, Ihu), ϕh

)
= sup
‖ϕh‖mh=1

(
m
(
f(t, u),LVh ϕh

)
−mh

(
fh(t, Ihu), ϕh

))
= sup
‖ϕh‖mh=1

(∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, (Ih,Ωu)
`
(·))(x)ϕh(x) dx

+

∫
Γ

f̃Γ(t,x, γ(u)(x))ϕ`h(x) ds−
∫

Γh

Ih,Γf̃Γ(t, ·, (Ih,Γγ(u))
`
(·))(x)ϕh(x) ds

)
.

Let ϕh ∈ Vh with ‖ϕh‖mh = 1. For the error in Ω we obtain∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, (Ih,Ωu)
`
(·))(x)ϕh(x) dx

=

∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx

=

∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx

+

∫
Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx−

∫
Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx,

where we used the definition of the nodal interpolation in the first step: The inner interpolation
can be omitted, since the outer interpolation only depends on the function values at the nodes
ai which are invariant under the inner interpolation.

For the first term we obtain with (2.8), (2.9), and ‖ϕh‖L2(Ω) ≤ ‖ϕh‖mh = 1∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx

≤
∥∥∥f̃Ω(t, ·, u(·))−

(
Ih,Ωf̃Ω(t, ·, u(·))

)`∥∥∥
L2(Ω)

‖ϕ`h‖L2(Ω)

≤CΩ,ΩhCh
p
∥∥f̃Ω(t, ·, u(·))

∥∥
Hp(Ω)

≤Chp
(∥∥utt∥∥Hp(Ω)

+
∥∥∇ut∥∥Hp(Ω)

+
∥∥∆u

∥∥
Hp(Ω)

)
.

In the last step we used the differential equation (2.1).
Since Ih,Ωf̃Ω

(
t, ·, u(·)

)
∈ V Ω

h,p we can bound the second term with the estimate (5.10)
from [7] by∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx−

∫
Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx

≤Chp
∥∥Ih,Ωf̃Ω(t, ·, u(·))

∥∥
L2(Ωh)

‖ϕh‖L2(Ωh)

≤Chp
∥∥f̃Ω(t, ·, u(·))

∥∥
H2(Ω)

≤Chp
(∥∥utt∥∥H2(Ω)

+
∥∥∇ut∥∥H2(Ω)

+
∥∥∆u

∥∥
H2(Ω)

)
.
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Here we also used Ih,Ω ∈ L(H2(Ω);L2(Ωh)) and the differential equation (2.1).
The error term on Γ can be bounded analogously and we obtain

E2 ≤ Chp
(
‖u′′(t)‖Hp(Ω;Γ) + ‖u(t)‖Hmax{4,p+2}(Ω;Γ)

)
.

The only additional term that has to be bounded in this case is

‖∂nu‖Hp(Ω) ≤ ‖u‖Hp+2(Ω).

This completes the proof.

5. Numerical examples. In this section we illustrate Theorem 2.7 numerically.
We choose Ω = B(0, 1) ⊂ R2 as two dimensional unit sphere and

u(t,x) = sin(2πt)x1x2.

Furthermore we set

f̃Ω(t,x, u) = |u|u+ ηΩ(t,x),

f̃Γ(t,x, u) =
(
|u|2 − 1

)
u+ ηΓ(t,x).

Then, u solves the semilinear wave equation with kinetic boundary conditions

utt + (1 + x · ∇)ut −∆u = |u|u+ ηΩ(t,x), (0, T )× Ω,

utt + ∂nu−∆Γu = |u|2u+ ηΓ(t,x), (0, T )× ∂Ω,

u(0,x) = 0, ut(0,x) = 2πx1x2, in Ω,

with

ηΩ(t,x) = −
(
4π2 + |sin(2πt)x1x2|

)
sin(2πt)x1x2 + 6π cos(2πt)x1x2,

ηΓ(t,x) =
(
7− 4π2

)
sin(2πt)x1x2 − (sin(2πt)x1x2)

3
.

We implemented the bulk-surface FEM by using the C++ finite element-library deal.II
[2, 3]. with discrete initial values u0

h = Ih,Ωu
0 and v0

h = Ih,Ωv
0. For time integration

we applied the Crank-Nicolson scheme with sufficiently small step size, such that the time
integration error is negligible. The codes are available from the authors on request.

In Figure 5.1 the error

Eh(t) := ‖uh(t)− u(t)
∣∣
Ωh
‖H1(Ωh;Γh) + ‖u′h(t)− u′(t)

∣∣
Ωh
‖L2(Ωh)×L2(Γh)

is plotted against the mesh width h for the discretization of the test example with isoparametric
elements of order p = 1 and p = 2 and t = 0.8. We evaluated the integrals with a quadrature
rule of degree 2p. The restriction of u to Ωh is possible since for convex domains Ωh ⊂ Ω.

The error behaves as predicted by Theorem 2.7.
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FIG. 5.1. Error Eh(0.8) for the test example.
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