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BIHARMONIC WAVE MAPS INTO SPHERES

SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT

ABSTRACT. A global weak solution of the biharmonic wave map equation in
the energy space for spherical targets is constructed. The equation is refor-
mulated as a conservation law and solved by a suitable Ginzburg-Landau type
approximation.

1. INTRODUCTION

We study biharmonic wave maps u : I x R” — S!, where S' is the [-dimensional
unit sphere in R*!, and I C R is an open interval. These maps are critical points
of the action functional

Bu) =5 [ (0wl - |uP)dt.)
2 I xR"™
acting on functions with values in S'. Here Au = (Au'); is the extrinsic Laplacian;
i.e., the Laplacian w.r.t.  when considering u as a map into R‘*1. In our main
Theorem 1.1 we construct a global weak solution for all data in the energy space.

We introduce two equivalent versions of the biharmonic wave map system for

regular solutions. Sufficiently smooth critical points u : I x R® — S of ® satisfy

(1.1) (02 + A*)u L T,S"

which can be viewed as the geometric version of biharmonic wave map equation To
show this claim, for ¢ € C2°(I x R”, R!*™!) we consider the variation u, = 7(u-+7¢),
where 7 : R\ {0} — S denotes the retraction 7(y) = ﬁ, and 7 > 0 is small
enough. We compute

d
—®(ur) :/ (Opu, Oy D (u)) — (Au, AD7m(u)p)d(t, x)
dr 7=0 IxXR™
=— / (0%u + A?u, Dr(u)p)d(t, )
IxR"™
Choose a smooth orthonormal frame {v(¢,z),...,v/(t,z)} for Tu(m)Sl, a scalar

function n € C°(I xR"™,R) and define ¢; = v;n, for j = 1,...,1. Since D7 (u)p; =
@, for a critical point u of ® we obtain

0= / (OFu + Au,vj)nd(t, x).
IxRm™
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2 S. HERR, T. LAMM, AND R. SCHNAUBELT

We conclude that (97u + A?u,v;) =0 for any j = 1,...,l, which shows (1.1).

For smooth u : I x R® — S!, equation (1.1) is equivalent to the PDE-version
(1.2) (07 + A%)u = [|Aul® — |9yul? — A|Vul? — 2div(Au, Vu)] u
of the biharmonic wave map system. Here and below, for any A € RUFDx(+1)
the expression div(Au, AVu) is shorthand for > | 9;(Au, Ad;u), where (-,-) is
the scalar product in R, We also write (VAu, Vu) = Zf:1<8¢Au, Oiu) ete..
Moreover, | - | denotes the Euclidean norm in R*! and in RE+FDEHD),

We show the above mentioned equivalence. Equation (1.1) means that there is
a function A, : I x R"™ — R such that (97 + A?)u = A\,u. A solution to (1.2)
of course satisfies this identity with A, = [...]. To see the converse, we multiply
(0? + A?)u = A\, u by u and use the product rule. It follows that

Ay = (OFu, u) + (A%u, u) = 04 (Ou, u) — (Opu, Opu) + div(VAu, u) — (VAu, Vu).
By |u|? = 1, we have 2(0yu,u) = Ox|ul?> = 0 for k € {t,1,...,n}. We then compute
Ay = —|0ul? + A(Au, u) — 2div(Au, Vu) + (Au, Au)
= —|0u|* + A div(Vu,u) — A(Vu, Vu) — 2div(Au, Vu) + |Aul?
= |Au)? — |0pu|? — A|Vu* — 2div(Au, Vu),

as asserted.
The energy corresponding to ® is given by
1

Elu)(t) = 2/{t} Rn(m'Q + |Aul?) d.

We thus introduce the space for (global) weak solutions of our problems as
Z ={ue L®R x R",R"™) |u(t,z) € S" ae., du, Au € L (R; L*(R™, R 1)1
As above, one observes that
(Au,u) = div(Vu,u) — (Vu, Vu) = —|Vul?,
so that each v € Z satisfies
(1.3) |Vu|> < |Au|  and  |Vu| € L (R; L*(R™)).

A weak solution of (1.1) is defined as a map u € Z fulfilling
(1.4) 0= / (= (Owu, ) + (Au, Av)) dt dx:
RxR™

for all functions v belonging to
V= {ve L®R x R",R"1) | 90|, [Vv|?, |Av| € L*(R x R™); supp, v is compact,
and v satisfies w(t,x) € Tu(m)S’l for a.e. (t,z) € R x R"},

where supp, denotes the support of v : R — L (R" , R!*1), ¢+ v(t,-). Moreover,
u € Z is a weak solution of (1.2) if

/R N (—(0u, 0 ¢) + (Au, Ag)) dt dx
(1.5) T
:/R o ((|Au> = |0ul®) (u, ) — [Vul® Alu, @) + 2(Au, Vu) V(u, ¢))dt dx
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for all ¢ € W, where we put
W= {v e L®RxR",R* ) | |9w], [Vv]?, |Av| € L*(RxR™); supp, v is compact}.

Note that the terms on the right hand side in this definition are integrable by (1.3).
In Lemma 2.1 we prove the equivalence of the weak solvability of (1.1) and of (1.2).

The fourth order system (1.2) is analogous to the (second order) wave maps
system, see e.g. [14]. In this situation global weak solutions in the energy space
have been constructed by Shatah [13] for spherical targets and by Freire [3] for
target manifolds being homogeneous spaces. These constructions use a suitable
Ginzburg-Landau type approximation of (1.2). Our main result is a variant of the
result of Shatah for biharmonic wave maps.

Theorem 1.1. Let (ug,u;) € L®(R" R x LER",R™Y) satisfy Aug €
L2(R™, R as well as ug(x) € S' and ui(x) € Tyo(z)S' for a.e. x € R™. Then
there is a global weak solutionu € Z of (1.2) with u(0) = ug and Opu(0) = uy. More-
over, the maps Au, Oyu : R — L?(R™, R!*1) are weakly continuous and bounded, we
have u(t,-) € S' and dyu(t, ) € Tyr,)S' a.e. for each t € R, and the difference
u — ug is weakly continuous as a map from R to H®(R™,R™*1) for all § € [0,2).
Finally, for all t € R the solution satisfies the energy inequality

1

By =5 [ ol 1wy de < B 0) = 5 [ (ol + ) de

Scalar fourth order wave equations, such as the beam equation, have been studied
previously in [5] or [10]. In the case of biharmonic wave maps, the authors together
with T. Schmid, recently showed in [6] a local well-posedness results for maps taking
values in arbitrary compact target manifolds, assuming that the initial data are
regular enough. This result was then used by T. Schmid [12] in order to show the
existence of a unique global smooth solution for smooth and compactly supported
initial data in the cases n = 1,2. This extends earlier work of Fan and Ozawa
[2]. Finally, we want to mention that weak solutions for the parabolic variant of
the problem, the so called biharmonic map heat flow, have been constructed under
certain restrictions on the dimension n in [4], [7], [9] and [15].

We note that there is a second functional which also deserves to be called the
action functional corresponding to biharmonic wave maps, namely

1 1

U(u) = 7/ (|0ul® — |(Aw)T|?) dt dx = f/ (|0pul?® — |Au|? 4+ |Vul|*) dt dx,
2 Jrxwe 2 Jrxme

where (Au)T = Au + u|Vu|? is the tangential component of the Laplacian. In this
case critical points satisfy the PDE

OPu + A%u + 2div(|Vul*Vu) L T,S"
or equivalently
(16) Ofu+ A%u+ 2div(|Vul*Vu) = u(|Aul® — |0ul* — A|Vul?
— 2div(Au, Vu) — 2|Vul?).

Due to the additional nonlinear term, our proof of Theorem 1.1 does not extend to
this equation.
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2. THE CONSERVATION LAW

As a first result we show that the systems (1.1) and (1.2) are also equivalent in
the weak sense and that they can be can be written in divergence form (2.1). The
latter fact will be crucial for our global existence result.

Lemma 2.1. For u € Z the following assertions are equivalent.

(1) The map u is a weak solution of (1.1).

(2) The map u is a weak solution of (1.2).

(3) For all skew-symmetric matrices A € RUEHDXUFY the map u is a weak
solution of the system

(2.1) 0 = 01 {Opu, Au) + A{Au, Au) — 2div(Au, AVu)
on R x R™ with test functions in Wy, where
W, = {v € LR x R™) | |0sv], |Vv|?,|Av| € L*(R x R™); supp, v is compact}.

Proof. (1)=(8). Let u be a weak solution of (1.1). Take ¢ € V; and A €
RUAD>HD) with AT = —A. The function v = @Au belongs to V by (1.3) and
takes values in T}, S since A is skew-symmetric. We thus obtain

0= / (— (0, O (pAu)) + (Au, A(p(Auw))) dt dz
RxR™
= / (—=0rp(Oru, Au) + Ap(Au, Au) + 2Vp(Au, AVu)) dt dz,
RxR™

using that (O;u, Adyu) = 0 = (Au, AAu). Hence, u is a weak solution of (2.1).
(8)=(2). Let u be a weak solution of (2.1). We employ for 1 <i < j<Il+1
and w € S! the tangent vectorfields

ANjw=(e;®e; —e; ®ej)w = wiej —wle; € T, S
These vectorfields span T,,S! since each ¢ € T,,S! has the representation

E=WwWR—-—EQuw)w = Z (wigj — wjgi)Aijw.

1<i<j<i+1

For a given function ¢ € W we deduce

(2'2) o= <¢7 U>U + Z soiinju, where
1<i<j<i+1

pij = u' (¢ — (,upu’) — ! (¢ — (b, uu’).

Note that all maps ¢;;A;;u and (¢, u)u belong to W, and ¢;; to W,. Assertion (3)
then yields

/ ( — (8tu, ﬁt(galelju» + <AU, A(SDUAULO) dt d$
RxR"™

= / ( — 815%01‘]' (&gu, Aiju> + A(pij (Au, A”u> + QVLpij (Au, A”Vu>) dt dz
RxR™
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where two terms vanish because of the skew-symmetry of A;;. For the normal
component, we compute

/Rw (—(Oru, 0, (¢, wyu)) + (Au, A({§, u)u))) dt da
- Aan(—latu|2<u,¢> + | Aul*(u, @) + 2(Au, Vu) V(p, u) + (Au, u) Alg,u)) dt dx

:/R . ((|Auf? = [8pul?) (u, ¢) — |Vul? Alu, ¢) + 2(Au, Vu) V{u, ¢))dt dz

since (Qyu,u) = 0 and (Au,u) = —|Vu|?. Summing up, the decomposition (2.2)
implies that u solves (1.2) weakly.

(2)=(1). Let u be a weak solution of (1.2). For test functions v € W taking
values in T, (; .S’ equation (1.4) follows from (1.5) since then (u,v) = 0. O

Note that the conservation law can also be obtained via Noether’s theorem. For
any map u the action functional ® is invariant under rotations R(7)u = exp(7A)u.
This fact implies

d

0= E(I)(R(T)u, Q)

= / (01 (O, Au) + A{Au, Au) — 2div(Au, AVu)) dtdx
Q

= /Q ((Bru, Dp(Au)) — (Au, A(Au))) dt da

_ / (82 + A?)u, Au) dt dz.
Q

for each subset 2 C R x R”. The second integral vanishes since (02 + A?)u L TS,
and hence we have derived again the conservation law (2.1).

Remark 2.2. Similar to Lemma 2.1 one can prove that a (smooth) map u is a
solution of (1.6) iff for all A € RUFDXIHD wyith AT = —A we have

(2.3) 0= 0 {Owu, Au) + A(Au, Au) — 2div(Au, AVu) + 2 div{|Vu|?*Vu, Au).

3. EXISTENCE OF A GLOBAL WEAK SOLUTION

In this section we construct a global weak solution of (1.2) using a penalization
method as in [3]. To this end, we fix an increasing function x € C°°([0, 00)) with
x(s) =1 for all s > % and x(s) = s for all s < i. We then define the smooth map
F:RH! 5 R by

F(z) = xo (|lz]* = 1)
Observe that F is bounded, its derivatives are compactly supported, F~1(0) = S',
and VF(z) =0 if |z| = 1.

For ¢ > 0 and initial functions (ug,u;) € L>®(R™ R) x L2(R™, RH1) with
Aug € L2(R",R*1) and ug(x) € S' for almost every z € R, we look at the
auxiliary system

3fu€ + A%y, + %VF(uE) =0

3.1
( ) U/E(O7 ) = Uy, 8tu5(07 ) = Uz,

without requiring that u(t,z) € S’ if t # 0 a.e.. We point out that the initial value
ug here (and below) is not square-integrable, which causes technical difficulties. In
contrast to the wave map case in [3], solutions of (3.1) do not possess finite speed
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of propagation so that standard cut-off arguments cannot be used. Instead we look
for (distributional) solutions of the form u. = ug + v, for a function v, solving the
shifted system

OPv. + A%v. + %VF(uO +v.) + A%y =0

(3.2) v:(0,") =0, 0w.(0,) = uy,

weakly, with test functions in W. For brevity, we sometimes write H* instad of
HF(R"™ R*Y) for k € Z, and analogously for other function spaces.

We use the following fact. Let Z < Y be reflexive Banach spaces, Z be dense
inY, and f:R — Y be a weakly continuous function which is essentially bounded
with values in Z. Then f is bounded and weakly continuous as a map into Z.

Lemma 3.1. Let ¢ > 0 and (ug,u1) belong to L>®(R™, R*1) x L2(R™, R*Y) with
Aug € L2(R™, R and ug(z) € S for almost every x € R™. Then there is a distri-
butional solution u. = ug+v. of (3.1) such that Av., dv. € L>=(R, L2(R",RI+1)),
the functions v. : R — H?*(R™,R™*1) and Ov. : R — L2(R",R'*Y) are weakly
continuous, and v, solves (3.2) weakly with test functions in W. For allt € R, we
have the energy inequality

1 1 1
E[uc](t) := / (2 |Opuc|? + 3 |Auc|* + F(ug)) dx
{t} xRn €

2

Proof. 1) To construct the function v = u. —ug, we first study a regularized problem
(and we drop the subscript €). Let ug and u; be the given data. By means of
standard mollifiers, we obtain functions u; ; in H 2 converging to u; in L? as i — oo,
as well as ug ; € L™ such that Aug; and A%ug ; belong to L?, the maps uo ; tend
to uo pointwise a.e. and with a uniform bound, and (Aug ;) converges to Aug in
L? as j — oco. Finally, let oy be the characteristic function of the ball B(0, k) in
R™. We now introduce the modified equation

atzv + A2’U + %OékVF(UOJ + U) —+ A2U07j = O7
’U(O, ) = 0, 8{0(0, ) = U1,4-

Define X = H?(R",R*1) x L2(R", R*1). We have (v(t),d:v(t)) € X and we
look at the operator matrix

(33) < BJu](0) = /R (Jus]? + |Auol?) dz =: Ey.

(3.4)

A% 0
Using the group version of the Lumer-Phillips theorem, see Corollary 11.3.6 of [1],

one checks that — A generates a strongly continuous (unbounded) group. Moreover,
the map

A= ( 0 I) ., D(A) = HY®R",R*) x H2(R",R'*!) C X.

0
G:X =X, Glp,9) = (;aka(uOJ +o) + AQuo,j)

is globally Lipschitz and C!. (For the differentiability one can employ the Sobolev
embedding H? < LP for some p > 2.). Slight variants of Theorems 6.1.2 and 6.1.5
in [11] hence provide a unique global solution v = v; ;x € C(R, H*) N C*(R, H?) N
C?(R, L?) of the system (3.4) in this case. We can now differentiate the energy

~ 1 1 1
Bialol(®) = [ (2 900 + 5 Ao + V)| + —anF(uo + v>) da
{t} xR" 3
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with respect to ¢t € R. Integration by parts yields

atEjﬁk[v](t) :/ ((8pv, Oyv) + (A% (ug j+ v), ) + (%akVF(uo,j—i— v), Opv))dx
{t} xR"

= O’
1 1 1
Ej7k[1}](t) = / <2 ‘U17i|2 + 5 ‘Au07j|2 + EakF(UO,j)) dx

for all t € R. In the next steps, we perform the limits i, j,k — oo one after the
other. We will not relabel subsequences.

2) As in Theorem 6.1.2 of [11], the solution (v, dyv) of (3.4) depends continuously
in X on the initial data. The sequence (v; j); thus tends in C'(R, H?) N CY(R, L?)
to a function v;;, for all j, & € N, and a subsequence also converges pointwise a.e. in
(t,x). Note that, here and throughout the paper, the space C(R, X) (for a normed
space X) consists of all continuous functions v : R — X, and convergence therein
refers to locally uniform convergence (similarly for C*(R, X)). Consequently, the
map vj  satisfies the initial conditions v;£(0,-) = 0 and 0pv;£(0,-) = w1, and it
solves the PDE in (3.4) weakly with test functions in W.

For a fixed t € R, a further subsequence (v;;x(t,-)); tends to v;i(t,-) a.e..
Hence, the above energy equality leads to the identity

. 1 1
Ej kv kl(?) =/ (2 lug|* + 3 |Aug
RTL

for all j,k € Nand ¢t € R.

3) Now, we pass to the limit j — oo for each fixed k& € N. Because of the cut-off
ay and F(ug) = 0, the energies Eg’k tend to

1 .
24 gakF(uo,j)) dx =: E(jJ7k

1

Ey:= 7/ (Jur |? + | Aug|?) dor,
2 RTZ

so that Fj1[v;x](t) is dominated by a number ¢4 for all j € N and ¢ € R. This

estimate leads to the convergence

Avj — ¢ weak” in L™(R; L?) and O — Y, weak™ in L*(R; L?)

as j — oo. The functions ¢y and 1) inherit the energy bound by Ey. We further
obtain the estimate

t
o ()12 = H/ Ocvin(s)ds|| | <2/ 1] < 2mey/®
0

for all t € [-m, m] and j, k € N. The sequence (v; x); is thus bounded in the spaces
L>(J; H?) and W1°(J; L?) for each k € N and each bounded interval J C R.
Proposition 1.1.4 in [8] implies the interpolative embedding

(3.5) L®(J; HA) NnWhe(J; L?) — C'A(J; H?)

for B € (0,1). So, by the Arzela-Ascoli theorem, (vj;x); tends to a function vy
strongly in C(J; HY ) for each 6 € [0,2) and hence in C(R; HY ) and pointwise

loc loc
a.e., for a diagonal sequence. A standard test function argument then yields that

or = Avy, and 1y, = dyvp.. In particular, vy belongs to L>(J; H?) N W1>(J; L?)N
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C(R; HY), vx(0) = 0, and Avy, is weakly continuous with values in L?. Moreover,
it satisfies the energy inequality

. 1 1 1
Exlvg](t) == —|Owvrl* + = [A(ug + vp)|* + —arF(up + vy) | dz < Ey
2 2
{t} xR" €

forallt € R and k € N.

Since the nonlinear term has compact support in space, we next deduce that
vy, satisfies the PDE in (3.4) for uo instead of wg; weakly with test functions in
W. This equation further shows that the weak derivative 92v;, actually belongs
to L (R; H=2) so that dyvy is continuous from R to H~? and, as seen above,
essentially bounded in L?. As a result, the map ¢ — vy (t) is bounded and weakly
continuous in L2. Since Oyv; 1, converges weak* in L=(RR; L?) and vanishes at t = 0,

we conclude that 0;vi(0) = 0.

4) In a final step, we let k — oco. We can proceed as in Step 3) to construct
a limit function v with the desired properties. There is only one difference in the
derivation of the PDE for v. To apply the dominated convergence theorem, observe
that |V F(ug + vy)| is bounded by ¢ |vy| and that a converging sequence in L? has a
subsequence with a majorant in L2. Finally, the function u. = ug + v satisfies the
assertions. [

Based on the energy estimate (3.3), we can now pass to the limit ¢ — 0 in (3.1).
The special form of the penalization term implies that the resulting weak limit w
takes values in S'. As in [3], we employ the equation (2.1) in divergence form to
show that u indeed solves of (1.2) weakly. To identify its initial values, we have to
assume that u; maps into the tangent space of St

Proof of Theorem 1.1. 1) We use the functions u; = o + v; from Lemma 3.1,
where v; = v., for some ¢; — 0F. Let A € RUFDXHD be skew-symmetric and
@ € C(R x R™). We take pAu; as a test function for (3.1). (It does not belong
to V, in general, but the regularity provided by Lemma 3.1 suffices here.) Since
VF(u;) is a scalar multiple of u;, we can argue as in the first part of the proof of
Lemma 2.1 and conclude that u; fulfills the equation

(36) 0= 8t<8tuj, Au]> + A<A’LL]‘, A’LL]> - 2diV<AUj, AVUJ>

in the distributional sense.

2) Starting from the energy estimate (3.3), we can next pass to the limit ¢; — 0
as in Step 3) of the proof of Lemma 3.1 (again without relabelling subsequences).
The functions v; then converge strongly in C’(R;H&C) for # < 2 and pointwise
a.e. to a map v € C(R; H?). Moreover, d;v; and Av; tend to d;v and Av weak*
in L>(R, L?). Combining these facts, we infer that Av : R — L? is bounded and
weakly continuous. The limit u := up+v thus satisfies u(0, -) = ug and Eu](t) < Ey
for all t € R. Thanks to (3.6) and the convergence of v;, the function u solves (2.1)
distributionally.

The energy bound (3.3) further says that || F(u;(t,-))|1 < ¢;Ep for all j € N and
t € R. For each bounded interval J C R, Fatou’s Lemma now implies that

/ F(u)dx dt < liminf F(uj)dzdt = 0.
JxR™ J7o0 JIxRe

Hence, F(u) = 0 and therefore u(t,z) € S! for a.e. (t,z) € R x R". The continuity
of u —ug : R — L? then implies that u(t,z) belongs S' for each t € R and a.e.
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r € R™. Since u € Z, the map Vu is contained L>(R, L*) by (1.3). We can now
deduce that u weakly solves (2.1) with test functions in Wy, and so u is a weak
solution of (1.2) by Lemma 3.1. Moreover, the equation |u|? = 1 yields (dyu,u) = 0
so that dyu(t, ) is contained in the tangent space Tu(t’z)Sl for a.e. (¢, z).

3) We still have to show the weak continuity of d;u, Au : R — L? and that
Au(0,+) = uy. So far we know that the first map is essentially bounded. Let
A € RUADXUHD) a0ain be skew-symmetric. The equation (2.1) and the above stated
regularity properties of u imply that 0,(dyu, Au) is bounded in H~2 + W—14/3,
Hence, the function 9 : t — (Oyu, Au) is continuous in this space. Consequently, ¥
is bounded and weakly continuous in L2. Step 2) implies that for a.e. t € R the
vector dyu(t, z) belongs to Ty 4)S' for a.e. 2 € R™. In view of (2.2), by modifying
Oru(t,-) for ¢ in set of measure 0 we obtain a representative d;u which is bounded
and weakly continuous as a map from R to L2.

Next, we multiply the equations (3.6) for u; and (2.1) for u by a function ¢ €
C>®(R x R"). We integrate by parts in ¢ € [0,00) with values in H~2 4 W~14/3
and subtract the two resulting equations, which yields

/ (uy — Opu, Aug)p de = / / (—(0vuj, Auj) + (Opu, Auy) Opp dx dt
{0} xR 0 n
+ / / ((Auj, Auj) — (Au, Au)) Apdx dt
O n

+ 2/0 /n ((Auj, AVuj) — (Au, AVu))) Vo da dt.

By Step 2), the right hand side converges to zero as j — oo so that
(Opu(0) — ug, Aug) = 0.

As both u; and 9;u(0) belong to T, S a.e., we conclude that d;u(0) = u; and thus
Oyu(t, ) — uy weakly in L2(R™). O

REFERENCES

1. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equa-
tions, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. MR 1721989

2. Jishan Fan and Tohru Ozawa, On regularity criterion for the 2D wave maps and the 4D
btharmonic wave maps, Current advances in nonlinear analysis and related topics, GAKUTO
Internat. Ser. Math. Sci. Appl., vol. 32, Gakkotosho, Tokyo, 2010, pp. 69-83. MR 2668271

3. Alexander Freire, Global weak solutions of the wave map system to compact homogeneous
spaces, Manuscripta Math. 91 (1996), no. 4, 525-533. MR 1421290

4. Andreas Gastel, The extrinsic polyharmonic map heat flow in the critical dimension, Adv.
Geom. 6 (2006), no. 4, 501-521. MR 2267035

5. Emmanuel Hebey and Benoit Pausader, An introduction to fourth order nonlinear wave equa-
tions, http://www.math.univ-paris13.fr/ pausader/HebPausSurvey.pdf.

6. Sebastian Herr, Tobias Lamm, Tobias Schmid, and Roland Schnaubelt, Biharmonic wave maps:
Local wellposedness in high regularity, arXiv e-prints (2019), arXiv:1903.01813.

7. Tobias Lamm, Heat flow for extrinsic biharmonic maps with small initial energy, Ann. Global
Anal. Geom. 26 (2004), no. 4, 369-384. MR 2103406

8. Alessandra Lunardi, Analytic semigroups and optimal reqularity in parabolic problems, Progress
in Nonlinear Differential Equations and their Applications, vol. 16, Birkhauser Verlag, Basel,
1995. MR 1329547

9. Roger Moser, Weak solutions of a biharmonic map heat flow, Adv. Calc. Var. 2 (2009), no. 1,
73-92. MR 2494507

10. Benoit Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana
Univ. Math. J. 59 (2010), no. 3, 791-822. MR 2779061



10 S. HERR, T. LAMM, AND R. SCHNAUBELT

11. Amnon Pazy, Semigroups of linear operators and applications to partial differential equations,
Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486

12. Tobias Schmid, Energy bounds for biharmonic wave maps in low dimensions, CRC 1173-
Preprint 2018/51, Karlsruhe Institute of Technology, 2018.

13. Jalal Shatah, Weak solutions and development of singularities of the SU(2) o-model, Comm.
Pure Appl. Math. 41 (1988), no. 4, 459-469. MR 933231

14. Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Math-
ematics, vol. 2, New York University Courant Institute of Mathematical Sciences, New York,
1998. MR 1674843 (2000i:35135)

15. Changyou Wang, Heat flow of biharmonic maps in dimensions four and its application, Pure
Appl. Math. Q. 3 (2007), no. 2, Special Issue: In honor of Leon Simon. Part 1, 595-613.
MR 2340056

(S. Herr) FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, POSTFACH 10 01 31, 33501
BIELEFELD, GERMANY
Email address: herr@math.uni-bielefeld.de

(T. Lamm) DEPARTMENT OF MATHEMATICS, KARLSRUHE INSTITUTE OF TECHNOLOGY, 76128
KARLSRUHE, GERMANY
Email address: tobias.lamm@kit.edu

(R. Schnaubelt) DEPARTMENT OF MATHEMATICS, KARLSRUHE INSTITUTE OF TECHNOLOGY,
76128 KARLSRUHE, GERMANY
Email address: schnaubelt@kit.edu



