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CWIKEL’S BOUND RELOADED

DIRK HUNDERTMARK, PEER KUNSTMANN, TOBIAS RIED, AND SEMJON VUGALTER

Abstract. There are several proofs by now for the famous Cwikel–Lieb–Rozenblum (CLR) bound,
which is a semiclassical bound on the number of bound states for a Schrödinger operator, proven
in the 1970s. Of the rather distinct proofs by Cwikel, Lieb, and Rozenblum, the one by Lieb gives
the best constant, the one by Rozenblum does not seem to yield any reasonable estimate for the
constants, and Cwikel’s proof is said to give a constant which is at least about 2 orders of magnitude
off the truth. This situation did not change much during the last 40+ years.

It turns out that this common belief, i.e, Cwikel’s approach yields bad constants, is not set in
stone: We give a substantial refinement of Cwikel’s original approach which highlights a natural
but overlooked connection of the CLR bound with bounds for maximal Fourier multipliers from
harmonic analysis. Moreover, it gives an astonishingly good bound for the constant in the CLR
inequality. Our proof is also quite flexible and leads to rather precise bounds for a large class of
Schrödinger-type operators with generalized kinetic energies.
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1. Introduction

We want to find natural bounds, with the right semi-classical behavior, for the number of
negative eigenvalues of Schrödinger operators 𝑃2 + 𝑉 , with momentum operator 𝑃 = −𝑖∇, or
more general operators like polyharmonic Schrödinger operators |𝑃 |2𝛼 +𝑉 , including the ultra-
relativistic operator |𝑃 | +𝑉 . We also consider operator-valued potentials 𝑉 .

For the one-particle Schrödinger operator 𝑃2 +𝑉 with a real-valued potential 𝑉 , this type of
bound goes back to Cwikel, Lieb, and Rozenblum [10, 32, 33, 44, 45], with very different proofs.
They prove

𝑁 (𝑃2 +𝑉 ) ≤ 𝐿0,𝑑

∫
R𝑑
𝑉−(𝑥)𝑑/2 d𝑥 (1.1)

Date: September 1, 2022, version cwikel-reloaded-8-5.
2020 Mathematics Subject Classification. Primary 35P15; Secondary 35J10, 81Q10.
©2022 by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for non-

commercial purposes.
1



2 D. HUNDERTMARK, P. KUNSTMANN, T. RIED, AND S. VUGALTER

for the number of negative eigenvalues of a Schrödinger operator, where 𝐿0,𝑑 is a constant
depending only on the dimension. This bound is a semi-classical bound since a simple scaling
argument shows that the classical phase-space volume of the region of negative energy is given
by

𝑁 cl(𝜂2 +𝑉 ) =
∬
𝜂2+𝑉 (𝑥)<0

1 d𝜂 d𝑥
(2𝜋)𝑑

=
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)𝑑/2 d𝑥 . (1.2)

where |𝐵𝑑1 | is the volume of the unit ball in R𝑑 .
Rozenblum’s paper [44] was an announcement of his result and, typically for the journal, did

not contain any proofs. The version with full proofs was published in [45]. Similarly, Lieb’s paper
[32] is an announcement of his result and the details of his proof were published later in [51, 33].
The approach of Rozenblum was strongly motivated by the St. Petersburg school of mathematical
physics around Birman and Solomyak, whose work had been virtually unnoticed in the west
until the mid 1970s, see the “Added notes” on page 378 in [50]. The proofs of Cwikel and Lieb
were strongly motivated by Simon [50]. Cwikel’s approach was developed into a more general
scheme by Birman and Solomyak, see e.g. [6, 3]. They were able to obtain more general versions
of Cwikel’s result in which the 𝐿𝑝 and weak-𝐿𝑝 spaces appearing in [10] could be replaced by
more general spaces. For the most recent developments in this direction, see [29], which builds
upon earlier work by Weidl [54, 55].

The intuition behind semi-classical bounds is that the uncertainty principle forces a quantum
particle to occupy roughly a classical phase-space volume (2𝜋)𝑑 . Thus the phase-space volume
𝑁 cl(𝜂2 +𝑉 ) where the classical Hamiltonian energy 𝐻 (𝜂, 𝑥) = 𝜂2 +𝑉 (𝑥) is negative, should con-
trol 𝑁 (𝑃2+𝑉 ). The CLR bound (1.1) shows that this is the case up to a factor1𝐶0,𝑑 = 𝐿0,𝑑 (2𝜋)𝑑/|𝐵𝑑1 |.
Simon’s profound insights connecting bounds on 𝑁 (𝑃2 +𝑉 ) with known and conjectured inter-
polation properties of weak operator ideals2, and, in particular, his Conjecture 1 on page 372 in
[50], were a major motivation for Cwikel’s work. The discussion in [50] suggested that perhaps
some new and more powerful interpolation theorem might yield the weak trace ideal bounds of
Conjecture 1 of [50], which would suffice to prove the CLR inequality. As he informed us [11],
Cwikel initially tried to see if one of the bilinear interpolation theorems in fundamental papers
of Calderón [7, p.118] and Lions–Peetre [36, p.14] about interpolation spaces, or some variant of
them, might prove Simon’s Conjecture 1. Indeed Proposition 4.2 of [50] can also be obtained from
[7, p.118].

Unfortunately, as shown on page 97 in [10], a proof of Simon’s Conjecture 1 cannot be ob-
tained by any kind of bilinear interpolation. However, as Cwikel strongly emphasized to us [11],
some elements of his proof evolved and benefitted greatly from ideas around Lions and Peetre’s
Théorème 4.1 of [36, p.14].

One of our main new contributions is that the CLR bound is intimately related to the fact
that certain maximal Fourier multipliers are bounded on 𝐿2(R𝑑 ). This leads to a new class of
variational problems, see Theorem 1.3, which allows us to improve Lieb’s constants in dimensions
𝑑 ≥ 5. The original bounds on 𝐶0,𝑑 in [10] and [32] were explicitly dimension dependent with a
considerable growth in the dimension 𝑑 . The bound due to Lieb grows like𝐶0,𝑑 =

√
𝜋𝑑 (1+𝑂 (𝑑−1)).

See [51] or [43, Chapter 3.4] for an excellent discussion of Lieb’s method and Remark 1.2 below for
some explicit numbers. However, it is expected that semi-classical arguments work better in high
dimensions. In particular, the constant𝐶0,𝑑 should not grow in 𝑑 . The first dimension independent
bound𝐶0,𝑑 ≤ 81 was derived by extending Cwikel’s method to operator-valued potentials in 2002
in [22]. This work extended an induction in the dimension argument3 by Laptev and Weidl [28],

1We write 𝐿0,𝑑 etc., since there are a class of inequalities due to Lieb and Thirring for the 𝛾 th moment of the negative
eigenvalues with associated constants 𝐿𝛾,𝑑 , see [34, 35] and the reviews [30, 23].

2Parts of this connection were already known to the St. Petersburg school of mathematical physics around Birman
and Solomyak, see the above mentioned “Added notes” in [50].

3See also [26] for some indication of the induction in dimension trick.



CWIKEL’S BOUND RELOADED 3

who were the first to derive Lieb–Thirring bounds with the sharp classical Lieb–Thirring constant
in all dimensions in some cases. Although the upper bound from [22] is dimension independent,
it is certainly too large for small dimensions.

For the last 40-plus years it has been believed that any approach based on Cwikel’s method
cannot yield any bounds on 𝐶0,𝑑 which are comparable to the ones obtained by Lieb in low
dimensions. This is wrong, as we will show by drastically simplifying and, at the same time,
generalizing the important ideas of Cwikel. A typical result which can be easily achieved with
our method is
Theorem 1.1. The number 𝑁 (𝑃2+𝑉 ) of negative energy bound states of 𝑃2+𝑉 obeys the semiclassical
bound

𝑁 (𝑃2 +𝑉 ) ≤ 𝐶0,𝑑
|𝐵𝑑 |
(2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)𝑑/2 𝑑𝑥 (1.3)

for all 𝑑 ≥ 3, where 𝐵𝑑 is the unit ball in R𝑑 , |𝐵𝑑 | its volume, and the constant 𝐶0,𝑑 given in Table 1
below.

Moreover, the same bounds with the same constants also hold in the operator-valued case, see
Theorem 1.8.

Remarks 1.2. (i) Table 1 below compares the upper bounds on 𝐶0,𝑑 , obtained with our method,
with the best known ones so far for scalar and operator-valued potentials, All bounds on 𝐶0,𝑑 in

𝑑
Our results Best known so far

scalar and operator valued scalar operator-valued
3 7.55151 6.86924

10.332

4 6.32791 6.03398
5 5.95405 5.96677
6 5.77058 6.07489
7 5.67647 6.24464
8 5.63198 6.43921
9 5.62080 6.64378

Table 1. Comparison between the upper bounds on𝐶0,𝑑 obtained by our method
with the best known ones so far.

the third column of the table were obtained already in the original work of Lieb more than 40
years ago4. Our bounds on 𝐶0,𝑑 also hold in the operator-valued case, see Section 6 below. The
value in the last column is due to Frank, Lieb and Seiringer [20] and holds for all 𝑑 ≥ 3. Our result
also gives the bound 𝐶0,𝑑 ≤ 5.62080 for 𝑑 ≥ 9, see the discussion in Appendix A. For dimensions
𝑑 = 3, . . . , 9 our upper bounds are compared with the values of the lower bound (1.10) achievable
by our method in Table 2 below.
(ii) There have been several previous attempts to improve Lieb’s result, for example, due to
Conlon [9], Li and Yau [31], Frank [17], and Weidl [54, 55]. All these very different proofs shed a
new light on the Cwikel–Lieb–Rozenblum bound, but failed to give better bounds on the involved
constants than already achieved by Lieb.

From the point of view of physics, the other important case is the ultra-relativistic Schrödinger
operator |𝑃 | +𝑉 . For more general so-called polyharmonic Schrödinger operators our method
yields the following bound for scalar potentials, which involves an interesting variational problem.
Theorem 1.3. Let 𝑃 = −𝑖∇ be the momentum operator, 𝑉 = 𝑉+ − 𝑉− be a real-valued potential
with positive part 𝑉+ ∈ 𝐿1loc and negative part 𝑉− ∈ 𝐿𝑑/𝛼 (R𝑑 ) with 0 < 𝛼 < 𝑑/2, and 𝑃2𝛼 +𝑉 the
Schrödinger–type operator defined via quadratic form methods on 𝐿2(R𝑑 ).

4The numbers are taken from Roepstorff’s book [43, Table 3.1]



4 D. HUNDERTMARK, P. KUNSTMANN, T. RIED, AND S. VUGALTER

Furthermore, consider the minimization problem

𝑀𝛾 = inf
{(
∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 )

)𝛾−2 ∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2 𝑡1−𝛾 d𝑡

}
, (1.4)

where 𝛾 > 2, the infimum is taken over all 𝑚1,𝑚2 ∈ 𝐿2(R+, d𝑠𝑠 ), and 𝑚 = 𝑚1 ∗𝑚2 denotes the
convolution of𝑚1,𝑚2 on R+ with measure d𝑠

𝑠
and let

𝐶𝛾 =
𝛾𝛾+1

4 (𝛾 − 2)𝛾−2
𝑀𝛾 . (1.5)

Then the number 𝑁 (𝑃2𝛼 +𝑉 ) of negative energy bound states of 𝑃2𝛼 +𝑉 is bounded by

𝑁 (𝑃2𝛼 +𝑉 ) ≤ 𝐶𝑑/𝛼
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)

𝑑
2𝛼 d𝑥 , (1.6)

with constant 𝐶𝑑/𝛼 given by (1.5) for 𝛾 = 𝑑
𝛼
.

For 𝛼 = 1/2 and in three dimensions we get the upper bound

𝑁 ( |𝑃 | +𝑉 ) ≤ 5.77058
∫
R3
𝑉−(𝑥)3 d𝑥 (1.7)

which improves the result of Daubechies [13], who gets 𝑁 ( |𝑃 | +𝑉 ) ≤ 6.08
∫
R3
𝑉−(𝑥)3 d𝑥 .

A similar result, with the same constants, also holds for operator-valued potentials, see Theo-
rem 1.7.

Remark 1.4. The minimisation problem for𝑀𝛾 in (1.4) is crucial for getting good bounds on the
constant in the Cwikel–Lieb–Rozenblum bound. It allows us to obtain the first improvement, in
more than 40 years, on the constants derived originally by Lieb [32] in dimensions 𝑑 ≥ 5.

A simple, but not optimal, choice for𝑚1,𝑚2 is𝑚1(𝑠) = 𝑠1{0<𝑠≤1} and𝑚2(𝑠) = 2𝑠−11{𝑠>1}, in
which case ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) = 1 and𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) = min(𝑡, 𝑡−1), so∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝛾 d𝑡 =

∫ ∞

1
(1 − 𝑡−2)2𝑡1−𝛾 d𝑡 = 8

(𝛾 − 2)𝛾 (𝛾 + 2) .

This gives

𝐶0,𝑑 =
2𝑑𝑑

(𝑑 − 2)𝑑−1(𝑑 + 2)
as a possible constant in the CLR inequality and yields𝐶0,3 ≤ 10.8, already an order of a magnitude
smaller than Cwikel’s bound. To get the uniform bound claimed in Theorem 1.1 we have to choose
better candidates for 𝑚1 and 𝑚2. We can achieve this in small dimensions, see Appendix D.
Moreover, combining this with ‘stripping-off-dimensions’ ideas, see Appendix A, with the help
of similar bounds for operator-valued potentials presented in Section 6, one can get this bound
also uniformly in the dimension for the important special case of non-relativistic Schrödinger
operators, where 𝛼 = 1.

Choosing 𝑚1(𝑠) = 𝑠1{0<𝑠<1}, we can actually solve the minimization problem for 𝑚2, see
Proositions C.1 and C.4 in Appendix C. This leads to the upper bound in

Proposition 1.5. For all 𝛾 > 2

2
𝛾 (𝛾 − 1) (𝛾 − 2) ≤ 𝑀𝛾 ≤ 4

(𝛾 − 2)𝛾2
1

Γ( 2
𝛾
)𝛾

(
𝛾 − 2
2

𝜋

sin( 2𝜋
𝛾
)

) 𝛾

2

. (1.8)

For the proof of the lower bound see Section 5.
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Remarks 1.6. (i) So far the best known bound for polyharmonic Schrödinger operators is due
to Frank [17], who proved

𝑁 (𝑃2𝛼 +𝑉 ) ≤
(
𝑑 (𝑑 + 2𝛼)
(𝑑 − 2𝛼)2

) (𝑑−2𝛼)/(2𝛼)
𝑑

𝑑 − 2𝛼
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)

𝑑
2𝛼 d𝑥 , (1.9)

based on ideas of Rumin [47, 48]. Even the simple upper bound on 𝑀𝛾 from Remark 1.4 yields
better results than (1.9). Computing the ratio of the constants in Frank’s bound and the one from
(1.6), using the upper bound in (1.8), one sees that our bound from Theorem 1.3 is better in the
whole allowed range of 0 < 𝛼 < 𝑑/2.
(ii) For the constant 𝐶𝛾 in (1.5), the lower bound from (1.8) yields

𝐶𝛾 ≥ 𝛾𝛾

2(𝛾 − 1) (𝛾 − 2)𝛾−1
C 𝐶 lower

𝛾 ,

where 𝐶 lower
𝛾 is a probably non-sharp lower bound for the best possible constant achievable by

our method5. Thus the upper bound on𝑀𝛾 from Remark 1.4 gives
𝐶𝛾

𝐶 lower
𝛾

≤ 4𝛾 − 1
𝛾 + 2 < 4 ,

where 𝛾 = 𝑑/𝛼 > 2. This shows that our easy upper bound is less than a factor of 4 off the lower
bound.6

(iii) The above lower bound also gives the lower bound

𝐶 lower
0,𝑑 = 𝐶 lower

𝑑
=

𝑑𝑑

2(𝑑 − 1) (𝑑 − 2)𝑑−1
(1.10)

achievable by our method for the constant in Theorem 1.1. In dimensions 3 ≤ 𝑑 ≤ 9 we have

𝑑 Our results lower bound
3 7.55151 6.75000
4 6.32791 5.33333
5 5.95405 4.82253
6 5.77058 4.55625
7 5.67647 4.39229
8 5.63198 4.28088
9 5.62080 4.20028

Table 2. Comparison of our results from Appendix D and the lower bound on
the constant achievable by our method (derived from Proposition 1.5).

In addition,

𝐶 lower
0,𝑑 =

𝑑2

2(𝑑 − 1) (𝑑 − 2)

(
1 + 2

𝑑 − 2

)𝑑−2
→ 𝑒2

2 ≥ 3.69452 .

This comparison shows that there is not too much room to improve on the upper bounds we
obtained, even if one finds the sharp value in the minimization problem for𝑀𝛾 in (1.4).

5Which is of course not necessarily the best possible constant.
6Using the upper bound on𝑀𝛾 given in Proposition 1.5, one can actually derive the better estimate

𝐶𝛾

𝐶 lower
𝛾

≤ 2(𝛾 − 1)
𝛾

1
Γ( 2𝛾 )𝛾

(
𝛾 − 2
2

𝜋

sin( 2𝜋𝛾 )

) 𝛾

2

=
2(𝛾 − 1)

𝛾

(
Γ(2 − 2

𝛾 )

Γ(1 + 2
𝛾 )

) 𝛾

2

.

The right-hand side can be shown to be increasing in 𝛾 with limit lim𝛾→∞
2(𝛾−1)
𝛾

(
Γ (2− 2

𝛾
)

Γ (1+ 2
𝛾
)

) 𝛾

2
= 2e2𝛾∗−1 ≤ 2.34, where

𝛾∗ is the Euler-Mascheroni constant. We will however not elaborate this further.
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(iv) It is known that if 𝛼 ≥ 𝑑/2, the operator 𝑃2𝛼 − 𝑈 always has bound states for nontrivial
𝑈 ≥ 0, so a quantitative bound of the form 𝑁 (𝑃2𝛼 −𝑈 ) ≲

∫
R𝑑
𝑈 (𝑥)𝑑/𝛼 cannot hold if 𝛼 ≥ 𝑑 . For

𝛼 = 1 see [49] or [25, Problem 2 in §45]. For more general cases, see [38, 27, 40], and [21] for a
simple proof of how the existence/ non-existence of a CLR type bound for operators of the form
𝑇 (𝑃) +𝑉 for a large class of functions 𝑇 : R𝑑 → [0,∞) is related to the behavior of the symbol 𝑇
close to its zero set.

Asmentioned before, ourmethod can be generalized to operator-valued potentials. To formulate
this, we need some additional notation. An operator-valued potential 𝑉 is a map 𝑉 : R𝑑 → B(G)
with 𝑉 (𝑥) : G → G a bounded self-adjoint operator on an auxiliary Hilbert space7 G for almost
all 𝑥 ∈ R𝑑 . We denote by B(G) the set of bounded operators on G and by S𝑝 (G) the von
Neumann–Schatten ideal of compact operators on G with 𝑝-summable singular values, see for
example [52] for a background on von Neumann–Schatten ideals.

Theorem 1.7 (Operator-valued version of Theorem 1.3). Let G be a Hilbert space and 𝑉 : R𝑑 →
B(G) an operator valued potential with positive part 𝑉+ ∈ 𝐿1loc(R

𝑑 ,B(G)) and negative part
𝑉− ∈ 𝐿𝑑/(2𝛼) (R𝑑 ,S𝑑/(2𝛼) (G)). Then the number of negative energy bound states of 𝑃2𝛼 ⊗ 1G +𝑉 is
bounded by

𝑁 (𝑃2𝛼 ⊗ 1G +𝑉 ) ≤ 𝐶𝑑/𝛼
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑

trG [𝑉−(𝑥)
𝑑
2𝛼 ] d𝑥 (1.11)

with the same constant 𝐶𝑑/𝛼 as in Theorem 1.3.

For the physically most interesting case 𝛼 = 1 this enables us to get considerable improvements
on the constants in the Cwikel–Lieb–Rozenblum bound.

Theorem 1.8 (Operator-valued version of Theorem 1.1). Let G be a Hilbert space and 𝑉 : R𝑑 →
B(G) an operator valued potential with positive part 𝑉+ ∈ 𝐿1loc(R

𝑑 ,B(G)) and negative part
𝑉− ∈ 𝐿𝑑/2(R𝑑 ,S𝑑/2(G)). Then the number of negative energy bound states of 𝑃2 ⊗ 1G +𝑉 is bounded
by

𝑁 (𝑃2 ⊗ 1G +𝑉 ) ≤ 𝐶op
0,𝑑

|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑

trG [𝑉−(𝑥)
𝑑
2 ] d𝑥 (1.12)

with

𝐶
op
0,𝑑 = min

3≤𝑛≤𝑑
𝐶
op
0,𝑛 ≤ min

3≤𝑛≤𝑑
𝐶𝑛, (1.13)

where 𝐶𝑛 is given by (1.5) for 𝛾 = 𝑛.

Remark 1.9. Table 1 lists upper bounds on 𝐶op
0,𝑑 for dimensions 𝑑 = 3 . . . 9, see also Appendix D.

The constant for 𝑑 = 9 is also an upper bound on 𝐶op
0,𝑑 in any dimension 𝑑 ≥ 10 by (1.13).

The structure of the paper is as follows. In Section 2 we present the main ideas of our method
in the case of a standard non-relativistic Schrödinger operator. The extension to more general
kinetic energies is done in Section 3.

In Section 4 we explain the surprising connection of semiclassical bounds and maximal Fourier
multiplier estimates, which is probably the most important new part of our method.

Although we cannot explicitly find minimizers of the variational problem from Theorem 1.3,
there is a natural lower bound, which is discussed in Section 5. The numerical study to find
reasonable upper bounds for this variational problem is presented in Appendix D.

The extension to the operator-valued setting is done in Sections 6 and 7. In particular, in
Section 7 we prove a fully operator-valued version of Cwikel’s original weak trace ideal bound.

7We follow the convention that all Hilbert spaces are considered to be separable, unless stated otherwise ;-).
Physically, this auxiliary Hilbert space corresponds to other degrees of freedom, for example spin.
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2. The splitting trick

Let 𝑈 B 𝑉− ≥ 0. As quadratic forms 𝑃2 + 𝑉 ≥ 𝑃2 − 𝑈 . This and the Birman–Schwinger
principle shows

𝑁 (𝑃2 +𝑉 ) ≤ 𝑁 (𝑃2 −𝑈 ) = 𝑛(𝑈 1/2 |𝑃 |−2𝑈 1/2; 1)
where 𝑛(𝐴;𝜅) is the number of singular values (𝑠 𝑗 (𝐴)) 𝑗 ∈N greater than 𝜅 > 0 of a compact
operator 𝐴.

We denote by F the Fourier transform and by F −1 its inverse, by𝑀ℎ the operator of multipli-
cation with a function ℎ, and 𝐴 = 𝐴𝑓 ,𝑔 = 𝑀𝑓 F −1𝑀𝑔 for 𝑓 , 𝑔 non-negative (measurable) functions
on R𝑑 . When 𝑓 (𝑥) = 𝑈 (𝑥)1/2 and 𝑔(𝜂) = |𝜂 |−1, then 𝐴𝐴∗ = 𝑈 1/2 |𝑃 |−2𝑈 1/2, which has the same
non-zero eigenvalues as 𝐴∗𝐴. Thus

𝑁 (𝑃2 −𝑈 ) = 𝑛(𝐴𝑓 ,𝑔; 1)
In particular, the Chebyshev–Markov inequality gives

𝑁 (𝑃2 −𝑈 ) = 𝑛(𝐴𝑓 ,𝑔; 1) ≤
∑︁
𝑗

(𝑠 𝑗 (𝐴𝑓 ,𝑔) − 𝜇)2+
(1 − 𝜇)2

for any 0 < 𝜇 < 1. The first main idea, going already back to Cwikel [10], is to split 𝐴𝑓 ,𝑔 =

𝐵𝑓 ,𝑔 + 𝐻𝑓 ,𝑔, where 𝐵𝑓 ,𝑔 is bounded and 𝐻𝑓 ,𝑔 is a Hilbert–Schmidt operator, and note that Ky Fan’s
inequality for the singular values [52, Theorem 1.7] yields

𝑠 𝑗 (𝐴𝑓 ,𝑔) = 𝑠 𝑗 (𝐵𝑓 ,𝑔 + 𝐻𝑓 ,𝑔) ≤ ∥𝐵𝑓 ,𝑔∥ + 𝑠 𝑗 (𝐻𝑓 ,𝑔)
for all 𝑗 ∈ N. So if ∥𝐵𝑓 ,𝑔∥ ≤ 𝜇 < 1 we get

𝑁 (𝑃2 −𝑈 ) ≤ (1 − 𝜇)−2
∑︁
𝑗 ∈N

𝑠 𝑗 (𝐻𝑓 ,𝑔)2 = (1 − 𝜇)−2∥𝐻𝑓 ,𝑔∥2𝐻𝑆 , (2.1)

where ∥𝐻 ∥𝐻𝑆 denotes the Hilbert–Schmidt norm of the operator 𝐻 .
In order to make the above argument work, one has to be able to split𝐴𝑓 ,𝑔 = 𝐵𝑓 ,𝑔 +𝐻𝑓 ,𝑔 in such

a way that the Hilbert-Schmidt norm of 𝐻𝑓 ,𝑔 is easy to calculate and one has a good bound on the
operator norm of 𝐵𝑓 ,𝑔. Writing out the inverse Fourier transform, one sees that 𝐴𝑓 ,𝑔 has a kernel

𝐴𝑓 ,𝑔 (𝑥, 𝜂) = (2𝜋)−𝑑/2𝑒𝑖𝑥 ·𝜂 𝑓 (𝑥)𝑔(𝜂), (2.2)
that is,

𝐴𝑓 ,𝑔𝜑 (𝑥) = 𝑓 (𝑥)F −1(𝑔𝜑) (𝑥) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒𝑖𝑥 ·𝜂 𝑓 (𝑥)𝑔(𝜂)𝜑 (𝜂) d𝜂, (2.3)

at least for nice enough 𝜑 . In order to write 𝐴𝑓 ,𝑔 as a sum of a bounded and a Hilbert-Schmidt
operator, set 𝑡 = 𝑓 (𝑥)𝑔(𝜂), split 𝑡 = 𝑚(𝑡) + 𝑡 −𝑚(𝑡) for some bounded, measurable function
𝑚 : [0,∞) → R, and define 𝐵𝑓 ,𝑔,𝑚 and 𝐻𝑓 ,𝑔,𝑚 via their kernels

𝐵𝑓 ,𝑔,𝑚 (𝑥, 𝜂) = (2𝜋)−𝑑/2𝑒𝑖𝑥 ·𝜂𝑚(𝑓 (𝑥)𝑔(𝜂)), (2.4)
𝐻𝑓 ,𝑔,𝑚 (𝑥, 𝜂) = (2𝜋)−𝑑/2𝑒𝑖𝑥 ·𝜂 (𝑓 (𝑥)𝑔(𝜂) −𝑚(𝑓 (𝑥)𝑔(𝜂))) . (2.5)

It is then clear that 𝐴𝑓 ,𝑔 = 𝐵𝑓 ,𝑔,𝑚 + 𝐻𝑓 ,𝑔,𝑚 . Our starting point is that the Hilbert–Schmidt norm
of 𝐻𝑓 ,𝑔,𝑚 is straightforward to calculate; the main difficulty is to get an explicit bound on the
operator norm of 𝐵𝑓 ,𝑔,𝑚 on 𝐿2 under suitable assumptions on𝑚. For the special choice 𝑔(𝜂) = |𝜂 |−1
one has ∥𝐻𝑓 ,𝑔∥2𝐻𝑆 = 𝑐

∫
𝑅𝑑
𝑓 (𝑥)𝑑 d𝑥 , see (2.9), so the right hand side of (2.1) has exactly the right

(semi-classical) scaling in 𝑓 . But, in order to use this in (2.1), it also enforces that the upper bound
𝜇 on the operator norm of 𝐵𝑓 ,𝑔 has to be independent of 𝑓 . This has an important consequence:

Since for a given 𝜑 ∈ 𝐿2 one can freely choose 𝑓 ≥ 0 as to make |𝐵𝑓 ,𝑔,𝑚𝜑 | as big as
possible, this leads naturally to the associated maximal operatorB𝑔,𝑚 (𝜑) B sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚𝜑 |.
Although this is not explicitly written in the paper by Cwikel, getting a useful bound on such
a type of maximal operator is exactly what he achieved in [10], using a dyadic decomposition
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in the ranges of 𝑓 and 𝑔 and collecting suitable terms. We will do this in a much simpler and
more efficient way. This enables us to get a constant which is more than 10 times smaller
than the original constant by Cwikel.
It turns out that one can always calculate the Hilbert-Schmidt norm of 𝐻𝑓 ,𝑔,𝑚 . The maximal

operator B𝑔,𝑚 corresponding to 𝐵𝑓 ,𝑔,𝑚 can be bounded in operator norm under an additional
structural assumption on𝑚, which we present first.

Theorem 2.1. Let 𝑔 be a measurable non-negative function on R𝑑 for 𝑑 ≥ 1 and assume that𝑚 is
given by a convolution,

𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) =
∫ ∞

0
𝑚1(𝑡/𝑠)𝑚2(𝑠)

d𝑠
𝑠

with 𝑚1,𝑚2 ∈ 𝐿2(R+, d𝑠𝑠 ). Then the maximal operator B𝑔,𝑚 (𝜑) B sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚𝜑 | extends to a
bounded operator on 𝐿2(R𝑑 ) with

∥B𝑔,𝑚 ∥ ≤
(∫ ∞

0
|𝑚1(𝑠) |2

𝑑𝑠

𝑠

)1/2 (∫ ∞

0
|𝑚2(𝑠) |2

𝑑𝑠

𝑠

)1/2
(2.6)

for its operator norm.

We emphasize that this maximal operator bound provides an upper bound for the operator
norm of 𝐵𝑓 ,𝑔,𝑚 independently of the choice of 𝑓 , as it has to be. It also turns out to be independent
of 𝑔. The maximal operator bound is a natural consequence of the convolution structure of𝑚, see
Section 4, where we show that it is equivalent to maximal Fourier multiplier bounds. Concerning
the Hilbert–Schmidt norm of 𝐻𝑓 ,𝑔,𝑚 we have

Theorem 2.2. Let 𝑓 , 𝑔 be non-negative measurable functions on R𝑑 , 𝑑 ≥ 1, and𝑚 be a measurable
function on R+. The Hilbert–Schmidt norm of 𝐻𝑓 ,𝑔,𝑚 is given by

∥𝐻𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 =

∫
R𝑑
𝐺𝑔,𝑚 (𝑓 (𝑥)) d𝑥, (2.7)

where the function 𝐺𝑔,𝑚 is given by

𝐺𝑔,𝑚 (𝑢) =
∫
R𝑑

|𝑢𝑔(𝜂) −𝑚(𝑢𝑔(𝜂)) |2 d𝜂
(2𝜋)𝑑

. (2.8)

Remark 2.3. In its applications to nonrelativistic Schrödinger operators 𝑃2 + 𝑉 , the function
𝑔 is given by 𝑔(𝜂) = |𝜂 |−1. We would like to emphasize that 𝑔 is never in 𝐿2(R𝑑 ), due to its
slow decay at infinity, i.e. an ultraviolet problem. Choosing 𝑚 with 𝑚(𝑡) ∼ 𝑡 for small 𝑡 > 0
makes the integrand in (2.7) vanish for large frequencies. This can be thought of as an ultraviolet
regularization: the right hand side of (2.7) is finite if and only if 𝑔 is locally square integrable (near
its singularity), which is an infrared problem. Clearly, 𝑔(𝜂) = |𝜂 |−1 is locally square integrable only
in dimension 𝑑 ≥ 3. This explains the well-known fact that the CLR bound for non–relativistic
Schrödinger operators holds only in dimensions 𝑑 ≥ 3.

For a generalized Schrödinger operator 𝑇 (𝑃) +𝑉 , where the kinetic energy (frequency–energy
relation of the free particle) is given by a measurable function 𝑇 ≥ 0, we have 𝑔 = 𝑇 −1/2. In this
case a CLR–type bound holds if 𝑇 −1 is locally integrable near the zero set of 𝑇 . This is sharp,
since we know from [21] that weakly coupled negative energy bound states of 𝑇 (𝑃) +𝑉 exist for
arbitrary weak attractive potentials 𝑉 when 𝑇 −1 is not locally integrable near the zero set of 𝑇 .

Proof of Theorem 2.2. Since the operator 𝐻𝑓 ,𝑔,𝑚 has a kernel given by the right-hand side of (2.5),
we compute its Hilbert-Schmidt norm as

∥𝐻𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 =

∬
R𝑑×R𝑑

|𝐻𝑓 ,𝑔,𝑚 (𝑥, 𝜂) |2𝑑𝑥d𝜂 =

∬
R𝑑×R𝑑

|𝑓 (𝑥)𝑔(𝜂) −𝑚(𝑓 (𝑥)𝑔(𝜂)) |2 d𝑥d𝜂
(2𝜋)𝑑

=

∫
R𝑑
𝐺𝑔,𝑚 (𝑓 (𝑥)) d𝑥,
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using the Fubini-Tonelli Theorem and the definition of 𝐺𝑔,𝑚 .

In the rest of this section we will discuss how Theorem 2.1, Theorem 2.2, and the bound (2.1)
lead to the Cwikel–Lieb–Rozenblum bound for a non-relativistic single-particle Schrödinger
operator. In this case 𝑔(𝜂) = |𝜂 |−1, and a simple scaling in the 𝜂 integral gives

∥𝐻𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 =

∬
R𝑑×R𝑑

(
𝑓 (𝑥)
|𝜂 | −𝑚

(
𝑓 (𝑥)
|𝜂 |

))2 d𝑥d𝜂
(2𝜋)𝑑

=

∫
R𝑑
𝑓 (𝑥)𝑑 d𝑥

∫
R𝑑
( |𝜂 |−1 −𝑚( |𝜂 |−1))2 d𝜂

(2𝜋)𝑑
(2.9)

Going to spherical coordinates shows∫
R𝑑
( |𝜂 |−1 −𝑚( |𝜂 |−1))2 d𝜂

(2𝜋)𝑑
=

|𝑆𝑑−1 |
(2𝜋)𝑑

∫ ∞

0

(
𝑟−1 −𝑚(𝑟−1)

)2
𝑟𝑑−1 d𝑟

=
𝑑 |𝐵𝑑1 |
(2𝜋)𝑑

∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑 d𝑡 ,

where |𝑆𝑑−1 | is the surface area of the unit sphere in R𝑑 and |𝐵𝑑1 | = |𝑆𝑑−1 |/𝑑 is the volume of the
unit ball in R𝑑 .

Now we repeat the derivation of (2.1), except that we also scale 𝑓 by 𝜅 > 0, using 𝜅𝐴𝑓 ,𝑔 =

𝐴𝜅𝑓 ,𝑔 = 𝐵𝜅𝑓 ,𝑔,𝑚 + 𝐻𝜅𝑓 ,𝑔,𝑚 . The argument leading to (2.1) then gives

𝑁 (𝑃2 −𝑈 ) = 𝑛(𝐴𝜅𝑓 ,𝑔;𝜅) ≤ (𝜅 − 𝜇)−2
∑︁
𝑗

∥𝐻𝜅𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 (2.10)

=
𝜅𝑑

(𝜅 − 𝜇)2
𝑑 |𝐵𝑑1 |
(2𝜋)𝑑

∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑 d𝑡

∫
R𝑑
𝑈 (𝑥)𝑑/2 d𝑥 , (2.11)

as long as 𝜅 > 𝜇 ≥ ∥𝐵𝜅𝑓 ,𝑔,𝑚 ∥. Clearly, the last factor in (2.11) has the correct dependence on the
potential𝑈 . Thanks to Theorem 2.1, we can use 𝜇 = ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) as an upper bound
for ∥𝐵𝑓 ,𝑔,𝑚 ∥, which is independent of 𝑓 , so the same bound holds for ∥𝐵𝜅𝑓 ,𝑔,𝑚 ∥ for any 𝜅 > 0.
Using this, we can now freely optimize (2.11) in 𝜅 > 𝜇 in to get

𝑁 (𝑃2 −𝑈 ) ≤ 𝐶
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑
𝑈 (𝑥)𝑑/2 d𝑥 (2.12)

with the constant

𝐶 = 𝐶𝑑,𝑚 =
𝑑𝑑+1

4(𝑑 − 2)𝑑−2
𝜇𝑑−2

∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑 d𝑡 . (2.13)

This gives most of the main ideas of our proof of Theorem 1.1. The last new idea, which is
crucially important for the proof of Theorem 2.1, is the connection between the bound on the
norm of the operator 𝐵𝑓 ,𝑔,𝑚 , more precisely, the bound (2.6) on the operator norm of the associated
maximal operator B𝑔,𝑚 (𝜑) B sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚𝜑 |, and bounds for maximal Fourier multipliers on 𝐿2.
This is explained in Section 4.

Before we do this let us point out that our approach leads to new results also for more general
kinetic energies.

3. General kinetic energies

First we consider the case where 𝑃2 is replaced by 𝑃2𝛼 and give the

Proof of Theorem 1.3. Replacing 𝑔(𝜂) = |𝜂 |−1 by 𝑔(𝜂) = |𝜂 |−𝛼 one simply reruns the argument
from the previous section. Calculating, again by scaling,

∥𝐻𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 =

∬
R×R𝑑

(
𝑓 (𝑥)
|𝜂 |𝛼 −𝑚

(
𝑓 (𝑥)
|𝜂 |𝛼

))2 d𝑥d𝜂
(2𝜋)𝑑



10 D. HUNDERTMARK, P. KUNSTMANN, T. RIED, AND S. VUGALTER

=

∫
R𝑑
𝑓 (𝑥)𝑑/𝛼 d𝑥

∫
R𝑑
( |𝜂 |−𝛼 −𝑚( |𝜂 |−𝛼 ))2 d𝜂

(2𝜋)𝑑

and ∫
R𝑑
( |𝜂 |−𝛼 −𝑚( |𝜂 |−𝛼 ))2 d𝜂

(2𝜋)𝑑
=

|𝑆𝑑−1 |
(2𝜋)𝑑

∫ ∞

0
(𝑟−𝛼 −𝑚(𝑟−𝛼 ))2 𝑟𝑑−1 d𝑟

=
𝑑 |𝐵𝑑1 |
𝛼 (2𝜋)𝑑

∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑

𝛼 d𝑡 ,

one sees that the argument leading to (2.11) remains virtually unchanged, only 𝑑 gets replaced by
by 𝑑/𝛼 . Thus

𝑁 (𝑃2𝛼 +𝑉 ) ≤ 𝐶
𝑑 |𝐵𝑑1 |
𝛼 (2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)

𝑑
2𝛼 d𝑥

with constant

𝐶 =
( 𝑑
𝛼
) 𝑑
𝛼
+1

4( 𝑑
𝛼
− 2) 𝑑

𝛼
−2

(
∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 )

) 𝑑
𝛼
−2 ∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑

𝛼 d𝑡

For𝑚1 and𝑚2 we make the simple choice from Remark 1.4. Then𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) = min(𝑡, 𝑡−1)
and 𝜇 = ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) = 1. Hence,∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑑

𝛼 d𝑡 =
∫ ∞

1
(1 − 𝑡−2)2𝑡1−𝑑

𝛼 d𝑡 = 8
( 𝑑
𝛼
− 2) 𝑑

𝛼
( 𝑑
𝛼
+ 2)

and collecting terms finishes the proof of Theorem 1.3.

Remark 3.1. For the number of negative energy bound states of 𝑃2𝛼 +𝑈 the so-far best bounds
are due to Frank [17, 18]. Using ideas from Rumin [47, 48], he got the bound

𝑁 (𝑃2𝛼 +𝑉 ) ≤
(
𝑑
𝛼
( 𝑑
𝛼+2 )

( 𝑑
𝛼
− 2)2

) 𝑑
2𝛼 −1 𝑑

𝛼

𝑑
𝛼
− 2

|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑
𝑉−(𝑥)

𝑑
2𝛼 d𝑥 .

Even with the non-optimal choice of𝑚1 and𝑚2 above, a simple calculation shows that the bound
from Theorem 1.3 is better as long as 2 < (1 + 2𝛼/𝑑)𝑑/(2𝛼) . Since 0 < 𝛿 ↦→ (1 + 1/𝛿)𝛿 is strictly
increasing, this is the case as soon as 𝑑 > 2𝛼 , that is, the whole range of allowed values of 𝛼 .

For more general kinetic energies of the form𝑇 (𝑃) with𝑇 a non-negative measurable function
which is locally bounded we have

Theorem 3.2. The number of negative energy bound states of a Schrödinger–type operator𝑇 (𝑃) +𝑉 ,
defined suitably with the help of quadratic form methods on 𝐿2, obeys the bound

𝑁 (𝑇 (𝑃) +𝑉 ) ≤ 𝜆−2
∫
R𝑑
𝐺𝑇

(
(𝜆 + 1)2𝑉−(𝑥)

)
𝑑𝑥 (3.1)

for any 𝜆 > 0, with 𝑉− = max(−𝑉 , 0), the negative part of 𝑉 and

𝐺𝑇 (𝑢) =
∫ [( 𝑢

𝑇 (𝜂)

)1/2
−

( 𝑢

𝑇 (𝜂)

)−1/2]2
+

𝑑𝜂

(2𝜋)𝑑
=

∫
𝑇<𝑢

[
𝑢

𝑇 (𝜂) +
𝑇 (𝜂)
𝑢

− 2
]

𝑑𝜂

(2𝜋)𝑑
(3.2)

where 𝛼+ = max(𝛼, 0) is the positive part.

Proof. In this case we use 𝑔(𝜂) = 𝑇 (𝜂)−1/2, 𝑓 (𝑥) = 𝑉−(𝑥), and again make the choice𝑚1(𝑠) =

𝑠1{0<𝑠≤1} and𝑚2(𝑠) = 2𝑠−11{𝑠≥1}. So 𝜇 = ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) = 1. With 𝜆 = 𝜅 − 𝜇 = 𝜅 − 1,
the same argument leading to (2.10) now gives

𝑁 (𝑇 (𝑃) +𝑉 ) ≤ 𝑁 (𝑇 (𝑃) −𝑉−) ≤ 𝜆−2 ∥𝐻 (𝜆+1) 𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 .
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for any 𝜆 > 0. Using Theorem 2.2 to calculate the Hilbert–Schmidt norm shows

∥𝐻 (𝜆+1) 𝑓 ,𝑔,𝑚 ∥2𝐻𝑆 =

∫
R𝑑
𝐺𝑇

(
(𝜆 + 1)2𝑉−(𝑥)

)
𝑑𝑥 ,

since𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) = min(𝑡, 𝑡−1).

Remarks 3.3. (i) The bound given in Theorem 3.2 improves the bound from [21], which was
based on Cwikel’s original method. Clearly, 𝐺𝑇 given by (3.2) is increasing in 𝑢 > 0. Moreover,
since 𝑇 is assumed to be locally bounded it is easy to see that 𝐺𝑇 (𝑢) is finite if and only if
𝜂 ↦→ 𝑇 (𝜂)−1 is integrable over the set {𝑇 < 𝑢}. The result proven in [21] shows that under some
rather mild general conditions on the kinetic energy symbol 𝑇 the operator 𝑇 (𝑃) +𝑉 has weakly
coupled bound states for any non-trivial potential 𝑉 ≤ 0, no matter how small |𝑉 | is, if 𝑇 −1 is not
integrable over the set {𝑇 < 𝑢} for all small 𝑢 > 0, which is equivalent to𝐺𝑇 (𝑢) = ∞ for all small
𝑢 > 0 and, by monotonicity, equivalent to 𝐺𝑇 (𝑢) = ∞ for all 𝑢 > 0. This shows that the bound
given by Theorem 1.1 is quite natural.
(ii) Let 𝑔(𝑢) = (𝑢1/2 − 𝑢−1/2)2+. Then 𝑔′(𝑡) = 0 for 0 < 𝑡 < 1 and 𝑔′(𝑡) = 1 − 𝑡−2 for 𝑡 > 1. The
layer cake principle yields∫

𝐺𝑇 (𝑉−(𝑥)) d𝑥 =

∫ ∞

0
𝑔′(𝑡)

∬
1{𝑇 (𝜂)<𝑉− (𝑥)/𝑡 }

d𝑥d𝜂
(2𝜋)𝑑

d𝑡 =
∫ ∞

0
𝑔′(𝑡)𝑁 𝑐𝑙 (𝑇 + 𝑡−1𝑉 ) d𝑡

with the classical phase–space volume

𝑁 𝑐𝑙 (𝑇 +𝑉 ) B
∬

1{𝑇 (𝜂)+𝑉 (𝑥)<0}
d𝑥d𝜂
(2𝜋)𝑑

. (3.3)

Hence, in terms of the classical phase–space volume Theorem 3.2 gives an upper bound of the
form

𝑁 (𝑇 (𝑃) +𝑉 ) ≤ 𝜆−2
∫ ∞

1
𝑁 𝑐𝑙 (𝑇 + 𝑡−1(𝜆 + 1)2𝑉 ) (1 − 𝑡−2) d𝑡 (3.4)

for any 𝜆 > 0. One can interpret (3.4) as a quantum correction to the classical phase-space guess
(3.3). The integral on the right hand side is finite if and only if the classical phase-space volume is
small enough for small potentials. A bound of the form (3.4), with (1 − 𝑡−2) replaced by 1, was
also derived in [21]. In most cases where one can explicitly calculate or find explicit upper bounds
for 𝐺𝑇 , one shows, in fact, that∫ ∞

1
𝑁 𝑐𝑙 (𝑇 + 𝑡−1𝑉 ) (1 − 𝑡−2) d𝑡 ≲ 𝑁 𝑐𝑙 (𝑇 +𝑉 ) , (3.5)

see the discussion in Section 6 of [21]. In these cases, Theorem 3.2 gives an upper bound for the
number of negative bound states of 𝑇 (𝑃) + 𝑉 , under very weak conditions on the dispersion
relation 𝑇 , solely in terms of the classical phase-space volume,

𝑁 (𝑇 (𝑃) +𝑉 ) ≤ 𝐶𝜆−2𝑁 𝑐𝑙 (𝑇 + (1 + 𝜆)2𝑉 ) , (3.6)

for some constant 𝐶 and all 𝜆 > 0. However, the bound (3.5), hence also the bound (3.6), does not
hold in critical cases, where it is known that logarithmic corrections to the classical phase space
guess appear [4, 5, 53].

4. The connection with maximal Fourier multipliers

In this section we give the proof of Theorem 2.1. The important observation is the connection
to maximal Fourier multipliers, as we discuss now. Recall that given functions 𝑓 , 𝑔 : R𝑑 → [0,∞)
and a bounded, measurable function𝑚 : R+ → R+, the operator 𝐵𝑓 ,𝑔,𝑚 is given by

𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒𝑖𝑥𝜂𝑚(𝑓 (𝑥)𝑔(𝜂))𝜑 (𝜂) d𝜂 , (4.1)
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at least for nice enough 𝜑 , e.g., Schwartz functions. We would like to conclude that 𝐵𝑓 ,𝑔,𝑚 is a
bounded operator on 𝐿2(R𝑑 ), which might suggest to look for results which show that a pseudo-
differential operator with symbol 𝑎(𝑥, 𝜂) =𝑚(𝑓 (𝑥)𝑔(𝜂)) is bounded. A classical example of such
a result is the Calderón–Vaillancourt theorem, see for instance [37, Proposition 9.4]. However,
typical in the study of pseudo-differential operators, this needs high enough differentiability of
the symbol 𝑎, which we do not have. More importantly, we need an estimate independent of 𝑓 ,
which one cannot get without looking more closely into the structure of the problem. To see how
the product structure 𝑓 (𝑥)𝑔(𝜂) helps in the operator bound, we rewrite 𝐵𝑓 ,𝑔,𝑚 as

𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒𝑖𝑥𝜂𝑚(𝑡𝑔(𝜂))𝜑 (𝜂) d𝜂

���
𝑡=𝑓 (𝑥)

= F −1 [𝑚(𝑡𝑔(·))𝜑 (·)] (𝑥)
���
𝑡=𝑓 (𝑥)

(4.2)

This suggest to look at the Fourier multiplier 𝐵𝑡,𝑔,𝑚 defined by
𝐵𝑡,𝑔,𝑚𝜑 B F −1 [𝑚(𝑡𝑔(·))𝜑 (·)] (4.3)

and the associated maximal operator
𝐵∗𝑔,𝑚 (𝜑) (𝑥) B sup

𝑡>0
|𝐵𝑡,𝑔,𝑚𝜑 (𝑥) | . (4.4)

It is clear that one has |𝐵𝑓 ,𝑔,𝑚 (𝜑) | ≤ 𝐵∗𝑔,𝑚 (𝜑), hence also B(𝜑) = sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚 (𝜑) | ≤ |𝐵∗𝑔,𝑚 (𝜑) |,
for any Schwarz function 𝜑 . On the other hand, choosing 𝑓 (𝑥) in such a way as to make
|𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) | arbitrarily close to 𝐵∗𝑔,𝑚𝜑 (𝑥), shows the ‘reverse bound’B𝑔,𝑚 (𝜑) = sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚𝜑 | ≥
𝐵∗𝑔,𝑚 (𝜑) for a given fixed Schwartz function 𝜑 . Thus B𝑔,𝑚 (𝜑) = 𝐵∗𝑔,𝑚 (𝜑).

In particular, ∥B𝑔,𝑚 ∥ = ∥𝐵∗𝑔,𝑚 ∥ for the corresponding operator norms on 𝐿2. So having a bound
for the maximal operator B𝑔,𝑚 (𝜑) = sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚 (𝜑) |, which yields a bound for operator norm
of 𝐵𝑓 ,𝑔,𝑚 which is uniform in the choice of the function 𝑓 , is equivalent to having a bound for the
maximal Fourier multiplier 𝐵∗𝑔,𝑚 . This is our starting point for the proof of Theorem 2.1.
Remark 4.1. One should be a little bit careful in the definition (4.4) of the maximal operator
𝐵∗𝑔,𝑚 . If 𝜑 is a Schwartz function and 𝑚 : [0,∞) → R is bounded and measurable, then both
𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) and 𝐵𝑡,𝑔,𝑚𝜑 (𝑥) are well-defined for all 𝑥 ∈ R𝑑 , 𝑡 ≥ 0, and 𝑓 , 𝑔 ≥ 0 measurable.
To ensure measurability of 𝑥 ↦→ 𝐵∗𝑔,𝑚𝜑 (𝑥) one has to impose stronger conditions on 𝑚, for
example 𝑚 : [0,∞) → R bounded and continuous is enough. In this case, 𝑡 ↦→ 𝐵𝑡,𝑔,𝑚𝜑 (𝑥) is
continuous for each 𝑥 ∈ R𝑑 and the supremum in 𝑡 can be taken over any dense subset. For
example, 𝐵∗𝑔,𝑚𝜑 (𝑥) = sup𝑡 ∈Q+ |𝐵𝑡,𝑔,𝑚𝜑 (𝑥) |, with Q+ the positive rationals. Note that for the choice
of 𝑚 in Theorem 2.1 the function 𝑚 is continuous. Indeed, if 𝑚 is given by a convolution of
𝑚1,𝑚2 ∈ 𝐿2(R+, d𝑠𝑠 ), then it is easy to see that it has a canonical continuous representative with
lim𝑡→0𝑚(𝑡) = 0 = lim𝑡→∞𝑚(𝑡).
Theorem 4.2. Let 𝑔 be a measurable non-negative function on R𝑑 and assume that𝑚 is given by a
convolution,

𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) =
∫ ∞

0
𝑚1(𝑡/𝑠)𝑚2(𝑠)

d𝑠
𝑠

with𝑚1,𝑚2 ∈ 𝐿2(R+, d𝑠𝑠 ). Then the maximal Fourier multiplier 𝐵∗𝑔,𝑚 , defined in (4.4), extends to a
bounded operator on 𝐿2(R𝑑 ) with

∥𝐵∗𝑔,𝑚 ∥ ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 )

for its operator norm.

Remark 4.3. There are several different but related proofs of boundedness of maximal Fourier
multipliers available in the literature, see, e.g., [8, 12, 46]. These works concentrate on getting
𝐿𝑝 bounds and do not care much about the involved constants. For us the 𝐿2 boundedness is
important, with good bounds on the operator norm.
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Proof. When𝑚 is given by a convolution and 𝜑 is a Schwartz function, we have

𝐵𝑡,𝑔,𝑚𝜑 (𝑥) =
∫ ∞

0
F −1 [𝑚1(𝑡𝑔/𝑠)𝜑] (𝑥)𝑚2(𝑠)

d𝑠
𝑠
.

Interchanging the integrals, applying the triangle, and then the Cauchy-Schwarz inequality for
the d𝑠/𝑠 integration yields

|𝐵𝑡,𝑔,𝑚𝜑 (𝑥) | ≤
∫ ∞

0

��F −1 [𝑚1(𝑡𝑔/𝑠)𝜑] (𝑥)
�� |𝑚2(𝑠) |

d𝑠
𝑠

≤
(∫ ∞

0

��F −1 [𝑚1(𝑡𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠

)1/2
∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) . (4.5)

Since the measure d𝑠/𝑠 is invariant under scaling, we can scale 𝑠 by a fixed factor 𝑡 to see that∫ ∞

0

��F −1 [𝑚1(𝑡𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠

=

∫ ∞

0

��F −1 [𝑚1(𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠
,

that is, the right hand side of (4.5) is independent of 𝑡 > 0. So

𝐵∗𝑔,𝑚𝜑 (𝑥) = sup
𝑡>0

|𝐵𝑡,𝑔,𝑚𝜑 (𝑥) | ≤
(∫ ∞

0

��F −1 [𝑚1(𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠

)1/2
∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) .

In particular,

∥𝐵∗𝑔,𝑚𝜑 ∥22 ≤ ∥𝑚2∥2
𝐿2 (R+, d𝑠𝑠 )

∫
R𝑑

∫ ∞

0

��F −1 [𝑚1(𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠
d𝑥 .

Using Fubini–Tonelli to interchange the integrals and Plancherel’s theorem for the 𝐿2 norm of
the Fourier transform, one sees that∫

R𝑑

∫ ∞

0

��F −1 [𝑚1(𝑔/𝑠)𝜑] (𝑥)
��2 d𝑠
𝑠
d𝑥 =

∫ ∞

0

∫
R𝑑

|𝑚1(𝑔(𝜂)/𝑠) |2 |𝜑 (𝜂) |2 d𝜂
d𝑠
𝑠
.

Assume for the moment that 0 < 𝑔 < ∞ everywhere. Then interchanging the integration and
using the same scaling argument as before to scale out 𝑔(𝜂) yields∫ ∞

0

∫
R𝑑

|𝑚1(𝑔(𝜂)/𝑠) |2 |𝜑 (𝜂) |2 d𝜂
d𝑠
𝑠

=

∫
R𝑑

∫ ∞

0
|𝑚1(𝑠−1) |2 |𝜑 (𝜂) |2

d𝑠
𝑠
d𝜂

= ∥𝑚1∥2
𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥

2
2.

Hence

∥𝐵∗𝑔,𝑚𝜑 ∥2 ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥2,

so 𝐵∗𝑔,𝑚 is continuous at zero in 𝐿2(R𝑑 ). Since this maximal operator is the supremum of linear
operators, it is sublinear and continuity at zero implies that it is locally uniformly continuous.
Thus 𝐵∗𝑔,𝑚 can be extended to a bounded operator on 𝐿2(R𝑑 ).

If 𝑔 attains the values 0 or ∞, we set 𝜑 = 1{0<𝑔<∞}𝜑 . Since 𝑚(0) = 𝑚(∞) = 0, we have
𝐵𝑡,𝑔,𝑚𝜑 = 𝐵𝑡,𝑔,𝑚𝜑 , hence also 𝐵∗𝑔,𝑚𝜑 = 𝐵∗𝑔,𝑚𝜑 and with ∥𝜑 ∥𝐿2 ≤ ∥𝜑 ∥𝐿2 the above argument proves
the claim in the case of general 𝑔.

The next result, which also yields the proof of Theorem 2.1, is a direct consequence of Theo-
rem 4.2.

Corollary 4.4. Let 𝑓 , 𝑔 be measurable non-negative functions on R𝑑 and assume that𝑚 : R+ → R
is given by a convolution𝑚 =𝑚1 ∗𝑚2, with𝑚1,𝑚2 ∈ 𝐿2(R+, d𝑠𝑠 ). Then the operator 𝐵𝑓 ,𝑔,𝑚 , defined
by (2.4), i.e., given by the kernel

𝐵𝑓 ,𝑔,𝑚 (𝑥, 𝜂) = (2𝜋)−𝑑/2𝑒𝑖𝑥 ·𝜂𝑚(𝑓 (𝑥)𝑔(𝜂)),
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is bounded on 𝐿2(R𝑑 ) with
sup
𝑔≥0

 sup
𝑓 ≥0

|𝐵𝑓 ,𝑔,𝑚𝜑 |

2 ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥2 .

Proof. By definition of the maximal Fourier multiplier we have |𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) | ≤ 𝐵∗𝑔,𝑚𝜑 (𝑥) and thus
also sup𝑓 ≥0 |𝐵𝑓 ,𝑔,𝑚𝜑 (𝑥) | ≤ 𝐵∗𝑔,𝑚𝜑 (𝑥) for almost every 𝑥 ∈ R𝑑 .

Since the 𝐿2–bound from Theorem 4.2 is independent of 𝑔 ≥ 0, we can also take the supremum
in 𝑔 ≥ 0, after taking the 𝐿2–norm.

5. A lower bound for the variational problem𝑀𝛾
Recall that the variational problem, which comes up in a natural way in our bound on the

number of bound states is

𝑀𝛾 = inf
{
(∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) )

𝛾−2
∫ ∞

0
(1 − 𝑡−1𝑚1 ∗𝑚2(𝑡))2𝑡1−𝛾 d𝑡

}
, (5.1)

where the convolution𝑚1 ∗𝑚2 is on R+ with its scaling invariant measure d𝑠
𝑠
, and the infimum is

taken over all functions𝑚1,𝑚2 : R+ → R .

Theorem 5.1. For all 𝛾 > 2 we have the lower bound

𝑀𝛾 ≥ 2
(𝛾 − 2) (𝛾 − 1)𝛾 .

Proof. Notice that ∥𝑚∥∞ ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) for𝑚 =𝑚1 ∗𝑚2. Thus

𝑀𝛾 ≥ inf
𝑚

{
∥𝑚∥𝛾−2∞

∫ ∞

0
(𝑡 −𝑚(𝑡))2𝑡−𝛾−1 d𝑡

}
= inf
ℓ>0

{
ℓ𝛾−2 inf

∥𝑚 ∥∞=ℓ

∫ ∞

0
(𝑡 −𝑚(𝑡))2𝑡−𝛾−1 d𝑡

}
.

In order to minimize the integral
∫ ∞
0 (𝑡 − 𝑚(𝑡))2𝑡−𝛾−1 d𝑡 under the pointwise constraint ℓ =

∥𝑚∥𝐿∞ ≥ |𝑚 | for ℓ > 0, one has to choose𝑚 in such a way that (𝑡 −𝑚(𝑡))2 is as small as possible
for each 𝑡 > 0. Thus, for fixed ℓ > 0, the minimizer is given by𝑚ℓ (𝑡) = min(𝑡, ℓ). Since∫ ∞

0
(𝑡 −𝑚ℓ (𝑡))2𝑡−𝛾−1 d𝑡 =

∫ ∞

ℓ

(𝑡 − ℓ)2𝑡−𝛾−1 d𝑡 = ℓ2−𝛾 2
(𝛾 − 2) (𝛾 − 1)𝛾 ,

this yields the lower bound for𝑀𝛾 .

6. Extension to operator–valued potentials

In this section we extend our method to operator–valued potentials and give the proof of
Theorem 1.7, i.e. we prove that the number of negative bound states of 𝑃2𝛼 ⊗ 1G +𝑉 is bounded by

𝑁 (𝑃2𝛼 ⊗ 1G +𝑉 ) ≤ 𝐶𝑑/𝛼
|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑

trG [𝑉−(𝑥)
𝑑
2𝛼 ] d𝑥 ,

where 𝑉 : R𝑑 → B(G) is an operator valued potential with positive part 𝑉+ ∈ 𝐿1loc(R
𝑑 ,B(G))

and negative part 𝑉− ∈ 𝐿𝑑/(2𝛼) (R𝑑 ,S𝑑/(2𝛼) (G)).
Let 𝑈 (𝑥) = 𝑉 (𝑥)− be the negative part of 𝑉 (𝑥) defined by spectral calculus. The Birman–

Schwinger operator corresponding to |𝑃 |2𝛼 ⊗ 1G −𝑈 is given by

𝐾 =
√
𝑈 ( |𝑃 |−2𝛼 ⊗ 1G)

√
𝑈

and we again have

𝑁 ( |𝑃 |2𝛼 ⊗ 1G +𝑉 ) ≤ 𝑁 ( |𝑃 |2𝛼 ⊗ 1G −𝑈 ) = 𝑛(𝐾 ; 1).
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Now we factor 𝐾 as 𝐾 = 𝐴∗
𝑓 ,𝑔
𝐴𝑓 ,𝑔 where 𝐴𝑓 ,𝑔 has kernel

𝐴𝑓 ,𝑔𝜑 (𝜂) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒−𝑖𝜂 ·𝑥𝑔(𝜂) 𝑓 (𝑥)𝜑 (𝑥) d𝑥 ,

𝑔(𝜂) = |𝜂 |−𝛼 is real–valued (even positive), and 𝑓 (𝑥) =
√︁
𝑈 (𝑥) takes values in the self-adjoint

positive operators on G. We split this as
𝐴𝑓 ,𝑔 = 𝐵𝑓 ,𝑔,𝑚 + 𝐻𝑓 ,𝑔,𝑚

with a function𝑚 : [0,∞) → R, so that

𝐵𝑓 ,𝑔,𝑚𝜑 (𝜂) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒−𝑖𝜂 ·𝑥𝑚(𝑔(𝜂) 𝑓 (𝑥))𝜑 (𝑥) d𝑥 = F [𝑚(𝑡 𝑓 )𝜑] (𝜂)

���
𝑡=𝑔 (𝜂)

(6.1)

and

𝐻𝑓 ,𝑔,𝑚𝜑 (𝜂) = (2𝜋)−𝑑/2
∫
R𝑑
𝑒−𝑖𝜂 ·𝑥 [𝑔(𝜂) 𝑓 (𝑥) −𝑚(𝑔(𝜂) 𝑓 (𝑥))] 𝜑 (𝑥) d𝑥 , (6.2)

where 𝜑 is a function from a nice dense subset of 𝐿2(R𝑑 ,G), so that the integrals converge and
𝑚(𝑡 𝑓 (𝑥)) is an operator on G defined via functional calculus.

Remark 6.1. With a slight abuse of notation, we write F in the definition of 𝐵𝑓 ,𝑔,𝑚 , which strictly
speaking denotes the Fourier transform on 𝐿2(R𝑑 ), instead of F ⊗ 1G , the Fourier transform on
𝐿2(R𝑑 ,G) = 𝐿2(R𝑑 ) ⊗ G. In addition, in the definition of 𝐵𝑓 ,𝑔,𝑚 and 𝐻𝑓 ,𝑔,𝑚 above we swapped the
role of 𝑓 and 𝑔 compared to the discussion in Section 4. This is convenient, since by assumption
𝑔(𝜂) is a multiplication operator on G, and this makes a maximal Fourier multiplier estimate, now
with 𝑔 instead of 𝑓 , easier. The general case can be reduced to this setting, see Section 7 below.

The following theorem is the replacement of Theorem 2.1 and Theorem 2.2 in the operator-
valued setting.

Theorem 6.2. 𝐻𝑓 ,𝑔,𝑚 is a Hilbert–Schmidt operator onH = 𝐿2(R𝑑 ,G) with Hilbert–Schmidt norm
given by

∥𝐻𝑓 ,𝑔,𝑚 ∥2S2 (H) =

∫
R𝑑

trG
[
𝐺𝑔,𝑚 (𝑓 (𝑥))

]
d𝑥 , (6.3)

where 𝐺𝑔,𝑚 is again given by

𝐺𝑔,𝑚 (𝑢) =
∫
R𝑑

|𝑢𝑔(𝜂) −𝑚(𝑢𝑔(𝜂)) |2 𝑑𝜂

(2𝜋)𝑑
. (6.4)

If, moreover, 𝑚 = 𝑚1 ∗ 𝑚2 then for all measurable non-negative functions 𝑔 and non-negative
operator-valued functions 𝑓 the operator 𝐵𝑓 ,𝑔,𝑚 is bounded on H with

∥𝐵𝑓 ,𝑔,𝑚𝜑 ∥H ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥H (6.5)

for all 𝜑 ∈ H .

Proof. To prove (6.3), we note that the Hilbert–Schmidt operators on H = 𝐿2(R𝑑 ,G) are isomor-
phic to operators with kernels in 𝐿2(R𝑑 × R𝑑 ,S2(G)) and

∥𝐻 ∥2S2 (H) = trH
[
𝐻 ∗𝐻

]
=

∬
R𝑑×R𝑑

∥𝐻 (𝜂, 𝑥)∥2S2 (G) 𝑑𝑥d𝜂 ,

see Lemma B.3.
Using the explicit form of the ‘kernel’ of 𝐻𝑓 ,𝑔,𝑚 given in (6.2) this shows

∥𝐻 ∥2S2 (H) = (2𝜋)−𝑑
∫
R𝑑

∫
R𝑑

trG
[
|𝑔(𝜂) 𝑓 (𝑥) −𝑚(𝑔(𝜂𝑓 (𝑥))) |2

]
d𝜂𝑑𝑥

=

∫
R𝑑

trG
[
𝐺𝑔,𝑚 (𝑓 (𝑥))

]
𝑑𝑥
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by the definition of 𝐺𝑔,𝑚 and the spectral theorem.
Concerning the boundedness of 𝐵𝑓 ,𝑔,𝑚 we recall (6.1) and, if𝑚 =𝑚1 ∗𝑚2,

𝐵𝑓 ,𝑡,𝑚𝜑 (𝜂) = F [𝑚(𝑡 𝑓 )𝜑] (𝜂) =
∫ ∞

0
F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)𝑚2(𝑡𝑠)

d𝑠
𝑠
.

Thus, 𝐵𝑓 ,𝑡,𝑚𝜑 (𝜂)G ≤
∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)

G |𝑚2(𝑡𝑠) |

d𝑠
𝑠

≤
(∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)
2
G
d𝑠
𝑠

)1/2 (∫ ∞

0
|𝑚2(𝑡𝑠) |2

d𝑠
𝑠

)1/2
=

(∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)
2
G
d𝑠
𝑠

)1/2
∥𝑚2∥𝐿2 (R+, d𝑠𝑠 )

due to the scaling invariance of 𝑑𝑠/𝑠 . We therefore have a maximal operator bound

𝐵∗
𝑓 ,𝑚
𝜑 (𝜂) B sup

𝑡>0

𝐵𝑓 ,𝑡,𝑚𝜑 (𝜂)G ≤
(∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)
2
G
d𝑠
𝑠

)1/2
∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) .

In particular,

∥𝐵∗
𝑓 ,𝑚
𝜑 ∥2

𝐿2 (R𝑑 ) ≤ ∥𝑚2∥2
𝐿2 (R+ . d𝑠𝑠 )

∫
R𝑑

∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)
2
G
d𝑠
𝑠
d𝜂 ,

and∫
R𝑑

∫ ∞

0

F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)
2
G
d𝑠
𝑠
d𝜂 =

∫ ∞

0

∫
R𝑑

⟨F [𝑚1(𝑓 /𝑠)𝜑] (𝜂), F [𝑚1(𝑓 /𝑠)𝜑] (𝜂)⟩G d𝜂 𝑑𝑠
𝑠

=

∫ ∞

0

∫
R𝑑

⟨𝑚1(𝑓 (𝑥)/𝑠)𝜑 (𝑥),𝑚1(𝑓 (𝑥)/𝑠)𝜑 (𝑥)⟩G 𝑑𝑥
𝑑𝑠

𝑠

=

∫
R𝑑

〈
𝜑 (𝑥),

∫ ∞

0
𝑚1(𝑓 (𝑥)/𝑠)2

d𝑠
𝑠
𝜑 (𝑥)

〉
G
d𝑥

= ∥𝑚1∥2
𝐿2 (R+, d𝑠𝑠 )

∫
R𝑑

∥𝜑 (𝑥)∥2G d𝑥 = ∥𝑚1∥2
𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥

2
H

where we again used that, by scaling
∫ ∞
0 𝑚1(𝑟/𝑠)2 d𝑠

𝑠
= ∥𝑚1∥2

𝐿2 (R+, d𝑠𝑠 )
for all 𝑟 > 0, so by functional

calculus ∫ ∞

0
𝑚1(𝑓 (𝑥)/𝑠)2

d𝑠
𝑠

= ∥𝑚1∥2
𝐿2 (R+, d𝑠𝑠 )1G .

Altogether, we get the operator-valued version of our previous maximal Fourier multiplier bound
in the form

∥𝐵∗
𝑓 ,𝑚
𝜑 ∥2

𝐿2 (R𝑑 ) ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥H ,

and it is easy to see that

∥𝐵𝑓 ,𝑔,𝑚𝜑 ∥H ≤ ∥𝐵∗
𝑓 ,𝑚
𝜑 ∥𝐿2 (R𝑑 ) ,

which completes the proof of Theorem 6.2.

The proof of Theorem 1.7 is straightforward: one simply does the same steps as in the scalar
case with (2.10) replaced by

𝑁 (𝑃2𝛼 ⊗ 1G −𝑈 ) = 𝑛(𝐴𝜅𝑓 ,𝑔;𝜅) ≤ (𝜅 − 𝜇)−2
∑︁
𝑗

∥𝐻𝜅𝑓 ,𝑔,𝑚 ∥2S2 (H) ,
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where now 𝜇 ≥ ∥𝐵𝜅𝑓 ,𝑔,𝑚𝜑 ∥H . As before, Theorem 6.2 gives a bound for ∥𝐵𝜅𝑓 ,𝑔,𝑚𝜑 ∥H independent
of 𝜅, in particular, we can take any 𝜇 ≥ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) . It also allows us to calculate
the Hilbert-Schmidt norm. For 𝑔(𝜂) = |𝜂 |−𝛼 we get

𝐺𝑔,𝑚 (𝑢) = 𝑢𝑑/𝛼
∫
R𝑑
( |𝜂 |−𝛼 −𝑚( |𝜂 |−𝛼 ))2 d𝜂

(2𝜋)𝑑
,

so

∥𝐻𝜅𝑓 ,𝑔,𝑚 ∥2S2 (H) = 𝜅
𝑑/𝛼

∫
R𝑑
( |𝜂 |−𝛼 −𝑚( |𝜂 |−𝛼 ))2 d𝜂

(2𝜋)𝑑

∫
R𝑑

trG
[
𝑓 (𝑥)𝑑/𝛼

]
d𝑥 .

Using this in the above bound for 𝑁 (𝑃2𝛼 ⊗ 1G −𝑈 ) and minimizing over 𝜅 , as in the scalar case,
finishes the proof of Theorem 1.7.

7. Trace ideal bounds

In this section we show how the ideas developed so far can be used to prove a fully operator-
valued version of Cwikel’s theorem. Such an inequality was first proved in [17].

In this setting let (𝑋, d𝑥) and (𝑌, d𝑦) be sigma-finite measure spaces and H ,G (separable)
Hilbert spaces. We denote by 𝐿𝑝 (𝑋,S𝑝 (H)) the set of measurable functions 𝑓 : 𝑋 → S𝑝 (H),
where S𝑝 (H) is the space of 𝑝-summable compact operators, i.e. the von Neumann–Schatten
class, onH , such that

∥ 𝑓 ∥𝑝
𝐿𝑝 (𝑋,S𝑝 (H)) B

∫
𝑋

∥ 𝑓 (𝑥)∥𝑝S𝑝 (H) d𝑥 < ∞ .

Similarly, we denote by 𝐿𝑝w(𝑌,B(G)) the set of of all measurable functions 𝑔 : 𝑌 → B(G), with
values in the bounded operators on G, such that

∥𝑔∥𝑝
𝐿
𝑝
w (𝑌,B(G))

B sup
𝑡>0

𝑡𝑝
��{𝑦 ∈ 𝑌 : ∥𝑔(𝑦)∥B(G) > 𝑡

}�� < ∞.

A map 𝐴 : 𝐿2(𝑋,H) → 𝐿2(𝑌,G) is in the weak trace–ideal S𝑝,w = S𝑝,w(𝐿2(𝑋,H), 𝐿2(𝑌,G)) if

∥ 𝑓 Φ∗𝑔∥𝑝,w B sup
𝑛∈N

(
𝑛

1
𝑝 𝑠𝑛 (𝐴)

)
< ∞, (7.1)

where 𝑠𝑛 (𝐴) are the singular values of 𝐴, i.e. the eigenvalues of 𝐴∗𝐴 : 𝐿2(𝑋,H) → 𝐿2(𝑋,H).

Theorem 7.1 (Fully operator valued version of Cwikel’s theorem). Let Φ : 𝐿2(𝑋,H) → 𝐿2(𝑌,G)
be a unitary operator, which is also bounded from 𝐿1(𝑋,H) into 𝐿∞(𝑌,G).

If 𝑝 > 2 and 𝑓 ∈ 𝐿𝑝 (𝑋,S𝑝 (H)) and 𝑔 ∈ 𝐿
𝑝
w(𝑌,B(G)), then 𝑓 Φ∗𝑔 is in the weak trace ideal

S𝑝,𝑤 (𝐿2(𝑋,H), 𝐿2(𝑌,G)) and

∥ 𝑓 Φ∗𝑔∥𝑝𝑝,w ≤ 𝑝

4
𝑝𝑝

(𝑝 − 2)𝑝−2 𝑄𝑝 ∥Φ∥
2
𝐿1→𝐿∞ ∥ 𝑓 ∥

𝑝

𝐿𝑝 (𝑋,S𝑝 (H)) ∥𝑔∥
𝑝

𝐿
𝑝
w (𝑌,B(G))

. (7.2)

where 𝑄𝑝 is given in (C.2).

Remark 7.2. Theorem 7.1 improves the result of Frank in [17],

∥ 𝑓 Φ∗𝑔∥𝑝𝑝,w ≤ 𝑝

2

(
𝑝

𝑝 − 2

)𝑝−1
∥Φ∥2

𝐿1→𝐿∞ ∥ 𝑓 ∥
𝑝

𝐿𝑝 (𝑋,S𝑝 (H)) ∥𝑔∥
𝑝

𝐿
𝑝
w (𝑌,B(G))

.

The value of 𝑄𝑝 comes from choosing𝑚1(𝑠) = 𝑠1{0<𝑠≤1} and then finding an optimal𝑚2, see
Appendix C. Making the simple choice of Remark 1.4 for 𝑚2 leads to an upper bound for the
weak–trace ideal norm with𝑄𝑝 replaced by 8(𝑝 (𝑝 − 2) (𝑝 + 2))−1 in (7.2). It is easy to see that this
simple choice of𝑚1 and𝑚2 yields a bound which is already a factor of (𝑝 + 2)/4 smaller than the
one in [17]. In addition, the bound in [17] in the scalar case, when Φ is the usual Fourier transform,
is worse than the one in Theorem 7.1, with the above easy choice for𝑚1 and𝑚2, by a factor of
1
2 (1 + 2/𝑝)𝑝/2 > 1 in the allowed range 𝑝 > 2.
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Proof. First we note that one can reduce the result to the case when 𝑔 is pointwise a positive
multiple of the identity operator on G. As operators on G one has 𝑔(𝑦)𝑔(𝑦)∗ ≤ ∥𝑔(𝑦)∥2B(G)1G .
Thus with 𝐴1 = 𝑓 Φ

∗𝑔 we have
𝐴1𝐴

∗
1 = 𝑓 Φ

∗𝑔𝑔∗Φ𝑓 ∗ ≤ 𝑓 Φ∗(∥𝑔∥B(G)1G)2Φ𝑓 ∗ = 𝐴2𝐴
∗
2

with 𝐴2 = 𝑓 Φ
∗∥𝑔∥B(G)1G = 𝑓 Φ∗∥𝑔∥B(G) where, for simplicity, we wrote ∥𝑔∥B(G) for ∥𝑔∥B(G)1G .

Since the singular values of 𝐴1 are the square roots of the eigenvalues of 𝐴∗
1𝐴1, which has the

same non-zero-eigenvalues as 𝐴1𝐴
∗
1 we see that the nonzero singular values of 𝐴1 obey the bound

𝑠𝑛 (𝐴1) ≤ 𝑠𝑛 (𝐴2).
Similarly, |𝑓 (𝑥) | B

√︁
𝑓 (𝑥)∗ 𝑓 (𝑥) is a non negative operator onH and

𝐴∗
2𝐴2 = ∥𝑔∥B(G)Φ

∗ 𝑓 ∗ 𝑓 Φ∗∥𝑔∥B(G) = ∥𝑔∥B(G)Φ
∗ |𝑓 |2Φ∗∥𝑔∥B(G) = 𝐴

∗
3𝐴3

with𝐴3 = |𝑓 |Φ∗∥𝑔∥B(G) . So the singular values of𝐴2 are the same as the singular values of𝐴3 and
without loss of generality, we can assume that𝑔 is a non-negative function and 𝑓 takes values in the
non-negative operators onH . By scaling, we can also assume that ∥ 𝑓 ∥𝐿𝑝 (𝑋,S𝑝 (H)) = ∥𝑔∥𝑝

𝐿
𝑝
w (𝑌 )

= 1.
Since Φ : 𝐿1(𝑋,H) → 𝐿∞(𝑌,G) is bounded, Lemma B.4 shows that it has a kernel Φ(·, ·) such

that for all 𝑓 ∈ 𝐿2(𝑋,H),

Φ𝑓 (𝑦) =
∫
𝑋

Φ(𝑦, 𝑥) 𝑓 (𝑥) d𝑥

for almost all 𝑦 ∈ 𝑌 . Moreover, sup(𝑦,𝑥) ∈𝑌×𝑋 ∥Φ(𝑦, 𝑥)∥B(H,G) = ∥Φ∥𝐿1→𝐿∞ . Having reduced the
estimate to scalar non-negative functions 𝑔 and non-negative operator-valued functions 𝑓 we can
rewrite 𝐴𝑓 ,𝑔 = 𝑔Φ𝑓 as

𝐴𝑓 ,𝑔𝜑 (𝑦) =
∫
𝑋

𝑔(𝑦)Φ(𝑦, 𝑥) 𝑓 (𝑥)𝜑 (𝑥) d𝑥 =

∫
𝑋

Φ(𝑦, 𝑥)𝑔(𝑦) 𝑓 (𝑥)𝜑 (𝑥) d𝑥 (7.3)

using that 𝑔(𝑦) is now a non-negative scalar. Thus, we can take again an arbitrary function
𝑚 : R+ → R with𝑚(0) = 0 and split

𝐵𝑓 ,𝑔,𝑚𝜑 (𝑦) B
∫
𝑋

Φ(𝑦, 𝑥)𝑚
(
𝑔(𝑦) 𝑓 (𝑥)

)
𝜑 (𝑥) d𝑥 , (7.4)

𝐻𝑓 ,𝑔,𝑚𝜑 (𝑦) B
∫
𝑋

Φ(𝑦, 𝑥)
[
𝑔(𝑦) 𝑓 (𝑥) −𝑚

(
𝑔(𝑦) 𝑓 (𝑥)

) ]
𝜑 (𝑥) d𝑥 . (7.5)

The above expression are well-defined by the spectral theorem, since 𝑔 is a non-negative function
and 𝑓 takes values in the non-negative operators onH , so𝑚(𝑔(𝑦) 𝑓 (𝑥)) is a bounded operator
onH for almost all 𝑦 and 𝑥 , when𝑚 is bounded. Thus the integrals in (7.4) and (7.4) converge for
all 𝜑 from a dense subset of 𝐿2(𝑋,H), for example the piecewise constant functions.

Scaling in 𝑓 by 𝜅 > 0, we get from Ky Fan’s inequality

𝑠𝑛 (𝑔Φ𝑓 ) = 𝜅−1𝑠𝑛 (𝐴𝜅,𝑓 ,𝑔) ≤ 𝜅−1
[
∥𝐵𝜅𝑓 ,𝑔,𝑚 ∥ + 𝑠𝑛 (𝐻𝜅𝑓 ,𝑔,𝑚)

]
≤ 𝜅−1

[
𝜇 + 𝑛−1/2∥𝐻𝜅,𝑓 ,𝑔,𝑚 ∥𝐻𝑆

] (7.6)

where we take 𝜇 = ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) , the upper bound on the norm of 𝐵𝜅𝑓 ,𝑔,𝑚 from
Lemma 7.3 below and we used 𝑠𝑛 (𝐻 ) ≤ 𝑛−1

∑𝑛
𝑗=1 𝑠 𝑗 (𝐻 )2 ≤ 𝑛−1∥𝐻 ∥2

𝐻𝑆
, for any Hilbert-Schmidt

operator, due to the monotonicity of its singular values. Thus using the bound (7.7) one gets

𝑠𝑛 (𝑔Φ𝑓 ) ≤ 𝜅−1
[
𝜇 + 𝑛−1/2𝑝1/2 ∥Φ∥𝐿1→𝐿∞ 𝐷

1/2𝜅𝑝/2
]

with 𝐷 =
∫ ∞
0 (1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑝 d𝑡 , and minimizing this over 𝜅 > 0 we have

𝑠𝑛 (𝑔Φ𝑓 ) ≤ 𝑝1/𝑝 ∥Φ∥2/𝑝
𝐿1→𝐿∞

𝑝

𝑝 − 2

(
𝑝 − 2
2

)2/𝑝
(𝜇𝑝−2𝐷)1/𝑝 𝑛−1/𝑝

for the singular values for all 𝑛 ∈ N.
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Now we make the choice𝑚1(𝑠) = 𝑠1{0<𝑠≤1} and minimize over all admissible𝑚2. Proposition
C.4 shows that this leads to 𝜇𝑝−2𝐷 = 𝑄𝑝 , with 𝑄𝑝 defined in (C.2). In view of Remark 7.4 (ii), the
minimizer for 𝑄𝑝 is admissible in Lemma 7.3.

Lemma 7.3. Let 𝑝 > 2, H and G auxiliary Hilbert spaces, (𝑋, d𝑥) and (𝑌, d𝑦) 𝜎–finite measure
spaces, 0 ≤ 𝑔 ∈ 𝐿

𝑝
w(𝑌 ), 0 ≤ 𝑓 ∈ 𝐿𝑝 (𝑋,S𝑝 (H)), Φ : 𝐿2(𝑋,H) → 𝐿2(𝑌,G) unitary and also

bounded from 𝐿1(𝑋,H) → 𝐿∞(𝑌,G). Then for all continuous and piecewise differentiable bounded
functions𝑚 : R+ → R with𝑚(0) = 0 and 𝜕𝑡 (𝑡 −𝑚(𝑡))2 ≥ 0 for all 𝑡 > 0, the operator𝐻𝑓 ,𝑔,𝑚 defined
in (7.5) is a Hilbert–Schmidt operator and

∥𝐻𝑓 ,𝑔,𝑚 ∥2S2 (𝐿2 (𝑋,H)→𝐿2 (𝑌,G)) = tr𝐿2 (𝑋,H)

[
𝐻 ∗
𝑓 ,𝑔,𝑚

𝐻𝑓 ,𝑔,𝑚

]
≤ 𝑝 ∥Φ∥2

𝐿1→𝐿∞

∫ ∞

0
(1 − 𝑡−1𝑚(𝑡))2𝑡1−𝑝 d𝑡 ∥𝑔∥𝑝

𝐿
𝑝
w (𝑌 )

∥ 𝑓 ∥𝑝
𝐿𝑝 (𝑋,𝑆𝑝 (H)) .

(7.7)

Moreover, if𝑚 = 𝑚1 ∗𝑚2, then the operator 𝐵𝑓 ,𝑔,𝑚 defined in (7.4) is bounded from 𝐿2(𝑋,H) to
𝐿2(𝑌,G) and

∥𝐵𝑓 ,𝑔,𝑚 ∥𝐿2→𝐿2 ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) . (7.8)

Remarks 7.4. (i) As the proof of Lemma 7.3 shows one even has a bound on 𝐵𝑓 ,𝑔,𝑚 of the form

sup
𝑓 ≥0

 sup
𝑔≥0

∥𝐵𝑓 ,𝑔,𝑚𝜑 ∥G

𝐿2 (𝑌 ) ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥𝐿2 (𝑋,H)

where the first supremum is taken over all functions 𝑔 : 𝑌 → [0,∞) and the second supremum is
taken over all non-negative operator-valued functions 𝑓 : 𝑋 → B(H).
(ii) The condition 𝜕𝑡 (𝑡 −𝑚(𝑡))2 ≥ 0might look weird at first, but there is a large class of functions
𝑚 for which it holds: A simple choice is𝑚1(𝑠) = 𝑠1{0<𝑠≤1} and𝑚2(𝑠) = 2𝑠−11{𝑠≥1}. In this case
𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) = min(𝑡, 𝑡−1), so this simple choice of𝑚1 and𝑚2 is admissible in Lemma 7.3.
More generally, setting𝑚2(𝑡) = −ℎ′(𝑡−1) for some absolutely continuous function ℎ with ℎ(0) = 1
and lim𝑡→∞ ℎ(𝑡) = 0, the proof of Proposition C.4 shows that 𝑡 −𝑚(𝑡) = 𝑡ℎ(𝑡−1) for all 𝑡 > 0,∫ ∞

0
(𝑡 −𝑚(𝑡))2𝑡1−𝑝d𝑡 =

∫ ∞

0
ℎ(𝑡)2𝑡𝑝−2 d𝑡

𝑡
, (7.9)

and

∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) =

(
1
2

∫ ∞

0
ℎ′(𝑠)2 d𝑠

𝑠

) 𝑝−2
2
. (7.10)

Such a choice for 𝑚1 and 𝑚2 then leads to the variational problem (C.1), which we solve in
Proposition C.1. Moreover, 𝜕𝑡 (𝑡 −𝑚(𝑡))2 = 𝜕𝑡 (𝑡ℎ(𝑡−1))2 = 2𝑡ℎ(𝑡−1) (ℎ(𝑡−1) − 𝑡−1ℎ′(𝑡−1)) ≥ 0 for
any decreasing function ℎ ≥ 0. Fortunately, the minimizers for the variational problem (C.1) have
this property and thus can be used in Lemma 7.3 which leads to the constant in Theorem 7.1.

Proof. We freely use results for the operator-valued setting given in Appendix B. For notational
simplicity we set

𝐶 = ∥Φ∥𝐿1 (𝑋,H)→𝐿∞ (𝑌,G) = esssup
(𝑦,𝑥) ∈𝑌×𝑋

∥Φ(𝑥,𝑦)∥B(H,G) .

and note

∥𝐻𝑓 ,𝑔,𝑚 ∥2S2 (𝐿2 (𝑋,H)→𝐿2 (𝑌,G)) =

∬
𝑌×𝑋

trH
[
𝐻𝑓 ,𝑔,𝑚 (𝑦, 𝑥)∗𝐻𝑓 ,𝑔,𝑚 (𝑦, 𝑥)

]
d𝑦d𝑥 .

Because 𝑔 is real-valued, even positive, and 𝑓 takes values in the non-negative, hence self-adjoint,
operators

𝐻𝑓 ,𝑔,𝑚 (𝑦, 𝑥)∗𝐻𝑓 ,𝑔,𝑚 (𝑦, 𝑥) =
=

[
𝑔(𝑦) 𝑓 (𝑥) −𝑚

(
𝑔(𝑦) 𝑓 (𝑥)

) ]
Φ(𝑦, 𝑥)∗Φ(𝑦, 𝑥)

[
𝑔(𝑦) 𝑓 (𝑥) −𝑚

(
𝑔(𝑦) 𝑓 (𝑥)

) ]
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≤ 𝐶2 [𝑔(𝑦) 𝑓 (𝑥) −𝑚 (
𝑔(𝑦) 𝑓 (𝑥)

) ]2
,

so, setting 𝐺 (𝑢) B
∫
𝑌
[𝑢𝑔(𝑦) −𝑚(𝑢𝑔(𝑦))]2 d𝑦, we have

∥𝐻𝑓 ,𝑔,𝑚 ∥2S2 (𝐿2 (𝑋,H)→𝐿2 (𝑌,G)) ≤ 𝐶
2
∫
𝑋

trH𝐺 (𝑓 (𝑥)) d𝑥 .

With 𝑘 (𝑡) = (𝑡 −𝑚(𝑡))2, the layer-cake principle shows

𝐺 (𝑢) =
∫ ∞

0
𝑘 ′(𝑡) |{𝑦 ∈ 𝑌 : 𝑔(𝑦) > 𝑡/𝑢}| d𝑡 .

By definition |{𝑦 ∈ 𝑌 : 𝑔(𝑦) > 𝑡}| ≤ 𝑡−𝑝 ∥𝑔∥𝑝
𝐿
𝑝
w (𝑌 )

for all 𝑡 > 0. If𝑚(0) = 0 and𝑚′(𝑡) ≤ 1, then
𝑘 ′ ≥ 0. Thus

𝐺 (𝑢) ≤ 𝑢𝑝 ∥𝑔∥𝑝
𝐿
𝑝
w (𝑌 )

∫ ∞

0
𝑘 ′(𝑡)𝑡−𝑝 d𝑡 .

An integration by parts argument would show that
∫ ∞
0 𝑘 ′(𝑡)𝑡−𝑝 d𝑡 = 𝑝

∫ ∞
0 𝑘 (𝑡)𝑡1−𝑝 d𝑡 , but due to

the singularity of the integrand this requires that 𝑘 vanishes at zero fast enough and that 𝑘 does
not grow too fast at infinity. Instead, we prefer to use non-negativity of 𝑘 ′. Note that

𝑝

∫ ∞

0
𝑘 (𝑡)𝑡1−𝑝 d𝑡 =

∫ ∞

0

∫ ∞

0
𝑘 ′(𝑠)1{𝑠<𝑡 }𝑝𝑡−𝑝 d𝑠d𝑡 .

Since the integrand in the double integral is non–negative, we can use the Fubini–Tonelli Theorem
to freely interchange the order of integration. Hence

𝑝

∫ ∞

0
𝑘 (𝑡)𝑡1−𝑝 d𝑡 =

∫ ∞

0
𝑘 ′(𝑠)

∫ ∞

𝑠

𝑝𝑡−𝑝 d𝑡 d𝑠 =
∫ ∞

0
𝑘 ′(𝑠)𝑠−𝑝d𝑠 . (7.11)

Thus the formal integration by parts argument is justified. Moreover, this argument shows that if
one side is infinite, so is the other. With (7.11) we get

trH𝐺 (𝑓 (𝑥)) ≤ 𝑝

∫ ∞

0
𝑘 (𝑡)𝑡−1−𝑝 d𝑡 ∥𝑔∥𝑝

𝐿
𝑝
w (𝑌 )

trH (𝑓 (𝑥)𝑝) .

Integrating this over 𝑋 finishes the proof of (7.7).
To prove (7.8) we introduce

𝐵𝑓 ,𝑡,𝑚𝜑 (𝑦) B
∫
𝑋

Φ(𝑦, 𝑥)𝑚
(
𝑡 𝑓 (𝑥)

)
𝜑 (𝑥) d𝑥 = Φ[𝑚(𝑡 𝑓 )𝜑] (𝑦) (7.12)

for 𝑡 ≥ 0 (note that 𝐵𝑓 ,0,𝑚𝜑 = 0 since𝑚(0) = 0). If𝑚 =𝑚1 ∗𝑚2, then a by now familiar calculation
yields

𝐵𝑓 ,𝑡,𝑚𝜑 (𝑦) =
∫ ∞

0
Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)𝑚2(𝑡/𝑠)

d𝑠
𝑠

and therefore the Cauchy–Schwarz inequality gives

∥𝐵𝑓 ,𝑡,𝑚𝜑 (𝑦)∥G ≤
∫ ∞

0
∥Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)∥G |𝑚2(𝑡/𝑠) |

d𝑠
𝑠

≤
(∫ ∞

0
∥Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)∥2G

d𝑠
𝑠

)1/2 (∫ ∞

0
|𝑚2(𝑡/𝑠) |2

d𝑠
𝑠

)1/2
.

By scaling, the right hand side above does not depend on 𝑡 > 0 anymore. Hence we get the bound

𝐵∗
𝑓 ,𝑚
𝜑 (𝑦) = sup

𝑡 ≥0
∥𝐵𝑓 ,𝑡,𝑚𝜑 (𝑦)∥G ≤ ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 )

(∫ ∞

0
∥Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)∥2G

d𝑠
𝑠

)1/2
for the associated maximal operator 𝐵∗

𝑓 ,𝑚
𝜑 (𝑦) B sup𝑡 ≥0 ∥𝐵𝑓 ,𝑡,𝑚𝜑 (𝑦)∥G . In particular,

∥𝐵∗
𝑓 ,𝑚
𝜑 ∥2

𝐿2 (𝑌,d𝑦) ≤ ∥𝑚2∥2
𝐿2 (R+, d𝑠𝑠 )

∫
𝑌

∫ ∞

0
∥Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)∥2G

d𝑠
𝑠
d𝑦 . (7.13)
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Interchanging the integrals, the last factor on the right hand side of (7.13) is given by∫ ∞

0

∫
𝑌

∥Φ[𝑚1(𝑠 𝑓 )𝜑] (𝑦)∥2G d𝑦 d𝑠
𝑠

=

∫ ∞

0
∥Φ[𝑚1(𝑠 𝑓 )𝜑] ∥2𝐿2 (𝑌,G)

d𝑠
𝑠

=

∫ ∞

0
∥𝑚1(𝑠 𝑓 )𝜑 ∥2𝐿2 (𝑋,H)

d𝑠
𝑠

=

∫
𝑋

∫ ∞

0

〈
𝑚1(𝑠 𝑓 (𝑥))𝜑 (𝑥),𝑚1(𝑠 𝑓 (𝑥))𝜑 (𝑥)

〉
H
d𝑠
𝑠
d𝑥

=

∫
𝑋

〈
𝜑 (𝑥),

∫ ∞

0
𝑚1(𝑠 𝑓 (𝑥))2

d𝑠
𝑠
𝜑 (𝑥)

〉
H d𝑥 .

As functions of the real variable 𝑟 ≥ 0 the scaling invariance of the measure 𝑑𝑠/𝑠 on R+ and
𝑚1(0) = 0 give

∫ ∞
0 𝑚1(𝑠𝑟 )2 d𝑠

𝑠
= ∥𝑚1∥2

𝐿2 (R+, d𝑠𝑠 )
1{𝑟>0}, so the spectral theorem implies〈

𝜑 (𝑥),
∫ ∞

0
𝑚1(𝑠 𝑓 (𝑥))2

d𝑠
𝑠
𝜑 (𝑥)

〉
H = ∥𝑚1∥2

𝐿2 (R+, d𝑠𝑠 )

〈
𝜑 (𝑥), 1{𝑓 (𝑥)>0}𝜑 (𝑥)

〉
H

≤ ∥𝑚1∥2
𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 (𝑥)∥

2
H .

Using this in (7.13) shows

∥𝐵∗
𝑓 ,𝑚
𝜑 ∥𝐿2 (𝑌,d𝑦) ≤ ∥𝑚1∥𝐿2 (R+, d𝑠𝑠 ) ∥𝑚2∥𝐿2 (R+, d𝑠𝑠 ) ∥𝜑 ∥𝐿2 (𝑋,H) . (7.14)

which proves (7.8), since ∥𝐵𝑓 ,𝑔,𝑚𝜑 (𝑦)∥G ≤ 𝐵∗
𝑓 ,𝑚
𝜑 (𝑦) for all 𝑦 ∈ 𝑌 .

Appendix A. Induction in dimension

In this section we prove Theorem 1.8, that is, we prove that the number of negative bound
states of 𝑃2 ⊗ 1G +𝑉 is bounded by

𝑁 (𝑃2 ⊗ 1G +𝑉 ) ≤ 𝐶op
0,𝑑

|𝐵𝑑1 |
(2𝜋)𝑑

∫
R𝑑

trG [𝑉−(𝑥)
𝑑
2 ] d𝑥

and, moreover,

𝐶
op
0,𝑑 = min

3≤𝑛≤𝑑
𝐶
op
0,𝑛 ≤ min

3≤𝑛≤𝑑
𝐶𝑛,

where 𝐶𝑛 is given by (1.5) for 𝛾 = 𝑛. Here, 𝑉 : R𝑑 → B(G) is an operator valued potential with
positive part 𝑉+ ∈ 𝐿1loc(R

𝑑 ,B(G)) and negative part 𝑉− ∈ 𝐿𝑑/2(R𝑑 ,S𝑑/2(G)).
In order to do this, we need the following operator-valued extension of the well-known Lieb–

Thirring bounds for suitable moments 𝜃 :

tr𝐿2 (R𝑑 ,G)
[
𝑃2 ⊗ 1G +𝑉

]𝜃
− ≤ 𝐿

op
𝜃,𝑑

∫
R𝑑

trG
[
𝑉−(𝑥)𝜃+

𝑑
2
]
d𝑥, (A.1)

where 𝐿op
𝜃,𝑑

= 𝐶
op
𝜃,𝑑
𝐿cl
𝜃,𝑑

with the classical Lieb–Thirring constant

𝐿cl
𝜃,𝑑

=

∫
R𝑑
(1 − 𝜂2)𝜃+

d𝜂
(2𝜋)𝑑

. (A.2)

It is important that the constant 𝐿op
𝜃,𝑑

, respectively, 𝐶op
𝜃,𝑑

does not depend on the auxiliary Hilbert
space G.

The bound (A.1) was first proven in the seminal work of Laptev andWeidl [28] for all dimensions
𝑑 ∈ N and moments 𝜃 ≥ 3

2 , moreover, they showed 𝐶op
𝜃,𝑑

= 1 in this case. This was later simplified
in [2]. For moments 𝜃 ≥ 1

2 and again all dimensions 𝑑 ∈ N the bound (A.1) was shown to hold in
[24], moreover, 𝐶op

𝜃,𝑑
≤ 2 for 1

2 ≤ 𝜃 < 3
2 , see also [16] and, recently, [19] for improvements when

𝜃 = 1. The limiting case 𝜃 = 0, that is, the operator–valued version of the CLR bound was then
proven in [22], with improvements on the constant later in [20].
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The possibility that a bound of the form A.1 allows to strip off one dimension in the Lieb–
Thirring bounds was crucially used in Laptev–Weidl [28], see also [26]. The possibility of stripping
off more than one dimension was realized in [22].

In the short proof below, which we give for the convenience of the reader, we follow the
discussion in [22].

Lemma A.1. For 𝑛 ≤ 𝑑 we have

𝐶
op
𝜃,𝑑

≤ 𝐶op
𝜃,𝑛
𝐶
op
𝜃+𝑛

2 ,𝑑−𝑛
.

In particular, for 𝑑 ≥ 3,
𝐶
op
0,𝑑 ≤ 𝐶op

0,𝑛 for all 3 ≤ 𝑛 ≤ 𝑑.

Proof. For 𝑛 ≤ 𝑑 we factor R𝑑 = R𝑛 × R𝑑−𝑛 , that is, 𝑥 = (𝑥<, 𝑥>) ∈ R𝑛 × R𝑑−𝑛 , and split the the
kinetic energy as 𝑃2 = 𝑃2< + 𝑃2>, more precisely,

𝑃2 = 𝑃2< ⊗ 1𝐿2 (R𝑑−𝑛) + 1𝐿2 (R𝑛) ⊗ 𝑃2> .
Moreover, observe that

𝐿2(R𝑑 ,G) = 𝐿2(R𝑑 ) ⊗ G = 𝐿2(R𝑛) ⊗ 𝐿2(R𝑑−𝑛) ⊗ G = 𝐿2(R𝑛, 𝐿2(R𝑑−𝑛 ⊗ G)) .

As quadratic forms on 𝐿2(R𝑑 ,G), we then have
𝑃2 ⊗ 1G +𝑉 (𝑥) = 𝑃2< ⊗ 1𝐿2 (R𝑑−𝑛) ⊗ 1G + 1𝐿2 (R𝑛) ⊗ 𝑃2> ⊗ 1G +𝑉 (𝑥<, 𝑥>)

≥ 𝑃2< ⊗ 1𝐿2 (R𝑑−𝑛,G) −𝑊 (𝑥<)
(A.3)

with the operator-valued potential𝑊 (𝑥<) =
(
𝑃2> ⊗ 1G +𝑉 (𝑥<, ·)

)
− : 𝐿2(R𝑑−𝑛,G) → 𝐿2(R𝑑−𝑛,G).

Note that𝑊 (𝑥<) is the negative part of a Schrödinger operator in 𝑑 − 𝑛 dimensions where one
freezes the 𝑥< coordinate in the potential. Inequality (A.1) can therefore be applied and yields

tr𝐿2 (R𝑑−𝑛,G)𝑊 (𝑥<)𝜃+
𝑛
2 = tr𝐿2 (R𝑑−𝑛,G)

(
𝑃2> ⊗ 1G +𝑉 (𝑥<, ·)

)𝜃+𝑛
2

−

≤ 𝐿
op
𝜃+𝑛

2 ,𝑑−𝑛

∫
R𝑑−𝑛

trG 𝑉−(𝑥<, 𝑥>)𝜃+
𝑑
2 d𝑥< .

Since by assumption
∫
R𝑑

trG 𝑉−(𝑥)𝜃+
𝑑
2 d𝑥 < ∞, the Fubini–Tonelli theorem shows that𝑊 (𝑥<) is

compact (even in the von Neumann–Schatten ideal S𝜃+𝑛
2
(𝐿2(R𝑑−𝑛,G))) for almost all 𝑥< ∈ R𝑛 .

Taking traces in inequality (A.3) gives the estimate

tr𝐿2 (R𝑑 ,G)
(
𝑃2 ⊗ 1G +𝑉

)𝜃
− ≤ tr𝐿2 (R𝑛,𝐿2 (R𝑑−𝑛,G))

(
𝑃2< ⊗ 1𝐿2 (R𝑑−𝑛,G) −𝑊

)𝜃
−

≤ 𝐿
op
𝜃,𝑛

∫
R𝑛

tr𝐿2 (R𝑑−𝑛,G)𝑊 (𝑥<)𝜃+
𝑛
2 d𝑥<

≤ 𝐿
op
𝜃,𝑛
𝐿
op
𝜃+𝑛

2 ,𝑑−𝑛

∫
R𝑑

trG 𝑉−(𝑥)𝜃+
𝑑
2 d𝑥

where we also used the operator-valued Lieb-Thirring inequality (A.1) and combined the integrals
using the Fubini–Tonelli theorem. It follows that

𝐿
op
𝜃,𝑑

≤ 𝐿
op
𝜃,𝑛
𝐿
op
𝜃+𝑛

2 ,𝑑−𝑛
. (A.4)

A short calculation, see below, shows
𝐿cl
𝜃,𝑑

= 𝐿cl
𝜃,𝑛
𝐿cl
𝜃+𝑛

2 ,𝑑−𝑛
, (A.5)

so (A.4) and the definition of 𝐶op
𝜃,𝑑

imply the sub-multiplicativity

𝐶
op
𝜃,𝑑

≤ 𝐶op
𝜃,𝑛
𝐶
op
𝜃+𝑛

2 ,𝑑−𝑛
.

which proves is the first claim of Lemma A.1. In particular, for 𝜃 = 0 and 3 ≤ 𝑛 ≤ 𝑑 − 1, we get
𝐶
op
0,𝑑 ≤ 𝐶op

0,𝑛𝐶
op
𝑛
2 ,𝑑−𝑛

= 𝐶
op
0,𝑛
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since Laptev–Weidl [28] showed 𝐶op
𝜃,𝑚

= 1 if𝑚 ∈ N and 𝜃 ≥ 3
2 . This proves the second claim in

Lemma A.1.
It remains to show (A.5), which follows from the definition of the classical Lieb–Thirring

constant and the Fubini–Tonelli Theorem:

𝐿cl
𝜃,𝑑

=

∫
R𝑑
(1 − 𝜂2)𝜃+

d𝜂
(2𝜋)𝑑

=

∬
R𝑛×R𝑑−𝑛

(1 − 𝜂2< − 𝜂2>)𝜃+
d𝜂< d𝜂>

(2𝜋)𝑛 (2𝜋)𝑑−𝑛

=

∫
R𝑑−𝑛

∫
R𝑛
(1 − 𝜂>)

𝜃+𝑛
2

+ (1 − 𝜉2)𝜃+
d𝜉

(2𝜋)𝑛
d𝜂>

(2𝜋)𝑑−𝑛
= 𝐿cl

𝜃,𝑛
𝐿cl
𝜃+𝑛

2 ,𝑑−𝑛

The third equality follows from scaling, setting 𝜂< = (1 − 𝜂2>)
1/2
+ 𝜉 with 𝜉 ∈ R𝑛 .

Proof of Theorem 1.8. Lemma A.1 shows that
𝐶
op
0,𝑑 ≤ min

3≤𝑛≤𝑑
𝐶
op
0,𝑛

and the reverse inequality clearly holds. Moreover, the case 𝛼 = 1 in Theorem 1.7 shows the bound
𝐶
op
0,𝑛 ≤ 𝐶𝑛

with the constant 𝐶𝛾=𝑛 from (1.5).

Appendix B. Auxiliary bounds for the operator-valued case

In this appendix we gather three results, which we needed for extending our method from the
scalar case to the operator-valued case. These results are probably well-known to specialists; we
give short proofs for the convenience of the reader.

First we consider operators of the form 𝐴∗𝐴 and 𝐴𝐴∗ for some bounded operator 𝐴 : H → G,
where H ,G are two auxiliary (separable) Hilbert spaces. Let 𝑁 (𝐴) = {𝑓 ∈ H : 𝐴𝑓 = 0} ⊂ H be
the null space of 𝐴, 𝑁 (𝐴∗) = {𝑔 ∈ G : 𝐴∗𝑔 = 0} ⊂ G the null space of the adjoint 𝐴∗ : G → H ,
and 𝑁 (𝐴)⊥ B {ℎ ∈ H : ⟨ℎ, 𝑓 ⟩G = 0 for all 𝑓 ∈ 𝑁 (𝐴)} ⊂ H , respectively 𝑁 (𝐴∗)⊥ B {𝑔 ∈ G :
⟨𝑔, 𝑓 ⟩H = 0 for all 𝑓 ∈ 𝑁 (𝐴∗)} ⊂ G, the orthogonal complement of 𝑁 (𝐴) in H , respectively
𝑁 (𝐴∗) in G.

Lemma B.1. Let H ,G be Hilbert spaces and 𝐴 : H → G be a bounded operator. Then 𝐴∗𝐴
��
𝑁 (𝐴)⊥

is unitarily equivalent to 𝐴𝐴∗��
𝑁 (𝐴∗)⊥ . In particular, if 𝐴 : H → G is compact, then its non-zero

singular values, including multiplicities, are the same as the non-zero singular values of𝐴∗ : G → H .

Remark B.2. In Theorem 3 in [14] a stronger result, which allows for unbounded operators is
proven, we need it only for bounded operators 𝐴 : H → G.

Proof. The polar decomposition, e.g., Theorem VI.10 in [42], of a bounded operator easily extends
to a two Hilbert space situation: For a bounded operator𝐴 : H → G there exists a partial isometry
𝑈 : H → G with 𝑁 (𝑈 ) = 𝑁 (𝐴) and range Ran(𝑈 ) = Ran(𝐴), and a symmetric operator |𝐴| with
|𝐴|2 = 𝐴∗𝐴 such that 𝐴 = 𝑈 |𝐴|.

Moreover,𝑈 : Ran(𝐴∗) = 𝑁 (𝐴)⊥ → Ran(𝐴) = 𝑁 (𝐴∗)⊥ is an isometry, and
𝐴𝐴∗ = 𝑈 |𝐴|2𝑈 ∗ = 𝑈𝐴∗𝐴𝑈 ∗ ,

so 𝐴𝐴∗ |𝑁 (𝐴∗)⊥ is unitarily equivalent to 𝐴∗𝐴|𝑁 (𝐴)⊥ .
Since the singular values of 𝐴 are the square roots of the eigenvalues of 𝐴∗𝐴 and the singular

values of 𝐴∗ the square roots of the eigenvalues of 𝐴𝐴∗, the last claim in Lemma B.1 is evident
from the unitary equivalence above.

Given a Hilbert spaceH and a 𝜎-finite measure space (𝑋, d𝑥) we denote by 𝐿𝑝 (𝑋,H) the space
of measurable functions 𝑓 : 𝑋 → H for which

∥ 𝑓 ∥𝑝 B ∥ 𝑓 ∥𝐿𝑝 (𝑋,H) B

(∫
𝑋

∥ 𝑓 (𝑥)∥𝑝H d𝑥
)1/𝑝

< ∞ , (B.1)
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when 1 ≤ 𝑝 < ∞, respectively,
∥ 𝑓 ∥∞ B ∥ 𝑓 ∥𝐿∞ (𝑋,H) B ess sup

𝑥 ∈𝑋
∥ 𝑓 (𝑥)∥H < ∞ , (B.2)

when 𝑝 = ∞. SinceH is assumed to be separable, Pettis’ measurability theorem [41], see also [15],
shows that the weak and strong notions of measurability for functions 𝑋 ∋ 𝑥 ↦→ 𝑓 (𝑥) coincide. If
H = C, we simply write 𝐿𝑝 (𝑋,C) = 𝐿𝑝 (𝑋 ). Moreover, we denote by S2(𝐿2(𝑋,H), 𝐿2(𝑌,G)), the
space of Hilbert–Schmidt operators 𝐻 : 𝐿2(𝑋,H) → 𝐿2(𝑌,G) with scalar-product

⟨𝐻1, 𝐻2⟩S2 B tr𝐿2 (𝑋,H)
[
𝐻 ∗
1𝐻2

]
(B.3)

and associated norm ∥𝐻 ∥S2 B ⟨𝐻,𝐻 ⟩1/2S2
and by 𝐿2(𝑌 × 𝑋,S2(H ,G)), the 𝐿2–space of operator-

valued kernels 𝐾 : 𝑌 × 𝑋 → S2(H ,G) with scalar product

⟨𝐾1, 𝐾2⟩𝐿2 (𝑌×𝑋,S2 (H,G)) B

∬
𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥2S2 (H,G) d𝑦d𝑥

=

∬
𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥2S2 (H,G) d𝑦d𝑥

The next result extends the well-known one-to-one correspondence of Hilbert–Schmidt operators
from 𝐿2(𝑋 ) to 𝐿2(𝑌 ) with kernels in 𝐿2(𝑌 × 𝑋 ) to the operator-valued setting.

Lemma B.3. Let (𝑋, d𝑥) and (𝑌, d𝑦) be 𝜎-finite measure spaces and H ,G two auxiliary Hilbert
spaces. Then S2(𝐿2(𝑋,H), 𝐿2(𝑌,G)) is isomorphic to 𝐿2(𝑌 × 𝑋,S2(H ,G)), that is, for any 𝐻 ∈
S2(𝐿2(𝑋,H), 𝐿2(𝑌,G)) there exists a unique 𝐾𝐻 ∈ 𝐿2(𝑌 × 𝑋,S2(H ,G)) such that for any 𝑓 ∈
𝐿2(𝑋,H) and almost all 𝑦 ∈ 𝑌

𝐻 𝑓 (𝑦) =
∫
𝑋

𝐾𝐻 (𝑦, 𝑥) 𝑓 (𝑥) d𝑥

and vice versa. Moreover, the Hilbert–Schmidt norm of𝐻 ∈ S2(𝐿2(𝑋,H), 𝐿2(𝑌,G)) can be calculated
as

∥𝐻 ∥2S2
=

∬
𝑌×𝑋

trH [𝐾𝐻 (𝑦, 𝑥)∗𝐾𝐻 (𝑦, 𝑥)] d𝑥d𝑦 .

Proof. The proof is a modification of the proof in the scalar-valued case. We sketch it for the
convenience of the reader. Any kernel 𝐾 ∈ 𝐿2(𝑌 × 𝑋,S2(H ,G) yields a bounded operator
𝐻𝐾 : 𝐿2(𝑋,H) → 𝐿2(𝑌,G) by defining

𝐻𝐾 𝑓 (𝑥) B
∫
𝑋

𝐾 (𝑦, 𝑥) 𝑓 (𝑥) d𝑥 .

Indeed, since

∥𝐻𝐾 𝑓 (𝑦)∥G ≤
∫
𝑋

∥𝐾 (𝑦, 𝑥) 𝑓 (𝑥)∥G d𝑥 ≤
∫
𝑋

∥𝐾 (𝑦, 𝑥)∥B(H,G) ∥ 𝑓 (𝑥)∥H d𝑥

≤
(∫
𝑋

∥𝐾 (𝑦, 𝑥)∥2B(H,G) d𝑥
)1/2

∥ 𝑓 ∥𝐿2 (𝑋,H) ,

by Cauchy–Schwarz, we get

∥𝐻𝐾 𝑓 ∥2𝐿2 (𝑌,G) =
∫
𝑌

∥𝐻 𝑓 (𝑦)∥2G d𝑦 ≤
∬
𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥2B(H,G) d𝑥d𝑦 ∥ 𝑓 ∥
2
𝐿2 (𝑋,H)

≤
∬
𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥2S2 (H,G) d𝑥d𝑦 ∥ 𝑓 ∥
2
𝐿2 (𝑋,H) = ∥𝐾 ∥2

𝐿2 ∥ 𝑓 ∥
2
𝐿2 (𝑋,H)

(B.4)

since the Hilbert–Schmidt norm bounds the operator norm. So the map 𝐾 ↦→ 𝐻𝐾 from kernels to
operators 𝐿2(𝑋,H) → 𝐿2(𝑌,G) is bounded with norm ≤ ∥𝐾 ∥𝐿2 , and it is clearly injective.

Given two orthonormal bases (𝛼𝑚)𝑚∈N ofH and (𝛽𝑚)𝑚∈N of G, the space 𝑆2(H ,G) has a basis
given by the rank-one operators |𝛽𝑚⟩⟨𝛼𝑛 | : H → G, 𝑓 ↦→ 𝛽𝑚 ⟨𝛼𝑛, 𝑓 ⟩H . Furthermore, let (𝜑 𝑗 ) 𝑗 ∈N
and (𝜓𝑙 )𝑙 ∈N be bases for 𝐿2(𝑌 ) and 𝐿2(𝑋 ). Then (Ψ𝑙,𝑛)𝑙,𝑛∈N, given by the H -valued functions
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𝑋 ∋ 𝑥 ↦→ Ψ𝑙,𝑛 (𝑥) = 𝜓𝑙 (𝑥) |𝛼𝑛⟩, is a basis for 𝐿2(𝑋,H) = 𝐿2(𝑋 ) ⊗ H and (Φ𝑙,𝑚)𝑘,𝑚∈N, given by
the G-valued functions 𝑌 ∋ 𝑦 ↦→ Φ𝑙,𝑛 (𝑦) = 𝜑𝑘 (𝑦) |𝛽𝑚⟩, is a basis for 𝐿2(𝑌,G). Thus any kernel
𝐾 ∈ 𝐿2(𝑌 × 𝑋,S2(H ,G)) = 𝐿2(𝑌 ) ⊗ 𝐿2(𝑋 ) ⊗ S2(H ,G) can be written in the form

𝐾 (𝑦, 𝑥) =
∑︁

𝑘,𝑙,𝑚,𝑛∈N
𝑎𝑘,𝑙,𝑚,𝑛 𝜑𝑘 (𝑦)𝜓𝑙 (𝑥) |𝛽𝑚⟩⟨𝛼𝑛 |

and a short calculation shows

∥𝐾 ∥2
𝐿2 =

∬
𝑌×𝑋

tr [𝐾 (𝑦, 𝑥)∗𝐾 (𝑦, 𝑥)] d𝑥d𝑦 =
∑︁

𝑘,𝑙,𝑚,𝑛∈N
|𝑎𝑘,𝑙,𝑚,𝑛 |2 . (B.5)

Let 𝑅 ∈ N and

𝐾𝑅 (𝑦, 𝑥) =
𝑅∑︁

𝑘,𝑙,𝑚,𝑛=1
𝑎𝑘,𝑙,𝑚,𝑛 𝜑𝑘 (𝑦)𝜓𝑙 (𝑥) |𝛽𝑚⟩⟨𝛼𝑛 | , (B.6)

which is the kernel of the finite rank operator

𝐻𝐾𝐿
=

𝑅∑︁
𝑘,𝑙,𝑚,𝑛=1

𝑎𝑘,𝑙,𝑚,𝑛 |Φ𝑘,𝑚⟩⟨Ψ𝑙,𝑛 | =
𝑅∑︁

𝑘,𝑙,𝑚,𝑛=1
𝑎𝑘,𝑙,𝑚,𝑛Φ𝑘,𝑚 ⟨Ψ𝑙,𝑛, ·⟩𝐿2 (𝑋,H) (B.7)

Since ∥𝐾 − 𝐾𝑅 ∥𝐿2 → 0 the bound (B.4) shows ∥𝐻𝐾 − 𝐻𝐾𝑅
∥ → 0 as 𝑅 → ∞, so any 𝐻𝐾 is the

limit in the operator norm of finite-rank operators, hence a compact operator. Using the basis
(Ψ𝑙,𝑛)𝑙,𝑛∈N to calculate the trace, a straightforward calculation shows

tr𝐿2 (𝑋,H)
[
𝐻 ∗
𝐾𝐻𝐾

]
=

∑︁
𝑙,𝑛

∥𝐻𝐾Ψ𝑙,𝑛 ∥2G =
∑︁

𝑘,𝑙,𝑚,𝑛∈N
|𝑎𝑘,𝑙,𝑚,𝑛 |2 = ∥𝐾 ∥2

𝐿2

so 𝐻𝐾 ∈ S2(𝐿2(𝑋,H), 𝐿2(𝑌,G)) and ∥𝐻𝐾 ∥S2 = ∥𝐾 ∥𝐿2 .
So far we have shown that the map 𝐾 ↦→ 𝐻𝐾 is an isometry from ∈ 𝐿2(𝑌 × 𝑋,S2(H ,G)) into

S(𝐿2(𝑋,H), 𝐿2(𝑌,G)) so its range is closed. The finite rank operators 𝐹 : 𝐿2(𝑋,H) → 𝐿2(𝑌,G)
are of the form

𝐹 =
∑︁
𝑟,𝑠∈N

𝑐𝑟,𝑠 |Φ̃𝑟 ⟩⟨Ψ̃𝑠 | =
∑︁
𝑟,𝑠∈N

𝑐𝑟,𝑠 Φ̃𝑟 ⟨Ψ̃𝑠 , ·⟩𝐿2 (𝑋,H)

with 𝑐𝑟,𝑠 ≠ 0 for finitely many 𝑟, 𝑠 ∈ N and Φ̃𝑟 ∈ 𝐿2(𝑌,G), Ψ̃𝑠 ∈ 𝐿2(𝑋,H). Expanding Ψ̃𝑠 in the
basis (Φ𝑙,𝑛)𝑙,𝑛∈N and similarly for Φ̃𝑟 , one sees that finite rank operators of the above form can be
arbitrarily well approximated, in operator norm, by finite rank operators of the form (B.7). Since
the finite rank operators are dense in the Hilbert–Schmidt operators, the operators of the form
(B.7) are also dense and hence the range of 𝐾 ↦→ 𝐻𝐾 is all of S(𝐿2(𝑋,H), 𝐿2(𝑌,G)).

The last result concerns an operator-valued version of Dunford’s theorem. For this we need
some more notation. For background on integration in Banach spaces, we refer to [15].

We denote by B(H ,G) the Banach space of bounded operators fromH to G equipped with
the operator norm.

We write 𝐿∞𝑠 (𝑌 × 𝑋,B(H ,G)) for the space of functions 𝐾 : 𝑌 × 𝑋 → B(H ,G) such that
ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥B(H,G) < ∞,

and for all ℎ ∈ H the map
𝑌 × 𝑋 ∋ (𝑦, 𝑥) ↦→ 𝐾 (𝑦, 𝑥)ℎ ∈ G

is strongly measurable (with respect to the topology on G). Since G is a separable Hilbert space,
Pettis’ measurability theorem implies that this the case if and only if it is weakly measurable, i.e.,
for any𝜓 ∈ G,

𝑌 × 𝑋 ∋ (𝑦, 𝑥) ↦→ ⟨𝜓, 𝐾 (𝑦, 𝑥)ℎ⟩G
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is measurable. In this case, for 𝑓 ∈ 𝐿1(𝑋,H), integrals of the form

Φ𝐾 𝑓 (𝑦) B
∫
𝑋

𝐾 (𝑦, 𝑥) 𝑓 (𝑥) d𝑥 (B.8)

are well-defined elements in G for almost all 𝑦 ∈ 𝑌 , with

∥Φ𝐾 𝑓 (𝑦)∥G =

∫
𝑋

𝐾 (𝑦, 𝑥) 𝑓 (𝑥) d𝑥

G
≤

∫
𝑋

∥𝐾 (𝑦, 𝑥) 𝑓 (𝑥)∥G d𝑥

≤ ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥B(H,G) ∥ 𝑓 ∥𝐿1 (𝑋,H) .

Thus, for 𝐾 ∈ 𝐿∞𝑠 (𝑌 × 𝑋,B(H ,G)), the map Φ𝐾 : 𝐿1(𝑋,H) → 𝐿∞(𝑌,G) is bounded with

∥Φ𝐾 ∥𝐿1→𝐿∞ ≤ ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥B(H,G) .

The next Lemma shows that the map 𝐾 ↦→ Φ𝐾 is even an isometry.

Lemma B.4. For any bounded operator Φ : 𝐿1(𝑋,H) → 𝐿∞(𝑌,G) there exists a kernel 𝐾Φ ∈
𝐿∞𝑠 (𝑌 × 𝑋,B(H ,G)) such that

Φ𝑓 (𝑦) =
∫
𝑋

𝐾Φ(𝑦, 𝑥) 𝑓 (𝑥) d𝑥

for any 𝑓 ∈ 𝐿1(𝑋,H) and almost all 𝑦 ∈ 𝑌 . Moreover,

∥Φ∥ = ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾Φ(𝑦, 𝑥)∥B(H,G) .

Proof. If 𝐾 ∈ 𝐿∞𝑠 (𝑌 × 𝑋,B(H ,G)), the discussion above shows that the map Φ𝐾 defined in (B.8)
is bounded from 𝐿1(𝑋,H) to 𝐿∞(𝑌,G) and

∥Φ𝐾 ∥𝐿1→𝐿∞ ≤ ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾 (𝑦, 𝑥)∥B(H,G) C ∥𝐾 ∥𝐿∞ . (B.9)

Conversely, assume thatΦ is a boundedmap from 𝐿1(𝑋,H) into 𝐿∞(𝑌,G) and choose orthonor-
mal bases (𝛼𝑛)𝑛∈N inH and (𝛽𝑚)𝑚∈N in G. Then any function 𝑓 ∈ 𝐿1(𝑋,H) can be identified with
a sequence of functions 𝑓 = (𝑓1, 𝑓2, . . .), where 𝑓𝑙 ∈ 𝐿1(𝑋 ) and ∥ 𝑓 ∥𝐿1 (𝑋,H) = ∥(∑𝑙 ∈N |𝑓𝑙 |2)1/2∥𝐿1 (𝑋 ) ,
and similarly for 𝐿1(𝑌,G). So without loss of generality, we can assume that H = G = 𝑙2(N), i.e.,
the bounded operators fromH → G correspond to infinite matrices which map 𝑙2(N) boundedly
into itself. Finally, let (𝑒 𝑗 ) 𝑗 ∈N be the canonical basis of 𝑙2(N).

For 𝑁 ∈ N and 𝑔𝑙 ∈ 𝐿1(𝑌 ), 𝑓𝑙 ∈ 𝐿1(𝑋 ), 𝑙 = 1, . . . , 𝑁 , the finite linear combinations8 of the form
𝑁∑︁
𝑙=1

𝑔𝑙 ⊗ 𝑓𝑙 ∈ 𝐿1(𝑌 ) ⊗ 𝐿1(𝑋 ) = 𝐿1(𝑌 × 𝑋 )

are dense in 𝐿1(𝑌 × 𝑋 ). Now assume that Φ : 𝐿1(𝑋, 𝑙2(N)) → 𝐿∞(𝑌, 𝑙2(N)) is bounded. For
𝑚,𝑛 ∈ N let

𝑆𝑚,𝑛 (
𝑁∑︁
𝑙=1

𝑔𝑙 ⊗ 𝑓𝑙 ) B
𝑁∑︁
𝑙=1

⟨𝑔𝑙 ⊗ 𝑒𝑚,Φ𝑓𝑙 ⊗ 𝑒𝑛⟩

8For the equality 𝐿1 (𝑌 ) ⊗ 𝐿1 (𝑋 ) = 𝐿1 (𝑌 × 𝑋 ) one should be a wee bit more precise about the involved topologies
in the tensor products: For a Banach space 𝐸, the algebraic tensor product 𝐿1 (𝑌 ) ⊗alg 𝐸 is the vector space of
finite linear combinations

∑𝑁
𝑙=1 𝑔𝑙 ⊗ 𝑓𝑙 , where 𝑔𝑙 ∈ 𝐿1 (𝑌 ) and 𝑓𝑙 ∈ 𝐸. One equips this vector space with the norm

∥𝑧∥𝜋 B inf{∑𝑙 ∥𝑔𝑙 ∥𝐿1 (𝑌 ) ∥ 𝑓𝑙 ∥𝐸 : 𝑧 =
∑
𝑙 𝑔𝑙 ⊗ 𝑓𝑙 }. Then for the closure 𝐿1 (𝑌 )⊗̂𝐸 B 𝐿1 (𝑌 ) ⊗alg 𝐸

∥· ∥𝜋 , called the
projective tensor product, one has 𝐿1 (𝑌 )⊗̂𝐸 = 𝐿1 (𝑌, 𝐸), see [56, Proposition III.B.28] or [15, Example VIII.10]. In
particular, one has 𝐿1 (𝑌 )⊗̂𝐿1 (𝑋 ) = 𝐿1 (𝑌, 𝐿1 (𝑋 )) = 𝐿1 (𝑌 × 𝑋 ). We will not dwell on this fine point any further ;-) .
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which defines a linear functional on the finite linear combinations and is bounded by ∥𝑆𝑚,𝑛 ∥ ≤ ∥Φ∥.
Thus it has a continuous extension to all of 𝐿1(𝑌 ×𝑋 ) and since the dual 𝐿1(𝑌 ×𝑋 )∗ = 𝐿∞(𝑌 ×𝑋 ),
there exist measurable functions 𝐾𝑚,𝑛Φ ∈ 𝐿∞(𝑌 × 𝑋 ),𝑚,𝑛 ∈ N, such that

⟨𝑔 ⊗ 𝑒𝑚,Φ𝑓 ⊗ 𝑒𝑛⟩ =
∬
𝑌×𝑋

𝐾
𝑚,𝑛

Φ (𝑦, 𝑥)𝑔(𝑦) 𝑓 (𝑥) d𝑥d𝑦 .

Taking unions of countably many zero sets, we can assume that the kernels 𝐾𝑚,𝑛Φ (·, ·) are well–
defined for any𝑚,𝑛 ∈ N, up to a common zero set in 𝑌 × 𝑋 .

Let 𝑙2fin(N) be the set of sequences 𝛼 = (𝛼1, 𝛼2, . . .) with only finitely many 𝛼 𝑗 non–zero, which
is dense in 𝑙2(N). For 𝛼 ∈ 𝑙2fin(N) and (𝑦, 𝑥) ∈ 𝑌 × 𝑋 we define the sequence 𝐾Φ(𝑦, 𝑥)𝛼 ∈ CN as

(𝐾Φ(𝑦, 𝑥)𝛼)𝑚 B
∑︁
𝑛∈N

𝐾
𝑚,𝑛

Φ (𝑦, 𝑥)𝛼𝑛, for𝑚 ∈ N.

From the construction it is clear that for 𝛼, 𝛽 ∈ 𝑙2fin(N), the map (𝑦, 𝑥) ↦→ ⟨𝛽, 𝐾Φ(𝑦, 𝑥)𝛼⟩𝑙2 is
measurable. The next step is to show that for almost all (𝑦, 𝑥) ∈ 𝑌 × 𝑋 one has 𝐾Φ(𝑦, 𝑥) ∈
B(𝑙2(N), 𝑙2(N)). Since 𝑙2fin(N) is dense in 𝑙

2(N) one has
∥𝐾Φ(𝑦, 𝑥)∥B = ∥𝐾Φ(𝑦, 𝑥)∥B(𝑙2 (N),𝑙2 (N))

= sup{Re⟨𝛽, 𝐾Φ(𝑦, 𝑥)𝛼⟩| 𝛼, 𝛽 ∈ 𝑙2fin(N), ∥𝛼 ∥𝑙2 = ∥𝛽 ∥𝑙2 = 1}

= sup
{∑︁
𝑚,𝑛

Re
(
𝛽𝑚, 𝐾

𝑚,𝑛

Φ (𝑦, 𝑥)𝛼𝑛
)
| 𝛼, 𝛽 ∈ 𝑙2fin(N), ∥𝛼 ∥𝑙2 = ∥𝛽 ∥𝑙2 = 1

}
.

Moreover, let 𝐿1fin(𝑋, 𝑙
2(N)) be the set of functions 𝑓 = (𝑓1, 𝑓2, . . .) ∈ 𝐿1(𝑋, 𝑙2(N)) with only

finitely many nonzero 𝑓𝑗 , which is dense in 𝐿1(𝑋, 𝑙2(N)), and similarly for 𝐿1fin(𝑌, 𝑙
2(N)). For any

𝑔 ∈ 𝐿1fin(𝑌, 𝑙
2(N)), 𝑓 ∈ 𝐿1fin(𝑋, 𝑙

2(N)), we clearly have from the above

⟨𝑔,Φ𝑓 ⟩ =
∬
𝑌×𝑋

∑︁
𝑚,𝑛

𝑔𝑚 (𝑦) 𝐾𝑚,𝑛Φ (𝑦, 𝑥) 𝑓𝑛 (𝑥) d𝑥d𝑦

=

∬
𝑌×𝑋

⟨𝑔(𝑦), 𝐾Φ(𝑦, 𝑥) 𝑓 (𝑥)⟩𝑙2 (N) d𝑥d𝑦.
(B.10)

and with 𝐴 =
{
(𝑔, 𝑓 ) ∈ 𝐿1fin(𝑌, 𝑙

2(N)) × 𝐿1fin(𝑋, 𝑙
2(N))

�� ∥𝑔∥𝐿1 (𝑌,𝑙2 (N)) = ∥ 𝑓 ∥𝐿1 (𝑋,𝑙2 (N)) = 1
}
, which

is dense in 𝐿1(𝑌, 𝑙2(N)) × 𝐿1(𝑋, 𝑙2(N)), one sees

ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾Φ(𝑦, 𝑥)∥B = sup
(𝑔,𝑓 ) ∈𝐴

∬
𝑌×𝑋

Re
〈
𝑔(𝑦), 𝐾Φ(𝑦, 𝑥) 𝑓 (𝑥)

〉
𝑙2 (N) d𝑦d𝑥

= sup
(𝑔,𝑓 ) ∈𝐴

Re⟨𝑔,Φ𝑓 ⟩ ≤ ∥Φ∥𝐿1→𝐿∞ ∥𝑔∥𝐿1 (𝑌,𝑙2 (N)) ∥ 𝑓 ∥𝐿1 (𝑋,𝑙2 (N))

Thus the kernel 𝐾Φ(𝑦, 𝑥) maps 𝑙2(N) boundedly into itself uniformly in (𝑦, 𝑥) ∈ 𝑌 × 𝑋 . Taking
limits, measurability of (𝑦, 𝑥) ↦→ ⟨𝛽, 𝐾Φ(𝑦, 𝑥)𝛼⟩𝑙2 extends from 𝛼, 𝛽 ∈ 𝑙2fin(N) to all of 𝑙2(N). Thus
𝐾Φ is weakly, hence strongly measurable. From (B.10) one also gets Φ = Φ𝐾Φ . In addition, the last
bound together with (B.9) shows

ess sup
(𝑦,𝑥) ∈𝑌×𝑋

∥𝐾Φ(𝑦, 𝑥)∥B = ∥Φ∥𝐿1→𝐿∞,

so themap 𝐿∞𝑠 (𝑌×𝑋,B(𝑙2(N), 𝑙2(N))) ∋ 𝐾 ↦→ Φ𝐾 ∈ B(𝐿1(𝑋, 𝑙2(N)), 𝐿∞(𝑌, 𝑙2(N))) is an isometry.

Appendix C. Solution of an auxiliary minimization problem

In this section we introduce an auxiliary minimization problem 𝑄𝛾 which on one hand can be
solved explicitly, and on the other hand provides an upper bound on the minimization problem
𝑀𝛾 defined in (1.4).
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Proposition C.1. For any 𝛾 > 2 the minimization problem

𝑄𝛾 = inf
{(

1
2

∫ ∞

0
ℎ′(𝑠)2 d𝑠

𝑠

) 𝛾−2
2

∫ ∞

0
𝑠𝛾−2ℎ(𝑠)2 d𝑠

𝑠
: ℎ(0) = 1, lim

𝑠→∞
ℎ(𝑠) = 0

}
(C.1)

has the solution

𝑄𝛾 =
4

(𝛾 − 2)𝛾2
1

Γ( 2
𝛾
)𝛾

(
𝛾 − 2
2

𝜋

sin( 2𝜋
𝛾
)

) 𝛾

2

. (C.2)

Moreover, ℎ is a minimizer if and only if ℎ(𝑠) = ℎ∗(𝜆𝑠) for arbitrary 𝜆 > 0, where

ℎ∗(𝑠) =
21−

2
𝛾

Γ( 2
𝛾
)
𝑠𝐾 2

𝛾
(𝑠

𝛾

2 ),

and 𝐾𝛼 denotes the modified Bessel function of the second kind with parameter 𝛼 ∈ (0, 1).

Remark C.2. As the form of the minimization problem suggests, any minimizer should be
decreasing and, using known properties of Bessel functions, one can see that the above minimiser
ℎ∗ is strictly monotone decreasing.

The point is that the above minimization problem is quadratic, hence it can be solved by
completing the square. First we make the change of coordinates 𝑠 = 𝑡

2
𝛾 , which gives

𝑄𝛾 =

(𝛾
2

) 𝛾−4
2

(
1
2

) 𝛾−2
2
inf

{(∫ ∞

0
𝑔′(𝑡)2𝑡1−

4
𝛾 d𝑡

) 𝛾−2
2

∫ ∞

0
𝑔(𝑡)2𝑡1−

4
𝛾 d𝑡 : 𝑔(0) = 1, lim

𝑡→∞
𝑔(𝑡) = 0

}
.

This is immediate upon setting 𝑔(𝑡) = ℎ(𝑡
2
𝛾 ) in the above integrals. Defining the variational

problem

𝑞𝑢,𝛾 := inf
{∫ ∞

0
𝑔′(𝑡)2𝑡1−

4
𝛾 d𝑡 :

∫ ∞

0
𝑔(𝑡)2𝑡1−

4
𝛾 d𝑡 = 𝑢, 𝑔(0) = 1, lim

𝑡→∞
𝑔(𝑡) = 0

}
, (C.3)

we obtain

𝑄𝛾 =

(𝛾
2

) 𝛾−4
2

(
1
2

) 𝛾−2
2
inf
𝑢>0

(
𝑢 𝑞

𝛾−2
2

𝑢,𝛾

)
. (C.4)

Hence, Proposition C.1 is a direct consequence of

Lemma C.3. For any 𝛾 > 2 and 𝑢 > 0,

𝑞𝑢,𝛾 = 𝑢
− 2
𝛾−2
𝛾 − 2
2

(
22−

4
𝛾

Γ( 2
𝛾
)2

𝜋

𝛾 sin( 2𝜋
𝛾
)

) 𝛾

𝛾−2

. (C.5)

The unique minimizer is given by

𝑔𝜆 (𝑡) :=
2

Γ( 2
𝛾
)

(
𝑡
√
𝜆

2

) 2
𝛾

𝐾 2
𝛾
(𝑡
√
𝜆), with 𝜆 = 𝑢

− 𝛾

𝛾−2

(
22−

4
𝛾

Γ( 2
𝛾
)2

𝜋

𝛾 sin( 2𝜋
𝛾
)

) 𝛾

𝛾−2

. (C.6)

Proof. Given a real Hilbert space H with scalar product ⟨·, ·⟩ and linear operators 𝐴, 𝐵 on H
consider the functionals

𝐹 (𝜑) B ⟨𝐴𝜑,𝐴𝜑⟩, 𝐺 (𝜑) B ⟨𝐵𝜑, 𝐵𝜑⟩ (C.7)
and the associated constrained minimization problem

Q𝑢 B inf{𝐹 (𝜑) : 𝐺 (𝜑) = 𝑢} (C.8)
for 𝑢 > 0. Note that directional derivatives of 𝐹 and 𝐺 are given by

𝐷ℎ𝐹 (𝜑) = ⟨𝐴ℎ,𝐴𝜑⟩, 𝐷ℎ𝐺 (𝜑) = ⟨𝐵ℎ, 𝐵𝜑⟩
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when ℎ, 𝜑 are in the domains of 𝐴 and 𝐵, but we are, intentionally, a bit vague at this point
concerning domain questions.

Assume that𝜓 is a weak solution of the Euler–Lagrange equation
⟨𝐴ℎ,𝐴𝜓 ⟩ = −𝜆⟨𝐵ℎ, 𝐵𝜓 ⟩ (C.9)

for some 𝜆 ≥ 0 and all ℎ, more precisely, all ℎ in the intersection of the domains of 𝐴 and 𝐵 and
also assume that𝜓 fulfils the constraint: 𝐺 (𝜓 ) = 𝑢. Given an arbitrary 𝜑 ∈ H with 𝐺 (𝜑) = 𝑢, we
write it as 𝜑 = 𝜓 + ℎ. Then

𝑢 = 𝐺 (𝜑) = ⟨𝐵(𝜓 + ℎ), 𝐵(𝜓 + ℎ)⟩ = ⟨𝐵𝜓, 𝐵𝜓 ⟩ + 2⟨𝐵ℎ, 𝐵𝜓 ⟩ + ⟨𝐵ℎ, 𝐵ℎ⟩
so, since ⟨𝐵𝜓, 𝐵𝜓 ⟩ = 𝑢, we have 2⟨𝐵ℎ, 𝐵𝜓 ⟩ = −⟨𝐵ℎ, 𝐵ℎ⟩ and from (C.9) we get

2⟨𝐴ℎ,𝐴𝜓 ⟩ = 𝜆⟨𝐵ℎ, 𝐵ℎ⟩ . (C.10)
Thus

𝐹 (𝜑) = 𝐹 (𝜓 + ℎ) = ⟨𝐴(𝜓 + ℎ), 𝐴(𝜓 + ℎ)⟩
= ⟨𝐴𝜓,𝐴𝜓 ⟩ + 2⟨𝐴ℎ,𝐴𝜓 ⟩ + ⟨𝐴ℎ,𝐴ℎ⟩
= 𝐹 (𝜓 ) + 𝜆⟨𝐵ℎ, 𝐵ℎ⟩ + ⟨𝐴ℎ,𝐴ℎ⟩ ≥ 𝐹 (𝜓 )

(C.11)

so𝜓 is a mininimizer. Moreover, if equality holds, i.e., if 𝐹 (𝜑) = 𝐹 (𝜓 ), then ⟨𝐴ℎ,𝐴ℎ⟩ = 0, i.e., ℎ is
in the kernel of 𝐴, and if in addition 𝜆 > 0, the ℎ is also in the kernel of 𝐵.

We apply the above with the choice

H = 𝐿2(R+, 𝑡1−
4
𝛾 d𝑡)

of real-valued functions on 𝑅+, which are square integrable w.r.t. the weighted Lebesgue measure
𝑡
1− 4

𝛾 d𝑡 . The operator 𝐵 is the identity on 𝐿2(R+, 𝑡1−
4
𝛾 d𝑡) and 𝐴 is the (weak) derivative,

𝐴𝜑 = 𝜑 ′

with domain D(𝐴) = {𝜑 ∈ 𝐿2(R+, 𝑡1−
4
𝛾 d𝑡) : 𝜑 ′ ∈ 𝐿2(R+, 𝑡1−

4
𝛾 d𝑡)}.

In this setting, we have 𝑞𝑢,𝛾 = Q𝑢 . Integration by parts shows that the Euler–Lagrange equation
is given by

𝑡2𝑔′′(𝑡) +
(
1 − 4

𝛾

)
𝑡𝑔′(𝑡) − 𝜆𝑡2𝑔(𝑡) = 0, (C.12)

which can be transformed into a modified Bessel differential equation upon setting 𝑔(𝑡) =

(𝑡
√
𝜆)

2
𝛾 𝑔(𝑡

√
𝜆). Then 𝑔 satisfies the modified Bessel equation

𝑡2𝑔′′(𝑡) + 𝑡𝑔′(𝑡) −
(
𝑡2 + 4

𝛾2

)
𝑔(𝑡) = 0,

with solution space spanned by the modified Bessel functions 𝐼 2
𝛾
, 𝐾 2

𝛾
. Using the well-known

asymptotics of modified Bessel functions9, it is easy to see that the function

𝑔𝜆 (𝑡) :=
2

Γ( 2
𝛾
)

(
𝑡
√
𝜆

2

) 2
𝛾

𝐾 2
𝛾
(𝑡
√
𝜆)

is the unique solution of (C.12) satisfying 𝑔𝜆 (0) = 1 and lim𝑡→∞ 𝑔𝜆 (𝑡) = 0. We now use that for
𝛼 ∈ (0, 1), ∫

𝑡𝐾𝛼 (𝑡)2 d𝑡 =
𝑡2

2
(
𝐾𝛼 (𝑡)2 − 𝐾1−𝛼 (𝑡)𝐾1+𝛼 (𝑡)

)
, (C.13)

9For 𝛼 ∈ (0, 1), one has 𝐾𝛼 (𝑡) ∼
√︃
𝜋
2𝑡 e

−𝑡 as 𝑡 → ∞ [39, Eq. 10.25.3] and 𝐾𝛼 (𝑡) ∼ 1
2 Γ(𝛼) (

𝑡
2 )

−𝛼 as 𝑡 → 0 [39,
Eq. 10.30.2], while 𝐼𝛼 (𝑡) grows exponentially fast as 𝑡 → ∞ [39, Eq. 10.30.4], so it can never satisfy the boundary
condition at infinity.
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which together with the asymptotics of Bessel functions (see Footnote 9) implies that∫ ∞

0
𝑡𝐾𝛼 (𝑡)2 d𝑡 =

1
2Γ(1 − 𝛼)Γ(1 + 𝛼) . (C.14)

Identity (C.13) follows from integration by parts and d
d𝑡 [

𝑡2

2 𝐾1−𝛼 (𝑡)𝐾1+𝛼 (𝑡)] = 𝑡2𝐾𝛼 (𝑡)𝐾 ′
𝛼 (𝑡), which

is a consequence of the relations 𝐾1−𝛼 (𝑡) + 𝐾𝛼+1(𝑡) = −2𝐾 ′
𝛼 (𝑡) and 𝐾 ′

𝛼 (𝑡) = 𝛼
𝑡
𝐾𝛼 (𝑡) − 𝐾𝛼+1(𝑡) =

−𝛼
𝑡
𝐾𝛼 (𝑡) − 𝐾1−𝛼 (𝑡) [39, Eqs. 10.29.1, 10.29.2] for modified Bessel functions. Hence, using that

Γ(1 + 𝛼) = 𝛼Γ(𝛼) and Γ(𝛼)Γ(1 − 𝛼) = 𝜋
sin(𝜋𝛼) for 𝛼 ∈ (0, 1), we obtain∫ ∞

0
𝑔𝜆 (𝑡)2𝑡1−

4
𝛾 d𝑡 = 22−

4
𝛾

Γ( 2
𝛾
)2
𝜆

2
𝛾
−1

∫ ∞

0
𝑠𝐾 2

𝛾
(𝑠)2 d𝑠 = 22−

4
𝛾

Γ( 2
𝛾
)2
𝜆

2
𝛾
−1 𝜋

𝛾 sin( 2𝜋
𝛾
)
. (C.15)

Note that (C.15) determines the relation between the Lagrange multiplier 𝜆 > 0 and the constraint
𝑢 > 0 in (C.6). Similarly, again using the above relation for the derivative of the modified Bessel
function 𝐾𝛼 , we have

𝑔′
𝜆
(𝑡) = − 2

√
𝜆

Γ( 2
𝛾
)

(
𝑡
√
𝜆

2

) 2
𝛾

𝐾1− 2
𝛾
(𝑡
√
𝜆) .

Therefore, (C.14) and the above functional equations for the Γ-function give∫ ∞

0
𝑔′
𝜆
(𝑡)2𝑡1−

4
𝛾 d𝑡 = 22−

4
𝛾

Γ( 2
𝛾
)2
𝜆

2
𝛾

∫ ∞

0
𝑠𝐾1− 2

𝛾
(𝑠)2 d𝑠 = 22−

4
𝛾

Γ( 2
𝛾
)2
𝜆

2
𝛾
𝛾 − 2
2

𝜋

𝛾 sin( 2𝜋
𝛾
)

=
𝛾 − 2
2 𝜆𝑢

(C.6)
=

𝛾 − 2
2 𝑢

− 2
𝛾−2

(
22−

4
𝛾

Γ( 2
𝛾
)2

𝜋

𝛾 sin( 2𝜋
𝛾
)

) 𝛾

𝛾−2

.

This proves (C.5). To show uniqueness of the minimizer 𝑔𝜆 , note that since 𝜆 > 0, we have
0 = 𝐵ℎ = ℎ if 𝐹 (𝜑) = 𝐹 (𝑔𝜆) and 𝐺 (𝜑) = 𝑢 = 𝐺 (𝑔𝜆) by (C.11).

Proposition C.4. For any 𝛾 > 2,

𝑀𝛾 ≤ 𝑄𝛾 .

Proof. The choice𝑚1(𝑠) = 𝑠1{0<𝑠≤1} in the minimization problem for𝑀𝛾 gives

𝑚(𝑡) =𝑚1 ∗𝑚2(𝑡) =
∫ ∞

0
𝑚1(𝑡𝑠)𝑚2(𝑠−1)

d𝑠
𝑠

= 𝑡

∫ 1
𝑡

0
𝑚2(𝑠−1) d𝑠,

so

𝑀𝛾 ≤ inf
𝑚2∈𝐿2 (R+; d𝑠𝑠 )

(
1
2

∫ ∞

0
𝑚2(𝑠)2

d𝑠
𝑠

) 𝛾−2
2

∫ ∞

0
𝑡𝛾−2

(
1 −

∫ 𝑡

0
𝑚2(𝑠−1) d𝑠

)2 d𝑡
𝑡
,

where we used that
∫ ∞
0 𝑚1(𝑠)2 d𝑠

𝑠
= 1

2 . Setting

ℎ(𝑡) = 1 −
∫ 𝑡

0
𝑚2(𝑠−1)d𝑠 , (C.16)

it follows that ∫ ∞

0
𝑡𝛾−2

(
1 −

∫ 𝑡

0
𝑚2(𝑠−1) d𝑠

)2 d𝑡
𝑡

=

∫ ∞

0
𝑡𝛾−2ℎ(𝑡)2 d𝑡

𝑡
. (C.17)

Moreover, ℎ is absolutely continuous with ℎ′(𝑡) = −𝑚2(𝑡−1), and∫ ∞

0
ℎ′(𝑡)2 d𝑡

𝑡
=

∫ ∞

0
𝑚2(𝑠)2

d𝑠
𝑠

< ∞,
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so ℎ cannot oscillate too fast at infinity. Finiteness of
∫ ∞
0 𝑡𝛾−2ℎ(𝑡)2 d𝑡

𝑡
then implies that ℎ(𝑡) → 0

as 𝑡 → ∞. Indeed, let 𝑡2 ≥ 𝑡1 ≥ 1. Then, using Cauchy–Schwarz,

|ℎ(𝑡2)2 − ℎ(𝑡1)2 | ≤ 2
∫ 𝑡2

𝑡1

|ℎ(𝑠)ℎ′(𝑠) | d𝑠 ≤ 2
(∫ 𝑡2

𝑡1

𝑠𝛾−2ℎ(𝑠)2 d𝑠
𝑠

)1/2 (∫ 𝑡2

𝑡1

𝑠2−𝛾ℎ′(𝑠)2 d𝑠
𝑠

)1/2
≤ 2

(∫ ∞

𝑡1

𝑠𝛾−2ℎ(𝑠)2 d𝑠
𝑠

)1/2 (∫ ∞

1
ℎ′(𝑠)2 d𝑠

𝑠

)1/2
,

where we also used 𝛾 > 2. Since 0 < 𝑡 ↦→ 𝑡𝛾−2ℎ(𝑡)2 is integrable on (0,∞) w.r.t. d𝑡
𝑡
, the above

bound shows that ℎ(𝑡)2 is Cauchy in the limit 𝑡 → ∞. Hence lim𝑡→∞ ℎ(𝑡)2 exists. Moreover,
using again that 𝑡 ↦→ 𝑡𝛾−2ℎ(𝑡)2 ∈ 𝐿1((0,∞), d𝑡

𝑡
) and 𝛾 > 2, this forces lim𝑡→∞ ℎ(𝑡)2 = 0, i.e.,

lim𝑡→∞ ℎ(𝑡) = 0.
In addition, using again the Cauchy–Schwarz inequality, we have����∫ 𝑡

0
𝑚2(𝑠−1) d𝑠

���� ≤ (∫ 𝑡

0
𝑚2(𝑠−1)2

d𝑠
𝑠

) 1
2
(∫ 𝑡

0
𝑠2

d𝑠
𝑠

) 1
2
≤

(∫ ∞

0
𝑚2(𝑠)2

d𝑠
𝑠

) 1
2 𝑡
√
2
𝑡→0−→ 0,

so lim𝑡→0 ℎ(𝑡) = 1. Hence,

𝑀𝛾 ≤
(
1
2

∫ ∞

0
ℎ′(𝑠)2 d𝑠

𝑠

) 𝛾−2
2

∫ ∞

0
𝑠𝛾−2ℎ(𝑠)2 d𝑠

𝑠
,

for any absolutely continuous function ℎ : R+ → R with ℎ′ ∈ 𝐿2(R+; d𝑠𝑠 ) satisfying the boundary
conditions ℎ(0) = 1 and lim𝑠→∞ ℎ(𝑠) = 0. The bound 𝑀𝛾 ≤ 𝑄𝛾 follows by taking the infimum
over these functions.

Appendix D. Numerical results

In this section we derive upper bounds on the the constants in Theorem 1.3 and 1.7, in particular,
the constant 𝐶0,𝑑 in the bound for the number of bound states of a non-relativistic one-particle
Schrödinger operator from Corollary 1.1, given in Table 1.

Recall that the best constant in our approach is related to the minimization problem for

𝑀𝛾 = inf
𝑚1,𝑚2∈𝐿2 (R+, d𝑠𝑠 )

{
(∥𝑚1∥𝐿2 ∥𝑚2∥𝐿2)𝛾−2

∫ ∞

0

(
1 − (𝑚1 ∗𝑚2) (𝑠)

𝑠

)2
𝑠2−𝛾

d𝑠
𝑠

}
.

The choice of𝑚1,𝑚2 is quite arbitrary. It is important, however, to have𝑚1 ∗𝑚2(𝑠) ∼ 𝑠 for small
𝑠 , in order to make the integral

∫ ∞
0

(
1 − (𝑚1∗𝑚2) (𝑠)

𝑠

)2
𝑠2−𝛾 d𝑠

𝑠
finite.

We reformulate the above problem by making the ansatz

𝑚1(𝑠) = 𝑠
∫ ∞

𝑠

𝜉 (𝑟 ) d𝑟
𝑟

, 𝑚2(𝑠) = 𝑠𝜓 (𝑠),

where 𝜉,𝜓 : R+ → R are such that
∫ ∞
0 𝜉 (𝑟 ) d𝑟

𝑟
=

∫ ∞
0 𝜓 (𝑟 ) d𝑟

𝑟
= 1.

Then the convolution of𝑚1 and𝑚2 is given by

𝑚1 ∗𝑚2(𝑡) =
∫ ∞

0
𝑚1(𝑡/𝑠)𝑚2(𝑠)

d𝑠
𝑠

= 𝑡

∫ ∞

0

∫ ∞

0
𝜉 (𝑟 )𝜓 (𝑠)1{𝑟>𝑡/𝑠 }

d𝑟
𝑟

d𝑠
𝑠

and a short calculation, taking into account the above normalization of 𝜉 and𝜓 , shows∫ ∞

0

(
1 − (𝑚1 ∗𝑚2) (𝑡)

𝑡

)2
𝑡2−𝛾

d𝑡
𝑡

=

∫ ∞

0

(∬ ∞

0
1{𝑟 ≤𝑡/𝑠 }𝜉 (𝑟 )𝜓 (𝑠)

d𝑟
𝑟

d𝑠
𝑠

)2
𝑡2−𝛾

d𝑡
𝑡

=
1

𝛾 − 2

⨌ ∞

0
𝜉 (𝑟1)𝜉 (𝑟2)𝜓 (𝑠1)𝜓 (𝑠2) max{𝑟1𝑠1, 𝑟2𝑠2}2−𝛾

d𝑟1
𝑟1

d𝑟2
𝑟2

d𝑠1
𝑠1

d𝑠2
𝑠2︸                                                                                         ︷︷                                                                                         ︸

C𝐼𝛾 [𝜉,𝜓 ]

.
(D.1)
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The 𝐿2-norms of𝑚1,𝑚2 can be expressed in terms of 𝜉 and𝜓 by∫ ∞

0
𝑚1(𝑠)2

d𝑠
𝑠

=

∫ ∞

0

(
𝑠

∫ ∞

0
𝜉 (𝑟 ) d𝑟

𝑟

)2 d𝑠
𝑠

=
1
2

∬ ∞

0
𝜉 (𝑟1)𝜉 (𝑟2) min{𝑟1, 𝑟2}2

d𝑟1
𝑟1

d𝑟2
𝑟2

and ∫ ∞

0
𝑚2(𝑠)2

d𝑠
𝑠

=

∫ ∞

0
𝑠2𝜓 (𝑠)2 d𝑠

𝑠
.

Thus, an upper bound on𝑀𝛾 can be obtained by minimizing the functional(∫ ∞

0
𝑠2𝜓 (𝑠)2 d𝑠

𝑠

) 𝛾−2
2

(
1
2

∬ ∞

0
𝜉 (𝑟1)𝜉 (𝑟2) min{𝑟1, 𝑟2}2

d𝑟1
𝑟1

d𝑟2
𝑟2

) 𝛾−2
2
𝐼𝛾 [𝜉,𝜓 ] (D.2)

over all functions𝜓, 𝜉 ∈ 𝐿1(R+, d𝑠𝑠 ) satisfying the constraint∫ ∞

0
𝜉 (𝑟 ) d𝑟

𝑟
=

∫ ∞

0
𝜓 (𝑟 ) d𝑟

𝑟
= 1. (D.3)

Finding the minimizer, even finding that a minimizer exists for the new minimization problem
given by (D.2) and (D.3), is a very challenging problem, as challenging as for the original mini-
mization problem. However, to get a reasonable upper bound on the minimal value, it suffices
to take suitable trial functions. To get the constants given in Table 1, in our calculations, which
where done with Mathematica, we used the following family of trial functions

𝜉 (𝑠) = 𝛼𝑝

Γ(𝑝) 𝑠
−𝛼 (log 𝑠)𝑝−11{𝑠>1}, 𝜓 (𝑠) = 𝛽𝑞

Γ(𝑞) 𝑠
−𝛽 (log 𝑠)𝑞−11{𝑠>1}, (D.4)

with parameters 𝛼, 𝑝, 𝛽, 𝑞 > 0, i.e., Gamma distributions on R+.
The normalization condition is easily verified. For integer 𝑝, 𝑞 ≥ 1, the calculation of 𝐼 [𝜉,𝜓 ]

can be reduced to calculating the integral

𝐽 (𝛼1, 𝛼2, 𝛽1, 𝛽2) =
⨌ ∞

1
𝑟
−𝛼1
1 𝑟

−𝛼2
2 𝑠

−𝛽1
1 𝑠

−𝛽2
2 max{𝑟1𝑠1, 𝑟2𝑠2}2−𝛾

d𝑟1
𝑟1

d𝑟2
𝑟2

d𝑠1
𝑠1

d𝑠2
𝑠2
,

as from 𝐽 we can get 𝐼 [𝜉,𝜓 ] by taking derivatives,

𝐼 [𝜉,𝜓 ] = 1
𝛾 − 2

𝛼2𝑝𝛽2𝑞

Γ(𝑝)2Γ(𝑞)2
(
𝜕𝛼1𝜕𝛼2

)𝑝−1 (
𝜕𝛽1𝜕𝛽2

)𝑞−1
𝐽 (𝛼1, 𝛼2, 𝛽1, 𝛽2)

����𝛼1=𝛼2=𝛼
𝛽1=𝛽2=𝛽

.

Similarly, the “𝐿2-norm integrals” are given by∫ ∞

0
𝑠2𝜓 (𝑠)2 d𝑠

𝑠
=

𝛽2𝑞

22𝑞−1(𝛽 − 1)2𝑞−1
Γ(2𝑞 − 1)
Γ(𝑞)2

for 𝑞 ∈ N and 𝛽 > 1, as well as
1
2

∬ ∞

0
𝜉 (𝑟1)𝜉 (𝑟2) min{𝑟1, 𝑟2}2

d𝑟1
𝑟1

d𝑟2
𝑟2

=
1
2
𝛼2𝑝

Γ(𝑝)2
(
𝜕𝛼1𝜕𝛼2

)𝑝−1
𝐾 (𝛼1, 𝛼2)

����
𝛼1=𝛼2=𝛼

,

where

𝐾 (𝛼1, 𝛼2) =
∬ ∞

1
𝑟
−𝛼1
1 𝑟

−𝛼2
2 min{𝑟1, 𝑟2}2

d𝑟1
𝑟1

d𝑟2
𝑟2

=
𝛼1 + 𝛼2

𝛼1𝛼2(𝛼1 + 𝛼2 − 2)
for 𝛼 > 1, 𝑝 ∈ N.

In our numerical calculations with Mathematica, we made the choice 𝑝 = 2, 𝑞 = 3, for
dimensions 𝑑 = 3, 4, and optimized in the parameters 𝛼, 𝛽 > 1, while for dimensions 𝑑 ≥ 5 the
values were obtained with 𝑝 = 3, 𝑞 = 2, and minimization in 𝛼, 𝛽 > 1. More specifically, we got
the values in Table 1 by the choice of parameters in Table 3 below.
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𝑑
𝐶0,𝑑 Value of parameters in (D.4)

𝑝 𝛼 𝑞 𝛽

3 7.55151 2 2.93254 3 2.49795
4 6.32791 2 3.69214 3 2.78716
5 5.95405 3 5.46494 2 2.39433
6 5.77058 3 6.41334 2 2.51583
7 5.67647 3 7.35963 2 2.61721
8 5.63198 3 8.30512 2 2.70368
9 5.62080 3 9.25042 2 2.77865

Table 3. Numerical values of the constants𝐶0,𝑑 and the values of the correspond-
ing parameters of the trial functions.
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