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HETEROGENEOUS MULTISCALE METHOD FOR MAXWELL’S
EQUATIONS∗

MARLIS HOCHBRUCK† , BERNHARD MAIER† , AND CHRISTIAN STOHRER

Abstract. We present a Finite Element Heterogeneous Multiscale Method (FE-HMM) for
time-dependent Maxwell’s equations in first-order formulation in highly oscillatory materials using
Nédélec’s edge elements. Based on a uniform approach for the error analysis of non-conforming space
discretizations [17], we prove an error bound for the semidiscrete scheme. We further present error
bounds for the fully discrete scheme, where we consider time discretization using algebraically stable
Runge–Kutta methods, the Crank–Nicolson method and the leapfrog method. These error bounds
are confirmed by numerical experiments.
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1. Introduction. Our goal is the numerical solution of time-dependent linear
Maxwell’s equations in a highly oscillatory material at reasonable computational cost.
Therefore, we approximate the effective behavior of the electromagnetic field without
resolving the fine scale behavior. This is done using a Finite Element Heterogeneous
Multiscale Method (FE-HMM) introduced in [15]. Such methods are known to be
efficient and offer a good framework for the error analysis for the simulation of ho-
mogenization problems in highly oscillatory media [4]. Highly oscillatory means that
the material parameters, i.e., the magnetic permeability µη and the electric permit-
tivity εη, depend on a characteristic microscopic length η that is assumed to be very
small in comparison to the diameter of the domain Ω. As the material parameters de-
pend on η, the magnetic field Hη and the electric field Eη inherit this dependency on
the microscopic structure of the material, indicated by the superscript η. Accordingly,
we consider the following problem:

(1.1)


Find Hη : [0, T ]→ H(curl,Ω) and Eη : [0, T ]→ H0(curl,Ω), such that

µη(x)∂tH
η(t, x) = − curlEη(t, x),

εη(x)∂tE
η(t, x) = curlHη(t, x)− Jext(t, x),

Hη(0) = H0, Eη(0) = E0.

We will call this set of equations Maxwell’s equations in first order formulation, as
there are only first derivatives in space. To our knowledge, all previously presented
FE-HMMs for Maxwell’s equations were based on the second order formulation, also
known as the curl-curl problem. In [12] and [16], Heterogeneous Multiscale Methods
for time-harmonic Maxwell’s equations in second order formulation are introduced.
An HMM for time-dependent Maxwell’s equations is analyzed in [21]. These meth-
ods have the drawback of introducing new micro problems, whereas the approach
presented in this work is only based on the micro problems already known from FE-
HMMs for elliptic problems [2]. Besides HMM there are only few multiscale methods
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for the time-dependent first order formulation of Maxwell’s equations. In [10], a mul-
tiscale scheme based on an asymptotic expansion has been presented. Recently, this
idea has been adapted to the time-dependent Maxwell-Schrödinger system [11]. In
[24], the multiscale hybrid-mixed method was extended to Maxwell’s equation (1.1).

As our main results, we present error estimates for the fully discrete FE-HMM.
This includes an analysis of the discretization in time with algebraically stable Runge–
Kutta methods, the Crank–Nicolson scheme and the leapfrog scheme. Note that
this was already done for parabolic problems, e.g., the application of the implicit
Euler method is analyzed in [5] and a class of higher order Runge–Kutta methods is
considered in [6].

1.1. Outline. The general setup (1.1) is discussed in Section 2. We further
recap a homogenization result from [28], which basically states that the multiscale
solutions Hη and Eη converge to the solutions Heff and Eeff of the homogenized
equations. These equations, however, use homogenized material parameters whose
computation in general includes the solution of infinitely many elliptic differential
equations. As we introduce space discretization and derive the HMM in Section 3, we
reduce these micro problems to a finite number. We also derive the so-called HMM-
material parameters, as explained in [3]. These parameters allow us to write the HMM
in a form which is equivalent to the homogenized system, which is fundamental for the
error analysis in Section 4. There, we prove a convergence result for the semidiscrete
discretization using tools from [17]. Furthermore, we generalize these convergence
results to the fully discrete case in Section 5, where we consider time discretization
with algebraically stable Runge–Kutta methods of arbitrary high order, the Crank–
Nicolson method and the leapfrog scheme. Finally, we present some numerical results
verifying our theoretical results in Section 6.

1.2. Notation. Let Ω ⊂ R3 be a Lipschitz domain and Y κ(x) = x + (−κ2 ,
κ
2 )3

for κ > 0 and x ∈ Ω. To keep notation simple, we omit the argument if x = 0 and
omit the subscript if κ = 1. For s ∈ N0 we denote by ‖·‖s,Ω the standard norm of the

Sobolev space W s,2(Ω) with L2(Ω) = W 0,2(Ω). Analogously, we denote by ‖·‖s,∞,Ω
the norms of the Sobolev space W s,∞(Ω). By W 1,2

0 (Ω), we denote the space consisting
of all elements of W 1,2(Ω) with vanishing trace on the boundary of Ω. To simplify
the notation, we use the same expressions for the norm of vector- or matrix-valued
Sobolev spaces. We further use the spaces

H(curl,Ω) = {f ∈ L2(Ω)3 | curl f ∈ L2(Ω)3},
H(div,Ω) = {f ∈ L2(Ω)3 | div f ∈ L2(Ω)3},

H(curl2,Ω) = {f ∈ H(curl,Ω) | curl f ∈ H(curl,Ω)},

and H0(curl,Ω), which consists of all functions in H(curl,Ω) with vanishing tangential
trace. Note that this corresponds to the closure of C∞0 (Ω) with respect to the norm of
H(curl,Ω). To indicate that a function space F (Y η) contains only periodic functions,
we write F#(Y η). Finally, we use a generic constant C > 0, which may have different
values on any occurrence.

2. Multiscale model problem and homogenization. We consider Maxwell’s
equations (1.1) for locally periodic material parameters.

Definition 2.1. Let η > 0. A tensor αη : Ω → R3×3 is called locally periodic if
there is a tensor α : Ω× R3 → R3×3, which is Y -periodic in its second argument and
αη(x) = α(x, xη ) holds for almost every x ∈ Ω.
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Furthermore, the magnetic permeability µη and the electric permittivity εη are as-
sumed to be symmetric, uniformly positive definite and uniformly bounded. More
precisely, we assume that µη, εη ∈ L∞(Ω)3×3 and that there are constants λ, Λ > 0,
such that

(2.1) λ|ξ|2 ≤ µη(x)ξ · ξ ≤ Λ|ξ|2 and λ|ξ|2 ≤ εη(x)ξ · ξ ≤ Λ|ξ|2,

for all ξ ∈ R3 and almost every x ∈ Ω, which implies that all materials considered
have a positive refractive index for all η > 0.

From (1.1), we get the following variational multiscale Maxwell’s equation:

(2.2)


Find uη : [0, T ]→ V = H(curl,Ω)×H0(curl,Ω), such that for all ξ ∈ V

mη(∂tu
η(t), ξ) = s(uη(t), ξ) +mη(fη(t), ξ),

uη(0) = u0.

The solution uη = (Hη,Eη) consists of the magnetic field Hη ∈ H(curl,Ω) and the
electric field Eη ∈ H0(curl,Ω). The bilinear forms are given by

mη

((
ψ
ϕ

)
,

(
ψ̃
ϕ̃

))
= (µηψ̃, ψ)0,Ω + (εηϕ̃, ϕ)0,Ω,

s

((
ψ
ϕ

)
,

(
ψ̃
ϕ̃

))
= (curl ψ̃, ϕ)0,Ω − (curlψ, ϕ̃)0,Ω,

for all ψ, ψ̃ ∈ H(curl,Ω) and ϕ, ϕ̃ ∈ H0(curl,Ω). Depending on the given electric cur-
rent Jext ∈ C1(0, T ;H0(curl2,Ω))∩C(0, T ;H(div,Ω)), we further define the function
fη : [0, T ]× Ω→ R6 by

mη

(
fη(t),

(
ψ
ϕ

))
=

((
0

−Jext(t)

)
,

(
ψ
ϕ

))
0,Ω

,

for all ψ ∈ H(curl,Ω) and ϕ ∈ H0(curl,Ω).
For an initial value u0 ∈ V and a fixed η, the wellposedness of this model problem

was proven for example in [18, Prop. 3.5]. In order to consider the corresponding
homogenized problem, the uniform boundedness of the solutions with respect to η
has to be shown additionally.

Proposition 2.2 (cf. [28, Prop. 5.3]). For η > 0 let uη = (Hη,Eη) ∈ V be the
solution of (2.2). The functions Hη, Eη, ∂tH

η, ∂tE
η, curlHη and curlEη are

bounded in L∞(0, T ;L2(Ω)3) independently of η.

Based on this result, the effective Maxwell’s equation can be derived, which models
the behavior of uη in the limit η → 0.

Theorem 2.3 (cf. [28, Thm. 3.2]). For η > 0 let uη ∈ V be the solution of (2.2).
Then

uη ⇀ ueff weakly in L2(0, T ;V ),

where ueff ∈ C1(0, T ;L2(Ω)6) ∩ C(0, T ;V ) is the solution of the following variational
effective Maxwell’s equation:

(2.3)


Find ueff : [0, T ]→ V , such that for all ξ ∈ V
meff(∂tu

eff(t), ξ) = s(ueff(t), ξ) +meff(f eff(t), ξ),

ueff(0) = u0.
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For ψ, ψ̃ ∈ H(curl,Ω) and ϕ, ϕ̃ ∈ H0(curl,Ω) the effective bilinear form meff is given
by

meff

((
ψ
ϕ

)
,

(
ψ̃
ϕ̃

))
=

∫
Ω

µeff(x)ψ̃(x) · ψ(x) + εeff(x)ϕ̃(x) · ϕ(x) dx

with

µeff(x) =
1

|Y η(x)|

∫
Y η(x)

(
I −Dyχµ(x, y)

)T
µ
(
x, yη

)(
I −Dyχµ(x, y)

)
dy,(2.4a)

εeff(x) =
1

|Y η(x)|

∫
Y η(x)

(
I −Dyχε(x, y)

)T
ε
(
x, yη

)(
I −Dyχε(x, y)

)
dy,(2.4b)

for x ∈ Ω, where I is the identity matrix. The unknown functions χµ(x, ·), χε(x, ·) ∈(
W 1,2

# (Y η(x))/R
)3

are the uniquely defined solutions of the local problems∫
Y η(x)

(
I −Dyχµ(x, y)

)T
µ
(
x, yη

)
∇yv(y) dy = 0 ∀v ∈W 1,2

# (Y η(x)),(2.5a) ∫
Y η(x)

(
I −Dyχε(x, y)

)T
ε
(
x, yη

)
∇yv(y) dy = 0 ∀v ∈W 1,2

# (Y η(x)).(2.5b)

The function f eff : [0, T ]× Ω→ R6 is defined by

meff

(
f eff(t),

(
ψ
ϕ

))
=

((
0

−Jext(t)

)
,

(
ψ
ϕ

))
0,Ω

,(2.6)

for all ψ ∈ H(curl,Ω) and ϕ ∈ H0(curl,Ω).

Following ideas of [23, Chapter 1.4] and [9, Chapter 2.3], one can show that the
effective material parameters µeff and εeff are still symmetric, positive definite, and
bounded. Even more, the corresponding bounds remain valid with the same constants
λ and Λ. Therefore, the effective system of Maxwell’s equations is wellposed following
the same arguments as for the multiscale problem (2.2).

Remark 2.4. For further insight into the physical meaning of the effective fields,
we refer to [28]. There, the authors use the concept of two-scale convergence, which
was originally introduced in [27], to characterize the effective fields as local means of
the corresponding two-scale limits. A brief outline of the results can also be found in
[12, Prop. 1, Cor. 2] for second order Maxwell’s equations.

3. Spatial discretization. As for most heterogeneous multiscale methods, two
spatial discretizations are required: a macro discretization of the domain Ω and a
micro discretization of Y η(x) for the micro problems (2.5). In view of the numerical
experiments implemented in deal.II [8], we focus on hexahedral elements. There is
however no principle obstruction to use other finite elements. Let the domain Ω be
partitioned by a shape regular mesh TH consisting of parallelepipeds. The subscript
H denotes the maximum over the edge lengths of all cells K ∈ TH .

We need quadrature formulas with nodes xKj and weights ωKj (j = 1, . . . , JK)
for every element K ∈ TH . Summing over all K ∈ TH yields a quadrature formula
for the whole domain Ω. Let Qi,j,` be the space of polynomials of degree at most
i, j, ` ∈ N in the respective variables. We assume all quadrature formulas to be exact
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for polynomials inQ2`,2`,2`, where ` ∈ N is the order of the finite elements of the macro
discretization introduced in the next section. Hence we have for all p ∈ Q2`,2`,2`

∫
Ω

p(x) dx =
∑
K∈TH

JK∑
j=1

ωKj p(x
K
j ),(3.1)

which means that products of polynomials of degree at most ` in each variable are
integrated exactly.

3.1. Edge elements. For the macro discretization, we use Nédélec’s H(curl,Ω)-
conforming elements of first type for hexahedral elements, which were introduced in
[26]. We first recall some important results for these finite elements. With

Q`N = Q`−1,`,` ×Q`,`−1,` ×Q`,`,`−1,

we denote by

VH(curl, TH) = {vH ∈ H(curl,Ω) | vH |K ∈ Q`N ∀K ∈ TH}(3.2a)

the space of Nédélec’s H(curl,Ω)-conforming elements of first type of order ` ∈ N.
We further write

VH,0(curl, TH) = H0(curl,Ω) ∩ VH(curl, TH).(3.2b)

Nédélec showed that the corresponding interpolation operator satisfies the following
error bound.

Theorem 3.1 (cf. [26, Thm. 6]). Let u ∈W `+1,2(Ω). The interpolation operator
IH : W `+1,2(Ω)→ VH(curl, TH) for Nédélec elements of first type satisfies

‖u− IHu‖H(curl,Ω) ≤ CH
`|u|`+1,Ω,

where |·|`+1,Ω denotes the W `+1,2(Ω)3-seminorm.

3.2. Heterogeneous multiscale method. Our goal is to approximate the so-
lution ueff of the effective Maxwell’s equation (2.3). In order to evaluate the bilinear
form meff exactly, the effective parameters µeff, εeff have to be known. These matrix-
valued functions are given pointwise in terms of the solution of the micro problems
(2.5). As analytic expressions thereof are not available in general, we use an approx-
imated bilinear form instead. This procedure is detailed in the following.

To construct an HMM for Maxwell’s equations, we replace in (2.3) the function
spaces H(curl,Ω) and H0(curl,Ω) with the corresponding discrete counterparts de-
fined in (3.2a) and (3.2b), respectively. Furthermore we use the quadrature formula
(3.1) to approximate the bilinear forms meff and s. This yields the following discrete
effective Maxwell’s equation:

Find ueff
H : [0, T ]→ VH = VH(curl, TH)× VH,0(curl, TH), such that for all ξH ∈ VH

meff
H (∂tu

eff
H (t), ξH) = sH(ueff

H (t), ξH) +meff
H (f eff

H (t), ξH),

ueff
H (0) = u0,H

with an approximation u0,H ∈ VH to the initial values u0 ∈ V . We further use the
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discretized versions of the bilinear forms

meff
H

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
=
∑
K,j

ωKj
(
µeff(xKj )ψ̃H(xKj ) · ψH(xKj )

+ εeff(xKj )ϕ̃H(xKj ) · ϕH(xKj )
)
,

(3.3)

sH

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
=
∑
K,j

ωKj
(
ϕH(xKj ) · curl ψ̃H(xKj )

− ϕ̃H(xKj ) · curlψH(xKj )
)

and the function f eff
H ∈ C(0, T ;VH) defined by

meff
H

(
f eff
H (t),

(
ψH
ϕH

))
=

((
0

−Jext,H(t)

)
,

(
ψH
ϕH

))
0,Ω

,

for all ψH , ψ̃H ∈ VH(curl, TH) and ϕH , ϕ̃H ∈ VH,0(curl, TH), where Jext,H : [0, T ] →
VH(curl, TH) is an approximation to the electric displacement Jext. The next step is
to insert the equations for the effective material parameters (2.4) into meff

H . Therefore,
we define the abbreviations

ψH,χ(x, y) =
(
I −Dyχµ(x, y)

)
ψH(x), ϕH,χ(x, y) =

(
I −Dyχε(x, y)

)
ϕH(x),

ψ̃H,χ(x, y) =
(
I −Dyχµ(x, y)

)
ψ̃H(x), ϕ̃H,χ(x, y) =

(
I −Dyχε(x, y)

)
ϕ̃H(x).

This yields an equivalent representation of the bilinear form (3.3), namely

meff
H

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
=
∑
K,j

ωKj
|Y η(xKj )|

(∫
Y η(xKj )

µ
(
xKj ,

y
η

)
ψ̃H,χ(xKj , y) · ψH,χ(xKj , y) dy

+

∫
Y η(xKj )

ε
(
xKj ,

y
η

)
ϕ̃H,χ(xKj , y) · ϕH,χ(xKj , y) dy

)
.

Based on the local problems (2.5) we introduce elliptic PDEs which uniquely describe

the unknown functions ψH,χ, ϕH,χ, ψ̃H,χ, ϕ̃H,χ. Since all functions can be treated
analogously, the procedure is only presented for ψH,χ. We introduce

ΨH,lin(x, y) = (y − x) · ψH(x) and ΨH,#(x, y) = −ηχµ(x, y) · ψH(x).

It is easy to see that

ΨH(x, y) = ΨH,lin(x, y) + ΨH,#(x, y)

is a potential of ψH,χ, i.e., ∇yΨH = ψH,χ. While ΨH,lin is known explicitly, ΨH,#

depends on the (unknown) solutions χµ of the local micro problem (2.5a). It is easy
to check that ΨH,# is the solution of the following problem:

Find ΨH,#(xKj , ·) ∈W
1,2
# (Y η(xKj ))/R, such that for all v ∈W 1,2

# (Y η(xKj ))∫
Y η(xKj )

µ
(
xKj ,

y
η

)
∇yΨH,#(xKj , y) · ∇yv(y) dy =

−
∫
Y η(xKj )

µ
(
xKj ,

y
η

)
∇yΨH,lin(xKj , y) · ∇yv(y) dy.
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This weak form is already known from HMMs for elliptic problems, see [1].
The final step in the construction of the HMM is the discretization of the micro

problems stated above. To do so, we first introduce for δ ≥ η the sampling domains
Y δ(xKj ), which are used to approximate the effective material parameters. We use

hexahedral Lagrange elements and denote the mesh, which partitions Y δ(xKj ) by Th.
The corresponding discrete function space of piecewise polynomials of degree at most
k ∈ N in each variable is denoted by Sk#(Th) for periodic boundary conditions or

Sk0 (Th) in the case of homogeneous Dirichlet boundary conditions. Note that the use
of periodic boundary conditions is favorable if η is known explicitly, as these are the
natural boundary conditions from (2.5). Nevertheless, we want to emphasize that with
the use of Dirichlet boundary conditions, our scheme is also suitable for applications,
where η is mostly unknown. As our error analysis covers both cases, we use the
notation Sk0/#(Th), whenever the results are independen of the specific choice of the
boundary conditions. Finally, we get the following elliptic HMM micro problems:

(3.4)



Find ΨH,h,#(xKj , ·) ∈ Sk0/#(Th), such that for all vh ∈ Sk0/#(Th)∫
Y δ(xKj )

µ
(
xKj ,

y
η

)
∇yΨH,h,#(xKj , y) · ∇yvh(y) dy =

−
∫
Y δ(xKj )

µ
(
xKj ,

y
η

)
∇yΨH,lin(xKj , y) · ∇yvh(y) dy.

Remark 3.2. Note that the solution of (3.4) with Sk0/#(Th) = Sk#(Th) is only
unique up to an additional constant. Nevertheless, for the sake of presentation, we
will omit the use of quotient spaces here and in the following to treat both boundary
conditions without further differentiation. Also note that our scheme does not rely
on the solution itself, but only its gradient.

By solving these micro problems on every element for all quadrature nodes and
all basis functions, we find an approximation mHMM to meff

H :

mHMM

((
ψ
ϕ

)
,

(
ψ̃
ϕ̃

))
=
∑
K,j

ωKj
|Y δ(xKj )|

(∫
Y δ(xKj )

µ
(
xKj ,

y
η

)
ψ̃H,h(xKj , y) · ψH,h(xKj , y) dy

+

∫
Y δ(xKj )

ε
(
xKj ,

y
η

)
ϕ̃H,h(xKj , y) · ϕH,h(xKj , y) dy

)
,(3.5)

where we use the solutions of the HMM micro problems (3.4) to compute

ψH,h(x, y) = ∇yΨH,lin +∇yΨH,h,#, ϕH,h(x, y) = ∇yΦH,lin +∇yΦH,h,#,

ψ̃H,h(x, y) = ∇yΨ̃H,lin +∇yΨ̃H,h,#, ϕ̃H,h(x, y) = ∇yΦ̃H,lin +∇yΦ̃H,h,#,

for all ψH , ψ̃H ∈ VH(curl, TH) and ϕH , ϕ̃H ∈ VH,0(curl, TH). Together with the
discrete bilinear form sH , we finally derive the HMM for Maxwell’s equation:

(3.6)


Find uHMM

H : [0, T ]→ VH , such that for all ξH ∈ VH
mHMM(∂tu

HMM
H (t), ξH) = sH(uHMM

H (t), ξH) + (fHMM
H (t), ξH)0,Ω,

uHMM
H (0) = u0,H .
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H

Y δ(xKj )

TH

h

δ

xKj
Th

Fig. 3.1. HMM scheme in 2D

The function fHMM
H ∈ C(0, T ;VH) is defined by

mHMM

(
fHMM
H (t),

(
ψH
ϕH

))
=

((
0

−Jext,H(t)

)
,

(
ψH
ϕH

))
0,Ω

,(3.7)

for all ψH ∈ VH(curl, TH) and ϕH ∈ VH,0(curl, TH).
Figure 3.1 shows an overview of the general procedure of heterogeneous multiscale

methods. For every quadrature node (bullets) of the macro mesh TH , there is a micro
cell Y δ (colored in gray), on which the HMM micro problems (3.4) are solved using a
micro mesh Th.

Remark 3.3. As our implementation of the HMM scheme is based on the FE-
library deal.II [8], which supports only hexahedral meshes, we restrict the analysis
to such triangulations. Nevertheless we want to emphasize that the results presented
in this work can be easily extended to tetrahedral meshes using different polynomial
spaces and quadrature formulas. In addition it is also possible to mix the elements,
e.g., one could use tetrahedral elements on the macro scale and hexahedral ones to
solve the micro problems.

3.3. HMM material parameters. As an intermediate step between the in-
troduction of the HMM and the semidiscrete error analysis in the next section, we
follow an idea of [3, Chapter 5.1] to define the so-called HMM material parameters.
Those parameters allow the reformulation of (3.6) into an equivalent differential equa-
tion with a similar structure as (2.3). Although the HMM material parameters are
not used in numerical computations, they are a fundamental tool for the later error
analysis.

A close look at the HMM scheme shows that up to the introduction of the micro
problems in (3.4), we only transformed the bilinear form in an equivalent way. The
idea for the formulation of the HMM parameters is similar, as the continuous local
problems (2.5) are replaced by their discrete counterparts (3.8) in the definition of
the effective parameters (2.4). This results in the following pointwise definitions of
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the HMM material parameters.

µHMM(x) =
1

|Y δ(x)|

∫
Y δ(x)

(
I −Dyχµ,h(x, y)

)T
µ
(
x, yη

)(
I −Dyχµ,h(x, y)

)
dy,

εHMM(x) =
1

|Y δ(x)|

∫
Y δ(x)

(
I −Dyχε,h(x, y)

)T
ε
(
x, yη

)(
I −Dyχε,h(x, y)

)
dy,

where χµ,h(x, ·), χε,h(x, ·) ∈ Sk0/#(Th)
3

are the solutions of the discrete local problems

(3.8)

∫
Y δ(x)

(
I −Dyχµ,h(x, y)

)T
µ
(
x, yη

)
∇yvh(y) dy = 0 ∀vh ∈ Sk0/#(Th),∫

Y δ(x)

(
I −Dyχε,h(x, y)

)T
ε
(
x, yη

)
∇yvh(y) dy = 0 ∀vh ∈ Sk0/#(Th),

for almost every x ∈ Ω. These definitions allow an equivalent reformulation of (3.5)
as

mHMM

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
=
∑
K,j

ωKj
(
µHMM(xKj )ψ̃H(xKj ) · ψH(xKj )

+ εHMM(xKj )ϕ̃H(xKj ) · ϕH(xKj )
)
.

Following an analogous approach as for the effective material parameters, one can
show that the HMM parameters are again symmetric, uniformly positive definite, uni-
formly bounded and satisfy the same bounds as in (2.1). This yields the wellposedness
of the HMM scheme (3.6). For details, we refer to [25, Lem. 6.4 and Thm. 6.6].

As final preparation for the error analysis in the following section, we now present
bounds for the differences between the HMM parameters and the effective parameters.
These bounds are based on the introduction of auxiliary parameters µeff,δ, εeff,δ, which
are defined equivalently to (2.4) (2.5) with Y η(x) and W 1,2

# (Y η(x)) replaced by Y δ(x)

and W 1,2
0/#(Y η(x)), respectively. For the definition of the space W 1,2

0/#(Y η(x)), we use

the same boundary conditions as for Sk0/#(Th).
Based on this definition, we split the differences between the HMM parameters

and the effective parameters at a quadrature node xKj

‖µHMM(xKj )− µeff(xKj )‖F ≤ ‖µ
HMM(xKj )− µeff,δ(xKj )‖F + ‖µeff,δ(xKj )− µeff(xKj )‖F ,

‖εHMM(xKj )− εeff(xKj )‖F ≤ ‖ε
HMM(xKj )− εeff,δ(xKj )‖F + ‖εeff,δ(xKj )− εeff(xKj )‖F

(3.9)

where the first term arises due to the discretization of the local problems, whereas
the second term covers the introduction of the sampling domains and if present the
homogeneous Dirichlet boundary conditions.

For the first term, we present the following bound on the difference of the effective
and the HMM parameters shown in [3, Cor. 5.3].

Lemma 3.4. Let k ∈ N, Sk0/#(Th) be the finite element space used to solve the

micro problems (3.4) and assume that

|χµ|k+1,Y δ(xKj ), |χε|k+1,Y δ(xKj ) ≤ Cη
−k
√
|Y δ(xKj )|(3.10)
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holds for all quadrature nodes xKj of the mesh TH . Then we have the following esti-

mates on all quadrature nodes xKj

sup
K,j
‖µHMM(xKj )− µeff,δ(xKj )‖F ≤ C

(
h
η

)2k
,

sup
K,j
‖εHMM(xKj )− εeff,δ(xKj )‖F ≤ C

(
h
η

)2k(3.11)

with the Frobenius norm ‖·‖F and a constant C > 0 independent of h and η.

As pointed out in [3, Remark 5.1], a sufficient condition for the case k = 1 to show
(3.10) is that the multiscale material parameters are sufficiently smooth on every mesh
element of the macro discretization, i.e.,

µη|K , εη|K ∈W 1,∞(K)3×3, |µη|W 1,∞(K)3×3 , |εη|W 1,∞(K)3×3 ≤ Cη−1,

for all K ∈ TH with C > 0. For the case k > 1 a similar estimate based on higher order
Sobolev spaces depending on the regularity of the multiscale material parameters is
also indicated there.

To bound the second term of (3.9), which is the main contribution to the so-called
modeling error, we cite results from [4, Lem. 4.8, Thm. 4.9].

Lemma 3.5. (a) If the local problems (3.4) are solved with periodic boundary val-
ues, we have δ

η ∈ N

sup
K,j
‖εeff,δ(xKj )− εeff(xKj )‖F = 0

for all K ∈ TH .
(b) If the local problems (3.4) are solved with homoegeneous Dirichlet boundary con-
ditions, we have for δ > η

sup
K,j
‖εeff,δ(xKj )− εeff(xKj )‖F ≤ C

(η
δ

+ δ
)

for all K ∈ TH with a constant C > 0 independent of h and η.

Remark 3.6. Note that our framework is not limited to the discrete micro prob-
lems (3.8) presented above, e.g., one may also use different boundary conditions or
different averaging methods to discretize (2.5). For further discussion of the resulting
discretization errors, we refer to [29]. Another approach is presented in [7], where
the authors suggest the usage of hyperbolic micro problems together with averaging
kernels to improve the bounds for the modeling error.

4. Semidiscrete a priori error analysis. The following error analysis for the
semidiscrete approximation (3.6) to the continuous problem (2.3) is based on the
unified error analysis [17, Thm. 3.3]. Our analysis makes use of the following function
spaces equipped with the corresponding inner products.

X = L2(Ω)6, (ξ, ξ̃)X = meff(ξ, ξ̃),

V = H(curl,Ω)×H0(curl,Ω), (ζ, ζ̃)V = (ζ, ζ̃)H(curl,Ω)2 ,

VH = VH(curl, TH)× VH,0(curl, TH), (ξH , ξ̃H)VH = mHMM(ξH , ξ̃H).

We further introduce the space Z = W `+1,2(Ω)6 equipped with the standard norm.
All these spaces are Hilbert spaces and the norms that are induced by the bilinear
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forms meff and mHMM are equivalent to the standard L2(Ω)6-norm. Hence for all
ξ ∈ X and all ξH ∈ VH , we have

√
λ‖ξ‖0,Ω ≤‖ξ‖X ≤

√
Λ‖ξ‖0,Ω,(4.1a)

√
λ‖ξH‖0,Ω ≤‖ξH‖VH ≤

√
Λ‖ξH‖0,Ω,(4.1b)

as µeff, εeff, µHMM and εHMM all satisfy the bounds from (2.1).
In order to prove an error estimate for the HMM solution, we have to bound the

errors in the bilinear forms

∆m : VH × VH → R, ∆m(ξH , ξ̃H) = |meff(ξH , ξ̃H)−mHMM(ξH , ξ̃h)|,

∆s : VH × VH → R, ∆s(ξH , ξ̃H) = |s(ξH , ξ̃H)− sH(ξH , ξ̃h)|,

which is done in the following lemma.

Lemma 4.1. (a) Let assumption (3.10) be fulfilled and assume

µeff|K , εeff|K ∈W `+1,∞(K)3×3, ‖µeff‖`+1,∞,K , ‖ε
eff‖`+1,∞,K ≤ C̃,(4.2)

for all K ∈ TH with a constant C̃ > 0 independent of η and H. Then, we get for all
ξ ∈ Z, ξH ∈ VH

∆m(ξ, ξH) ≤ C
(
H` +

(
h
η

)2k
+ emod

)
‖ξ‖`+1,Ω‖ξH‖0,Ω,

with emod = 0 under the assumptions of Lemma 3.5(a) or emod < η
δ + δ under the

assumptions of Lemma 3.5(b).

(b) For all ξH , ξ̃H ∈ VH , it holds

∆s(ξH , ξ̃H) = 0.

Remark 4.2. As the space Z is continuously embedded into C(Ω) for ` ≥ 1, we
can extend meff

H and mHMM to Z × Z.

Proof of Lemma 4.1. As part (a) is more involved, we will first prove part (b).
The estimate for ∆s is trivial, since inserting the definitions of the bilinear forms

yields for all

(
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

)
∈ VH

∆s

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
≤
∑
K

∣∣∣∣∫
K

ϕ̃H(x) · curlψH(x) dx−
∑
j

ωKj ϕ̃H(xKj ) · curlψH(xKj )

∣∣∣∣
+
∑
K

∣∣∣∣∫
K

ϕH(x) · curl ψ̃H(x) dx−
∑
j

ωKj ϕH(xKj ) · curl ψ̃H(xKj )

∣∣∣∣,
which is just the sum of two quadrature errors. We assumed in (3.1) the exactness
of the quadrature formula for polynomials in Q2`,2`,2`. Therefore these quadrature
errors both vanish, which yields the result.

The proof of part (a) is not as simple, since the effective parameters and the HMM
parameters appear in these differences. We start by splitting ∆m into an HMM error
a quadrature error and a modeling error.

∆m(ξ, ξH) ≤ ∆mHMM(ξ, ξH) + ∆mQuad(ξ, ξH)+emod,
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where

∆mHMM(ξ, ξH) = |mHMM(ξ, ξH)−meff
H (ξ, ξH)|,

∆mQuad(ξ, ξH) = |meff(ξ, ξH)−meff
H (ξ, ξH)|,

for all ξ =

(
ψ
ϕ

)
∈ Z, ξH =

(
ψH
ϕH

)
∈ VH .

The next step is to prove a bound for ∆mHMM using the estimates (3.11) for the
HMM material parameters. Inserting the definitions of mHMM and meff

H and using the
triangle inequality yields

∆mHMM

((
ψ
ϕ

)
,

(
ψH
φH

))
≤ C sup

α∈{µ,ε}
sup
K,j
‖αeff(xKj )− αHMM(xKj )‖F∑

K

(∣∣∣∣∑
j

ωKj ζ
α(xKj ) · ζαH(xKj )−

∫
K

ζα(x)ζαH(x) dx

∣∣∣∣+

∣∣∣∣∫
K

ζα(x)ζαH(x) dx

∣∣∣∣),

(4.3)

where we used the notation ζµ = ψ, ζε = ϕ. From [13, Thm. 4.1.5] we have the
bound ∣∣∣∣∑

j

ωKj ζ
α(xKj ) · ζαH(xKj )−

∫
K

ζα(x)·ζαH(x) dx

∣∣∣∣ ≤ CH`+1‖ζα‖`+1,K‖ζ
α
H‖1,K(4.4)

and with the inverse inequality (cf. [13, Thm. 3.2.6]), this yields∣∣∣∣∑
j

ωKj ζ
α(xKj ) · ζαH(xKj )−

∫
K

ζα(x)·ζαH(x) dx

∣∣∣∣ ≤ CH`‖ζα‖`+1,K‖ζ
α
H‖0,K .(4.5)

For the last term in (4.3), we use the Cauchy-Schwarz inequality to get∣∣∣∣∫
K

ζα(x)·ζαH(x) dx

∣∣∣∣ ≤ ‖ζα‖0,K‖ζαH‖0,K .
Inserting these results into (4.3) and using again the Cauchy-Schwarz inequality to-
gether with Lemma 3.4 and Lemma 3.5 yields the desired bound for ∆mHMM.

Finally, we treat the quadrature error ∆mQuad following [13, Thm. 4.1.4]. Using
the triangle inequality, we get

∆mQuad(ξ, ξH) ≤
∣∣∣∣∫

Ω

µeff(x)ψ(x) · ψH(x) dx−
∑
K,j

ωKj µ
eff(xKj )ψ(xKj ) · ψH(xKj )

∣∣∣∣
+

∣∣∣∣∫
Ω

εeff(x)ϕ(x) · ϕH(x) dx−
∑
K,j

ωKj ε
eff(xKj )ϕ(xKj ) · ϕH(xKj )

∣∣∣∣.
Application of [13, Thm. 4.1.5] and using the same techniques as in (4.4) and (4.5)
then yields the result.

Remark 4.3. Similar to the comment following Lemma 3.4, it is also possible to
reduce the assumptions (4.2) to regularity assumptions for the multiscale parame-
ters. This follows from the definition of the effective parameters (2.4), since these
parameters only depend on the multiscale parameters and the solutions of the local
problems.
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As final preparation for the semidiscrete error bound, we have to prove the interpo-
lation property from Theorem 3.1 in the norm of the discrete space VH .

Lemma 4.4. For ξ ∈ Z and the identity operator I, the following estimate holds.

‖(I − IH)ξ‖VH ≤ CH
`|ξ|`+1,Ω.

Proof. The idea of this proof is to apply the norm equivalence (4.1b) and the
interpolation property from Theorem 3.1. However, as (I − IH)ξ is in general not in
VH , we cannot apply (4.1b) directly.

As a workaround, we define an interpolation operator IVH : Z → VH(curl, TH)2,
such that for all ξ ∈ Z, ξH ∈ VH

(IVH ξ, ξH)VH = (ξ, ξH)VH

holds. Since the inner product on VH contains only nodal evaluations at the quadra-
ture points, IVH is the nodal interpolation at the quadrature points. As a direct
consequence, we get

‖(I − IVH )ξ‖VH = 0.

Together with the triangle inequality, this yields

‖(I − IH)ξ‖VH ≤ ‖(I − IVH )ξ‖VH + ‖(IVH − IH)ξ‖VH = ‖(IVH − IH)ξ‖VH .

Using the norm equivalence (4.1b) and again the triangle inequality, we get

‖(I − IH)ξ‖VH ≤ C‖(I − IVH )ξ‖0,Ω + C‖(I − IH)ξ‖0,Ω.

From [14, Sec. 3.6.2, Thm. 7] we get a bound for the first term.

‖(I − IVH )ξ‖0,Ω ≤ CH
`+1|ξ|`+1,Ω.

Bounding the second term with Theorem 3.1 yields the result.

With all preliminary results at hand, we now state the error estimate for the semidis-
crete HMM method.

Theorem 4.5. Let ueff ∈ C1(0, T ;Z) be the solution of (2.3) and let uHMM
H ∈

L∞(0, T ;VH) be the solution of (3.6) at time t ∈ (0, T ). If (3.10) and (4.2) hold, we
get the semidiscrete error estimate

‖uHMM
H (t)−ueff(t)‖0,Ω≤ C(1 + t)

(
‖u0,H − IHu0‖0,Ω + ‖Jext,H − Jext‖L∞(0,t;L2(Ω)3)

+H`
(
‖ueff‖L∞(0,t;Z)+|∂tueff|L∞(0,t;Z)

)
+
((

h
η

)2k
+emod

)
‖∂tueff‖L∞(0,t;Z)

)
,

with emod = 0 under the assumptions of Lemma 3.5(a) or emod < η
δ + δ under the

assumptions of Lemma 3.5(b).

Proof. We use [17, Thm. 3.3] to prove this result. Interpretation of the HMM
method as a non-conforming method then yields the following estimate.

‖uHMM
H (t)− ueff(t)‖X ≤ C(1 + t)

(
‖u0,H − IHueff

0 ‖VH + ‖fHMM
H − PHf eff‖L∞(0,t;VH)

+ ‖(I − IH)ueff‖L∞(0,t;V ) + sup
τ∈[0,t]

sup
‖vH‖VH=1

∆m(IH∂tueff(τ), vH)

+ ‖(I − IH)∂tu
eff‖L∞(0,T ;X) + sup

τ∈[0,t]

sup
‖vH‖VH=1

∆s(IHueff(τ), vH)
)
,

(4.6)
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with PH : X → VH , such that for all ξ ∈ X, ξH ∈ VH

(PHξ, ξH)VH = (ξ, ξH)X(4.7)

holds.
Now we bound the terms in (4.6) separately. From Theorem 3.1 we get

sup
τ∈[0,t]

‖(I − IH)ueff(τ)‖V ≤ CH
`|ueff|L∞(0,t;Z),

sup
τ∈[0,t]

‖(I − IH)∂tu
eff(τ)‖X ≤ CH

`|∂tueff|L∞(0,t;Z),

and Lemma 4.1(b) yields

sup
τ∈[0,t]

sup
‖vH‖VH=1

∆s(IHueff(τ), vH) = 0.

Finally, we have to bound ∆m. For vH ∈ VH the triangle inequality yields

∆m(IH∂tueff(τ), vH) = |meff(∂tu
eff(τ), vH)−mHMM(∂tu

eff(τ), vH)

+meff(IH∂tueff(τ), vH)−meff(∂tu
eff(τ), vH)

+mHMM(∂tu
eff(τ), vH)−mHMM(IH∂tueff(τ), vH)|

≤ ∆m(∂tu
eff(τ), vH) + |((I − IH)∂tu

eff(τ), vH)X |
+ |((I − IH)∂tu

eff(τ), vH)VH |.

Using Theorem 3.1 and Lemma 4.4 we further get

sup
‖vH‖VH=1

∆m(IH∂tueff(τ), vH)

≤ sup
‖vH‖VH=1

∆m(∂tu
eff(τ), vH) + C‖(I − IH)∂tu

eff(τ)‖X + ‖(I − IH)∂tu
eff(τ)‖VH

≤ sup
‖vH‖VH=1

∆m(∂tu
eff(τ), vH) + C(H` +H`+1)|∂tueff(τ)|`+1,Ω.

We use Lemma 4.1(a) to get

sup
τ∈[0,t]

sup
‖vH‖VH=1

∆m(∂tu
eff(τ), vH) ≤C

((
H` + h

η

)2k
+emod

)
‖∂tueff‖L∞(0,t;Z).

Finally, we bound the error in the right-hand sides using (3.7), (4.7), (2.6) and (4.1b).

‖fHMM
H − PHf eff‖VH = sup

‖vH‖VH=1

(
mHMM(fHMM

H , vH)−mHMM(PHf eff, vH)
)

= sup
‖vH‖VH=1

(
(Jext,H , vH)0,Ω −m

eff(f eff, vH)
)

≤ 1√
λ
‖Jext,H − Jext‖0,Ω

Inserting these results into (4.6) finishes this proof.

Remark 4.6. Instead of continuous finite elements, it is also possible to use the
discontinuous Galerkin (dG) approach presented in [22] to discretize the spatial do-
main Ω. We want to emphasize that for this setting an error estimate analogous to
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Theorem 4.5 can be derived, as the difficulties arising from the dG approach affecting
sH and those from the HMM scheme affecting mHMM are well separated. Indeed, the
bilinear form sH does not depend on the material parameters and can therefore be
bounded as explained in [17, Chapter 3.2.2]. The bound for ∆m follows as before,
using the discrete spaces and the interpolation operator from the dG approach.

5. Full discretization. In this section we provide the analysis of the full dis-
cretization composed of the HMM scheme and different time integration methods.
In the first part, we focus on algebraically stable Runge–Kutta methods, whereas
we consider the Crank–Nicolson and the leapfrog method in the second part. Al-
though the leapfrog method is an explicit scheme and therefore more commonly used
in applications, we want to emphasize that implicit schemes like the algebraically
stable Runge–Kutta methods or the Crank–Nicolson method can outperform explicit
schemes not only in artificial examples, but also in applications. This was shown in
[20], where the authors discuss the efficiency of several explicit and implicit Runge–
Kutta schemes for Maxwell’s equations.

5.1. Error analysis for algebraically stable Runge–Kutta methods. We
consider implicit s-stage Runge–Kutta methods of order p with Runge–Kutta matrix
Oι = (aij)

s
i,j=1, weights b = (bi)

s
i=1, and nodes c = (ci)

s
i=1. Moreover, we denote

the time step by τ > 0. We assume that the ci’s are pairwise distinct and satisfy
0 ≤ ci ≤ 1 for all i. Furthermore, we introduce the operators CHMM : VH → VH ,
CHHMM : VH(curl, TH) → VH(curl, TH) and CEHMM : VH,0(curl, TH) → VH,0(curl, TH)
(cf. (3.2a), (3.2b)) via(

CHMM

(
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
VH

=

((
−CEHMMϕH
CHHMMψH

)
,

(
ψ̃H
ϕ̃H

))
VH

= sH

((
ψH
ϕH

)
,

(
ψ̃H
ϕ̃H

))
,(5.1)

for all ψH , ψ̃H ∈ VH(curl, TH) and ϕH , ϕ̃H ∈ VH,0(curl, TH). Note that CHMM is
skew-symmetric, since we have for all vH ∈ VH

(CHMMvH , vH)VH = sH(vH , vH) = 0.

With this definition, we can rewrite the evolution equation for the HMM for Maxwell’s
equation (3.6) as

∂tu
HMM
H (t) = CHMMu

HMM
H (t) + fHMM

H (t).(5.2)

Using the abbreviation fniH = fHMM
H (tn+ciτ), the approximations unH = (Hn

H , E
n
H) to

the solution uHMM
H (tn) = (HHMM

H (tn),EHMM
H (tn)) of the semidiscrete HMM problem

(3.6) at time tn = nτ are given by the following Runge–Kutta method

U̇niH = CHMMU
ni
H + fniH , i = 1, . . . , s,(5.3a)

UniH = unH + τ

s∑
j=1

aijU̇
nj
H , i = 1, . . . , s,(5.3b)

un+1
H = unH + τ

s∑
i=1

biU̇
ni
H and u0

H = u0,H .(5.3c)



16 M. HOCHBRUCK, B. MAIER, C. STOHRER

We consider only Runge–Kutta methods with the following properties

p ≥ s+ 1,(5.4a)

bi > 0, i = 1, . . . , s and (biaij + bjaji − bibj)si,j=1 is positive semidefinite.(5.4b)

There exist β > 0 and a diagonal, positive definite matrix D, such that

(DOι−1v) · v ≥ β(Dv) · v, for all v ∈ Rs.
(5.4c)

Assumption (5.4b) means that the Runge–Kutta method is algebraically stable and
assumption (5.4c) that it is coercive.

Let ueff be the solution of the effective Maxwell’s system (2.3). In order to prevent
overloading the notation, we drop the superscript and simply write u. Using the
notation

un = u(tn), Uni = u(tn + ciτ), U̇ni = ∂tu(tn + ciτ),

with n = 0, . . . , N, i = 1, . . . , s, it is easy to see that these quantities solve the
perturbed Runge–Kutta equations

U̇ni = CeffU
ni + fni, i = 1, . . . , s,(5.5a)

Uni = un + τ

s∑
j=1

aijU̇
nj + ∆ni, i = 1, . . . , s,(5.5b)

un+1 = un + τ

s∑
i=1

biU̇
ni + δn+1 and u0 = u0.(5.5c)

The operator Ceff : V → X is defined analogously to (5.1) by

(CeffvH , ṽH)X = s(vH , ṽH),

for all vH , ṽH ∈ V . We further define fni = f eff(tn + ciτ) and the defects ∆ni, δn+1

are implicitly given by (5.5b) and (5.5c).
In order to study the error of the fully discrete scheme, we apply the interpolation

operator IH to (5.5) and subtract these equations from (5.3). With

enH = unH − IHun, EniH = UniH − IHUni, ĖniH = U̇niH − IH U̇ni,

we find for the first equation

ĖniH = CHMMU
ni
H − IHCeffU

ni + fniH − IHfni, i = 1, . . . , s.

Introduction of the operator RH = CHMMIH − PHCeff (with PH as defined in (4.7))
yields

ĖniH = CHMME
ni
H +RHUni + (PH − IH)CeffU

ni + fniH − IHfni.

Defining

gniH = RHUni + (PH − IH)CeffU
ni + fniH − IHfni

yields the following system of equations for the error terms.

ĖniH = CHMME
ni
H + gniH , i = 1 . . . s,(5.6a)

EniH = enH + τ

s∑
j=1

aijĖ
nj
H − IH∆ni, i = 1 . . . s,(5.6b)

en+1
H = enH + τ

s∑
i=1

biĖ
ni
H − IHδn+1 and e0

H = u0,H − IHu0.(5.6c)
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We present a stability estimate for (5.6) based on [19, Lem. 3.3 and Thm. 3.5].

Theorem 5.1. Let u ∈ C1(0, T ;Z) be the solution of (2.3) and assume further
∂s+1
t u, ∂s+2

t u ∈ L2(0, T ;W 2,2(Ω)). The approximations unH to u(tn) (n = 1, . . . , N)
obtained by application of (5.3) with step size τ > 0 sufficiently small satisfy

‖enH‖
2
0,Ω ≤ C‖e

0
H‖

2
0,Ω + C(1 + T )

(
τ2(s+1)B(u, s, tn)2 + τ

n−1∑
r=0

s∑
i=1

‖griH‖
2
VH

)
,(5.7)

with

B(u, s, t∗)
2 =

∫ t∗

0

‖∂s+1
t u(t)‖22,Ω + ‖∂s+2

t u(t)‖22,Ω dt.

Proof. Taking the VH -inner product of (5.6c) with en+1
H + enH and using again

(5.6c) on the right side of the equation yields

‖en+1
H ‖2VH − ‖e

n
H‖

2
VH

= (τ

s∑
i=1

biĖ
ni
H − IHδn+1, 2enH + τ

s∑
i=1

biĖ
ni
H − IHδn+1)VH

= ‖IHδn+1‖2VH − 2(IHδn+1, enH + τ

s∑
i=1

biĖ
ni
H )VH

+ 2τ

s∑
i=1

bi(Ė
ni
H , e

n
H)VH + τ2

s∑
i,j=1

bibj(Ė
ni
H , Ė

nj
H )VH

= ‖IHδn+1‖2VH − 2(IHδn+1, enH + τ

s∑
i=1

biĖ
ni
H )VH

+ 2τ

s∑
i=1

bi(Ė
ni
H , E

ni
H + IH∆ni)VH

− τ2
s∑

i,j=1

(biaij + bjaji − bibj)(ĖniH , Ė
nj
H )VH ,

where we used (5.6b) to replace enH and (5.4b). Since the method is algebraically
stable, the sum on the last line is non-negative and we get the following estimate.

(5.8)

‖en+1
H ‖2VH − ‖e

n
H‖

2
VH
≤ ‖IHδn+1‖2VH − 2(IHδn+1, enH + τ

s∑
i=1

biĖ
ni
H )VH

+ 2τ

s∑
i=1

bi(Ė
ni
H , E

ni
H + IH∆ni)VH .

We bound the remaining terms separately starting with the latest one. Using (5.6a)
and Young’s inequality with a constant γ > 0 yields

(ĖniH , E
ni
H +IH∆ni)VH = (CHMME

ni
H + gniH , E

ni
H + IH∆ni)VH

= −(EniH , CHMMIH∆ni)VH + (gniH , E
ni
H )VH + (gniH , IH∆ni)VH

≤ γ‖gniH ‖
2
VH

+ 1
γ ‖E

ni
H ‖

2
VH

+ 1
2γ ‖IH∆ni‖2VH + γ

2 ‖CHMMIH∆ni‖2VH .
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From [19, (3.18)] we further get

(IHδn+1, enH + τ

s∑
i=1

biĖ
ni
H )VH ≤ C

γ τ

(
‖enH‖

2
VH

+

s∑
i=1

‖EniH ‖
2
VH

+

s∑
i=1

‖IH∆ni‖2VH

)
+ γτ‖ 1

τ IHδ
n+1‖2VH .

Following the proof of [19, Lem. 3.4], we bound the inner stages EniH with a constant
C = C(Oι, s,D, β) as

s∑
i=1

‖EniH ‖
2
VH
≤ C

(
‖enH‖

2
VH

+

s∑
i=1

‖IH∆ni‖2VH + τ2
s∑
i=1

‖gniH ‖
2
VH

)
.

We insert these bounds into (5.8) with γ = 1 + T .

‖en+1
H ‖2VH − ‖e

n
H‖

2
VH
≤ Cτ

1 + T
‖enH‖

2
VH

+ C(1 + T )τ

( s∑
i=1

‖gniH ‖
2
VH

+ ‖ 1
τ IHδ

n+1‖2VH +

s∑
i=1

‖IH∆ni‖2V

)
.

(5.9)

Using the interpolation property from Theorem 3.1, an inverse estimate and [19, (3.6)
and (3.7)], we have

τ

n∑
r=0

(
‖ 1
τ IHδ

r+1‖2VH +

s∑
i=1

‖IH∆ri‖2V
)
≤ Cτ2(s+1)B(u, s, tn+1)2.

Taking the sum over n in (5.9) and using this result yields

‖enH‖
2
VH
≤ ‖e0

H‖
2
VH

+
Cτ

1 + T

n−1∑
r=0

‖erH‖
2
VH

+ C(1 + T )τ2(s+1)B(u, s, tn)2

+ C(1 + T )τ

n−1∑
r=0

s∑
i=1

‖griH‖
2
VH
.

Finally, using the discrete Gronwall Lemma and the norm equivalence (4.1b) yields
the result.

In the next lemma, we bound the right-hand sides gniH .

Lemma 5.2. Let u ∈ C1(0, T ;Z). For n = 0, . . . , N − 1 and i = 1, . . . , s, we have

‖gniH ‖VH ≤ ‖f
ni
H − PHfni‖VH + C sup

t∈[tn,tn+1]

sup
‖vH‖VH=1

∆m(IH∂tu(t), vH)

+ C‖(I − IH)∂tu‖L∞(tn,tn+1;X) + C‖(I − IH)u‖L∞(tn,tn+1;V ).

(5.10)

Proof. By definition of gniH and the triangle inequality, we have

‖gniH ‖VH ≤ ‖RHU
ni‖VH + ‖(IH − PH)U̇ni‖VH + ‖fniH − PHfni‖VH .(5.11)

We bound these terms separately. Following the proof of [17, Thm. 3.3], using Theo-
rem 3.1 and Lemma 4.1(b), we get

‖RHu‖L∞(tn,tn+1;VH) ≤ C‖(I − IH)u‖L∞(tn,tn+1;V ).



HETEROGENEOUS MULTISCALE METHOD FOR MAXWELL’S EQUATIONS 19

We can further bound the second term using [17, Lem. 2.11] for the special case
cx = 1, Q∗h = PH , JH = IH .

‖(IH − PH)U̇ni‖VH ≤ ‖(IH − PH)∂tu‖L∞(tn,tn+1;VH)

≤ sup
t∈[tn,tn+1]

sup
‖vH‖VH=1

∆m(IH∂tu(t), vH)

+ ‖(I − IH)∂tu‖L∞(tn,tn+1;X).

Using these bounds in (5.11) yields the result.

Now we state one of our main results.

Theorem 5.3. Let u ∈ C1(0, T ;Z) be the solution of the effective Maxwell’s equa-
tions (2.3) and assume ∂s+1

t u, ∂s+2
t u ∈ L2(0, T ;W 2,2(Ω)). The approximation unH to

u(tn) (n = 1, . . . , N) obtained from (5.3) with step size τ > 0 sufficiently small (de-
pending on the Runge–Kutta method and T ) satisfies the following bound.

‖unH − u(tn)‖0,Ω≤ C‖u0,H − u(0)‖0,Ω+ C max
r=0,...,n−1

i=1,...,s

‖friH − PHfri‖VH + Cτs+1B(u, s, tn)

+ C
((

h
η

)2k
+emod

)
‖∂tu‖L∞(0,tn;Z)+ CH`

(
‖u‖L∞(0,tn;Z)+ ‖∂tu‖L∞(0,tn;Z)

)
,

with emod = 0 under the assumptions of Lemma 3.5(a) or emod < η
δ + δ under the

assumptions of Lemma 3.5(b).

Proof. First, we split the error into

‖unH − u(tn)‖0,Ω ≤ ‖e
n
H‖0,Ω + ‖(IH − I)u(tn)‖0,Ω.

From Theorem 3.1 we get

‖(IH − I)u(tn)‖0,Ω ≤ CH
`|u(tn)|`+1,Ω ≤ CH

`|u|L∞(0,tn;Z).

In order to bound enH , we insert (5.10) into the stability estimate (5.7).

‖enH‖
2
0,Ω ≤ C‖e

0
H‖

2
0,Ω + C(1 + T )

(
τ2(s+1)B(u, s, tn)2

+ τ

n−1∑
r=0

s∑
i=1

‖fniH − PHfni‖
2
VH

+ ‖(I − IH)∂tu‖2L∞(0,tn;X)

+ ‖(I − IH)u‖2L∞(0,tn;V ) + sup
t∈[0,tn]

sup
‖vH‖VH=1

∆m(IH∂tu(t), vH)2

)
,

where we used τn ≤ T . Following the proof of Theorem 4.5, we use Theorem 3.1,
Lemma 4.1(a) to show

‖enH‖
2
0,Ω ≤ C‖e

0
H‖

2
VH

+ C(1 + T )

(
τ2(s+1)B(u, s, tn)2 + C max

r=0,...,n−1

i=1,...,s

‖friH − PHfri‖
2
VH

+ CH`
(
‖u‖2L∞(0,tn;Z) + ‖∂tu‖2L∞(0,tn;Z)

)
+ C

((
h
η

)2k
+emod

)
‖∂tu‖2L∞(0,tn;Z)

)
.

Taking the square root finally yields the result.
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5.2. Error analysis for the Crank–Nicolson and the leapfrog method.
After studying a class of Runge–Kutta methods, we now consider the Crank–Nicolson
and the leapfrog method for time integration. The Crank–Nicolson method applied
to (5.2) reads

ũn+1
H = ũnH + τ

2CHMM(ũn+1
H + ũnH) + τ

2 (fn+1
H + fnH),(5.12)

with ũ0
H = u0,H , fnH = fHMM

H (tn). The leapfrog method is given by

Ĥ
n+1/2
H = Ĥn

H − τ
2C

E
HMMÊn

H ,

Ên+1
H = Ên

H + τCHHMMĤ
n+1/2
H + τ

2 (f̂n+1
H + f̂nH),

Ĥn+1
H = Ĥ

n+1/2
H − τ

2C
E
HMMÊn+1

H ,

(5.13)

with (Ĥ0
H , Ê

0
H) = u0,H , (0, f̂nH) = fHMM

H (tn) using the operators from (5.1).
Following an approach from [22, Sec. 3.2], we rewrite the Crank–Nicolson method

(5.12) in the following form.

RLũn+1
H = RRũnH + τ

2 (fn+1
H + fnH), and ũ0

H = u0,H ,(5.14)

with

RL =

(
I τ

2C
E
HMM

− τ2C
H
HMM I

)
, RR =

(
I − τ2C

E
HMM

τ
2C

H
HMM I

)
.

Similarly, the leapfrog method (5.13) can be rewritten as

R̂Lûn+1
H = R̂RûnH + τ

2 (fn+1
H + fnH), and û0

H = u0,H ,(5.15)

with

R̂L =

(
I τ

2C
E
HMM

− τ2C
H
HMM I − τ2

4 C
H
HMMCEHMM

)
, R̂R =

(
I − τ2C

E
HMM

τ
2C

H
HMM I − τ2

4 C
H
HMMCEHMM

)
.

In this way the leapfrog method can be interpreted as a perturbed Crank–Nicolson
scheme. Since the leapfrog method is an explicit scheme, the time step τ > 0 needs
to satisfy the CFL-condition

τ ≤ 2θ

CCFLc∞
min
K∈TH

HK(5.16)

for the scheme to be stable. Here 0 < θ < 1 is arbitrary, but fixed. The con-
stant CCFL > 0 depends on the mesh TH and the polynomial degree ` and c∞ =
‖µHMMεHMM‖0,∞,Ω is an upper bound for the speed of light within the material.

We now state our main result on the error of the full discretization for both
schemes.

Theorem 5.4. Let u ∈ C(0, T ;Z) ∩ C3(0, T ;X) be the solution of the effective
Maxwell’s equations (2.3).

(a) For the Crank–Nicolson approximation ũnH to u(tn) (n = 1, . . . , N) obtained
from (5.14) with step size τ > 0, we have the following bound.

‖ũnH − u(tn)‖0,Ω ≤ C‖u0,H − u(0)‖0,Ω + C max
r=0,...,n−1

‖frH − PHfr‖VH

+ Cτ2‖∂3
t u‖L∞(tn,tn+1;L2(Ω)6) + C

((
h
η

)2k
+emod

)
‖∂tu‖L∞(0,tn;Z)

+ CH`
(
‖u‖L∞(0,tn;Z) + ‖∂tu‖L∞(0,tn;Z)

)
,

with emod = 0 under the assumptions of Lemma 3.5(a) or emod <
η
δ +δ under

the assumptions of Lemma 3.5(b).
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(b) Let further 0 < θ < 1 and the CFL condition (5.16) be satisfied. The leapfrog
approximation ûnH to u(tn) (n = 1, . . . , N) obtained from (5.15) with step size
τ > 0 satisfies the following bound.

‖ûnH − u(tn)‖0,Ω ≤ C‖u0,H − u(0)‖0,Ω + C max
r=0,...,n−1

‖frH − PHfr‖VH

+ Cτ2
(
‖∂2
t u‖L∞(tn,tn+1;L2(Ω)6) + ‖∂3

t u‖L∞(tn,tn+1;L2(Ω)6)

)
+ C

((
h
η

)2k
+emod

)
‖∂tu‖L∞(0,tn;Z)

+ CH`
(
‖u‖L∞(0,tn;Z) + ‖∂tu‖L∞(0,tn;Z)

)
,

with emod = 0 under the assumptions of Lemma 3.5(a) or emod <
η
δ +δ under

the assumptions of Lemma 3.5(b).

Proof. (a) As in the proof of Theorem 5.3, we first split the error.

‖ũnH − u(tn)‖0,Ω ≤ ‖ẽ
n
H‖0,Ω + CH`|u|L∞(0,tn;Z),

with ẽnH = ũnH − IHu(tn). Following the proof of [22, Lem. 5.1], one can show that
ẽnH satisfies a perturbed version of (5.14), namely

RLẽn+1
H = RRẽnH + dn,(5.17)

where the defect dn is given by

dn = τ
2 (PH − IH)(un+1 − un)− τ

2RH(un+1 + un)

+ τ
2 (fn+1

H − PHfn+1 + fnH − PHfn) + τ2PHδn

and δn = (δnH , δ
n
E)T is defined via

δnU =

∫ tn+1

tn

(t− tn)(tn+1 − t)
2τ2

∂3
tU(t) dt, U = H,E.

Using (5.17) and taking the sum over n yields

ẽn+1
H = Rn+1ẽ 0

H +
n∑

m=0

Rn−mR−1
L dm,

with R = R−1
L RR. From the triangle inequality and [22, Lem. 4.1] and [22, Lem. 4.2],

we get

‖ẽn+1
H ‖0,Ω ≤ C‖ẽ

0
H‖0,Ω +

n∑
m=0

‖dm‖0,Ω.(5.18)

As in the proof of Lemma 5.2, we then bound the defect dn.

1
τ ‖d

n‖0,Ω ≤ sup
t∈[tn,tn+1]

sup
‖vH‖VH=1

∆m(IH∂tu(t), vH) + C‖(I − IH)∂tu‖L∞(tn,tn+1;X)

+ C‖(I − IH)u‖L∞(tn,tn+1;V ) + C max
r=0,...,n−1

‖frH − PHfr‖VH

+ Cτ2‖∂3
t u‖L∞(tn,tn+1;X).
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Inserting this result into (5.18) and using Lemma 4.1(a) to bound ∆m yields the
result.

(b) We also split the error of the leapfrog scheme.

‖ûnH − u(tn)‖0,Ω ≤ ‖ê
n
H‖0,Ω + CH`|u|L∞(0,tn;Z),

with ênH = ûnH − IHu(tn). Again, one can show that ênH satisfies a perturbed version
of (5.15), namely

R̂Lên+1
H = R̂RênH + d̂n,

with a perturbed defect d̂n given by

d̂n = dn − τ2

4

(
0

CHHMMCEHMM(ên+1
π,E − ênπ,E) + CHHMM

(
µeff

µHMM (∂tH
n+1 − ∂tHn)

))
.

However, the same approach applied to the leapfrog method does not yield the ex-
pected orders of convergence. Instead, the defect has to be investigated more carefully,
as proposed in [22, Sec. 5.1]. The main idea is to split the defect d̂n into

d̂n = dn + (R̂L − R̂R)ξn,

with

ξn =
τ

4

(
CEHMM(ên+1

π,E − ênπ,E) + µeff

µHMM (∂tH
n+1 − ∂tHn)

0

)
.

In this way, we get from (5.14)

ên+1
H = ξn − R̂n+1ξ0 +

n∑
m=0

R̂n−mR̂−1
L dm −

n−1∑
m=0

R̂n−mR̂−1
L (ξm+1 − ξm),

with R̂ = R̂−1
L R̂R. Using again the triangle inequality, [22, Lem. 4.1] and [22,

Lem. 4.2], this yields

‖ên+1
H ‖0,Ω ≤ ‖ξ

n‖0,Ω + ‖ξ0‖0,Ω +

n∑
m=0

‖dm‖0,Ω +

n−1∑
m=0

‖ξm+1 − ξm‖0,Ω.

For ξn, we have the following bound (analogously for ξ0).

‖ξn‖0,Ω ≤ CτH
`‖E‖L∞(tn,tn+1;W `+1,2(Ω)3) + Cτ2‖∂2

tH‖L∞(tn,tn+1;L2(Ω)3).

The differences can be bounded via

‖ξm+1 − ξm‖0,Ω ≤ CτH
`‖E‖L∞(tm,tm+2;W `+1,2(Ω)3) + Cτ3‖∂3

tH‖L∞(tm,tm+2;L2(Ω)3).

Using nτ ≤ T and the fact that we have already shown a bound for the sum over dm

yields the fully discrete error estimate for the leapfrog method.
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Fig. 6.1. Maximal difference between the solution of the effective system (2.3) and the HMM-
system (3.6) over all time steps. The computations were done with first order elements (left) and
second order elements (right).

6. Numerical experiments. We use the finite element library deal.II [8] for
the implementation of the numerical schemes discussed in the previous sections.1

Let the computational domain Ω = [0, 1]3 be triangulated into uniform hexahedral
meshes TH of different mesh widths H. The electric permittivity and the magnetic
permeability are given by

µη(x) = εη(x) =
(√

2 + sin
(
2π x1

η

))(√
2 + sin

(
2π x2

η

))(√
2 + sin

(
2π x3

η

))
,

with η = 2−6. The corresponding effective parameters are µeff = εeff = 1 (cf. [23]).
Using a vanishing source term Jext = 0, the exact solutions of the effective Maxwell’s
equations (2.3) are given by

Heff(x, t) =
1

2
√

3

−4 sin(2πx1) cos(2πx2) cos(2πx3) sin(2
√

3πt)

−2 cos(2πx1) sin(2πx2) cos(2πx3) sin(2
√

3πt)

5 cos(2πx1) cos(2πx2) sin(2πx3) sin(2
√

3πt)

 ,

Eeff(x, t) =
1

2

 2 cos(2πx1) sin(2πx2) sin(2πx3) cos(2
√

3πt)

−3 sin(2πx1) cos(2πx2) sin(2πx3) cos(2
√

3πt)

1 sin(2πx1) sin(2πx2) cos(2πx3) cos(2
√

3πt)

 .

For the time integration, we use the leapfrog method with step size τ = 0.0025 and
final time T = 1.

Figure 6.1 shows the maximal L2(Ω)-error between ueff and uHMM
H for δ = η with

periodic boundary conditions for the local problems. The left column was computed
with linear elements, whereas the right column is based on quadratic elements. The
upper row shows the errors over the macro mesh width H for different micro mesh

1Our source code is accessible under https://www.waves.kit.edu/hmm-maxwell.php.

https://www.waves.kit.edu/hmm-maxwell.php
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Fig. 6.2. Maximal difference between the solution of the effective system (2.3) and the HMM-
system (3.6) over all time steps for varying edge length δ of the sampling domain.

widths h. The bottom row shows the same errors, but plotted over the micro mesh
width h for different macro mesh widths H. As expected, we see first order con-
vergence in H and second order convergence in h for linear elements. For quadratic
elements, we get second order convergence in H and fourth order convergence in h.

For the use of homogeneous Dirichlet boundary conditions for the local problems
with varying edge length δ of the sampling domain, we show in Figure 6.2 again the
maximal L2(Ω)-error between ueff and uHMM

H over the macro mesh width H. We
compute these results for the same material parameters as before but with η = 2−12,
using first order elements both in the macro and micro discretization with fixed micro
mesh width h/η = 0.05 and time step size τ = 0.005. As predicted, we observe that
the error declines for δ increasing.
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