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BIHARMONIC WAVE MAPS: LOCAL WELLPOSEDNESS IN HIGH
REGULARITY

SEBASTIAN HERR, TOBIAS LAMM, TOBIAS SCHMID AND ROLAND SCHNAUBELT

ABSTRACT. We show the local wellposedness of biharmonic wave maps with initial data
of sufficiently high Sobolev regularity and a blow-up criterion in the sup-norm of the
gradient of the solutions. In contrast to the wave maps equation we use a vanishing
viscosity argument and an appropriate parabolic regularization in order to obtain the
existence result. The geometric nature of the equation is exploited to prove convergence
of approximate solutions, uniqueness of the limit, and continuous dependence on initial
data.

1. INTRODUCTION

Let (N, g) be a smooth and compact Riemannian manifold which we assume to be isomet-
rically embedded into some Euclidean space R”. Biharmonic wave maps are critical points
u:R"x[0,T) — N of the (extrinsic) action functional

(1.1) / / |0sul? — |Aul? dx ds.

These maps model the movement of a thin, stiff, elastic object within the target manifold
N.

The Euler-Lagrange equation of ® has been calculated in [4] (in the case N = §! ¢ R/t
and in [9] (for arbitrary N) and it is given by

(1.2) O?u+ A%u L T,N on R" x[0,T).

In order to obtain a more explicit form of this equation we use the fact that there exists
some dp > 0 and a smooth family of linear maps P, : RE — RE for dist(p, N) < ¢ such that

P,:RY - T,N, peN,

is an orthogonal projection onto the tangent space 7, N. The Euler-Lagrange equation (1.2)
can thus be written as

02u+ Au = (I — P,)(0%u + A%u).
Exploiting that u takes values in N, we calculate
(1.3)  9*u+ A%u = dP,(us,us) + dPy(Au, Au) + 4dP,(Vu, VAu) + 2dP,(V*u, Vu)
+ 2d* P, (Vu, Vu, Au) + 4d* P, (Vu, Vu, Vu)
+ d®*P,(Vu, Vu, Vu, Vu)
= N(u),
where the tensors d? P are described in the next section more explicitly. The main goal

of this paper is to show the following local wellposedness result for the Cauchy problem
corresponding to (1.2)) in Sobolev spaces with sufficiently high regularity.
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Theorem 1.1. Let ug,u; : R" — R satisfy uo(z) € N and u,(z) € Tuo@)N for a.e.
x € R" as well as
(Vug,u1) € HF1(R"™) x H*2(R™)
for some k € N with k > |5 | 4+ 2. Then the following assertions hold:
(a) There exists a maximal existence time

Ty = T, uwr) > T = T(| Vol s | g2) > 0

and a unique solution u : R" x[0,T,,) = N of (1.2) with w(0) = ug, Oyu(0) = uq,
and
u—ug € C°([0,Ty), H*(R™)) N C'([0,T,,), H*(R™)).
(b) For Ty € (0,T,,) there exists a (sufficiently small) radius Ry > 0 such that for all
initial data (vo,v1) as above that satisfy

[[(uo, ur) = (vo, V1)l g @y x g2 (mmy < Ro,

the unique solution v : R™ x[0,Tp(vo,v1)) — N exists on R™ x[0,Ty]. Further,
for such intial data the map (vo,v1) — (v(t),0:v(t)) is continuous in HF(R™) x
HF=2(R™) for t € [0, Ty].

(¢c) If T, < 00, then

Tm
(1.4) | IV + ol ds = .

In particular, for smooth initial data ug,uy : R™ — RY with up(xz) € N and uy(x) € Tyoz) N
for x € R™ having compact supp(Vug) C R"™ and supp(ui) C R"™, there exist T, > 0 and a
smooth solution u : R™ x[0,T,,) = N of (L.2).

It is worthwhile to remark that both ug and u(t) do not necessarily belong to L?(R™) and
it is only the difference of these two functions which is contained in this space.

The first, second and fourth author have recently shown in [4] that there exists a global
weak solution of for initial data in the energy space H2 x L? in the case N = §! ¢ R'™!.
In [4] a crucial ingredient is a conservation law which allows to construct the desired solution
as a weak limit of a sequence of solutions of suitably regularized problems. The derivation
of this conservation law relies on the fact that the action functional ® is invariant under
rotations in the highly symmetric setting N = S!, and this argument does not apply to
arbitrary target manifolds V.

Moreover, the third author has shown energy estimates for biharmonic wave maps in low
dimensions n = 1,2 in |9]. When combining this result with the above blow-up criterion
, he then obtained the existence of a unique global smooth solution of for smooth
and compactly supported initial data. This results extends earlier work of Fan and Ozawa [3]
for spherical target manifolds.

A local well-posedness result as in Theorem [I.1] is standard for second-order wave equa-
tions with derivative nonlinearities such as wave maps. It can be found for example in the
books of Shatah and Struwe [11] and Sogge [10]. In contrast to this case, our nonlinearity
N (u) depends on the third spatial derivative of w which cannot directly be controlled by the
energy of that only contains second order spatial derivatives. In our proof we use the
geometric nature of the equation in several crucial steps in order to be able to rewrite this
expression in terms of derivatives of lower order. For this reason many of our arguments are
fairly delicate.

Concerning the continuous dependence of the solution on the initial data, as the nonlin-
earity NV'(u) depends on the third spatial derivative, there seems to be no Lipschitz estimate
available in the norm H* x H*~2 at least from the energy method (as we observe e.g. from
the a priori estimates in Section @ This makes the wellposedness issue more involved
compared to semi-linear wave equations with derivative nonlinearities such as wave maps.

In the following we briefly outline the structure of the paper. Since the nonlinearity
N (u) in equation contains derivatives of up to third order we cannot directly apply
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the energy estimates for the operator 92 + A? and construct the desired solution by means
of a fixed-point argument. Instead, in Section [3] we use a vanishing viscosity approximation
and solve the corresponding Cauchy problem for the damped problem

O*u+ A?u — eAdwu L T,N, ¢€(0,1].

In order to obtain a limiting solution for as € \, 0, we prove a priori energy estimates
which are uniform in ¢ in Section As a byproduct we obtain the blow up criterion in
Theorem The existence part in Theorem is then shown in Section [5 and in Section
[6] we prove that the solutions are unique. Finally we establish the continuity of the flow
map in Section [7] Before we proceed, we comment on a related action functional and its
Euler-Lagrange equation.

The intrinsic version of a biharmonic wave map.
The functional ® has an intrinsic analogue ¥ defined by

1 T
W(u) = 5/0 / 0uf2 — |(Au)T 2 da ds,

where (Au)T = P,(Au) is the tension field of a smooth function u : R" x[0,7) — N. In
contrast to ®, the functional ¥ is independent of the embedding of N < RY. Compared to
the right hand side of (1.3) the Euler-Lagrange equation differs by

(1.5) P,(dP,(Vu,Vu) - d*P,(Vu,Vu,-)) + P,(div(dP,(Vu, Vu) - dP,(Vu,-))).

Since these terms are of lower order in the analysis of the following sections, as in Theorem
one can derive the existence and uniqueness of solutions of the modified version of .
We hence deduce the existence of local unique intrinsic biharmonic wave maps with initial
data as in Theorem However, we do not have a result for initial data with (only)
covariant derivatives in L2.

2. NOTATION AND PRELIMINARIES

We write C for a generic constant only depending on N, n and k, and often also <
. instead of < C'(---). We note that the projectors P, defined in the introduction are
derivatives of the metric distance (with respect to N) in R, i.e.,

1 . .
(2.1) p=m(p)+ §Vp(dlst2(p, N)), P, =d,n(p), dist(p, N) < do.

Moreover, if p € R” is sufficiently close to N, then 7 has the nearest point property, i.e.,
Im(p) —pl = infoen g — p|, and hence

dm|, = dr(p) = d(n*(p)) = dr\_, dm),.

Therefore P, : RE — Tr(pyN is well-defined. Using cut-off functions we extend the identity
, and thus also the equation P, = d,m(p), to all of RE. Moreover, all derivatives of P,
are bounded on R". In this way one can investigate ([1.3)) without restricting the coefficients
a priori. Further, for | € Ny we denote by d'P, the derivative of order [ of the map P,
which is a (I + 1)-linear form on R”. For the coefficients in the standard coordinates in R
we write

— 9 9 k

We now derive ([1.3)) from the condition (1.2)) for smooth solutions v : R™ x[0,T) — N. Note

that we use the sum convention, i.e. the same indices in super-/subscript means summation.
Since 0;u € T,, N, we infer the identity

(I = P.)(0Fw)]* = (&7 — (Pu))(07u') = 0u(87 — (Pu){)(Dsu') + (O Pu)y pu D™
= (dPu)ﬁl’latul(i)tum

(d]Pu)ﬁ),,l]
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for k=1,...,L. Because of Vu € T, N, we also obtain
[(1 = Po)(Aw)]* = 0728 — (Pu)})(9s,u') + (O Pu) 07! O, u™
= (dP,)", 3%” Oz u™,
and hence
(I — P,)(A*u)]* = A((dP, ) 0% ul Dy u™) 4+ 0% ((dP,), lAu Oz, u™)
+ (dP,)k, (8%Au VO, u™
The symmetry of the indices then implies
(I — P,)(A*u)]F = (d®P, )lo,l17l2 1,07 u u°d,, ullamﬁub@. ul?
+2(dP, ) 1,02,0"u ul° 9% 9, ull + (dP, ) llAuloAull
+ 2(d* P}, 1, 0,0%u loa%ullAub +4(dP,)}, ;, 0" Aulo 9, ul
+ 4(d*P, )lo 1,07 u°d, 0" u' o, u

We briefly state the expressions from (|1.5)) in coordinates, i.e.,

[P(dPy(Vu, V) - d° Py (Vu, Vu, )] = > (P):dP.(Vu, Vu) - (d*Py)gm,jO0z, u* 0" u™

J

[P (div(dP,(Vu, V) - dPy(Vu, )" = (P50 (dPy(Vu, Vu) - (dP,)k; Oy, u")

J

for I =1,..., L. In the following we use the shorthand V¥« V*24 for (linear combinations
of) products of partial derivatives of the components u! of u for I = 1,...,L. Here the
partial derivatives are of order k; € N and ky € N, respectively. With this notation we can
rewrite equation (1.3)) as
02w+ A*u = dPy(us, up) + dPy(Viux V) + dPy(V3u  Vu)
+ d* Py (Vu x Vux V2u) 4+ d> Py (Vu * Vu x Vux V).

The Leibniz formula implies the following identity.

Lemma 2.1. Form € N and | € Ny we have

(2.2) Vm(dlpu) = Z Z dj+lpu(vm1+1u .k ij+1u).

=1 mp=me—j

In order to include the case m = 0 in the lemma, we will use Y " j=min{1,m} for the sum in
or similar formulas. The calculation of derivatives V(N (u)) and V™ (N (u) — N (v))
for sufﬁciently regular u,v : R" x[0,7] — R¥ and m € Ny has been included in Appen-
dix [A] employing the x-convention. The results from Appendix [A] will be used frequently
throughout the paper. In the following sections, we also need a version of the classical Moser
estimate, see e.g. |12, Chapter 13].

Lemma 2.2. Let [,k € N and aq,...,a; € Ny satisfy 22:1 |a;] = k. There exists C > 0
such that for all fi,..., fi € Co(R™) N H*(R™) we have

l
[e%) (%} 1_7
(2.3) D fy - D fill < CTJ il " Ty

i=1

In particular,

l l
(2.4) Dt fy - DYy 2 < C ZHlfllle 1 fill g+ 4 1 fill e ) -
J=1i#j
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3. EXISTENCE FOR THE PARABOLIC APPROXIMATION

Since N (u) = N (u, ug, Vu, VZu, V3u), energy estimates for the operator 97 + A? are not
sufficient to show the existence of a solution of . Instead, we use the damped plate
operator

02 + A% — A0,
with e € (0, 1] fixed, as a regularization. More precisely, we prove the existence of a solution
u® : R" x[0,7T.] — N of the Cauchy problem

(3.1) {8,52115(1“,75) + AZuf (2, t) — e Adyus (z,t) L Tye(@pyN, (z,t) € R" x[0,T],
u®(x,0) = ug(x), us(0,2) = uy(x), x eR",
where ug, u1 : R™ — R satisfy uo(z) € N and uy(z) € Tuo(x)N for a.e. z € R" as well as
(Vug,up) € H* 1 (R™) x H*2(R™)

for some & € N with & > [ §] + 2. In the following we mostly drop the super-/subscript ¢
and write (u,T) instead of (u,T.). We note that the condition in (3.1]) reads as

(3.2) Otu+ A%u — eAdyu = N (u) — e(I — P,)(Adyu).
Using u(t,z) € N, we can expand
(3.3) e(I — P,)(Adwu) = ed® Py, (uz, Vu, Vu) + £2d P, (Vug, Vu) + ed P, (ug, Au).

We thus study the regularized problem

(3.4) Ofu+ A*u—eAdyu = N (u) — ed® P, (ut, Vu, Vu) — £2d P, (Vuy, Vu) — ed Py, (ug, Au)
=: No(u).

We next solve without the geometric constraint, recalling that only u(t) —ug € L2(R™).

Lemma 3.1. Let e € (0,1) and take ug, u; : R™ — RY with ug(z) € N and u,(x) € Tuo(z)N
for a.e. x € R™ such that

(Vug,u1) € HF1(R"™) x H*2(R™)

for some k € Nwithk > [2]+2. Then (3-4) has a unique local solution u : R" x[0, T.] — R*
satisfying w(0) = ug, ut(0) = uy, and

(3.5) u —ug € CO([0, T.], H*(R™)) n C1 ([0, T.], H*2(R™)) N H'(0, To; H*1(R™)).
In addition,

(3.6) Vu € L*(0,T.; H*(R™))

and there ezists a constant C' < co such that for 0 <t < T,

t t
B1) 9 a5+ a0l e [ 19 o) ds = [ 95 ds
0 0

t
<o [ [ V) T deds + [ Vol + s ).

Before we prove Lemma we reduce the problem to functions in L? by setting v(z,t) =

u(z,t) — up(r). We thus rewrite (3.4) as

(3.8) OU + AU = <f€?U)>, U(0) = <£1>

where U = (U

Ut

) and f.(U) is defined through

(3.9) f(U) 1= N(v+up) - 5d2Pv+uo (vt, V(v + o), V(v + ug))
— €2dPy 1y (VVr, V(0 4 10)) — €dPy sy (ve, Alv + 1g)) — A%ug.
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Further the operator Ay, : HX(R™) x H*=2(R™) 2 D(A) — H*(R") x H*"2(R") is given by

(3.10) Ay = ( N ;2) . D(A) = H*2(R™) x H*(R™).

Since the operators Ay extend each other we drop the subscript k. It is well known that —A
generates an analytic C-semigroup {T%.(t)};>0, see e.g. [1, Prop. 2.3] for the case k = 2.
Using also standard parabolic theory, see e.g. [6, Prop. 0.1] and [8, Prop. 1.13], we obtain
a first linear existence result with some extra regularity.

Lemma 3.2. Letr € No, uy € H™PY(R"), and g € C°([0,T], H"(R")). Then there exists a
unique solution U of the linear equation

(3.11) QU + AU = (2) U(0) = <0>

U1
satisfying
UeL*0,T; H x H™™(R™)nC°0,T; H 3 x H™TY(R™)) N H*(0,T; H™ 2 x H"(R™)).
We remark that the solution of is given by

(3.12) Ut) = T.(t) (£1> + /0 Tt—s) <g?s)> ds.

We quantify the above result by the following higher-order energy estimates.

Lemma 3.3. Let r € Ny, g € C°([0,T], H"(R")), u; € H™t'(R"), and uo : R" — R with
Vug € H™3(R"). Then v from Lemma satisfies

T T
(3813) Noe(®lss + [0(8) |20+ / IV0(8) |21 ds + / IV (0 + 1) (8) |32 ds
0 0

1 (T 2
<C(1+T7) (E/ lg(s) + A%uol[yy, ds + [lur|77rs + IIVuollima)
0

for0<t<T, and
T

B14) [V e 5 + [V @) +a/ V720 (s)][; ds
0

t
gc(—/ / V" (g(s) + A%ug) - V" Av, da ds + |Jur| 34 +Hvu0||§m2).
0 n

Proof. Writing U = (v, v;) in Lemma the function u = v + uy fulfills
(3.15) 02u+ Ay — eAdyu = g + A?ug
in L2(0,T; H"(R™)). We first differentiate (3.15) of order V! with I € {0,...,r}. Testing

with —V!'Au; € L%z and integrating by parts in x, we derive

(3.16) SV ()| + % IV53u(t)][5s + ¢ || V520 (1)) 5.

|
dt
C 2 € 2
< - Hvl(g + A2U0)||L2 + 3 Hvl+2ut(t)HL2 .
which makes sense for a.e. t. (Here and below we use the duality (H', H~!) in intermediate
steps.) We then absorb the last term by the left-hand side and integrate the inequality in t.

To control the second summand with e in (3.13]), we test the differentiated version of
(3-15) by eV!A%u. Here we proceed similarly as before, where we integrate the term

T
5/ / V!oRu - VIA?udx ds
0 n

by parts in ¢t and x before aborbing it.
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It remains to estimate the L?-norm of v;(¢) and the H2-norm of v(t). These inequalities
follow by testing the equation with u; and using the fact that

= woll o s < T el o5 0
Proof of Lemma[3.1, We aim at constructing a solution U € C°([0,T], H* x H*~2), but due
to A?uy € H** we have f.(U) € C°([0,T], H*=*), which is insufficient for an application
of Lemmas [3.2] and [3.3] in a fixed point argument for v.

We thus approximate ug by uj € C>®(R",RY) for § > 0 such that supp(Vuj) C R™ is
compact with

(3.17) uy —up ae. and Vud — Vug in H*1(R") as 6§ — 0%,

Defining f. s as above with u) instead of ug, we obtain f. 5(U) € C°([0,T], H*—3(R")). For
the data (u,u;) we now prove the existence of a fixed point for the operator v — S(v)
defined through

(3.18) (af;(%) ~ .0 (f) 4 /0 - s) ( fef(v)) s,

which acts on the space

Br(T) := {v e C°([0,T], H*) n C*([0,T], H*"?) | v(0) = 0, v:(0) = uy,

ol = llvel oo gz + [0l g2 + [V 0+ @0)]| o gy v < R},

for parameters R > 0 and T' € (0,1) fixed below and the metric given by

lvy — v2||B(T) = |lv1 — Vol oo g + |01 — Oev2]| foc gri—z, V1, V2 € Br(T).
Let € € (0,1) be fixed. We will show that the map

S : Br(T) — Br(T)

is strictly contractive with respect to ||-[| 5.y, if we choose R = Rs and T' = T with

ng = 3(||Vug||H,€_1 + Hulqu—?)k = 3R§,67

2
1 3 -1
(3.19) Ty = = min \/‘% S R
2 V3 C2(1+ 3Rk )2 C*(1+6Rk ;)2

for a constant C depending only on N, n, and k. To show this statement, we have to prove
the estimates

o i
(3.20) 1Sl < Eak (14 llvlls) ol s + [[Vug || s + luall s
~ C 1 k ~nk ~
(3.21) 18(v) = S(O)ll gy < o (1 +l[ollg +112ll5) lv = 0l g

for v, € Br(T). To employ the inequality (3.13) for r = k— 3, we need to bound the norms
2 . 2
[N=(0(t) + 1) || s and  [[Ne(v(t) +ug) — Ne(@(t) +u) || s

by C(1 + ||’UHZ) |lv]|z and C(1 + Hv||’g + Hﬁ”’g) [v =l g(r), respectively. This is done by
means of Lemma and Corollary [A4] combined with a careful application of the Moser
estimate in Lemma [2.2 We give the relevant details below in Section[d]in the proof of the a
priori estimate and in Section [f] for the uniqueness since these parts require more thought.
In this way we obtain in the fixed point v% = S(v%) satisyfying

(3.22)
Ts

Ts
R 1 AR (] P

In particular, v0 € L%(0, Ts; H*1) 0 HY(0, T5; H*1).
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We next define Ry, R and T > 0 in the same way as Ry s, Rs and Ts using ug instead of
ud and the Ry instead of Ry. Thus,
Ros — Ry, Rs— R, Ts—T asd—0".

For sufficiently small § > 0 we have Ts > %T =: T and |Ros — Ro| < Ry. Hence v° :
R" x[0,T] — R” is well defined and H’U(SHB(T) < CR for a constant C' > 0. Observe that for

sufficiently small 8,8’ > 0, the differences v° — v+ and 9,0° — 8v? solve (3.11) with the

nonlinearity
Ne(0® + ) = Ne(v” +ud) + A2 (uf —ud ) € CO([0, 7], H*3).
Similar to the proof of the Lipschitz estimate (3.21)), Lemma then yields the bound

2 Ts 2 Ts
+€/ d5+€/
B(T) 0 HE=1 0

T ’ 2 ~ ’
< C;(l + R?F) HU‘S —° HB(T) +C.r HVUS — Vi H

/ , 12
5 V(v67v5)+V(u37u6)HHk ds

v’ —w 00 (s) — v (s)

2

HE-1'

Hence, if T = T'(¢) is sufficiently small, as § — 0 the functions v° tend to a function
v € (0,7, H*) N CL(0,T), H*2) 1 H'(0, T; H* )

with V(v+ug) € L?(0,T; H*), where the limits exist in these spaces. In particular, (v,v;) is

a solution of and u = v+ solves (B.4). Moreover, by the function u® = v° +uf
satisfies inequality , and therefore this estimate also holds for u since uf — uy strongly
in C°([0,T], H*=2) and N.(u’) — N.(u) strongly in L?(0,T; H*=2) because of Corollary
[A4 and Lemma 2.2

For the uniqueness of v, we note that, for a second solution ¥, the functions w = v —v and
wy = vy — Uy solve with the nonlinearity Nz (v + ug) — Nz (9 +ug) € CO([0,T], H*=3).
Lemma then yields the estimate

2 T <2
(3.23) o = 5l < C=(1+ B) o — o3,
(Note that ug from the Lemma is different, namely ug = 0.) Hence, if T is sufficiently small,
we obtain v = v and thus u = v 4 ug is unique. ]
We next show that the above solution actually takes values in the target manifold.

Proposition 3.4. Let ¢ € (0,1) and take ug,u; : R™ — RY with ug(x) € N and uy(z) €
Tuo@)N for a.e. x € R™ satisfying

(Vug,up) € HF L (R™) x H*2(R™)

for some k € N with k > | 5] 4 2. Then there exists a mazimal existence time T¢ , € (0, 00]
and a unique solution u € R™ x[0,T. ) = N of (3.1) with u(0) = ug, Ou(0) = uy,

u—ug € CU[0,Tem), H*) N CH([0, Tz.m), H*2) N H o ([0, Tz ), H*H(R™))
and Vu € L2 ([0, T- ), H*(R™)) which satisfies (3.7) for t € [0, Tz ).

loc

Proof. Fixe € (0,1). Let u : R™ x[0, T] — R be the solution of (8.1)) constructed in Lemma
We first show that u(x,t) € N for x € R" and ¢ > 0 small enough. Since

CO([0,T], H*) = CO(R" x[0, T))
and ug € N a.e. on R™, there exists a time 7' € (0, T] such that for ¢ € [0, 7] the distance
I dist(u(t), N}z < sup fu(z, t) = uo(2)] S Jlu(t) = voll
z€R™
is so small that @ = 7(u) is well-defined. We then let w = @ — u and we note that w(0) =
Oyw(0) = 0. Calculating

0Pt = dm,02u + d*my (ug, uy),
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Aty = dmyAuy + d*my (A, uy) + 2d°7m, (Vuy, Vu) + dm, (Vu, Vu, uy),
A?0 = dr, A%+ dPry (Au, Au) + 4d% 1, (Vu, VAU) 4 2d* 7, (Vu, V)
+ 2d37, (Vu, Vu, Au) + 4d3m, (Vu, Vu, V2u)
+ d*mo (Vu, Vu, Vu, Vu),
we conclude that
(92 + A2 — cAd)w = dr,, ((a,? FA2 aAat)u) N (u) — N (u)
= dmy (Ne(u)) € TaN.
Next, we note that
wy = <(7r - I)(u))t = (dmg — I)us L TuN.

By testing the above equation for w by wy, it follows

1 1
atf/ |wt|2dx—|—3tf/ |Aw|2dsc—|—6/ |Vw | dz = 0.

This fact implies that w; = 0 and hence w = 0, which means that u € N.

The claimed uniqueness follows similarly to the end of the proof of Lemma[3.1] Finally, we
let T; ,,, > T be the supremum of times 7" > 0 such that we have a solution « : [0, T'] x R™ —
N of (3.1) with u(0) = ug, O;u(0) = uy,

u—ug € CO0,T'], H*)n C*([0,7"), H**) n H' (0, T"; H*"*(R"))
and Vu € L2(0,7"; H*(R™)) which satisfies (3.7) on [0,7"]. O
Remark 3.5. We remark that up to now we fixed ¢ € (0,1). Since the constants in the

upper bound in estimates such as (3.22)) are of order O (5_1), we have to prove ¢ independent
estimates in the next section.

4. THE A PRIORI ESTIMATE
We now prove an a priori estimate for the solution u : R" x[0, 7% ,,,) — N of the equation
(4.1) Ofuf + A*uf —eAQu® L Tye N on R™ x[0,T%,m)
given by Proposition with ¢ € (0,1) and initial data wg,u; : R" — RL such that
ug(r) € N and uy(x) € Ty ()N for a.e. x € R" as well as
(Vug,up) € H*1(R"™) x H*~2(R™)

for some k € N with k£ > [§] + 2. As before we write u instead of u®, and we fix a number

T < T . Moreover, (3.7)) says that

t
V52O + [T e +2 [ 19 o). s
(4.2)
t
S [V =1 = @] - 9 deds £ 952 f + [VFuo,

for t € [0,T]. We recall that the summand with € on the right-hand side is well defined

because of (|3.3]).

In the following, we often make use of the relations N'(u) L T, N and u; € T, N which
hold since u(z,t) € N for a.e. (z,t) € R" x[0,T]. In particular, N'(u) = (I — P,)N (u).
Using this fact, we first write

(4.3) VE=2(N (u))VF~ 20, = Z V™ (I — P,)x V™ (N (u))VF2u,

mi+mo=k—2
m1>0

+ V2N (u)(I — P,)V* 24,
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= Y VM- P« V(N () V2,

mi+mo=k—2
m1>0

- > VFEW(w) * V(I = PV,

l1+l2=k—2
11 >0

=1 1+ IQ»
where the second equality follows from the Leibniz formula

(44)  0=V*E(I-Pul= Y VR Pu)]* Viu+ (1 - PV R,

l1+1lo=k—2
11>0

In (4.2)) we thus split
/ VF2(N(u) — (I — P)(Auy)) - V20, dx

= / VEF2(N () -V 2upde —e | VF2((I = P,)(Awy)) - V20, da

R’n
(4.5) :/ Ilder/ Igd:vfs/ VE=2((I = P,)(Awy)) - VF 2w, d,

We start by estimating

/ Chdr< Y0 VT = PR VRN @) s [ R

mi+mo=k—2
m1>0

Lemma [2.1] yields the identity

m ~
(4.6) VMI=P)==3, ), APV TuxaVE ),
J=1 25:1 Ei:ml*j
which implies the pointwise inequality
ma _ ~
(4.7) V(I =P S 3 (VR VRt Ly,
J=1 Zz=1 Ei=mi—j

On the other hand, Lemma[A | allows us to bound |[V™2(A(u))| pointwise (up to a constant)
by terms of the form

(4.8) |V Ly| - VT Ly | [V R ||V, |+ VR 2| |[WR2 2y 4 Ry | TRty )]
(4.9)  |VTHLy| o VT Ly [| TRy | VR Ly VR 2y
(4.10) |V Hy| . [V Ly | [[ VR Ly || VRt || Rty TRy ]

where i = 1,...,mo and 7y +- - +m; + k1 + - = mg — i are as in Lemma[AI] Moreover,
in the case i = 0 (where no derivatives fall on the coefficients) the terms are of the form

VA0 [V 4 [V45520] [V 20] 4[4[

[V [ [F 2

[V [ [H L[4
where k; € Ny and ky + ko + - -- = mo. Note that mo < k — 3 since m; > 0. In the following
we use the notation (4.8 - (4.10) for all five cases, setting ¢ = 0 for the latter three.

Combining the above considerations with Lemma we can now estimate the norm
IV (I = P )V™ (N (W)l 2

where we distinguish five cases according to the terms in the brackets in (4.8)) - (4.10).
Case 1: VFu, x VF2y,
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We use Lemma [2.2] with
fi=Vu, ..., fi=Vu, fix1=Vu, ..., fizi=Vu, firip1=u, fivira =w
and derivatives of order
ki4-d kg4 mit kA ke=mi+mg—i—j=k—2—(i+7).
Employing also Young’s inequality, it follows

[ITE o [ b [ [0 [0

L2
S A+ IVallz2) el + (04 1Vl E) uell oo ) IVl ey + el grmamies)
S A+ IVl + el ) OVl s + e gace)-

The other cases will be treated similarly.

Case 2: VF+2y x Vk2t2y
Here it is exploited that m; > 0 in I; due to the cancellation from (4.4). This time
Lemma [2.2]is applied with f; = --- = fj,i42 = Vu and derivatives of order

ky4-d kit itk ket 2=mitma+2—i—j=k—(i+j)<k-1
since j > 0 by (4.6). We estimate

HWIE1+1u| o |v1}j+1u||vm1+1u‘ WLy | R 2y ke +2

i+j+1 k—1
SO VUl IVl s S (L4 IVall72) [Vl s

Case 8: VFi+3y x Vkatly
As in the previous case, C(1 + ||Vu|| o) | V|| r—1 dominates

’|Vk1+1u| . |vk:j+1u||vm1+1u| . |vmi+1u||vk1+3u|‘vk2+1

Case 4: VFTlyx Vhatly « Vkst2y
We apply Lemma to the functions f1 = --- = fjyiys = Vu with derivatives of order

ki4-dkjtm oAtk Akt kstl=mitma+1—i—j=Fk—1-(i+7),
leading to the bound

H|vl~cl+1u| . ‘ij+1u||vm1+1u| . |Vﬁ1i+1u||vk1+1u||vkg+lu|‘Vk3+2

i 2
<Z||V IZ2 2 1V ull greis S (U4 [Vl o) [Vl e

Case 5: V’“*lu x Vh2etly o Vhstly 5 Vhatly,
We now use Lemma with fi =+ = fj1iya = Vu and derivatives of order

i+t kg btk ke kst ke =my +ma—i—j=k—2—(i+j).
Hence, we have

H|v1}1+1u| o |V’~“"+1u|\V’h1+1u| o [ Ly | [ Ly R Ly ||+ Ly Rt

i+Jj+3 k+1
S DIVl IVl geamies S (L4 IVl 750 [V s

Summing up the five cases, we infer
(4.11) Il S (4 1Vall5< 4 el 52D UVl s =+ [l )
Next, in I5 from (4.5) we integrate by parts in order to conclude

/ 12d$:

/Vk SN () « [VETHI — P,)V2uy] da

li+la=k—2
11>0
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+ Z / VF3(N(u) « [V (I = P,) V2] da

l1+1lo=k—2
11>0

= I +13.
These terms are estimated by

(4.12) LIS Y VRPNV @) [V = P VR s

li+lo=k—2
11>0

(4.13) 1S Y VR W) . [V = POV ],

l1+lo=k—2
11>0

We control HV’“_?’(/\/'(u))HL2 by terms of the form (4.8]) - (4.10) in the L? norm, obtaining
as above

[VEBN )| 2 £ 0+ IVullfeo + el 52 IV ull goes + luellge—2).

Equation (4.6) and Lemma[2.2] further imply
41
VAT = POVRul| . 35 Y IV ] [V VR
=15 =lhi+1—j
k—1 k—1
S A+ [Vullpe + luellpe ) UVl gror + lluell gr-2)
where mq +---+m; +lo =k —1—1 <k — 2. Similarly, we have

A
V(I = POV g o >0 >[IVl [V [V |
I=Lnd =l -
< 1 V k—2 k—2 V
S A+ IVl 7 + el 5 IVl s+ el i—z)

by Lemma[2:2| with 7y +---+m; +lo+1=k—1—1i < k—2, since [; > 0. The above three
inequalities yield
(4.14) L2l S U+ IVl 750t + uell 7 D IVullZpe s + el Fes)-

Finally, for the regularization term, we observe

— [ V"I - P)(Au) Vi 2usde = ¢ | VF3(I - P,)(Auwy)| V¥ Luy da
Rn Rn

< C|IVF T = P @unl [ + 5 9
In view of (3.3), to bound ||[V¥=3[(I — P,)(Auw,)] H2L2 it suffices to estimate
(4.15) [ ] [V L[| TR gy || VR ] 4 [V R 0, | [WF2 2] |7,
(4.16) [V ] [V [V [V L [TRs )|

where my +---+m;+ki1+ko+1=k—2—dandm;+---+m; + k1 + ks + ks =k—3—1,
respectively. As before, Lemma [2.2] implies the inequalities

_ . 2
(4.17) |77 o [ L[| VR gy | [VF2 ] |V R || VF2 202
2(k—2 2(k—2 2 2
< @+ IVall3 8 4 el 82 el e + [Vl 3
_ . 2
(4.18) [V ] [V [V R | [V | [V ||,

2(k—1 2(k—1 2 2
S U+ IVl el ZE) (el Fpce + [Vl ).
Putting together ({.11)), (4.14)), (#.17) and (4.18)), we arrive at the inequality

VE2(N (1) — e(I — P)(Awy)) - VF~2u, da
-
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2k 2k 2 2 € - 2
S A+ IVullpe + lluellpe ) IVaule-s + lluellz-2) + 5 IV | -
Subtracting the last term on both sides of (4.2)), for ¢ € [0, T] we conclude
t
_ 2 2 € _ 2
Hvk 2ut(t)HLz + Hvku(twm + 5/0 Hvk lut(S>HL2 ds
(4.19)
t
2k 2k 2 2 - 2 12
S / L+ IVl + el NVl Feos + uellFpe—z) | ds + V527, + ([ Voo .

It remains to bound the lower order terms. Testing (4.1) by u; € T,,N, we infer

¢

(4.20) e (£)1 72 + [ Au(®)]72 + 6/0 IVue(s)l72 ds = Jurl 72 + [ Auoll7s -
Since also

d

— |Vu|? da S/ |ug | da:+/ |Au|? de,

dt Jgn R™ R™
it follows

¢

(4.21) IVu®)IZ2 < [ VuolZ- +/O 1Au(s) 7 + ue(s)ll7e ds

2 2
= [VuollZ> + t(llurllz2 + | Auo|72)

for t € [0, T]. The other derivatives are treated via interpolation, more precisely

2 2(1—-1) 2(k—1-1
Vil o SNIVE ]| 577 IVl 257, 1=2,... k=2,
9 21 2(k—2-1)
HvlutHLQ 5 ||vk72ut||£;2 ||u15||L2k_2 ) l:17"'7k_37
L2 k 2(1=2) 2(k—1)
Vil S |VFull 577 1A, 577, 1=3,... k=1

Estimate (4.19) and the above inequalities lead to the core estimate
2 2 e [* 2
(4.22) s Dls + 19O+ 5 [ 19003 s s

t
k k
S / |+ 190l + el ) U1V uloms + uelFe—2)| ds
+ (U D) (s + IVuollfpes)s ¢ € [0,T].

for solutions of (3.1)) and T' < T ,,,. Using Gronwall’s lemma we also obtain

(4.23)  sup (llu(®)lFs + IVl )
t€[0,T]

T
< CU+T) (Il fpa-s + 1 Vuollge ) exp (/ (1+ | Vull7 + full7) ds) .
0

At least for small times we want to remove the dependence on u on the right-hand side
of (4.22)) and thus we introduce the quantity

alt) = [Vul®)]|22 + [|Au(®)|22 + | VFu)||2s + ()12 + || V* 2w 0[5

for ¢ € [0,T¢,m). We observe that a(t) is equivalent to the square of the Sobolev norms
appearing in (4.22)). Since the solutions to (3.1 are (locally) unique, our reasoning is also
valid for any initial time tg € (0, T ;). The estimates (4.19)), (4.20) and (4.21) thus imply

at) — alty) < c/t (1+ a(s)F)a(s) ds.
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By the above arguments, the function « is differentiable a.e. so that

d
(4.24) o at) < C(1+ a(t)k) at)
for ae. 0 < tyg <t < T.,,. We now proceed similarly to [5], where regularization by
the (intrinsic) biharmonic energy has been applied in order to obtain the existence of local
Schrodinger maps.

Lemma 4.1. Let € € (0,1) and take data ug,u; : R™ — R* with ug(z) € N and u,(z) €
Tuo(@)N for a.e. x € R" satisfying

(Vug,u1) € H*"HR™) x H*"2(R")  for some k € N with k > | 2] + 2.

Let T, ,, > 0 be the mazimal existence time of the solution u® : R™ x[0,T,,) — N of
B-1) with uf(0) = up and O,u(0) = uy from Proposition [3.], Then there is a time Ty =
To([|Vuo|| gr-1, |utl|gre-2) > 0 such that Ty, > Ty for all € € (0,1).

Proof. Let € € (0,1) and t € [0, 1% ,,). We write u = u®. From (4.24) we infer

d «a o
4.2 44 _ <
(4:25) i °g<<1+ak>t> TTafa <<

With ap = a(0) it follows

a(t)* o 06 af
_ AW otk N o (1 {40tk —20
(1+a(t)k) (1+af) ( )(1+0f’8)
k

a(t)® < (1 +4Ctk) off +4Ctk o o

IN

for0<t< ﬁ, and hence
a(t)® <201 +4Ctk) ok <30k

for0<t< ﬁ min{1, a—lk} =: Tp. Since a and the Sobolev norms are equivalent, we infer
0
2 2 2 2
(4.26) [ue (@) g2 + IVu@)[r-r < colllurllge-2 + [Vuollgr-1)
for ¢ € [0, min{7} ,,,, Tp}) and some constant co = co(k,n) > 0.
We now assume by contradiction that Tt ,, < Ty for some (fixed) € € (0,1). We apply

the contraction argument in the proof of Lemma for the initial time ¢ € [0, 7% ,,,) and
data (u(to), ut(to)) in the fixed-point space B,.(T') with radius

k
= 3r(to)* = 3( IVulto)llgas + lue(to) s ) -
Since tg < Tp, estimate (4.26]) yields the uniform bound

r(to) < v2¢o(|lutl|Fe-z + | Vuol 3e-1)"/? =: éo.

As a result, the time

1 . V3-1 € €
T := — min - - ——, = -
4 V3 C2(1+ 327 C2(1 + 66k)2

is less or equal than the time T for B, (T') in (3.19). Therefore, the solution can be uniquely
extended to [0, ¢y + T in the regularity class of Proposition For tg > T; ,, — T this fact
contradicts the maximality of T ,,, showing the result. (]
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5. PROOF OF THE MAIN THEOREM

We now combine the existence result from Proposition [3.4] with Lemma [4.1] Thus, there
exists a solution u® : R" x[0,Tp] — N of (3.1) for each € € (0, 1), where Ty > 0 only depends
on [|[Vug|| gr—1 and [Juy|| gr—2. From (4.26) and the inequality

[lu® — u0||LtOOLi <Tp Hu§||Lt°°Li ’

we extract a limit u : R™ x[0,Ty] = R” as ¢ — 0T of the solutions uf[o 1) D the sense
»+0

Vi B Vha, wf —ug 2 u—uy, and V2% S VR, in L%(0,Ty; L?),
where 1 < I} < kand 0 < Iy < k. (Here and below we do not indicate that we pass to
subsequences.) In particular,

u —ug € L(0, To; H*) nWH*°(0, Ty; H2)

and (Vu,dsu) is weakly continuous in H*~1 x H*~2. We first assume k& > 4 (which is no

restriction if n > 2). Estimating the nonlinearity similarly to Section 4] we also deduce
from (3.3) and ([4.26) that 0?u® € C°([0,Ty], H*~*) is uniformly bounded as ¢ — 0%.
Compactness and Sobolev’s embedding further yield

V3us — V3u in C°([0,Tp), L, .(R™)),
(5.1) du — Ou, u —u, Vu® — Vu, V*u® — V2u locally uniformly on R"x[0, Tp].
More precisely for « € (0,1) and v = u® — wug, our a priori estimates and |7, Prop. 1.1.4]
imply uniform bounds (in £) in the spaces
(5.2) v € CYH*2* Vovf e COHF 1722 V2 € C*H* 2729 9pf € CYHF 2722,

As a result, u takes values in N. Moreover, since (4.22)) and (4.26)) give

63 [ VeV ds

S (Do + llurga-s + Vol gga-s) + 1) (ur s + | Vol a-s)

and k > 3, we infer that eAdyu® — 0 in L7 .. Combining this fact with (5.1) and recalling
(3.4), we conclude
No(u®) = N(u) in LE(R™ x[0, Ty)).

loc

In the case n = 1 and k = 3 we obtain the convergence N (u®) — A (u) in the sense of
the duality (H', H~!) because we still have

Vut — Vu, V2u® — Vu, duf — dwu

locally uniformly, as well as V3u® — V3u and Vou — Voyu in C°([0, Tp), H;,!) as e — 0F.

Summing up, we have constructed a local solution u : [0,7p] x R" — N of (1.3) with
u(0) = wo and Opu(0) = wy such that (Vu,0wu) is bounded and weakly continuous in
HE-1 « k-2

In Lemma [6.1] it will be shown that such a solution is locally unique. We recall from
the proof of Proposition that the solution u : R™ x[0,T) — N for some T > 0 can be
extended if limsup,_,;— ([|Vu(t)|| gr-1 + [|ue(t)|| r-2) < 00. There thus exists a maximal
time of existence T}, € (Tp, 00] of u with

lim sup (|| Vu(t) || gr—1 + [|we(t)]| gr—2) = 00 if T, < 0.

t—T,,
Arguing as in Section [} we establish the energy equality
t
(5.4) HvkuHiz + HVk_QutHiQ = 2/0 » VE2(N(w)) - V*2u, do ds
A PR Y
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for t € [0,T,,). (The integral is well-defined in view of the cancellation of one derivative in
(4.3).) However, in contrast to the approximations u®, the solution u has only k weak spatial
derivatives (and d;u has k — 2). For this reason, when deriving we have to replace one
spatial derivative by a difference quotient. The details are outlined in Appendix [C}

We conclude that the highest derivatives V*~2u;, V¥u : [0,7},) — L? are continuous,
employing their weak continuity and that the right-hand side of is continuous in t.
The continuity of the lower order derivatives can be shown as in the next section, so that

u—ug € C°[0,T), H*) N CL([0, T), H )

as asserted. Finally, following the proof of the a priori estimate in Section [] we can derive

the blow-up criterion (|1.4)), cf. Appendix
To show Theorem [I.1] it thus remains to establish the uniqueness statement and the

continuous dependence on the initial data, which is done in the next Sections [6] and
6. UNIQUENESS

Lemma 6.1. Let u,v : R" x[0,T] = N be two solutions of (1.2) with initial data uy : R" —
N and uy : R" — R* such that uy € Tu,N on R™ and

(Vug,up) € HF L (R™) x H*=2(R™)
for some k € N with k > | 3] + 2. Also let
u —ug, v—ug € L0, T; H*(R™)) N Wh>(0,T; H*~2(R™)).
Then uj, 7y = Vi z)-

Proof of Lemma|6.1] We derive the uniqueness statement from a Gronwall argument based
on the equality

d1
CT/ Vi |> + [V P2w?de = [ VN (u) — N(v)) - Vi, de,
t 2 R’n RTL

forw=u—v,1€{0,...,k—3} and ¢ € [0,T], which is a consequence of (1.3]). Setting
2 2
E(t) = llw®)zre-1 + [lwe (@)l zre-s ,

(6.1)

we want to prove
(6.2) %f:(t) < O+ | VullFe-s + llurll ez + [ V0l + llvel F-2)E ()
for ¢t € [0,T]. We first estimate in the case | = k — 3. Since v and v map into N, we
have N (u) = (I — P,)(N(u)) and analogously for v. It follows

N(u) =N(v) = (I = PN (u) — (I = P,)N(v)

= (Py = PN (u) + (I = P,)(N (u) = N(v)),
and hence
VESB (N (1) = N(v)) - VEBw, = VF3((P, — PN ()] - VF 3w,
+ VF3[(I = PN (u) — N(v))] - VF 3w,
In this way, we can avoid that all derivatives fall on V3w. We next write
V3 (P, — PN (u)] - V* 3w, = (P, — P,)VF P IN (u)] - V3w,
+ > V(P = PO * VRN (u)] - VE By =t I + I,

l1+l2=k—3
11 >0

Observe that
/]R” Lidr < Hw||L°° Hvk_gN(wHL? Hvk_SthLz :
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We then control ||Vlc SN (u H 1> using Lemma as above for the a priori estimate
Further, Lemma implies that fRn I> dx is bounded by terms of the form

(6.3) [wll oo [V + ] - [V | [VEN ()| o [V 20| s
(6.4) V52w o [[IV™ ][ V72 Ay |- [V 1||v52/\f M o
where mq,...,m; and hq,..., h _1 are as in Lemma“ In (6.3)) we then estimate as above

in the a priori estimate. For , it suffices to control terms of the form
(6.5) [V ||Vt Ry | [V R [V [T ] [V ||V T

where [|VF1u,||V*2uy| - -] is given as in the nonlinearity A'(u) and the orders m ..., m;,

mi,...,m;, and ki, ko ... are as used before. To apply Lemma as above we choose
le’LU, fQZth"'?f] th 17f_]+1 ~"afi+j:vu7

and fiyj+1, fitjt2,..., according to the respective terms in N(u) We can thus estimate

(6.5) in L* by
myq my mq my
Fo—is Fo2—i—j gy Foioi—j
(|w||m A L B e ||w||H;“z)
A IVl ol 002+ ] Zis)
2k
<l (1 Il + a2+ 70025+ ol a),

noting that Iy >0, 7 > 1 and i + j < k — 2. We continue by computing
VI = PN (u) = N(v))] - VE Py

= VI3 W (W) =N @) = PV Pwy+ Y V(I = P)* V2N (u) =N (v)) - VP,

li+la=k-3
11>0
= VIR W) -N) VP (Pa=Po)u] = 3 VI () =N(0))- V(T = P)JxVPw
l1+ll12;(])€73
D VI = P) R VEW (W) - N () V=2 Syt s
li+lo=k-3
11>0

where the second equality is a consequence of
(I —Phws=I—-Pur=[I—-P,)— (I —P,)|ut = (Py — P,)us

We use integration by parts to treat [ Jydz and [ Jodz. Here we assume that k > 4. (If

k = 3 the estimate becomes easier and we only employ integration by parts for dP,(V3wxVu)
in the difference N (u) — N (v).) It follows

Jide =— [ VN (u) — N(v)] - VF2((P, — P,)u] dx,
R™ R™
/ Jode = VEAN (u) = N(0)] - [VEFHT = Py) » V2w,

Litla=k—3 ' R"
11>0

+ Vi (I = P,) « V2w da.
We first bound

[ e S 941 W) - M)
Corollary Lemma and Lemma yield
[VF AN (@) = N@)]]| 2 S (wll g + llwell s )
k
(1 ”vu”H’c L+ ”“t”m 2+ ||VU||Hk L+ vl Fe—2),

e V572 1(Pu = Pojuel]
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IV 22 (P = Poyu|| o S lwll iy (L4 1Vl 5 + sl s + V0l 57+ foell-2)-

The integrals of Jo and J3 are treated similary. Summing up, we obtain

d
G [T S 19 ol do S €@+ [VulFes + el Fcs + 1700 + o).

We can similarly derive the estimate (integrating dP,(V3w x Vu) by parts)
d
pn lwtl2 + |Aw|* de S EW 1+ [IVullf + lulzis + [Vollfies + lodllFe-2)-

Interpolatlon on the left-hand side then yields

d
&) S E@A A+ [[Vult Wire—s + @152 + V0Ol F7es + lloe ()] 77x—)-
By assumption, we have £(0) = 0 and

k
tS[%pT](HVU( Wie-s + e (D572 + V0@ |1 + 06 () [ 77x-2) < oo,
€lo,

so that € on [0,T] as asserted. O

7. CONTINUITY OF THE FLOW MAP

We now prove that the solutions of the Cauchy problem for depend continuously
on the initial data. As seen in the previous section, the difference u — v of two solutions u
and v satisfies estimates in which one loses a derivative compared the a priori bounds such
as for the solutions u and v themselves. To deal with this problem, we apply the
Bona—Smith argument, which is outlined e.g. in [13] (for the Burgers equation) and in |2]
(for the KdV equation); see also the references therein.

Let T, be the maximal existence time of the solution u with initial data (ug,u1) from
Theorem [I.1] Fix Ty € (0,T},). Take data (vo,v1) as in the theorem satisfying

(7.1) [[(wo, u1) = (vo, v1)l|rscpre2 < R

for some R > 0. (We note that we have to assume ug — vy € L? in order to establish the
a priori estimate for the difference of the solutions as in the Section [6}) We use regularized
data (ud,u$) and (v3,v{) in the sense of Lemma [B.1] E 1| from Append1x Where 0€ (O 5] for
some 6* > 0 depending on N. The corresponding solutions are denoted by u’ and v°. They
satisfy the regularity assertions of part a) of Theorem . for all k > [5]+ 2. It is crucial
that the a priori estimates for u® and v° are uniform in §. We split u — v into

u—v:u—u§+u5—v5+v5—v

and bound each of the differences in H* x H*~2.

In order to estimate u® — u and v® — v, we use the geometric structure (as before in
Section [6). It allows us to fix a (small) parameter § > 0 for which the differences are small
in H* x H*=2. This can be done uniformly for (vp,v;) in a certain ball around (ug,u1).
For fixed ¢, one can then estimate u® — v® employing their extra regularity, but paying the
price of a large constant (arising from the small parameter ¢). We can control this constant,
however, by choosing a small radius R > 0 in .

We start with some preparations concerning the cancellations caused by the geometric
constraints. As in Section [6] we have

N(@®) = N(u) = (Py = Pus )N () + (I = PN (1) = N (u)),
(7.2) (I — P)(u’ —u); = (Pys — Py)ul.

We then calculate (again similar to Section [6)

(7.3) /nvk—z(/\/(ué) ~N()) - V*2(w’ — ), dx

- / (P — Py ) VE 2N ()] - VA2 (0 — )y dor
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+ Z / VI [(Pys — P)]* VEN (1) - VF72(u® — u), dx
li+ly=k—2"R"
11 >0
+ 0> / V(I - P,) x VRN (0) — N(u)] - VF72(u® — u); da
li+lo=k—2/R"
11>0
+ [ VRN (W) =N ()] - (I — P)VF2(u® — u); da.
R’!L
Using integration by parts and ([7.2)), the last term is rewritten as

(7.4) VE2IN (1) = N(w)] - (I — P)VF2(ud — ), dz
R’IL
= > VFSBIN (u®) = N(w)] - V(VI (I = P,) * V2 (0’ — u)y) da
Li+la=k—2 /R"
11>0
- > / VESN (W) — N (w)] - V1 [(Pys — Pu)] % V2 da
ll+112;§€—1 Rm

— | VFBINWO) = N(w)] - (Pys — P)VF1u? da,
Rﬂ,

which is well defined by the higher regularity of u’. Technically this has to be established
by difference quotients as in Appendix [C| however we omit the details here. The advantage
of estimating u® — u is that the bad terms (with respect to the regularity of u)

(7.5) HV’C_Q./\/(U‘S)HL2 and Hvk_lufHLQ

will be bounded by the regularized initial data from Lemma Their norm will grow as
d — 07 in a controlled way. Moreover, when estimating (7.3) and (7.4), these bad terms
only appear in the products

[0 =] e IV 2N @O 2 [I9F72 0 = )]

[0 =l e [V V@) = N ()] 2 [ V571002 e
Here the decay of ||u‘5 — uHLoo as & — 07 will compensate the growth in (7.5). We now
carry out the details in several steps.

Step 1. Since Ty < Ty, we have the bound

sup ([[Vu() ]| gr-s + [[ue(t)|] jo-z) =: C < o0.
t€[0,To)

Lemma [B.T] allows us to fix a parameter &; € (0,*] depending on (ug,u;) such that
(7.6) (Vg ud)|| sy gy < 3C/2

for all § € (0,61]. We let 6 € (0,61] and also R < C/2 in (7.1). Hence

(7.7) 1V 0, v1)ll is gz < [(Vauo, ua) | sy o2 + R < 3C/2,

05 TR Dl e < NTa Dl e s + B2

We define a time T > 0 as in Lemma replacing a(0) there by a multiple of C. We then
combine the uniform a priori bound (4.26)) for the approximate solution to the e-problem

for v on [0, Tp] with (7.7). Likewise one treats u’ and v° using (7.6) and (7.8), respectively.
Following the existence proof in Section |5, we then see that the solutions u J

N [0,Tg]’ U[Oj"o]’ u[o,i"o]7
and v[‘i . exist on [0,Tp]. Proceeding as in Sections and|§|, we further obtain a constant
~ ~ 20 ~

C = C(N,k,Ty) > 0 such that

(7.9) IV ullzrm + el zrm-1 < CUIVu0lFm + llualzm-1),
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2 2 5 2 2

(7.10) VOl [l ggm— < CUV OO gm + [[01][frm-1),
2 2 = 2 2
(7.11) lw = ollgm + llue = vl grm—2 < Cllluo = vollgm + llua = villzm—2)-

on [0,Ty] and for orders m € {2,...,k — 1}. Analogously, u® and v° satisfy the estimates
(7-9) respectively (7.10]), and the differences u — u’®, v —v° and u® — v° fufill (7.11)) with the

same constant C' independent of ¢ € (0,d*]. For the regularized data we can replace here k
by k + 1, deriving

(7.12) 192 [+ s < OV + e )
190 e+ 1o s < CAT s + [0 0)-
Step 2. Estimating and as in Section|§|7 we derive
= e+ e =l a2 ) < C = | o [IV5 2N @) o 942 e = )]
+ Olfu = [V N () =N @) [ ]

O = g+ e = 1 -2)

prd

for some C = C(N, C, C‘) > 0. The nonlinearities are treated as in Sections [4| and @ Using

also , and , we then conclude
d
it
< Cllw =l g O 1V g (e [ ggme) Qe e =+ [l ] ge-2)

+ O lu = gy U IVull s + (V6 s + el s + [lug | zre—s) [[ug]]

= e+ e =)

O = [+ e = a-2)
< Cfluo =l s + llue = [ )@ + [ V5| i + st o)

= [ + [l = e -2)

on [0, TO}. Gronwall’s inequality and Lemma thus yield
. 5112 5112
sup  ([Ju =g + [Jue = wd[0-)
te[0,7o]
T
< ¢
Vo
as 6 — 01, In view of our a priori bounds, we can estimate v —v° in the same way. Here we
have to split the initial values, obtaining

(lfwo = w3l s + lr =l s ) + C o — e+ [l = [ 2) = 0(1)

sup ([[o =[5 + Jve = vf |l ez )
t€[0,To]

0

< 2 o =l e+ llor = w8 ga-o) + COllleo = g + o = 4 le-2)

< 2 (o = wdll g + s = ]+ OClluo — 3 + [fer = e )

Q Q
~ SR8

t

0

+ —=(luo = voll gre—s + llus — vill ga—a + [Jud = vd|| s + [Jud — 02| yus)

5

+ C(lluo — voll 3 + llus — v1][Fpecz + [Jud — UgHZk + JJud - ”(15”?%—2)'

Lemma now implies that

—~

sup ([Jo =[5 + o =22
tE[O,To]
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CT,
< 2o =l s + =)+ CCo = e+ s =)
CTOR+CR2

V5

On the regularized level, we use the coarse estimate
C -
sup ([[u® = |+ [l? = [pge-s ) < = To(llo§ e + [lof = )
te[0,To] NZ)
Oy = o8 gn + N = o[ )
C’TO

——R+CR*.
\/3
Since u — v =u — u® + u® — v® +v% — v, it follows
2 2 C’TO
(713) Sup~ (Hu - UHHk + Hut - Ut”Hk—?) < T(HUO - Ug”Hk,l + ||U1 - U{Hkas)
te]0,To] 1)

O o = [+ r = 02)

C’TO

ﬁ

Now take n € (0,6/2]jnd r1 € (0,n]. We first fix § = §; = d1(r1) € (0,6}] and then
choose Ry = R1(d1) € (0,C/2] such that for all R € (0, R;] we have

— R+ CR?.

(7.14) sup  ([lu—vll5 + lJue — vell3ee ) <71 <.
t€[0,To]

In the above reasoning we now replace (ug,u1) with corresponding solution u by data
(tip, 11) with solution @ that satisfy the same assumptions as (vg,v1). The function @ thus
fulfills the same a priori estimates as v and also (7.14]). Moreover, we assume that

(7.15) || (ti0, @) — (vo, v1)|| grexcr—2 < R

for some radius R > 0. We can then repeat the above arguments replacing v by 4. The
resultmg regularization parameter 61 depends on 4, and thus also the upper bound Ry =
R1(51) for the radii in . For given 0 < 71 < 1), we infer

(7.16) sup  ([|& = ollzpe + |8 — vell -z ) < 71 <
t€[0,To]
provided that 0 < R < Ry in (7.15).

Step 3. In the case Ty > T, the proof is complete. Otherwise we repeat the same argument
starting from

(g, uf") = (u(To), u(Tp))  and  (v§”,0{") = (u(Tp), ve(Tp)).
Observe that - 7.14)) yields

H (Voit, o H <n+ H(Vu(()l)7u§1))H <3C/2.

HkE—1x Hk—2 HkEk—1x Hk—2

For a sufficiently small 65 € (0,6*] and all 6 € (0, 5], we derive
1 1 1 1 —
Vs @D, e| L <20

as in and (| - Based on these bounds we can repeat the arguments of Steps 1 and
2 on the interval [To,mm{QTo,To}] =: J1. However we have to replace the bound
involving R by (|7 which yields

(1)

1
(s, ul™y = @8, o) ke prr—2 < 71
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Let r5 € (0,7]. Lemma[B.1] allows us to fix a parameter § = d> = d2(r2) € (0, %] such that
CTy,, @ 1 1 1
5 (16 = @) a4 g = (6 )

1 1 1 1
+ O (lul = @S e + ul — @§)2 | gas) < 72/4.
As in (7.13) we then obtain

CT,
sup ([lu— vlli,;c + [Juy — vt”i]k—z) <At /A+ 2+ COr2 <y <y
t

€Jy \/g

if we choose r1, and hence R, small enough.
Again we can argue in the same way for 4 instead of u, replacing r;, 6; and R by #;, J;
and R. For given 0 < 75 < 1), we thus obtain

sup ( ||ufv\|ilk + || fvt||§1k_2) <iofd+To/4+ Or1 +CT% <7<
t

cJ, \/g

if 7, and R are small enough.

Step 4. 3 B

The previous step can be repeated m times until m7Ty > Tp. We set Ry = R(C/2) (with
n = C/2) and use the resulting radius R = R(#) for the contunuity at @, concluding the
proof of the continuous dependence and thus of Theorem [1.1

APPENDIX A. DERIVATIVES OF THE NONLINEARITY

In this section we assume u, v : R" x[0, 7] — R” are smooth maps. The calculations hold
if u and v are sufficiently regular to apply the Leibniz formula (e.g. with weak derivatives
in L?). Lemma and the Leibniz formula imply the following substitution rule.

Lemma A.1. Letl € N. Then we have
VN (W) = J1 + Jo + Js,
where the terms J1, Ja, and Js are of the form (with k;;m; € Ny)
Ji=3 AP (VM ke V) [V V2 VR VR Ry 4 W g Rty
()
with (%) : 0 <m <1, E?Zl ki=1—m, j=min{l,m},...,m, Zizlmk =m—j;
Jo =Y dITEP, (V™ sk x V) [V e VR Ty s VR 2y
(*)
with (%) : 0 <m <1, Zle ki=1—m, j=min{l,m},...,m, Zi:lmk =m—j;
Js = Z A S VAL R TR VAL R T) ] A VA VIS VAR TR VA R T VAR
(*)
with (%) : 0 <m <1, Z?zlki =1l—m, j=min{l,m},...,m, Zizlmk =m-—j.

The following lemmata are used to prove the existence of a fixed point in Section [3] and
the uniqueness result in Section [6]

Lemma A.2. Let m € N, k € Ny, and w =u —v. For m > 2 we have
(A1)

Vm(dkPu —dka) = Z Z (dj+kPu _dj+ka)(vm1+1u,.”7ij+1“)

J=lmi+-+mi=m—j

+> YT AP (v, Vet v )

j=2mi+---+mi=m—j
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m
+ Z Z AR P, (VM Ty, ety e tly, L WMty

J=2mi+---+mij=m—j

+Y N @R (vt vty Ly,

j=2mi+---+mi=m—j
and form =1

(A.2) v(d*P, —d*P,) = (d"P, — d"P,)(Vu) + d" P,(Vw).
Proof. The result follows from subtracting the expansion in Lemma for d* P,
v™(d*P,) = Z Z dHEP (V™ Ty %k VT L),
J=1mi+-+mi=m—j

from the same expansion of V" (d*P,). Then subsequently adding and subtracting the
intermediate terms in the formula above gives the result. (|

Corollary A.3. Let m € N, k € Ny, and w = u — v. Then we have
V™ [(dP, — dPy)(u - up + Vu* Vu + Viu x Vu)]
= Y (TP, = TP (VT L VT ) (VR x VR,
()

+ Vit 2y 4 VR 2y 4 URH3y & Vh2y)
+ 3 @RV, Ve L V) (VR « VR,
(%x)
n Vk1+2u % Vk2+2u + Vk1+3u* vk2u>

+ 3 AP (VL Ty, VL) (VR « TR,
(%)
+ VRH2 5 TR 42y 3y 4 TF2y),
where (%) : j=1,...,mand mi+---+mj+ki+ky =m—j,and (¥x) : j =2,...,mand m; +
.-~ 4+m; + ki + ka = m — j. Likewise we have
V™ [(d*P, — &*P,)(Vu* Vu* Vu)]
= (@R, — dRP,) (VT L V) (VR e VR TRy
(*)

+ Z A SN AUV VAL R TR VAR T 1 VAR TR VARV vACE)
(%)

+ Z dH2p,(vmitly, L Wity YmatLy) (VL TR Ly TRt 2y)
(%)
where (%) : j = 1,...,m and my + ---+mj + ki + ka + ks = m — j, and (xx) : j =
2,...,mand my +---+m; + ki + ko + k3 = m — j. Further
V™ [(d®P, — d*P,)(Vux Vux Vux Vu)

= Z(dj+3Pu SRS A TR VAL TN VAR TAT A vASRE TS vACR TR VAR RS VAT T)
(%)

+ Z AP, (VM VM2l V) (VR Ty R Ty s TR Ly o RaT L)
(%)
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+ Z AP, (VM Wty Ly ) (VR Ly s TR Ly e TRt Ly ko TRy
(%)

where we sum over (%) :j=1,....mand mq +---+mj+ ki +ka+ks+ks=m—7, (%)
j:2,...,mandm1+-~~+mj+k1+k2+k3+k4:m—j.

Also, the case m = 1 is similar.

Proof. The assertions are consequences of the Leibniz rule and Lemma O

Corollary A.4. We have for m € N, m > 2 and w = u — v that
V(N (u) = N(v))
is a linear combination of terms of the form
(TP, — 7P (V™ T, L V) (VR « VR4,
4 VRIF2y 4 Whet2y g wRiE8y o kg,
AP (VM vty V™ L) (VR V2,

4 VFrF2 5 WF2 T2y 4 RT3y a T2y,

(2P, — &2 P,) (VT H . V) (VR g VR Ly 5 TH T2y

AP (VM Vet py o VT ) (VR Ty R Ly ko TR T2y,

(3P, — &P P,) (VT H L V) (VR g o Ry 5 TRy o Rty

AP, (VM vty VT ) (VR Ty R Ty RS Ly« WRTLY) and

AP, (vt V) (VR x V2 Ry 4 VR 20 5 VR2 T2
+ VAW VRl 4 VT30« VE2w) b€ {u, v},

dj+2Pv(Vm1+1v, o vmj+1v)(vk1+1w * vkz+1h1 * vk3+2h2

+ VI by« VR g« Vs H20),

AP, (V™M Ty, L VML) (VR Ly VR s VRSt gy s TR ),

where j, ki1, ko, k3, k4, m1,...m; and H, hq,..., hj—1 € {u,v} are as above in Corollary
Also, we have a similar (but simpler) statement for m = 1.

Proof. We write, according to the definition of () in (L.3)),
N(u) = N(v) = (dP, — dP,)(us - ug + Vux V2u + V3u % Vu)
+ (d?P, — d*P,)(Vu * Vu* V?u) + (d* P, — d*P,)(Vux Vux Vu* Vu)
+ dPy(wy - ug + vy - wy + Vw x Vu + Vo Vw + V3w « Vu + V30 % V)
+ d?Py(Vw x Vu * VZu + Vo x Vw x V2u 4+ Vo« Vo « V)
+ d® Py (Vw x Vu * Vux Vu + Vo« Vw « Vu* Vu
+ Vo * Vo Vw * Vu + Vo * Vo Vo x V).

Then, we use Corollary for the first three terms in the sum above. For the latter three,
we use Lemma 2.1l and the Leibniz rule. O
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Let € € (0,1). We recall from the definition
Ne(u) = N (u) — ed® P, (us, Vu, Vu) — £2d P, (Vug, Vu) — ed Py (ug, Au).
Lemma A.5. For m € Ny the derivative V™(N;(u)) compared to V™(N (u)) contains the
additional terms
AP, (V™ Ty s ok VL) (VR gy« VF2 20 - VR Ly, « VR ), and
A2 P, (V™M Ty o ox VL) (VR gy VR Ty % VRt Ly
with j,my,...,mj, ky, ks, k3 similarly to Lemma .

Further V™(N(u))—V™(N:(v)) compared to V™ (N (u))—V™(N (v)) contains additional
terms of the form

)

(TP, — dTTEP) (V™ iy, . VM) (VR gy 5 VR T2 - R Ly, x WR2 Ly
dTP, (V™M VT Ry VT ) (VR VR Ry 4 TRy, VR ),
(dTT2P, — d7T2P,) (V™ Ty, . V™) (VR gy 5 VR Ty 5 Whe Ty

AP, (Vi T, Vet VT R ) (VR x VR Ly VR L) and

AP (V™M y, L VT ) (VR VR T2 4 R Ly, « VR
+ VA R VR 2y 4 VR, 5« VR Ty b€ {u, v},

dTEP,(VM Ty, VT ) (VR w, « VR Ry« VT Ry
+ VL (b)) x VR Ry x VEs ),
with w =u—wv and j,my,...,mj, ki, ko, ks, by, ..., hj_1 similarly to Corollary[A.4)

The implicit constants may depend on ¢ here.

APPENDIX B. APPROXIMATION OF THE INITIAL DATA

In this section we construct certain approximations of initial data in order to conclude
continuous dependence of the solution on the initial data. As in the previous sections, take
functions ug, u; : R = RY with ug € N, u; € Ty, N a.e. on R", and

(Vug,up) € H* 1 (R"™) x HF2(R™).
for some k > | %] + 2 with £ € N.
Lemma B.1. Let the functions (ug,u1) be as above. Then there is a number §* = §*(N) > 0

such that for & € (0,0%] there exist maps u,ud € C°(R™, R¥) such that u,uS € H™ for all
meN, u € N and uf € T3 N on R™ which satisfy

(B.1) uy —ud € L?  and Huo - ugHLz < Cyd,
(B.2) ||(Vug,u6) - (Vuo,u1)||Hk,2><Hk,3 =o(V0) as & — 0",
(B.3) ||(Vug,u5) — (vuo’ul)Hkalekﬁ =o(l) asd—0",

1

for a constant Cy = CO(HPpHcg AIVuoll gr—r s [|ut || gr—2) > 0. Further let (vo,v1) be as above
with ug — vg € HE(R™) and

[[(uo, u1) = (vo, V1)l gy i < R
for some R > 0. Then for § € (0,5*] we have

1
< Co(1+ RM—,

(B.5) H(va,vf 7

)HH"xH’“*1
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(B'G) H(ug,U({) - (Ugavlls)HHkak—z < 00(1 + Rk) ”(anul) - (U07vl)||Hkak—2 .

Proof. We choose the caloric extension for regularization, i.e., we consider 1 *ug and 7s * uq

where
|z|2

ns(x) = (4n6)"2e 15, §>0, z€R",

and T(8)f = ns * f is the heat semigroup. Since u; € CP(R™) and uy € CZ(R"™) by
assumption, the convolution is well defined for ug and u;. Moreover, ;s * ug tends to ug and
ns * u1 to up uniformly as § — 07, as well as

V(ns * uo) — Vug in HF-1(R™), ns *up — uy in HF72(R™) asd — 0.
The uniform convergence yields
(B.7) dist(ug * ns(x), N) < |ug * ns(z) — ug(x)] — 0 as 0 — 0%

uniformly in z € R™. Hence, if § > 0 is small enough we can define

ud = m(ug*ns)  and  uf = Py, (U * 15).

Recall that 7 is the nearest point map and that Py, (u1 * n5) € TugN by definition of the
projector P and ug. Especially we have

|u(x) — ug * ns ()| = dist(ug * ns(x), N) < |uo(z) — ug * ns(z)|,
[ug(2) — uo ()| < 2lug(x) — uo * 15 ()|
for x € R™. We further note that uf and u$ are smooth maps and that we have the uniform
convergence
ud — o, u§ — u
as § — 0% by construction of uj (and the mean value theorem for ug). Assertion

follows from

1 /9
7/ (Aug) * ns ds
3 Jo

S [1Auoll 2
L2

o7 o = w0} =

by Young’s inequality for the convolution. Since Vud = Py, (Vo) *1s), we further have
to treat the terms

Pysns (Vo) % 15) — Vg = Pyugans (Vo) * 15 — Vug) + (Pugsns — Puo) Vo,
PUO*H& (ul * 775) —ur = Puo*ms (ul *7s — ul) + (Puo*ﬂé - Puo)ul'

We start by estimating (by means of the mean value theorem for P)

[ Pugns (Vo) * 15) = Vo[ o < [ Puguns (Vo) ¥ ns = Vo) L2 + [|(Pugens — Pug) Vo]l 2

<5 (0<1> [ Vaoll o ) ,
LOO

where (ug * 15 — ug) — Aug uniformly as § — 07 since ug € CZ(R™). Similarly, employing
Lemmas 2.1] 2:2] and [A22] as before, we see
Hvk_2(Puo*ns((Vu0) * 775) - VUO)HLQ

S S I P T(Tu0) 15 = T+ 9" P = Pr) - 9]
l1+la=k—2

1
g(uo *1)5 — Uo)

S (1 Vol + [1(Vt0) % 15| Fru—2) [|(Vt0) % 15 — Vo[ i
_ k _
+ 8 [V o 2 167 (o % s — o)
<o(Ve)  as §— 0t
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Here we also use |7, Prop. 2.2.4]. Interpolation and an analogous argument for u{ in H*=3
then allows us to conclude (B.2). Assertion (B.3]) is shown in the same way, with o(1) instead

of 0(v/) in the upper bound. For (B.4), we compute
Hvk(Puo*na ((vuo) * 775))HL2

S D IV (Pagens) - (V2 g 5 ) | o+ (| Pagens V (V0 505)| 2

l1+lo=k
11 >0

k
S A+ 1Vuollgge-s) [Vuoll gras + || Pugens V(VFu0 5 05)]| 2

as before. The last term is bounded via
1
HPuo*név(VkUO * 775)HLZ 5 H(vku()) * V(U(S)H[p 5 % HVUOHH’V*1

again by Young’s inequality. Similarly, the term V*~'u{ is estimated in L?(R™). The above
reasoning also shows (B.5)) if we choose the constant Cy > 0 suitably. In order to prove
7 similarly as above we compute
|ud — 03| > < lIms * (o — vo)ll 2 S lluo — voll 2 -
by the mean value theorem and Young’s inequality. Writing
Pugsns (Vo) #15) = Poguns (Vo) * 15)
= Puo*%‘((VUO) * 15 — (VUO) * 775) + (Puo*na - on*ns)((VUO) * 775)»
we deduce
V5 (Pagsns (Vo) % 15) = Pogrns (Vo) +115)) | 2
N Z Hvll(Puo*ns) ’ VZQ((VUO) x 15 — (Vo) * 775)HL2
l1+1lo=k—1
+ Z Hvll(Puo*ns _PU0*7]<S) ’ (VZTHUO) *nd“Lz
Li4la=k—1
k
< (U4 [ Vo gge—s + Vool i) [ Vo = Vool s + [V 00| luo — voll
E
S (4 Vo frues + RF) Vo — Vool s + || VF00] [} 1uo — voll g
< (L [ Vol + B5) Vo — Vool s

The claim then follows by interpolation and a proper choice of Cy > 0. Finally the
estimate for

u(1$ - Utls = Puguns (U1 * 15 — v1 % 05) + (Pugsns — Poguns) (V1 % 15)

works similarly. O

APPENDIX C. ESTABLISHING THE IDENTITY ([5.4)

For f,g € H'(R"), he Rand i € {1,...,n} we set

L) = 3 o+ ) — f(2).

Observe that Dj(fg)(xz) = (D} f)(x)g(z + e;h) + f(x)(D}g)(z). Since we only use the
product rule integrated over x € R™ and g(- + he;) — g strongly in H* as h — 0, we drop
the h-dependence in g(- + e;h) in the following calculation.

Let u be the solution of (|L.3]) obtained in Section [5} We compute
1d ke 2 okl 112 C N
52 (1D w3 + | DLV lff, ) = /R DV (1= PN (w)) - D V*Pu de

k—3
=> | Di(V'(I =P« V¥ N (u) - DLV, da
1=1/R"
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+ [ Dj(I-P,)V*3N(u)-DjV*3u,de+ | DLV 3N (u)- (I — P,)DyV*3u, dx

R™ R™

_Z U = P)* VF37IN(u)) - D VF 30, da

Rn

Di(I — PV 3N (u) - DyV* 3wy de + | Di(VF 3N (u) - (I — P,)DyVF3uy) do
R‘n R’!L

+/ VE=3N (u) - Dy (D (I — P,)VF3u,) da

+Z/ VESBN (u) - (DL)2(VHI — P,) * V37 ) da ::/ T} (u) dz,

n

where the second identity follows from (I — P,)u; = 0. For a fixed time ¢t € [0,7T,,), the
regularity of u yields the limit

lim dm—z I — P)* V37N (u)) - V20, uy da

h—0 ]R"
- / AP, (0g,u, VEB3N (1)) - VF20,,us da

- / VEN (W) - B, (AP0, 0, VFPuy)) da
+Z / VAN (u) - 92, (V1 = Py) + V¥ luy) da

_. / T (u(t)) da.
Here we also used that
A D (V*3N (u) - (I — P,)DiV*3uy)de =0 as h—0
by Gauss’ Theorem. Estimating as in Section [d, we derive

/ T(u(t) de

for t € [0,T] and T' < T}y, In the limit A — 0 it follows

k
S SEPT](1+ Va8l + el 7e-2) (Va8 31 + ()] 7).
s€|0,

V520l + |

— // d.’EdS + Hvk 381{”1“[]2 + Hvk 18@1u0HL2

by dominated convergence. The right-hand side is continuous in ¢, and hence the highest
derivatives VFu,, VF=2u : [0,7T,,) — L? are continuous, since we already know their weak
continuity. Finally, summing over i = 1,...,n and estimating T%(u) as in Section {4 we
conclude the blow-up criterion from for the solution w.
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