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INVERSE PROBLEMS FOR
ABSTRACT EVOLUTION EQUATIONS II:
HIGHER ORDER DIFFERENTIABILITY FOR VISCOELASTICITY

ANDREAS KIRSCH AND ANDREAS RIEDER

ABSTRACT. In this follow-up of [Inverse Problems 32 (2016) 085001] we generalize our
previous abstract results so that they can be applied to the viscoelastic wave equation
which serves as a forward model for full waveform inversion (FWI) in seismic imaging
including dispersion and attenuation. FWI is the nonlinear inverse problem of identifying
parameter functions of the viscoelastic wave equation from measurements of the reflected
wave field. Here we rigorously derive rather explicit analytic expressions for the Fréchet
derivative and its adjoint (adjoint state method) of the underlying parameter-to-solution
map. These quantities enter crucially Newton-like gradient decent solvers for FWI.
Moreover, we provide the second Fréchet derivative and a related adjoint as ingredients
to second-degree solvers.

1. INTRODUCTION

Full waveform inversion (FWTI) is the leading-edge technique in geophysical exploration
using the full information content (amplitude and phase) of the seismic recordings to
reconstruct the parameters in the underlying wave propagation model, see, e.g, [6, 13].
Waves propagating in realistic material encounter dispersion and attenuation which have
to be taken into account by a viscoelastic model. There are several of these models
described in the literature, see [6, Chap. 5] for an overview and references and see [16,
Chap. 2] for how these models are related to each other. The model we consider here is
the viscoelastic wave equation in the velocity stress formulation based on the generalized
standard linear solid rheology, see (2) below.

In [10] we provided an abstract framework for the nonlinear inverse problem of FWI
which applies to the elastic but not directly to the viscoelastic wave equation. The present
paper is driven by the wish to slightly adjust our abstract framework such that it finally
fits to the viscoelastic equation. So we are indeed able to give analytic expressions for the
Fréchet derivative and its adjoint of the full waveform forward operator ® which maps
the parameters of the viscoelatic model (density, wave speeds, scaling factors) to the wave

field.
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Moreover, we present the second Fréchet derivative of ® which is needed for Newton-
like solvers of second degree, see, e.g., [8]. Second-degree methods are of interest for FWI
to mitigate an effect known as ‘cross-talk’ or ‘parameter trade-oft’. These terms refer to
a coupling phenomenon: for some parameter combinations, the update of one parameter
value affects the other parameter values, see, e.g., [5] for a numerical demonstration.

For the reader’s convenience we now sketch our contribution in the context of second-
degree methods. Assume for the time being that ® incorporates the measurement process
and let y be the measurements (seismograms). Then, FWI entails the solution of

o(p) =y

for the parameter vector p. The second-degree iteration of Hettlich and Rundell [8] starts
with a guess po and updates the current iterate py by

(1a) Pi+1 = Pk + Sk
where s; is a regularized solution to
1
(1b) ' (px)s + 5@/'(Pk)[hk, s| = yr — ®(px)-
The above needed value for h;, is obtained by solving the Newton equation
(1c) ®'(pr)h = yr — (px)-

The two linear systems which determine s are typically solved by iterative regularization
schemes like the Landweber or the conjugate gradient iterations. Their implementation
requires not only the evaluation of the first and second derivatives but also of the adjoint
operators. For all these objects we give explicit representations in a functional analytic
framework.

We need to emphasize that this equation-based approach to FWI differs slightly from
the usual optimization-based methods in geophysics where a misfit functional J is min-
imized by Newton-like techniques. Here the second derivative ("Hessian’) of J is needed
which is related to ®” in the following (formal) way: Let J(p) = 1|y — ®(p)||* (]| - || is a
Hilbert space norm for the ease presentation). Then,

J"(p)[P1, P2] = (H(p)P1. P2) with H(p)p = ¢'(p)"®(p)p — ¢"(p)" [P |(y — ©(p)).

Our paper is organized as follows. In the next section we introduce the viscoelastic
model in its original formulation for three spatial dimensions. After a transformation of
the state variables we arrive at the version which we investigate in an abstract framework.
This is done in Section 3 where we will rely on [10]. Then, we return to the concrete
viscoelastic model and validate all required properties to apply the abstract results to
the full waveform forward operator ® (Section 4). Our results cannot directly be applied
to the viscoelastic model in two spatial dimensions. Since our first numerical test will
doubtlessly be performed in the 2D setting we present the corresponding results in an
appendix.

Zeltmann [16] also considered a viscoelastic model using techniques akin to ours. In
principle, first order differentiability of ® could have been obtained from his results as
well. However, this is an involved task indeed as his setting includes further and different
parameters. Moreover, our main objective was to validate second order differentiablity.
We therefore generalized our clear framework from [10] and the first order result is thus
merely a by-product.
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Finally we would like to mention that there are rather generic and formal derivations
of the second derivative in the geophysics literature, see [6, Chap. 9.3] and [7].

2. VISCOELASTICITY

The viscoelastic wave equation in the velocity stress formulation based on the gener-
alized standard linear solid (GSLS) rheology reads: In a Lipschitz domain D C R? we
determine the velocity field v: [0,T] x D — R3, the stress tensor o: [0, T] x D — R3X3

sym
and memory tensors 7;: [0,7] x D — R332, 1 =1,..., L, from the first-order system
(2a) poyv =dive +f in |0, T[xD,
(2b) O = C((1+ L7s)po, (14 L7p)mo) —|—an in [0, T[xD,
(2¢)  —To00im; = C(L7spio, LTpmo) €(v) + 1y, l =1,...,L, in]0,T[xD.

Here, f denotes the external volume force density and p is the mass density. The linear
maps C'(m, p) for m,p € R are defined as

(3) C(m,p): R¥? — R C(m,p)M = 2mM + (p — 2m) tr(M)I,

with T € R3*® being the identity matrix and tr(M) denotes the trace of M € R3*3.
Further,

e(v) = %[(vxv)T VY]

is the linearized strain rate. In formulation (2) two independent GSLS are used to describe
the propagation of pressure and shear waves (P- and S-waves). The parameters 1o and 7
denote the relaxed P- and S-wave modulus, respectively. Further, 7 and 7g are scaling
factors for the relaxed moduli. They have been introduced for the first time by [1] and
are now widely used to quantify attenuation and phase velocity dispersion in viscoelastic
media, see e.g. [6, 14].

Wave propagation in viscoelastic media is frequency-dependent over a bounded fre-
quency band with center frequency wy. Within this band the Q-factor, which is the
rate of the full energy over the dissipated energy, remains nearly constant. This fact is
used to determine the stress relaxation times 7,,; > 0 by a least-squares approach [2, 3]
where up to L = 5 relaxation mechanisms may be required. Now we obtain the following
frequency-dependent phase velocities of P- and S-waves:

L
o Ho . wO a'l
4 v = —(1+7mpa) and v 1+ 75a) with a = a(w —
@) b=+ ma) =214 rsa) ) =D e
Full waveform inversion (FWI) in seismic imaging entails the inverse problem of recon-
structing the five spatially dependent parameters (p, vs, 7s, vp, 7p) from wave field mea-
surements.
Using the transformation

Vv Vv
L
o O+ D Te M

o1 | = —To,1M1

oL —To,LT1
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discovered and explored by Zeltmann [16] we reformulate (2) equivalently into

L
1 1
(5a) v = - div <Zal) b of in )0, T[x D,
P —o P
(5b) oo = C(po,m0) (V) in |0, T[xD,
1
(5¢) oo = C(LTsuo, LTpﬂ'O) e(v) — —oy, l=1,...,L, in |0, T[xD.
To,l
Let X = L?(D,R%) x L*(D,R¥:3)'*L. For suitable' w = (w, 4o, ..., 9) € X we define
the operators A, B, and () mapping into X by
1w 0
div L P
(ZZ*O ¢Z) C(NO,WO)T#O 0
e(w) 1 1
(6) Aw = — _ , BT w = L C(7spo, To70) 1 L Qu=| 1t
e(w) . 1
L C(spo, Tp0) Y1 Yo

With these operators the system (5) can be rewritten as
Bu'(t) + Au(t) + BQu(t) = f(t)

where u = (v, 09,...,0) and f = (£f,0,...,0).
Please note: The five parameters to be reconstructed by FWI enter only the operator B
via, see (4),
2 2
(7) PUp P s

= d = .
o 1+ mpa and - fo 1+ 15

3. ABSTRACT FRAMEWORK

We consider an abstract evolution equation in a Hilbert space X of the form
(8) Bu/(t) + Au(t) + BQu(t) = f(t), t€]0,T[, u(0)= uy,
under the following general hypotheses: T' > 0, ug € X,
B belongs to the Banach space £*(X) = {J € L(X) : J* = J} and satisfies
(Bz,z)x = (x, Bx)x > B||z||% for some 8 > 0 and for all z € X,

A: D(A) € X — X is a maximal monotone operator: (Az,z)x >0 for all z € X
and I + A: D(A) — X is onto ([ is the identity),
Q€ L(X), and f € L*([0,T], X).
Later we will show that the three operators from (6) are well defined and satisfy our
general hypotheses in a precise mathematical setting.
In [10] we explored (8) with @ = 0. Existence and regularity results of this paper apply
correspondingly. Let us be more precise: equation (8) can be transformed equivalently in
u'(t) + (BT A+ Qu(t) = BT f(t), t€]0.T[ u(0)=uo,

where B~'A with D(B~*A) = D(A) generates a contraction semigroup on (X, (-, -)g) with
weighted inner product (-, -) g := (B-, -) x where the induced norm ||-|| 5 is equivalent to the

A rigorous mathematical formulation will be given in Section 4 below.
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original norm on X. Further, B~'A + @ is the infinitesimal generator of a Cjy-semigroup
{S(t)}tzo with

1S®)]l5 < exp(|Q] 57),
see, e.g., Theorem 3.1.1 of [12]. Thus, (8) has a unique mild/weak solution in C([0, 7, X)
given by

u(t) = S(t)uo +/0 S(t—s)B~'f(s)ds

On the basis of the above comments, both Theorems 2.4 and 2.6 of [10] carry over to (8)
when we replace f by B! f and compensate the use of || - || x by an additional constant
depending on || B, ||B7], |@Q||, and T. Thus, we have the continuous dependence of u
on the data:

(9) lulleqorx) < lluollx + 1F 1|z qomx)”

as well as the following regularity result which has been shown in [10, Theorem 2.6] for
Q = 0 under more general assumptions on f and uy.

Theorem 3.1. For some k € N, let f € W*'(]0,T[, X) with f©(0)=0,¢=0,...,k—1
(note that f© is continuous). Let B € D(F) and let u be the unique mild solution of (8)
with ug = 0. Then u € C*([0,T], X) N C*1([0,T],D(A)) and

(10) ||U||€k([0,T],X) N HfHW’C’l(}O,T[,X)

where the constant depends on T, Q, ||B||, and || B™'||.

3.1. Abstract parameter-to-solution map. We define the following parameter-to-
solution map related to (8):

(11) F:D(F)C L"(X)—€([0,T],X), B u,
where

D(F) ={B € £7(X): f-lz[} < (Br,2)x < Bsllzll5}
for given 0 < f_ < B4 < .

Transferring the techniques of proof of [10, Theorem 3.6] straightforwardly to F' yields
the following result.

Theorem 3.2. Let T >0, f € WY (]0,T[, X), and ug € D(A). Then, the mild solution
of (8) is a classical solution, i.e., uw € C*([0,T],X) N C([0,T],D(A)), and F is Fréchet
differentiable at B € int(D(F)) with F'(B)H =u, H € £*(X), whereu € €([0,T],X) is
the mild solution of

(12) Bu'(t) + Au(t) + BQu(t) = —H(u'(t) + Qu(t)), t €]0,T[, w(0) =0.

The representation of the adjoint of the Fréchet derivative carries over as well, see [10,
Theorem 3.8].

Theorem 3.3. Under the notation and assumptions of Theorem 3.2 we have
P / (H(/(0) + Quit)), w(t)) ydt, g€ I2(0,T], X), H € £°(X),

where w € C([0,T], X) is the mild solution of the adjoint evolution equation
(13) Buw'(t) — A*w(t) — Q*Bw(t) = g(t), t €]0,T[, w(T)=0.

2A < B indicates the existence of a generic constant ¢ > 0 such that A < ¢ B.



6 ANDREAS KIRSCH AND ANDREAS RIEDER
Remark 3.4. Setting w(t) = w(T —t) and g(t) = g(T —t) we rewrite (13) as initial
value problem

Bw'(t) + A*w(t) + Q*Bw(t) = —g(t), t €]0,T[, w(0)=0,

which is of the same structure as our original equation (8) since A* is mazximal monotone
as well. Further, in our concrete setting of the viscoelastic wave equation we have A* =
—A (see the next section) so that basically the same numerical solver can be used for the
state and the adjoint state equation.

This remark applies also to the situation of Theorem 4.8 below.

Next we investigate second order differentiability of F.

Theorem 3.5. Let f € W(]0,T[,X), up = 0, and f(0) = f'(0) = f”(0) = 0. Then,
F is twice Fréchet differentiable at B € int(D(F)) with F"(B)[Hy, Hy] =T, H; € £L*(X),
i =1,2, where u € C([0,T], X) is the mild (in fact the classical) solution of

(14) BR'(t) + AT(t) + BQR(t) = —H, (@ (1) + Qu(t)), w(0) = 0.

Here, u € C2([0,T], X)NECY[0,T],D(A)) is the classical solution of (12) with H replaced
by H2 J

(15) Bu'(t) + Au(t) + BQu(t) = —H(u/'(t) + Qu(t)), u(0)=0
Further, u € €3([0,T], X) N €%([0,T],D(A)) solves (8).
Proof. We need to show that
vy PGB+ H)Hy = F(B)H = F/(B)Hy. ooy o,
Hael* (X) [ H 1| o) Hallex)
Set w:= F'(B + Hy)H, which is well defined for H; sufficiently small. We have
Bu' + (A+ BQ)u = —Hy(u' + Qu),
(B+ H)u'+ (A+ (B+ H)Q)u = —Hy(u' + Qu),
Bu'+ (A+ BQ)u = —H (' + Qu).
Then, @ —u and v := u — U — u satisfy
(16) Bu—u)+ (A+ BQ)(u—1u)=—H(d + Qu)

and

Bv' 4+ (A+ BQ)v = —H; (i —w)' + Q(u — 1)),
respectively, with homogeneous initial conditions. Using the continuous dependence of v
on the right hand side, see (9), we get
(17) [olleqo,r1.x) S Hallecx) 1 = Tllerom,x)-

Now we apply the regularity estimate (10) repeatedly for k = 1 to w— @ in (16), then for
k =2 to w and finally for £ = 3 to u:

| —llero.r,x) S 1 H1llcoollllexqor,x) S H| x| Hzll e x)llwllesgo,r1,x)
S H el Hallex) HfHWSm (10,7, X)-
Substituting the latter bound into (17) yields

1 14— T — | eqo,7, x) <
sup
| Hille(x) Hoes(x) [ Ha|le(x)

||H1||L(X)||f||W3’°°(]O,T[,X)
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which finishes the proof. U

Remark 3.6. In seismic exploration, where (8) is the viscoacoustic or viscoelastic wave
equation, we can assume the environment to be at rest before firing the source. In other
words, the assumptions on ug and f from the above theorem are justified.

The mindful reader might have noticed an unbalanced increase of the smoothness
assumptions on f and wuy from Theorem 3.2 (f € Wh') to Theorem 3.5 (f € W?31)
compared to the increase of smoothness of F: two additional differentiation orders for
f gain only one order for F'. This is because in (17) we need convergence of ||[u —
Ullerory,x) — 0 as Hy — 0 uniformly in Hy. At least we get F' € €', that is, [ is
uniformly Lipschitz continuous.

Theorem 3.7. Under the assumptions of Theorem 3.5 we have that’

)
|F"(B) — F"(B )||L2 e (x),e(0,1,x) S 1B — B”L(X)
uniformly in int(D(F')). The constant in the above estimate only depends on f_, By, T,
Q, and f.

Proof. For H; € L*(X), i = 1,2, we estimate ||[T — U||e(o,r],x) where © = F"(B +
dB)[Hy, Hy|, w = F"(B)[Hy, Hy). From (14) we get
B@'—u") 4+ (A+BQ)(v—u)=—-H,(v' —u'+ Qv —71u)) —iB(® + Q)

where @ is the solution of (15) and T solves (15) with B replaced by B + 6B and u by v,
the latter being the solution of (8) with B + 0B instead of B and v(0) = 0. As before,
by the continuous dependence on the right hand side,

(18) 17 —lleqorx) S 1Hilleeo T — @llero,ry,x) + 10BlLecoylllero,r,x)
where the involved constant only depends on §_, 8., T, and ). All constants in this
proof, which are not explicitly given, only depend on these four quantities.
Further, by applying (10) again repeatedly for k = 1, k = 2, and k = 3, we obtain
(19) ©llerqory,x) S N llecolPlleqo.rx) S 1HillecollHalleox v]lesqor,x)
< e | Ballecoll flws =qgorx-

In view of (18) it remains to investigate |[v —||e1 (0,1, x). We can use the same approach
as above: Set d =7 — 7 and d = v — u. Then, d(0) =0 and

Bd' + (A+ BQ)d = —Hy(d' + Qd) — 6B(T' + Q).
By (10) as well as the second and third estimate from (19),
Idllexo.r1,x) S I1Hollex) (Idllezqomx) + 16Blleco | fllws.qorrx)-
We are left with estimating ||d||e2(o,7,x). Note that
Bd + (A4 BQ)d = —6B(v' + Qu)
and (10) delivers
ldlez(o,1,x) S N10Bllexyllvllesqory ) S N0Blecxllf lIweeegorx)-
So we found that
[0 = llerpo,m1,x) S IH2llecx) 10Bllecx) Lf [[war oz, x)-

3LQ(V, W) denotes the space of bounded bilinear mappings from V to W.
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Plugging this bound together with (19) into (18) results in

17 — @lleo,7,x)

sup

S I lwsee oo 0Bl e(x
Hy,Ha€L%(X) HHIHL(X)”H2”L(X) ( [X) (X)

and we are done. O

3.2. Local ill-posedness. We recall briefly the concept of local ill-posedness from [9]:
Let ¥: D(¥) C X — Y be a mapping between infinite dimensional normed spaces. Then,
the equation W(-) = y is locally ill-posed at z= € D(¥) if in any neighborhood U of z™
there exists a sequence {&} C U N D(¥) with limg00 || V(&) — ylly = 0 but {&} does
not converge to xz* in X.

Here, we consider (11) as a mapping with the larger image space L?([0,T], X). Theo-
rem 4.1 of [10] applies directly to (8) and (11). The proof only needs a slight and obvious
modification.

Theorem 3.8. Let u be the classical solution of (8) forug € D(A) and f € WH(]0,T], X).
Then the equation F(B) = u is locally ill-posed at any Be D(F) satisfying F(é) =u
if for any r € (0,1] there exists T € (0,7r) and a sequence of bounded, symmetric and
monotone operators Ey: X — X such that B + Ej, € D(F), 7 < ||Ekllexy < 7 for all
keN, and limy_.oo Fyv =0 for allv € X.

4. APPLICATION TO THE VISCOELASTIC WAVE EQUATION

We apply the abstract results to the viscoelastic wave equation in the formulation (5).
The underlying Hilbert space is

X = L2(D R3) X L2(D R3><3)1+L

sym

with inner product

L
<(V,0’0,...,O'L),(W,'I,ZJ(),...,’I,[JL)>X:/ (V-W+ZO’Z I’le) dx
b 1=0

where the colon indicates the Frobenius inner product on R3*3.

To define the domain D(A) of A (6) we split the boundary 0D of the bounded Lipschitz
domain D into disjoint parts 9D = dDpUdDy. Let n be the outer normal vector on
ODy. Then,

D(A) = {(w,wo,. apr) € HY x H(div) Zzpln — 0 on aDN}

with H}, = {v € HY(D,R?) : v = 0 on 0Dp} and H(div) = {o € L?(D, Rg’;ﬁ)HL :
div (Y[, 01) € L*(D,R?), }.*

Lemma 4.1. The operator A as defined in (6) with D(A) C X from above is mazximal
monotone.

Proof. Since

(A(v,00,...,0L),(W,o,..., L)) = /[dw(iao w+e(v): (Zt/)lﬂdx

=0 =0

4The traces ZZL:() on exist in a suitable space, see, e.g., [11].
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we can proceed exactly as in the proof of Lemma 6.1 from [10] to show skew-symmetry
of A. Hence, (Aw,w)x = 0 for all w € D(A).

Next we show that I+ A is onto adapting arguments of [10]. We will be brief therefore.
For (f,g0,...,81) € X we need to find (v,00,...,0) € D(A) satisfying

L
V—diV(ZO’l>:f, o, —¢e(v)=g, [(=0,...,L.
1=0
We multiply the equation on the left by aw € Hj,, integrate over D and use the divergence

theorem to get
L

/D<v.w+<;al> :Vw)dx:/Df.de'

Now we sum up the L + 1 equations on the right, use the relation e(v) : & = Vv : o for
o € R¥3 and arrive at

sym’

/[)(v.w+(L+1)s(v) L e(w))dz :/

D

L
(f-w - Zgl ; VW)d:c for all w € H},.
1=0

This is a standard variational problem (cf. displacement ansatz in elasticity) admitting a
unique solution v € H},.
Set o, = g; + €(v) and follow [10] to verify (v, oy,...,0) € D(A). O

Next we show that B € £(X) from (6) is well defined with the required properties. As
in [10] we consider C of (3) as a mapping from D(C) = {(m,p) e R*:m <m <m, p <
p <P} into Aut(R%%3)” with constants 0 < m < T and 0 < p < P such that 3p > 4m."
For (m,p) € D(C),

(20) C(m,p) :=C(m,p)~' =C (ﬁ, ﬁ) :

Moreover, C'(m,p)M : N = M : C(m, p)N and
min{2m, 3p — 4m} M : M < C'(m, p)M : M < max{2m, 3p — 4m} M : M,

see, e.g., [16, Lemma 50]. Provided p(z) > 0, (po(z), m0()), (7s(2)po(z), 7o (2)m0(x)) €
D(C) for almost all z € D we conclude that

w N pPwW

Yo C (10, m0) o
(21) Bl Y1 | = +C(rspo, pm0) 21

Y %5(7—SN077—P7"0)¢L

yielding a uniformly positive B € £*(X) in the sense of our general hypotheses from the
beginning of Section 3. Hence, the general hypotheses are satisfied for the viscoelastic
wave equation.

This is the space of linear maps from RS’;H? into itself (space of automorphisms).

5Note that in [10] and [16] different C’s are used.
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4.1. Full waveform forward operator. In FWI the five parameters (p, vs, 7s, vp, Tp)
are of interest. Therefore we will define a parameter-to-solution map ® which takes these
parameters as arguments. A physically meaningful domain of definition for ® is

D<(I)) = {<p7 USu7-87UP7TP) € LOO<D)5 * Pmin S p() S Pmax; UP min S UP(') S UP max
US, min S 'US(') S US,max; TP,min S TP(') S TP max; 7S,min S TS(') S TS, max &-€. n D}
with suitable positive bounds 0 < ppin < pPmax < 00, etc.

In view of (4) we set

2
and  fimax 1= Pmax U3 max

max -— 7, _
1+ TS, max Q¥ 1+ TS, min¥

. Prmin Ué,min
Hmin ‘= 7———
which are induced lower and upper bounds for pg. We set the bounds mp;, and 7.
for my accordingly by replacing s by p. Next we define p, p, m, and m such that
(o, o), (Tspto, Tpmo) as functions of (p, vp, vs, 7p, 7s) € D(P) are in D(C). Indeed,
P = Mmin Min{1, 7p min} and P := Mpax Max{L, 7p max }
with m and m set correspondingly will do the job. The restriction 3p > 4m translates
into
4 Pmax 1 + TP max®¥ max{l, 7_S,max} v%’,min
3 Pmin 1+ TS, min¥ min{LTP,min} vg,max
which reflects in a way the physical fact that pressure waves propagate considerably faster
than shear waves.
For f € WY(]0,T[, L*(D,R3)) and uy = (v(0),00(0),...,0.(0)) € D(A) the full
waveform forward operator
P: D<q)) - LOO<D)5 — L2<[07 T]? X)7 (/)7 Us, Ts, Up, TP) = (V7 00y, O-L)a

is well defined where (v,o0,...,0) is the unique classical solution of (5) with initial
value uyg.
To benefit from our abstract results we factorize ® = F'o V' where F'is as in (11) and

V: D((I)) C LOO(D)5 — L*(X)v (P> vSa7_57vPa7-P) — Ba
where B is defined in (21) via (7).

Remark 4.2. Note that the image of V is in D(F') by an appropriate choice of B_ and
ﬁJr in terms Of Pmin; Pmax; E; ﬁ; m, and m.

The inverse problem of FWI in the viscoelastic regime is locally ill-posed. This can be
proved using Theorem 3.8, compare the proof of Theorem 6.7 of [10]. We give a direct
proof though.

Theorem 4.3. The inverse problem ®(-) = (v,0q,...,0) is locally ill-posed at any
interior point of p = (p, vs, Ts,vp, Tp) € D(P).

Proof. Fix a point £ € D and define balls K,, = {y € R3: |y — £| < 6/n} with a § > 0 so
small that K,, C D for all n € N. Let x,, be the indicator function of K,,. Further, for any
r > 0 such that p, := p+7(Xns Xn> Xn, Xns Xn) € D(®) we have that ||p, — P~y =T,
that is, p,, does not converge to p. However, lim,,_, || ®(pn) — ®(P)||22(j0,r7,x) = 0 as we
demonstrate now.

Let u, = ®(p,) and u = ®(p). Then, d,, = u,, — u satisfies

V(pn)d,, + Ady, + V(pa)Qdy, = (V(p) — V(pa)) (v + Qu),  d,(0) =0.
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By the continuous dependence of d,, on the data, see (9), we obtain
Hdn”LQ([O,T},X) SJ H (V(p) - V<pn)) (u/ + Qu> HLl([O,T},X)

where the constant is independent of n, see Remark 4.2. Next one shows lim,, . || (V(p) —
V(pn))v|lx = 0 for any v € X using p, — p pointwise a.e. in D as n — oo and the
dominated convergence theorem. Since ||V (p,)||x <1 for all n € N a further application
of the dominated convergence theorem with respect to the time domain yields

T
/0 1(V(p) = V(pa)) (u/(£) + Quit)) || ot “22 0
and finishes the proof. -

4.2. First order differentiability. To derive the first order Fréchet derivative of ® we

provide the Fréchet derivative of V. Its formulation needs the derivative of C' which we
take from [10, Lemma 6.3]:

2 &) | 5| = ~Clon.p) o €. 0 Clonp
for (m,p) € int(D(C)) and (m, p) € R2.

Let p = (p7'US)TS7'UP77—P) - lnt(D((b)) a,]f]d ﬁ = (b\)@\S)?Sa@\P,?P) c Loo(D)E) Then,
V'(p)p € £*(X) is given by

pPwW
. ~ fi
y ~ 50 (u o + 30 [ e
(0D Po e 1 -ﬁ_
(23) V'(p)p N —LL;QC(TSu,TPTF)’I,bl +,C (Tspt, TPTT) ~ P
Yy
. ~ m
_LL;20<TS,M7 TPTF)/(/)L + LLpC,(TS,ua TPﬂ-) = lpL
where = po/p, ™ = my/p, see (7), and
~ 2ug . avd - 2up . avd
24 — — = —
(24) P T ™ (1+ 750x)? e (1+ mpa)? ™
N 275 Vs . v% - - 2TpUp 11123 -
25 = =
( ) a 1—|—Tsoé Us + <1+Tsoé)2 s T

1+ mpa vp (1+ mpar)? "

Theorem 4.4. Under the assumptions made in this section the full waveform forward
operator ® is Fréchet differentiable at any interior point p = (p,vs, Ts,vp, Tp) of D(P):
For p = (p,vs,7s,0p,7p) € L®(D)® we have ®(p)p = u where u = (V,00,...,071) €
C([0,T], X) with w(0) = 0 is the mild solution of

L
(26a) p OV = div (ZEZ) — POy,

(26b) 970 = Clpo, mo)e(V) + (9 C(p,m) + p C(11, 7)) e(v),
(266) &El =L C(Tgﬂo, Tpﬂ'o)E(V)
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1

— T—El + (L C(rsp, mpm) + pC (1, 7))e(v), 1=1,..
o,L

'7L7

where (v, 00, ...,07) is the classical solution of (5).

Proof. We apply Theorem 3.2 to ®'(p)p = F'(V(p))V'(p)p and get the system

p@tV 7 0
i | (A0S :
~ _ e(v ~ _
Lip C(rspt, Tpm) 0o | = ( ) _ LplTa’l C(rsp, 7o) 1
- ' B e(Vv) ~ _
LLPC(TS;L,TPW)atO'L LP71'o-,L C(TSM,TPW)O'L
[ atV 0 i
atO'O 0
—V'(p)p || O | + Ta% o
oo, ﬁ oL) |
which is equivalent to (26) in view of (5b), (5c), (22), and (23). O

Theorem 4.5. The assumptions are as in Theorem 4.4. Then, the adjoint ®'(p)* €
L(L2<[07 T]7 X)7 (LOO<D)5>/) at P = <p7 Vs, Tg, Up, TP) € D<(I)> is given by
fOT (Opv-w — S€(V) (g + ¥))dt

% fOT (—e(v): (py+X)+mtr(Xv) divv)de
* T T T :

d'(p)'g = 1+(1175 fo (e(v): %, + mtr(XF,) div v)dt c L'(D)®

s T v 3

—3—P Jy tr(X¥) divvde
u fOT tr(X7%) divvdt

1+aTP

forg = (g_1,80,...,81) € L2([0,T],L2(D,R3) X LQ(D,RS;S)HL) where v is the first
component of the solution of (5), ¥ = Zle p;, and

v o 1 + Tp
37 —4p o 3rpm — 4Tgp

Y

o Tp 1
Yo =5 ¥, ¥y, = ——X
51 3m — 4 Pot 75(37pm — dTgu) 52 = 4 Po TS
_ o 1
P 3n —4p o 3rpm — 4Tgp

and w = (W, ¢y, ...,¢.) € C([0,T], X) uniquely solves

L
(27a) oW = %div (; gol> + % g 1,

(27b) dipy = C(Moa 7T0) (g(W) =+ g0)7
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1
(27¢) Ovpr = LC (s, Tpmo) (e(W) + g1) + — % l=1,...,L,

o,l
with w(T) = 0.

Remark 4.6. Please note that ®'(p)* actually maps into L*(D)> which is a subspace of
(L>=(D)®). This remark applies also to the adjoints considered in Theorems 4.9 and 4.10
below.

Proof of Theorem 4.5. Using A* = —A (skew-symmetry), @Q* = @), and QB = BQ we
convince ourselves that (27) is the concrete version of the abstract equation (13). Further,
by Theorem 3.3,

<q)l(p>*g7ﬁ>(Loo(D)5)/><Loo(D)5 = <F/(V<p>>*g7 Vl<p)ﬁ>ﬁ(x)/XL(X)

(25) = [ (V@B + Quin).w)

where u = (v, 09,...,07) is the classical solution of (5). We are now going to evaluate
the above integrand suppressing its t-dependence. Using (23) and (22) we find for p =
(ﬁ) 637 ?Sa i}\Pa ?P) that

(29) <V/(p)ﬁ(u'+Qu),w)X:/ (PO -w+So+ S +---+Sp)da

D
with -
D~ 1= ~ =\
S = [ = 5300 Moy — Ol O RIC (1 M) -
and, for [ =1,...,L,

S; = [— I%ZG'(TS;L, TpT) (@Uz + ﬂ)

To,l

1 ~ N o

— L—C(Tsu,TpW)C(,u, 7)C(Tspt, TpT) <0t0'l + —l>] L Q-
14 To,l

In view of (5b) we may write

~ ~

So=| - §s<v> ~ Cu,m)C([, 7)) g = —Le(v) 1 @y — Cii, F)e(v) : Clu m)ep,

and, similarly by (5¢) ,
5= ~Le(v) 1~ O Ae(v) : Clrprom)ey. 1=1.... L

Next, using (20), we compute

C(7LPe(v) : Clum)ep,

~ A~ 1 2u—m
= (2 —2p)divvI) : (— — t I
(30) (2fe(v) + (7 — 20) div v I) (QM #0+ 3 — g 0 )
= ﬁ(ls(v) L — — T divy tr(goo)> + T div v tr(e)
It p(3m — 4p) 3m—Ap
yielding

5
So = —;E(V) 2
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_ 1 T , T .
%—M(“E€<V)3¢o+‘ﬁz;;:jﬂg<hVth@P&>'—3W__4M(hV"U(wo)
Analogously,
P
Sy = —;E(V) ®i
. 1 TpT . i .
_ Ly divv ¢ ) — L divv ().
+ ,u( TS;L€<V> Pt Tsp(3mpm — 4TS L) v tr(en) 3rpm — 4TS v tr(e)

Next we group the terms in the sum (29) belonging to the five components of p. To this
end we replace ji, 7, fi, and 7 by their respective expressions from (24) and (25) which
we slightly rewrite introducing p and 7

(31) ~ 2p ap ~ 2T am
=g — ———7 T="—7p— T
a vs 0 1+ D v l+Tpa
215 [P . 2TpT T
32 pu— p—
(32) a vg US+1+7'SaTS’ a Up P 1+TPOZT

T ans (s(v) X5, + (X5 ,) div V)
2w

— vp — tr(X") di i
Up o r(X)divv + 7p TTam

tr(25) div v} de

which ends the proof. O

4.3. Second order differentiability. The second derivative of ® is given by

(33)  @"(p)[P1.Po] = F'(V(P))[V'(P)P1, V'(P)Ps] + F'(V(p))V"(P) [Py Po

using the chain and product rules, see, e.g., [15, Section 4.3]. In a first step we need to
find V”. Differentiating (23) at p = (p, vs, 75, vp, 7p) € int(D(P)) we obtain

w

o
(39 V')B.Bil| . | =

Y
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0
Yal Wal ﬁ D2 (Y 'E o ﬁ ﬁ
(f’pg C(u, ) — 2C" () [%j — 50, ) {%j +5C"(p, ) [%j {%j )%
(382005070~ £ rnom) [ — s 2]
+4,C" (7spt, TR ) lgj l;j )¢1

A~

<le;)32 C(rsp, p) — LP—;QC’(TS,M, TPT) {%J — Lp—;QC/(TS,u, TpT) {
+ 50 o)

12
o
2

for ﬁz = (//)\i,@\s,i,?s,mﬁp,z’ﬂ/'},z’) € LOO<D)5, 1= 1, 2. Further, /ji, %i, and //Ii, %z are defined
as in (24) and (25), respectively, plugging in the respective components of p;. We close
the expression for V" by

o~

) )| ] 2] = Clmp) 0 O, o Clom, ) o Cla, ) 0 Cln )

+ C(m,p) o C(ifia, z) © C(m, p) o (i, 1) o C(m, p).
The proof of (35) requires straightforward but lengthy calculations.

Theorem 4.7. Let £ be in W31(]0, T[, L*(D,R?)) with £(0) = £'(0) = £”(0) = 0. Further,
let ug = 0 and adopt the assumptions and notation made in this section.

Then, the full waveform forward operator ® is twice Fréchet differentiable at any in-
terior point p = (p,vs, 7s,vp, 7p) of D(®): For p, = (pi, Vs, Ts4, Vpi, Tri) € L¥(D)?,
i = 1,2, we have " (p)[Py, Po) = v+u wherev = (W, g, ..., %) andt = (v, T, ...,07)
are both in C([0,T], X). They are uniquely determined as mild solutions of the following
viscoelastic equations.

The equations for u are u(0) = 0 and

L
p &% = div (Za) 507,

1=0
0io = C (0, 0)e(¥) + (o1 C(p, ) + p C(fin, 1) )e(¥),
0y, = L C (7o, Tpmo)e(V)

1 — ~ ~ A~ _
- 7_— o+ (;01 LC(TSﬂa Tp7T) + pc(ula 71-1))5(‘/)7 l= ]-7 R L7
o,L

with ¥ being the first component of the solution of (26) where the parameters p have to
be replaced by p,.
The equations for v are v(0) = 0 and

pOw = div (iwl),
=0
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0o = Clp, mo)e(w) = (P Cum) + HC(hT) + PO, 7o)

+ pC i, 7)1, m)C iz, 72) + pC(Jia, 7)1, m) i, ) ) £(v),

1 P11 PN P
Onpy = L C(Tspo, Tpmo)e(W) — T—z P — L(%C(T&M,T}Dﬂ') + p1C (g, 1) + p2C(Hz, T2)

+ pC i, 71)C(mspa, 7o) Cfia, 72) + pC (72, 7)Crspt, 7o) C (i, 7)) e(v),
l=1,...,L, where v is the first component of the solution of (5).
Proof. By (33), ®"(p)[Py, Py) = v + u where

vi=F'V(P)V'(p)P1.Ps] and w:=F"(V(p))[V'(p)p:. V'(p)Psl-
We apply Theorems 3.2 and 3.5 to specify the equations for v and w, respectively.
We start with @ which is determined by two coupled equations of type (26). These
equations only differ in the plugged in parameters and right hand sides.
Theorem 3.2 yields the following system for v:

pOyw ' . 0
L C(p, )0y div (Xiso ) 0
LLp 5(7_&“7 TPW)8t¢1 = E(W) — Lpi—o-,l C(TSM’ 7_Pﬂ-),l’bl
- : e(w) ~
LLp C(Tsluv TPW)at’I#L Lpﬂl-mL C(TSM’ 7_P7T) wL
i &gv 0 i
3,50'0 0

~ o~ 1
_ V”(p)[pl, p2] at0'1 + o1 01

1
oo, — 0

To,L .

Applying (5b), (5¢), (22), (34), and (35) leads to the equations for v. O

4.4. An additional adjoint. As explained in the introduction, second-degree Newton
solvers might resolve the cross-talk effect. In our group we plan to implement a variant
of the second-degree Newton method (1) for viscolesatic FWI. There one needs to solve
a linear system containing the operator ®”(p)[p, -], see (1b). Our regularization method
of choice is the conjugate gradient iteration which needs the adjoint operator. In this
subsection we derive an explicit expression for it.

Recall from (33) that

(36) " (p)[p. -] = F"(V(p)[V'(p)D, V'(P) -]+ F'(V(P)V"(P) [P, -
In a first step we therefore consider F”(B)[H,|: L*(X) — L*([0,T],X) for B € D(F)
and H € L*(X).

Theorem 4.8. Under the assumptions of Theorem 3.5 we have

[F"(B)[H,, |*g) Hy = / (HL@ (1) + Qult)), w(t)) i
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for g € L*([0,T],X), H; € £*(X), i = 1,2, where u = F'(B)H, is the solution of (15).
Further, w € C([0,T], X) is the mild solution of the adjoint evolution equation

Buw'(t) — A*w(t) — Q*Bw(t) = g(t), t €]0,T[, w(T)=0.

Proof. Since [F"(B)[H1,*g|Ha = (W, g)12(0,7],x) Where T € C'([0,T], X) solves (14) we
argue similar to the proof of Theorem 3.8 in [10]: Assume g € WH1(]0,T[, X). Then,
w € CL([0,T], X). Using the selfadjointness of B and integration by parts we compute

T T

@, 9) 12(10,17,x) = /0 (u(t), g(t)) xdt = /0 (u(t), Bw'(t) — A"w(t) — Q" Bw(t))xdt
- /0 BT () + AT(E) + BOR(), w(t) xdt

- / CHL (@ (8) + Qu(t)), w(£)) xdt.

The assertion follows since W1(]0, T[, X) is dense in L*(]0, T[, X). O
Theorem 4.9. Under the assumptions of Theorem 4.7 we have that the adjoint

PV )V ()5, V' (p) - € £(L2(0,T], X), ((D)?))
at p = (p,vs, 75, vp, 7p) € D(®) and p = (p, Vs, Ts, Up, Tp) € L>=(D)® is given by

foT (07w — 2 e(¥) : (¢ + X))dt
vQ_S foT (—e®): (po +2) +7tr(TY) dive)dt
F'(V(p))[V'(P)B, V'(P)I'g = | 1rams Jo (€(¥): Tho+ 7 tx(B5,) dive)dt |} (D)’
- [ te(2v) div v dt

- T - P
m‘fo tr(zp) divv di

for g = (8-1,80.---,82) € L*([0,T], L*(D,R?) x L*(D,RE3)L) where ¥ is the first
component of the solution of (26), w = (W, @y, ..., @) solves (27) with w(T) =0, and
Y= Zle @1 The quantities 3°, 3375 |, X5, and X} are exactly those from Theorem 4.5.

Proof. The second order Fréchet derivative is symmetric, see, e.g, [4, (8.12.2)], that is,
(E"(Ve)V' ()P V'(p) I'g)Bs = (F"(V(P)[V'(P)P2. '8) V' (P)D:
T
= [ @m0 + Qun).w(n) car

where we applied the previous theorem to obtain the second equality. Note that here
u=F'(V(p))V'(p)p; solves (26) with p = p; and w solves (27). We are now exactly in
the situation of the proof of Theorem 4.5, see (28), and proceed accordingly. U

Theorem 4.10. Under the assumptions of Theorem 4.7 we have that the adjoint
F'(V(e)V" ()P, " € £(L*([0,T], X), (L=(D)))



18 ANDREAS KIRSCH AND ANDREAS RIEDER
at p = (p,vs, s, vp, 7p) € D(®) and p = (p, Vs, Ts, Up, Tp) € L=(D)5 is given b
p Py Vs, Ts, Vp, Tp p P> Vs, Ts, Up, Tp 9 Y

; fo (e(v) : X7 + tr(X) divv)de
vs fo (e(v T51 + tr(YY,) divv)dt
POV OB, e = | 1o Ji (e ) Y, 4 (T divv)dt | € L(D)?
2 [y tr(p) divvde
tr(Y7%) divvdt

1+aTP fO

for g = (g-1.80.....81) € L*([0,T], L*(D,R?) x L*(D,R¥3)E) where v is the first
component of the solution of (5). Let w = (W, @y, ..., @) solve (27) with w(T) = 0 and

set =31 . Then,

TSUT — TpT

p p . H P —
rp:(—+—>so +(—+—>2, T = Po + x,
P\ T T s 2 uBr—4p) T Tsu(3rpm — dTsp)
L .
vo = (P By (24 By
T\ p T

3um? — 47t p 0w
Tso = (2 g MQ -t )‘PO
p(3m —4p)*  p 3w —dp

3urim? —AwTin®  p TpT )2
Tsp(3Tpm — dgp)?  p 3Tpm — AT

~ o 2A
T§1 — —Oz(g + _'u>900 + (L + _'u>2’
’ pow TSP TE

rr _&<2 3um® —dmp* p o )80
5 p(3m—Ap)®  p 3w —dp) "
n ( 3urim? — AnTip? P TpT )E
T2u(3rpm — Arsp)?  p Ts(3TpT — ATsp)

+ (2

i1 3rm2 — Afip?
Pl Sy
p3m—4p  pA(3m —4p)?
. (ﬁ 1 ;))/7?7'1237T2 —ApTip? )E
p 3Tpm — ATsp Té?(3Tpm — ATgp)?

P 1 3rm? — Ay
T = —a(” 2 )
PN s a7 e —app )P
N (E 1 P ;))%T]%WQ — AT’ )
p 3Tpm — ATs1 Tp? (3Tpm — 4Tgp)?

with the abbreviations i, 7, and ji, © from (31) and (32) which depend on p.
Proof. Since

(F'(V(p)V"(p)[B1,]"8) Py = / (V"(p)[By, Bo) (' (1) + Qu(t)), w(t)) x dt.
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we are basically again in the situation of the proof of Theorem 4.5. Using (34) we find
that

(V" (0)[By. Bl (' + Qu), w) x /D(SO+51+---+SL)dx

with
Pifs ~ P 2] B [
So=| —C —=C - =C .
0 < p3 (:u7 7T) pg (:uv 7T) |:7T2:| pg (:u7 7T) |:7T1:|
+ _C//< , ) {ljl [M} )ato'o %o
1] |72
and
S = </21—5§5(Tsu77p7r) — Lp—p126”<7'slu77'pﬂ') [gj o C'(Ts,u,rpﬂ) ;j
+ —C’ (TSMuTPﬂ') {“1} {/M} ) <8t0'l + —) P, 1=1,...,L.
ust 9 al

First we simplify Sy. By (5b),

1~

;C(Ma T)0o 1 o = €(V) : po.
Further, in view of (30),

1~ [
— =C"(p,m) {,u] 0o : @0
p U

1 d
:m(;ew P B dp)

Next, using (5b) and (35) we get

: i
divv tr(gao)) e

%@I(M,ﬂ) M M 8i00 = oo = O, m)C (i, T1)e(v) = C(fia, 72)C (1, 7) 00

+ C(p, m)C iz, T)e(v) « C (7, 71)C (1, ) po.

We have B L
~ ~ ~ H2 HTr2 — 2T ..
C C == ———— divvlI
(p, ™)C(fiz, T2)e(V) p e(v) + (3 — ) ivv
and B L
~ ~ N\ H1 U — [T
C C =— — I
(p1, 1) C (1, ™) po PRI m— r(¢o)
so that
1

—C" (1, ) {ﬁl} [;j 0o 1 o =2 M:f e(v) : ¢o

fia(3p1m? — AT p?) + T (3Tmim? — 4pp?)

237 — Ap)? div v tr(ep).

+2
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Substituting above auxiliary results into the expression for Sy yields
(1 I 1 m T )
So = P2 (— + —)s(v) Do + —( - ) div v tr(¢po)
p: o pp p\3m —4p p(3m — 4p)

- p1 20 3 —4mp® P )
+M2<<&+ﬂ>€(v)3¢o+<2 15y T P1 4 ))dwv tr(900)>

pp 4 p2(3m —4p)2  p (3w —4p
~ (P 1 3mm? — A’y .
+ 7o (— +2 ) div v tr(¢g).
p (3T —4p) p?(3m — 4p)?
Similar computations for [ = 1,..., L based on (5¢) result in

S, = ﬁz((ﬁ—; 4 11 >€<V) L+ 1( T B TP )) divv tr(ipl)>

p PTS I p \31pm — A1 T (3T — 4TSN

—~ D 20
+,u2(( P1 + 2'u12>s(v):gol

pTSIL  TEH

SthTam? — AmTint Py T )
5 2P 5 5= — ) divv tr(¢;)
7512 (3pm — AT 18) p Tsi(3mpm — 4Tsp)
R -~ 1 3’\ 2,2 'm 2,2
+ 7T2<& +2 IITPW #Tsh ) divv tr(e;).
p Tsp(3mpm — 4Ts 1) 752 (3mpm — 41 p0)?

Next we replace iz, To, and jio, To by their values from (31) and (32), respectively. Finally,
we calculate So + --- + Sp and group the terms belonging to the components of p,. [

+ (2

*

In view of (36) we have now derived an analytic expression for ®”(p)[p,-|* in rather

basic terms.

APPENDIX A. TWO SPATIAL DIMENSIONS

The expressions for the Fréchet derivatives and their adjoints provided in the main part
of this paper cannot directly be applied to the viscoelastic wave equation in two spatial
dimensions. The differences to the 3D case which have to be taken into account are

tr(I) =2 and C(m,p)M = C~(m,p)M = L M + _mop tr(M)I.

2m dm(p —m)
With these ingredients the derivatives and adjoints can be calculated exactly along the
lines presented on the previous pages.
In this appendix we provide 2D versions of Theorems 4.5, 4.9, and 4.10.
Theorem A.1 (2D version of Theorem 4.5).
The only quantities which have to be changed are 3, 3%, and ¥75. With

1 TP
) ISP TN SR y)
2(m — ) Yo 2(Tpm — Tgi)
(@ Tp
> A >
5.1 2(m — ) Pot 27s(Tpm — Top)
« 1
oo % L, - 9w
Po(r — ) o 2(rpm — Tgp)

the statement of Theorem 4.5 can be copied without any further changes.
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Proof. The only difference to the 3D proof concerns the computation of, compare (30),

C(ZL %>€<V> : C(:u7 7T)LPO

= (2fie(v) + (7 — 271) div v 1) : (% 00+

2u—m
Ap(m — p)

m divv tr(cpo)) + m divv tr(ep).

tr(0)T)

at us
=i ev) 0 -
U
Theorem A.2 (2D version of Theorem 4.9).

Theorem 4.9 remains correct for the 2D case when the 2D versions of XY, X5, and X}
from the above theorem are taken.

Theorem A.3 (2D version of Theorem 4.10).
Theorem 4.10 remains correct for the 2D case when the definitions of the Y ’s are replaced

by

~

0 I m T — T TTgl — TpT
= (248t (B4 Bz, 1= TE T4 Ty
P P Tsh 2p(m — p) 27sp(Tpm — Tsp)

o~ ~

0 2n 2
Tg',l - (g + IM)LPO + (B —M>Ea Tg‘ﬂ = KS,LP %o + KS,E Ea

P TsH
P 2 p o, 2u
YT, = — (— —) (— —)2, YT, = —aK Koz 3/7s,
51 a p+ . ®o + Tgp+7§u 5.2 aKg, o+ Kgs X /75

Y, =Kpopo+17pKpsX, Ypr=-aKp,p+Kps,
where

Ko _ 2mpp—pmt—wpt poom
S —

pu(m — p)? p2(m—p)
2TpTTSUI — ATET? — TTAE D TpT
Kss = 5 B v o—
Tsp(TPT — Tspt) p 2(Tpm — Tspt)
p 1 T— [
Kp, =~ + ,
Yop2Ar—p) (7 p)?
p 1 T—Q
Kpz == + :
P 2(rpm — o)  (Tpm — Tsp)?

Proof. We have

Clp, 1)C (fin, 7)e(v) = M2e(v) + B2 7127 giy v 1

1 2p(m — p)
and ~ L
~ o~ N\ H1 U — [T
Cur, m)C(p, m)pg = — o + —— tr(pp) I
(F1, 1) C' (1, 7)o PR (o)
so that

1~ ] [ [ [l
~C"(p, ) [~ } [~ } 9070 o =2 ”152 e(v) : o
P ] |72 2
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. fio(2mpujiy — fnm® — Tp®) + Top® (T — i)
p*(m — p)?
Let Sy and S;, Il =1,..., L, be defined as in the proof of Theorem 4.10. Then,

div v tr(ep).

—~ ﬁl ,171 1 %1M — T .
So = P2 (— + —)s(v) tpo + — —— divv tr(eo)
p* o pu p 2p(m — p)
~ p1 241 2mpupty — 1717T2 - %1,u2 p1 T .
+ f2 <— + —)E(V) fpo + ( - ) div v tr(eo)
G p>(m — p)? p 2u(m — 1)

7 1 +%1—,171

o= e ) Y o)

N m 1 Tty — mpm .
S; = Dy (p_; + -4 )s(v) e SEZTPT ivy tr(epr)
p* o pTsp p 27sp(TPT — Tpu)

N p 20
+ 12 <p1 + M)s(v):gal

prsp - TN
QTpTTS Ul — I TAT: — MTap? Py T di
53 — 5 i — ivv tr(e;)
TSP (TP — Ts L) p 27sp(TpT — Tsp)
~ [ 1 T — [ .
+ | — + divv tr .
2 p 2(mpm — Tsp)  (Tpm — Tsp)? ()
The next steps are as in the proof of Theorem 4.10. U
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