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We introduce a space-time discretization for linear first-order hyperbolic evolution systems using
a discontinuous Galerkin approximation in space and a Petrov—Galerkin scheme in time. For the
dG method, the upwind flux is evaluated by explicitly solving a Riemann problem. Then we show
well-posedness and convergence of the discrete system. Based on goal-oriented dual-weighted
error estimation an adaptive strategy is introduced. The full space-time linear system is solved
with a parallel multilevel preconditioner. Numerical experiments for acoustic and electro-magnetic
waves underline the efficiency of the overall adaptive solution process.

These notes are an extended version of Space-time discontinuous Galerkin discretizations for lin-
ear first-order hyperbolic evolution systems by W. Dérfler, S. Findeisen, and C. Wieners [ 1,
combined with material from the overview on time integration given in Efficient time integration
for discontinuous Galerkin approximations of linear wave equations by M. Hochbruck, T. Pazur,

A. Schulz, E. Thawinan, and C. Wieners | ]. Basic results on discontinuous Galerkin
methods are taken from the textbooks by R.J. Leveque [ ] and J.S. Hesthaven and T. War-
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1 Linear wave equations

We introduce several examples for wave equations. Starting with the simple homogeneous 1D
case, we then consider elastic waves in solids and fluid, and electro-magnetic waves in vacuum.
In all these cases, the physical setting results in first-order evolution systems. Here we only con-
sider configurations and applications with small energy so that linearized constitutive equations
describe the wave propagation sufficiently accurate.

A simple 1D wave The most simple equation describing a wave is given by
8t290(t7 .T}) = 6289%90(757 :L‘) )

where t € (0,T) is the time variable, ¢ = 0 is the initial time, 7" > 0 is the final time, and z € R is
the position on the real line. The displacement at time ¢ and position x is denoted by (¢, z), and
¢ > 0 is the wave speed.

For given initial displacement ¢(0,-) and velocity 9,¢(0,-) the solution is explicitly given by
d’Alembert formula

1 1 T+ct

o) = 3 (w02 =)+ o0+ e+ L [T ap0.ac)
r—ct

Now we consider solutions in the bounded interval 2 = (0, ) with Dirichlet boundary conditions

©(t,0) = p(t,m) = 0 corresponding to fixed homogeneous displacements on 0f2. The solution

can be expanded into eigenmodes of the operator Ay = —d2¢ in the domain D(A) = H{(2), so

that we obtain

oo

o(t,z) = Z (ak cos(ckt) + By sin(ckt)) sin(kz) ,

k=1

where the coefficients are determined by the initial displacement (0, -) and velocity d;¢(0, -).

For the special example ¢(0,2) = 1 and 0;p(0,z) = 0 for x € (0,7) and ¢ = 1, we obtain the
explicit Fourier representation

4 1 _ 1
o(t,x) = = kZ_O 951" ((2k + 1)t) sin ((2k + 1)z) = 3 <<p0(x +1t) + @o(z — t))
1 ze(0,m)+27Z,
with the periodic function pg(x) = 0 zenZ,
-1 z € (—m0)+27Z.

We observe that the solution is discontinuous along linear characteristics « + ¢t = const.

In the space-time cylinder @ = (0,T") x €, the solution ¢(-, -) is a function in BV(Q).

Figure 1. Solution ¢ in (0,7) x (0,7) with T = 8 for ¢(0,-) = 1, d:(0,-) = 0, and ¢(-,0) = (-, 7) = 0.



Waves in solids We consider the deformation vector ¢(-,-) in an elastic solid @ c R3. The
velocity is denoted by v = 0;p. The elastic constitutive setting is determined by the stress
response o = ( ) determining the stress tensor o by a stress response function E( ) from the
deformation gradient F = D¢. The stress rate is given by

dio = DX (Dy)[Dv] .
Assuming small strains and ¢ =~ id, this is approximated by its linearization
0o = C[Dv]

with the elasticity tensor C = DX(I). The balance of torsional moments yields that stress is
symmetric and that the strain rate only depends on the symmetric strain rate e(v) = sym(Dv). In
isotropic media the elasticity tensor is characterized by the Lamé parameters A > 0, x4 > 0, and
introducing the compression modulus « = 24532 and the shear term dev(o) = o — 1 trace(o)I
we have

1
Ce = 2ue + Mtrace(e)I = 2pdev(e) + ktrace(e)I, Clo = o dev(o) + 3 trace(o)I.
W K

Newton’s law for the balance of momentum yields
poyv =dive + b,
with the mass density p, acceleration 9;v, and the vector of body forces b.

Waves in compressible fluids In fluids we assume that the shear forces can be neglected,
i.e., we consider the limit 4 — 0. Then, the stress o = pl is isotropic with hydrostatic pressure
p= %trace o, and compression waves are described by the system

Op = kdivv, pov=Vp+b.
In particular this applies to acoustic waves in air or in a gas at fixed temperature.

Electro-magnetic waves By the laws of Ampere, Faraday, and Gauf3 we obtain the Maxwell
system

oD —curlH = -J, OB+ curlE = 0,
divD = o, divB =0

for the electric field E, the magnetic field H, the electric displacement D, the magnetic field
induction B, the electric current density J, and the electric charge density p. In vacuum with
no electric charges, we have J = 0, p = 0, and the material laws D = ¢E and B = pH with
permeability © > 0 and permittivity £ > 0.

First-order differential systems For all these cases we obtain a system of J equations in R?
Mopu+ Au ="~

with a first order differential operator A and a weighting operator M.

For elastic waves, we have u = (o,v), A(a,v) = —(e(v),dive), and M(a,v) = (C 1o, pv), for
acoustic waves, we have u = (p,v), A(p,v) = —(divv, Vp), and M(p,v) = (v~ p, pv), and for
electro-magnetic waves u = (H,E), A(H,E) = (cwrlE, — curlH), and M(H,E) = (MH eE).



2 A space-time setting for linear hyperbolic operators

Let @ C RP be a bounded Lipschitz domain, and let H C Ly(Q;R’) be a Hilbert space with
weighted inner product (v,w)y = (Mv,w)pq, where M € L, (, styxm‘]) is uniformly positive.
We consider a linear operator in space A € L(D(A), H) with domain D(A) C H.

Homogeneous boundary conditions are defined by the domain. Here, we choose the domain
D(A) = H(div, % RERP) x H(Q; RP) for elastic waves, D(A) = H!(Q) x Ho(div, Q) for acoustic
waves, and for electro-magnetic waves we choose D(A) = Hy(curl, 2) x H(curl, 2). In all cases
the operator is skew-adjoint, i.e.,

(Av,w)oa = —(v,AW)oq, v,w € D(A).

The variational setting In the abstract setting, we consider the operator L = M9, + A on the
space-time cylinder @ = Q x (0,T"). Again, we observe

(Lv,w)og = —(v,Lw)og,  v,w e Cj(Q;R”).
Depending on L we define the space
H(L,Q) = {veLy(@Q;R’): g e Ly(Q;R’) exists with
(g, W)og =—(v,Lw)yg forall w e C(IJ(Q;]RJ)} .
Then, L can be extended to this space, and H(L, 2) is a Hilbert space with respect to the weighted
graph norm [[v[|.q = /vl o + I ZVI3

Let V C H(L,Q) be the closure of {v € C!([0,T]; D(A)): = 0}. Then we define W =
= (M

L(V) C Lo(Q;R7) with the weighted norm |w/||%, w, )(]Q On V, we use the weighted
graph norm [[v[[, = [[v[[, + [|M = Lv|f3,.

Now we study the operator L in £(V, W) and the evolution equation Lu = f with homogeneous
initial and boundary conditions. This extends to initial values uy # 0 by replacing f(¢) with
f(t) — Aug. Also inhomogeneous boundary conditions can be analyzed by modifying the right-
hand side when the existence of a sufficiently smooth extension of the boundary data can be
assumed.

We define the bilinear form b: V' x W — R with b(v,w) = (Lv,w)o g, and we establish the
standard Babus$ka setting (see, e.g., [ , Thm. 111.3.6]).

Lemma 2.1 Assume that (Az,z)oq > 0 forz € D(A). Then, the bilinear form b(-,-) is continuous
and inf-sup stable in V- x W with 3 = (472 +1)"1/2, i.e.,

b(v,
sip 209 s gy, vev.
wew\{o} [[Wllw —

Proof. The continuity follows from the upper bound |b(v, w)| < ||v||v|w|w. To prove the inf-sup
condition we first note that for all v € C1([0, T]; D(A)) with v(0) = 0 we have

T T
Wi = [ Qrv(e).v(0), gt - / ((rv().v(0) = (M¥(0).v(0), )

//8t MV dsdt—2/ / M@tv ))Ostdt

< 2/ / (Moyv(s) + Av(s),v(s))oﬂ dsdt

/ / M Lv(s), Lv(s)) o (Mv(s), v(5)) gy dsdt < 2T | M Lvlw||v]w -



This yields ||v||w < 2T ||[M~'Lv|w forv € V. Letv € V'\ {0} and take w = M ' Lv € W\ {0},
then
b(v,w) _ b(v, M~ 'Lv) (Lv,M1Lv)ygq

sup > — = — = HMﬁlLVHW >
wewfoy IWllw = [M~1Lv|lw |M—1Lv|w

1
m Iviv,

where the final inequality follows from ||v[|?, = ||[v||%, + |M'Lv||}, < (4T? +1)|M~'Lv|3,. O

The inf-sup stability ensures that the operator L € L(V,W) is injective and that the range is
closed. Thus, the operator is surjective by construction and the inverse L~! is bounded in
L(W, V). This yields directly the following result [ , Thm. 111.3.6].

Theorem 2.2 For given f € Ly(Q;R’) there exists a unique solutionu € V of
(Lu,w)o,g = (f,w)o,0, weWw (1)

satisfying the a priori bound |[ully < VATZ +1||M~2f|oo.

Remark 2.3 The approach presented here to show that L. € L(V,W) is an invertible operator
in suitable Hilbert space V and W only requires to show that L is injective. Since L mixes the
derivatives in space and time, more regularity is difficult to show in this framework. Therefore, one
can check the assumptions of the Lumer-Phillips theorem [ , Chap. 12.2.2] for the operator
A in D(A), so that semigroup theory with more regularity can applied, see, e.g., [ ].



3 Discontinuous Galerkin methods for linear systems of conservation laws
All wave equations discussed above can be considered as a system of linear conservation laws
Mowu(t) +divF(u(t)) =f(t) for te]0,7], u(0) = ug (2

with a linear flux function F(v) = [Byv,..., Bpv] and symmetric matrices By € Ry, such that

D
Av =divF(v) = Z Bg0gv .
d=1

Traveling waves In the case of constant coefficients in @ = R, special solutions can be
constructed as follows. For a given unit vector n = (ny,...,np)" € RP, we have n - F(u) = Bu
with the symmetric matrix B = >_ nyB,. Then, for all eigenpairs (A, w) € RxR” with Bw = A\Mw
and amplitude function a(-), the traveling wave propagating with velocity ¢ = ||

u(t,x) =a(n-x—X)w
is a solution of (2) with initial value up(x) = a(n - x) w and right-hand side f = 0.
Discontinuous weak solutions A function u € L;((0,7) x RP;R”) is a weak solution of (2) if
0= / M(x)up(x)- $(0, %) dx-+ / u(t, ) (M(x)3h(1,) +div B ((1, %)) ~£(1,%)-6(1.) ) dt dx
RD (0,T)xRD

for all test functions with compact support ¢ € C}((—1,7) x ;R7).
This applies to traveling waves with discontinuous amplitude: the piecewise constant function

u(t, x) = {aLw inQL={(t,x) €[0,7] xR :n-x— At <0} )

arw  iNnQr={(t,x) €[0,T) xRP: n-x— A\t >0}

with ar, ar € Ris a weak solution: Using (—AM+B)w = 0 and the GauB theorem in @, C RxR”

. . -2
1
with unit normal vector T ( 0 ) on 0Q), we observe

0=a_ /HAX_M_O (=AM + B)w - ¢(t,x) da
o () (et %) =
(

e [ (o) (e e

for all test functions ¢ € C}((0,T) x R”;R/). Repeating this argument with dQr and testing in
Ci((—1,T) x RP;R7) shows that (3) is a weak solution with discontinuity along the hyperplane

0Qr=0QL ={(t,x):n-x— At =0}

in the time-space cylinder and with discontinuous initial values uy(x) = u(0, x).



The Riemann problem for linear conservation laws We now construct a weak solution of the
Riemann problem, i.e., a piecewise constant weak solution with right-hand side f = 0 and the
discontinuous initial function

wo(x) = u inQL:{XERD:n-X<0}
0 B uR inQR:{xERD:n-x>O}

(4)
with u., ug € R”. Let ()\;, w;) be M-orthogonal eigenpairs, i.e.,
BW]‘ = )\jMWj with Wi - MW]' =0 forj 75 k.
By the superposition of traveling waves, we obtain a weak solution of the Riemann problem
u(t,x) = Z aj(x-n—X\Nt)w;, aj(s)=

J

{Wj-MuL/Wj-MWj s <0, (5)

w; - Mur/wj-Mw; s>0.

The solution of the Riemann problem at (¢, 0) for ¢ > 0 defines the upwind flux on 9 N 0QR by

N Wj~M11|_ wj-MuR B wj-B[u]
n-FW(ug) =) L Bwi+) W, Mw, i =B 2. w, Bw, 2% 6
A;>0 A;<0

depending on the jump term [u] = ug — u.. By construction, the upwind flux is consistent, i.e.,
for Bu_. = Bug we obtain n - F'"P(uy) = Bu; = Bug.

Application to wave equations For elastic waves with divF(o,v) = — <§i(va¢)7> we have the
1
normal flux n - F(o,v) = — <2(n®\;:v®n)>_ By cp = @ we denote the velocity of

pressure waves, and by cg = \/% the velocity of shear waves. The eigenvectors are of the form

(2/“1 wn+ )‘I> and (“(T @nt+ne T)>, where T is a unit tangent vector, i.e., 7-n = 0. The

+cpn +cgT
resulting upwind flux in 2D is given by
n F®(u) = — F(m®v,+v, ®n) ~n-[ogn+pcelv]-n meon
oLn 2pcp pcpn
_T-[on+peglv]- T H(r®n+neT)
2pcs pesT .
For acoustic waves with divF(p,v) = — (dgpv> we obtain n - F(p,v) = — <Vp'nn>, the velocity

P . . K L .
of sound ¢ = \/;, and the eigenvectors wy = (:Fcn). This yields the upwind flux

oy = () bl (1Y,

pLn 2pc pcn

For electro-magnetic waves with divF(H,E) = (_CEEIHEH> and n- F(H,E) = (_nnXXFI‘{> we

have the speed of light ¢ = \/#@ eigenvectors <\fr\l/;:> and (\;;f;», and upwind flux
wiyy _ ((MXELY, VAH(mxT) - VEE T~ inxr
n-F"®(uy) = (—an—liL>+ N < Jer >
VA7 E[B] - (0 x 7) ( T >
2/ e Venx )



The discontinuous Galerkin discretization in space We assume that Q) is a bounded poly-
hedral Lipschitz domain decomposed into a finite number of open elements K C 2 such that
Q= UKe/c K, where K is the set of elements in space. Let Fx be the set of faces of K, and for
inner faces f € Fi let K, be the neighboring cell such that f = 0K N 0Ky, and let nx be the
outer unit normal vector on 0K . The outer unit normal vector field on 952 is denoted by n.

We select polynomial degrees pg, and we define the local spaces H; i = IPPK(K;R") and the
global discontinuous Galerkin space

Hy, = {vj, € Lo(Q): vi,|x € Hy, i forall K € K}.
For vy, € Hy, we define vy, i = vi,|k € Hy, i for the restriction to K. In the semi-discrete problem
Moy (t) + Apug(t) = £(1), te(0,7), (7)
the discrete mass operator M, € L(H},, Hy,) is the Galerkin approximation of M defined by
(Mpvi, wp)oo = (Mvp, wp)o0 vy, Wy, € Hp, . (8)

The discrete mass operator M), is represented by a block diagonal positive definite matrix.

The discrete operator A, € L(H}, Hy) is constructed as follows: Integration by parts yields for
smooth ansatz functions v and smooth test functions ¢ x

(Av, ¢ )i = (diVF(v), ¢x)o,xc = —(F(v), Vér)ox + Y (nx - F(v), ¢x)os-
fe€FK

We then define for v;, € Hj, and ¢y, x € Hp, i by
(Apvh, dnk)oxk = —(F(vik), Vénk)ox + Z (ng - F(vn), ¢h,K)07f7
fEFK

where ng - F}P(v;,) is the upwind flux obtained from local solutions of Riemann problems. Again
using integration by parts, we obtain

(Apvh, . )o.x = (divF(vy k), ¢h7K)O,K + Z (ng - (FY(vh) — F(vhk)), d’h,K)Oi' (9)
feFK

On inner faces f = 0K N 0Ky the difference ng - (Fy(vy) — F(vy, k)) only depends on the
jump term [vi]r s = Vi, — Vi, SO that ng - (Fi(v) — F(v)) = 0 on all faces f € Fy for
v € D(A). On boundary faces, we define the jump term [v,]x s depending on the boundary
conditions. Together, we obtain consistency

(Av, dn)o0 = (Anv, dn)oq, v e D(A), ¢, € Hy, (10)
and

> (e -FR(VAK):V)gox =0,  vi€Hy, ve DA NH(QGRY). (11)
KeK

The upwind flux together with the appropriate choice of boundary flux guarantees that the discrete
operator is non-negative and controls the nonconformity, i.e., a constant Cy > 0 exists such that

(Ath,Vh)QQ > CA Z H(HK . (Fl;(p(vh) — F(Vh,K))Haf > 0, Vy € Hh. (12)
feEFK

This is now shown for all our applications.



For elastic waves we obtain for (o1, vy) € Vi, and (¢rn, Yx.n) € Vi

(An(on,va), (‘PK,hy'lﬁK,h))OyK = —(e(vin), ‘PK,h)(),K — (div UK,h,iﬂK,h)QK
1
3 (nx x ([o]k, K + pep[V]k,f), nK X (Prp0K + PCP¢K,h))Of
pes )
feFK
1

B 2pcp

Y (k- (olx.mx + pep[Vik ), nx - (@rpni + pepticn))g -
JeFk

On boundary faces f = 0K N0Q, we set [vy] i, = —2vi ; and [o] k.5 = 0 for Dirichlet boundary
conditions. This yields

(An(on Vi), (Tkn VER) o = D D (— (VEh Tr DK )
K feFk
1
_% (HK X ([O']KJHK + ,OCP[V]K,JC),IIK X (a’K’hnK + pCPVK,h))OJc
feFk
1
“Toer > (nk - (o], K + pep[V]k p), 0k - (k0K + pcPVK,h))OJ)
feFk
*Z > (anK < [oli g+ pes|mre < [valie s[5
K feFx
o ol [ + el - vl )

For acoustic waves we obtain for (py, vy) € Vi, and (¢xn, Yx.n) € Vi,

(An(nvi), (rp¥rn))ox = —(dVVin 0rn) o = (VPR YER) o«
1
_27c Z ([ph]K,f + peng - Vil £, O, + PCPR R nK)o,f'
feFk

On boundary faces f = 0K NN, we set [py] ¢ = 0and [vy ]k - ng = —2vg ;- ng for Neumann
boundary conditions. This yields

(An(pr, V), (Pn, Vi), 5 ;fz (*H [Pn) KfHaf + pc||ng - [Vh]K,fHaf)-
eF

For electro-magnetic waves with (H,,Ep) € Vi, and (¢xn, Y x.1) € Vi, We have
(An(Hp, Ep), (‘PK,m?ﬁK,h))QK = (curlEgp, @Kn)o,x — (curl HK,miPK,h)QK

1
v (VA - (0 x 7) = VE[B) 7, iigrcn - (n x 7) = Vewren - 7),

—(VoME] -7+ VEE] - (X T), VP h - T+ Ve n - (nx 7))o g

The perfect conducting boundary conditions on the faces f = K N 02 are modeled by the (only
virtual) definition of ng x Ex, = —ng x Ex and ng x Hg, = ny x H, i.e.,, ng X Elk s =
—2ng X Ex and ng x [H]K,f = 0. This yleldS

(An(Hy, Ey), (Hy, Ey)), Z > (anKX (1) rfo; + HnKX [EhKfHOf>

K feFk



4 A Petrov-Galerkin space-time discretization

Let Q = URGRE be a decomposition of the space-time cylinder into space-time cells R=1 x K
with K ¢ Qand I = (t_,t;) C (0,T); R denotes the set of space-time cells. For every R € R we
choose local ansatz and test spaces V}, g, Wi, r C La(R; RY) with Wi.r C 0;Vi,r, and we define
the global ansatz and test space

Vi, = {vh € Hl((O,T);H): vip(0,x) =0fora.a.x e Qand v, g = vi|r € VhJ{},
Wy, = {Wh € Lg((O,T);H): Wp R = Wh’R S Wh,R} .

By construction, functions in W}, are discontinuous in space and time, and functions in V}, are
continuous in time, i.e., v (x, -) is continuous on [0, 7] for a.a. x € Q.

In addition we aim for dim(V},) = dim(W},), which restricts the choice of V}, . In the most simple
case this can be achieved for a tensor product space-time discretization with a fixed mesh K in
space and a time series 0 = tg <t < --- <ty =T, i.e., R = Ugex Ui\’zl(tn,l,tn) x K. Then,
we can select a discrete space Hj, with Hy, g = Pp,(K; R”’) independently of ¢, and in every time
slice we define W), p = Hj, i constant in time on R = (t,—1,t,) x K. This yields in this case
piecewise linear approximations in time

W, = {vh c H'((0,7); H) : vi,(0,x) =0, vj(tn,x) € Hyforaa.xcQandn=1,...,N, and

bty —t t—tn1

va(t,x) = Vi(tn1, ) + Vi(ta, x) for t € (tn_l,tn)} .

tn — th_1 tn — th—1

In the general case, we select locally in space and time polynomial degrees pr and gg in R, and
we set for the local test space Wy, g = (Pg,—1(I; R’ ® P, (K;R”))). Then we define for R € R
t, —t t—t_
Vior = {Vir € La(RiRY) 1 Vi m(t,x) = vy (t-, %) +
’ ’ ’ ty —t_ . —t_

vy € Vh‘[O,t_]7 wir € Wi R, (t,x) € R=(t_,t4) X K}

Win R (ta X) 3

This yields vy, (-, x) € Py, (I;RY) for v, r € Vi g and (-, x) € R.

The discontinuous Galerkin operator in space is extended to the space-time operator A,vy, € Wy,
by defining

(Anvi, wh)o = Z ((diVF(Vh,R)aWh,R)QR (13)
R=IxK

+ Z (nK . (F}l(p(vh) — F(Vh,R))vwth)o,Ixf)
feFK

for v, € V}, and wj, € W};,. We define the discrete space-time operator L; € L(V}, W}) and the
corresponding discrete bilinear form b (-, ) = (Lh-, o, by

(Lnva, Wh)[)’Q = (MpOyvy + Apvp, Wh)O’Q :

In order to show that a solution to our Petrov—Galerkin scheme exists, we check the inf-sup
stability of the discrete bilinear form b+, -) with respect to the discrete norm

Ivallss, = Ivallfy + 1My, Lyvalffy -
By construction, b, (-, ) is bounded in V}, x W}, i.e.,

bn(vi, wh) = (Lpviaswi) o o < 1M Lvi|lwliwallw < [vallv, [[walw Vi € Vi, wp € Wh.
O7Q



For the verification of the inf-sup stability, we introduce the Ls-projection II,: W — W), which
is defined by (Hhv,wh)OQ = (v,wh)OQ for wj, € Wj,. Then, by construction, 11,4, = A; and
I1;, Ly, = Ly. Moreover, we define the non-negative weight function in time dp(t) = T — t, and we
observe

T t T
/ /¢(s)dsdt—/ dr()é(t)dt, ¢ €Li(0,T).
0 0 0

Lemma 4.1 Assume that

(Mp 8¢, dTVh)QQ < (Lpvh, drIlpvy) vy € Vy. (14)

0,Q°
Then, the bilinear form by,(-, -) is inf-sup stable in V}, x Wy, with 8 = 1/v/1 + 47172, i.e.,

b
sup OV, W) > Blvrllvi, vy € V.

wpeWY, HWhHW

Proof. Transferring the proof of Lem. 2.1 to the discrete setting yields

T T
Vil = /0 (thh(t)vvh<t))0,£2 dt = / ((thh(t)ﬂvh(t>>07g - (thh(0)7vh(0))[)7g> dt

0
T st T st
:/ /8t(thh(s),vh(s))o7stdt:2/ / (Mh(‘)tvh(s),vh(s))ojﬂdsdt
o Jo o Jo

= Q(Mhatvh, dth) < 2(thh, dTHhvh) <2T HM;ZILthHWHVhHW .

0,Q 0,Q

This yields ||v,|lw < 2T || M, 'Lyvy|lw and thus |[vally, < v1+4T2| M, 'Lyvy|lw, which im-
plies the inf-sup stability using b, (vy, wp) = (LyVa, Wh)o,Q = (Mh‘thvh,wh)W and inserting
wp = MgthVh

b (Vh, W) (M, ' Lyvi, wi)w
sup ————> = sup
wirew\{o}  [Wallw  w,ew,\{0} [whlw

> | M, Lyvy|lw >

1
m”vhHVh-
O

As in Thm. 2.2, this shows the existence of a unique discrete Petrov—Galerkin solution (provided
that the assumption in Lem. 4.1 is satisfied).

Theorem 4.2 For given f € Ly(Q;R’) there exists a unique solution u;, € V;, of
(Lnun,whp)og = (£, Wh)og, Wi € Wh, (15)

satisfying the a priori bound ||uy||v;, < VAT? + 1||M, 'TI,f|w.

The convergence will be analyzed with respect to the discrete norm | - ||y;,. For v € V the
consistency of the numerical flux in (13) yields (A,v, wy)o,g = (div F(V)’Wh)o,Q so that A,v =
I1;, div F(v). This shows that A;, and thus also || - ||y; can be evaluated in V' + V}, and that b, (-, -)
is continuous with respect to this extension.

Theorem 4.3 Letu € V be the solution of (1) and u;, € V}, its approximation solving (15). Then,
we have

la = uplly;, < (L4671 inf [lu—vally, .
vpEV)

10



If in addition the solution is sufficiently smooth, we obtain the a priori error estimate

o= wnll, < O (a1 + 002) (107 Mo + 1D ule)

for at, Ax and p,q > 1 with At >t —t_, Ax > diam(K), p < pr and q < qg for all R =
(tf,tJr) x K.

Proof. The consistency (10) of the discontinuous Galerkin method yields (Aju(t), wi(t))on =
(Au(t), wy(t))oo and thus also consistency of the Petrov—Galerkin setting, i.e., by(u,wy) =
b(u,wp) = (f,wp)o,Q = br(up, wy). This gives for all vy, € V}, and wy, € W},

bp(vh — up, wp) = by (v, —u,wy) < ||v, —ully, [|whllw
and thus

u = unlly, <lla—=vallv, + Ve =l

_ bp(vh, — up, wp,
<lu—valy, + 87 sup )

<1+ 87 u—=valv, -
w,EWL\{0} [whlw

Now we assume that the solution is regular satisfying u € H?™((0,7);L2(2;R7)) N
Ly ((0,T); HP*1(Q;R7)). We have by consistency A,v;, = Avy, for all v, € Vj, N HY(Q;R7),
so that the error estimate yields

u—u <(1+p7! inf u-— <C’<8u—[u + ||ID(u — Ipu ),
| nllve < (148 )Vhevh%%I(Q;RJ)H Villv, < C([[0:(a = Trpu)llo,q + [ID(u = Thu)llog

where Ip,: V. — V;, N HY(Q;R7) is a suitable Clément-type interpolation operator. By standard
assumptions on the right-hand side and the mesh regularity we obtain a bound depending on At
in time and Az in space. O

We check the assumptions of Lem. 4.1 for the special case of a tensor product discretization,
where the polynomial degrees in time are fixed on every time slice I = (¢,-1,t,) € (0,7) and
the polynomial degrees in space are fixed on every K C . Then we have the local spaces
Whr = Pp(K) ® Pg,—1 and Vg = P, (K) @ P, on a space-time cell R = I x K € R, i.e.,
pr = pr and gqr = q;. Note that for ¢; = 1 the Petrov—Galerkin method in time is equivalent to
the implicit midpoint rule, see also [ I

11



Lemma 4.4 In the case of tensor product space-time discretizations, the condition (14) in
Lem. 4.1 is satisfied: we have forv,; €V},

Up0vy = Opvp, (Mp By, dTVh) < (Mpoyvy, dpllyvy) 0 < (Apva, drllyvy)

0,Q° 0,Q"

Proof. Let Hj, be the discontinuous Galerkin space in © with Hy, x = P, (K). In the tensor
product case, for v, € V}, and wy, € W), representations exist in the form

qr—1

Z¢1k )Ark(t Z¢1k JALE(t (t,x)e|JIx K
with orthonormal Legendre polynomials Ar, € Py in Lo(I) and ;1 , ¢1 1 € Hy,. We observe
Ovh,r(t,x) Zuum JIAE(t),  OMr€Pr1, (hx)ER=IxK,

i.e., Oyvp r € Wy, g and thus I1,0; v, = 0;vy. Furthermore, we have

(dr Myp0yvi, vi — Tpvy), ZZ (M1 1.01) 0.0 (TR AL ) o 1
I k=0

= Z (Mh’:bf,qza ‘/’Im)o@ (dTat)‘I,qza >‘I,q1)0,1 =—k Z (Mh¢17917¢I7QI)0,Q

1 I

since (dTat)\[’k, )\[7(1])071 =0fork < qr and (dTat)\[’qI, AI,QI)
Lem. 7.1 in the appendix for a proof). From

01 _(tat)‘f,fﬂv /\1,(11)07[ = —qy (see

(Ahvh,wh ZZ ( leF VhR Wp R)OIXK + Z ng - (Fl;(p(vh) — F(thR))’wth)Ofo)
feFk
qr qr—1

= ZZZ Z ( (divF(hrxx ), Prxk.i), K

K k=0 j=0
+ Z ng - (FZ () — ('(;b[xK,k))vd)IxK,j)O’f)()\I,ky)\l,j)OJ
feFK

= (ApIlpvp, Wh)O,Q

we obtain in the tensor product case A;, = ApIl;, and thus

(Apva, drTTpva) o = (Apllpvh, drllyvy),

0,Q — 0,Q
qr—1qr—1
_ZZ Z Z ( (divF($rxir), Yrxk.j), K
K k=0 j=0
4 Z nK ’l/)]k) (QﬁlxK,k))awlxK,j)o,f)()‘Iuk’dT)‘IJ)O,I
feFK
qr—1qr—1
= D> (Antrmr) g oAk drArs)or > 0
I k=0 j=0

since both matrices with entries (Ahv,bl k,wfj) and (A1, drAr)o,1, respectively, are positive
semi-definite. O

12
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5 Duality based goal-oriented error estimation

In order to develop an adaptive strategy for the selection of the local polynomial degrees pr, qr
we derive an error indicator with respect to a given linear goal functional £ € W’. Following the
framework in [ ], we define the adjoint problem and solve the dual problem. Then, the error
is estimated in terms of the local residual and the dual weight.

The adjoint operator L* in space and time is defined on the adjoint Hilbert space
V* = {w € W: there exists g € W such that (Lv,w)o.o = (v,g)o,o forallv e vV}
and is characterized by
(v,L*W)og = (Lv,W)o,Q veV,welV*,

Then, V* is the closure of {v* € C'([0,T]; D(4*)): v*(T) =0} and L* = —Lon VN V*.
For the evaluation of the error functional E we introduce the dual solution u* € V* with

(w, L'u)og = (B,w), weW.

Let u € V be the solution of (1), and u;, € V}, its approximation solving (15). Now we derive an
exact error representation for the error functional in the case that the dual solution is sufficiently
smooth such that u*(¢,-)|; € La(f;R’) for all faces f € F,, and a.a. t € (0,7). Inserting the
consistency of the numerical flux (10) yields for all w, € W),

(E,u—up) = (u—uy, —Mu* —divF(u*)), Q

= (u, —=M9u* — divF(u%)), 0 (up, —Mopu* — div F(u*)), Q

= (M8 + div F(u),u*)O’Q — (u,n- F(u*))OﬁQ
— Z ((M@tuh + div F(uy), u*)O,R — (uh, ng - F(u*))o,aR)
ReR
= (f, u*)O’Q - Z ((Matuh + divF(uh),U*)o,R — (up,ng - F(u*))o,lxaK>
R=IXKeR
= Y (- MOy~ divF(w),w), ,+ (nr Flwn),w)y o)
R=IxXxKeR
= Y ((f — Moy, — divF(uy),u”) ) o+ (nx - (F(up) — Fif (wp)), U*)o,]x8K>
R=IxKeR
= Z ((f — Moy, — divF(ug),u* — Wh)o,R + (ng - (F(uy) — FiP(up)),u* — Wh)o,[xaK) :
R=IxXKER

From this error representation, inserting some projection w;, = II,u*, we obtain the estimate

(Ba-w) < > (Mo, +divE(w,) - £, Ju* — T
R=IxK€eR 7

lo,R (16)

+ |ng - (F(up) = FE (wn))lo o lla” = Hhu*HO,IXE)K) :

However, this bound cannot be used since it depends on the unknown function u*. In applica-
tions, the following heuristic error bound is used instead. Let u; € W) be a numerical approxi-
mation of the dual solution given by

bh(vh,uZ) = <E,Vh>, vy € Vh

13



(using the transposed finite element matrix). Then we replace the projection error u* — II,u* by
Inu; —uy, where I, is a higher-order recovery operator (or a lower order interpolation operator).
Then, the right-hand side of the error bound (16) is replaced by > % 1z With

nr = Hf — Matuh —div F(uh) ‘073 \Ihu}"l — uZHo,R
+ Ing - (F(up) — Fy(up)))|

0,1x0K [ Inaj, — upl|o,rxok -

These terms contain the given data functions f and M and are computed by a quadrature formula.
Alternatively a term ||f — £, — (M — Mj)0:upljo,r could be separated to control this data error.
Usually, this error contribution is of minor importance. This is especially the case in our numerical
examples.

Remark 5.1 The error indicator construction extends to nonlinear goal functionals E ¢ C*(W).
Then, the dual solution u* € V* depends on the primal solution, i.e.,

(w,L*u*)o g = (E'(u),w), weW.

The estimate (16) applies also to |E(u) — E(uy)

, since we have [ ]

1
E(u) — E(uy) = (E'(up),u —up) + /0 (1—5)E"(u, + s(u—up))[u—up,u—uy]ds

and the second term is quadratic in ||u — uy|lo.o and will thus be neglected. In our numerical
examples E" is constant.

In our examples we use the adaptive strategy for p-refinement described in Alg. 1. It depends on
a parameter ¢ < 1 for the adaptive selection criterion.

Algorithm 1 Adaptive algorithm.
1: choose low order polynomial degrees on the initial mesh
2: while maxg(pr) < Pmax and maxg(qr) < gmax dO
3: compute uy
4:  compute u; and a recovery Ipujy
5. compute nr on every cell R
6
7
8
9

if the error is small enough STOP

mark space-time cell R if ng > Y maxg ng

increase polynomial degrees on marked cells
redistribute cells on processes for better load balancing

Remark 5.2 For acoustic waves with D(A) = H'(2) x Hy(div, ) we haven - v* = 0 on 95 thus
(n-F"(u),u*)psq = 0. Moreover,

<E7 (p_phvv_vh)> = Z ((b_Pach+Vph7V*)07R+ (_patph—'_divvfhp*)m}%
R=IxKeR

1 * *
+ 2pc Z ([pn]x.s + pens - [Vilk 0" + pev 'HK)(),f)
feFk

shows that modified error indicators can be considered, e.g.,

i = || (b = pdevin + Vpn, —pdipn + div vi, p)||o Il (B} Vi) = 0 Vi) ok

+ l[prlr sllorxox Ink - (Invy, — vi)llorxox + [0k - [Valk fllo,rxox [ Inpr, — Phllo,rxox -

14



6 Space-time multilevel preconditioner

In this section we address the numerical aspects in particular solution methods for the discrete
hyperbolic space-time problem. First we describe the realization of our discretization using nodal
basis functions in space and time, and then a multilevel preconditioner is introduced, and it is
tested for different settings to derive a suitable solution strategy.

Nodal Discretization Here we consider the case of a tensor product space-time mesh
= Ufl\’zl R" with time slices R" = [Jgcx(tn-1,tn) X K and variable polynomial degrees
PR,qr in every space-time cell R. Let {¢R7J}j_17,,‘7dlmWhTR be a basis of W), r and define

W} = span { Ugrern Ud‘m Wnr Wé,g’}- Then, the solution uy, € V}, is represented by

tn—t t_tn—l

uy(t,x) = 7u2_1(tn_1,x) + ——uj(t,x) for (t,x) € (th—1,tn) X K
tn — tn—l tn - tn—l

with u) = 0 and u} € W;}, n = 1,...,N. The corresponding coefficient vector of the
solution is denoted by u = (u',...,u’v)", where v ¢ RI™W: is the coefficient vector of
Uy = Y pepn ZdlmWhR %k ;- With respect to this basis, the discrete space-time system
(1) has the matrlx representation Lu = f with the block matrix

Dl
cl D2
L=|
CN.—l DN
with matrix entries
tn 1
Dy rj = / /Lh o sz](t x))dyR/ (t,x)dxdt, R,R eR"

n 1

tn o
bR :/ /Lh ”7¢g—jl(tn_1,x))¢g,k(t,x) dxdt, ReR"! R eR"
B tn_1J tn - tn—l ’ ’

and the right-hand side f = (f1 uN) with f” = (£,¢% ;)o,r. Sequentially, this system can
be solved by a block-Gauss— Seldel method (correspondmg to implicit time integration)

ngl :il) Q2@2 :iQ —Qlﬂl,-.., QN@N :iN_QNfluNfl,

provided that D™ can be inverted efficiently.

Multilevel methods For space-time multilevel preconditioners we consider hierarchies in space
and time. Therefore, let Ry be the coarse space-time mesh, and let R;;, be the discretization
obtained by I =1, ..., Imax uniform refinements in space and k = 1, . .., kmax refinements in time.
Let V1. be the approximation spaces on R; ;. with fixed polynomial degrees pr = p and qr = q.
Let L, ,, be the corresponding matrix representations of the discrete operator Ly in V.

The multilevel preconditioner combines smoothing operations on different levels and requires
transfer matrices between the levels. Since the spaces are nested, we can define prolonga-
tion matrices P", + and Pf',j , representing the natural injections V;_; C V;; in space and

Vik—1 C Vi in time. Correspondingly, the restriction matrices Rﬁ km and le , represent the
Lo-projections of the test spaces W, D Wiy and Wi, O W ;.
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For the smoothing operations on level (I, k) we consider the block-Jacobi preconditioner or the
block-Gauss—Seidel preconditioner (where all components corresponding to a space-time cell R
build blocks)

B}, = 0, block_diag(L;;)™",  BSF = 6, (block_lower(L; ;) + block_diag(L; 1))~

with damping parameter 6, € (0,1]. The corresponding iteration matrices are given by Sl k=
idy, —B} Ly, 3 and SP¢ = id;x —Bf¢ Ly . and the number of pre- and postsmoothing steps are
denoted by »{} and {5

Now, the multilevel preconditioner BM- is defined recursively. On the coarse level, we use a

. . —1
parallel direct linear solver B§ = (Lg )
defines By by

Then, we have two options: restricting in time

pre Z,post
iy, — B Ly = (idl,k _BlJ,kLl,k) (1dlk— ﬁ'é B 1le 1L, k) (idl,k _sz,kLl,k> o
with Jacobi smoothing (cf. Fig. 2), and restricting in space yields
post

p 1%
iy —BYEL = (i — B8 Ly ) (i —Pik B RS L) (i — B L) ™

with Gauss—Seidel smoothing, cf. Fig. 3 for an illustration of the two options and Alg. 2 for the
recursive realization of the multilevel preconditioner.

Figure 2. Two level in time coarsening strategy. Figure 3. Two level in space coarsening strategy.

Algorithm 2 Multilevel preconditioner ¢, ,, = B)r; ;, with smoother B! = B}, or BZ?

_oSM
Wy = Bl,k Tk
=g twy and ryp =1 — Ly pwg

1: ar= 0

2. forv=1,...,0,° do

3wy = ﬁl,l’lﬂiz,k

4 qri=qrtwy and o= — Ly gw g
5: 11k = Eéfl,kfl,k or ryp 1= Eﬁ:iqﬁl,k

6: ¢ 1 =B ry1p OF ¢y =BV i1
7w = Bgfl,kgl—l,k or wyy = Bé:ﬁ—lgl,k—l

8: i =Cptwy and 1y =1 — Ly gwg g
9: forv=1,.. lekOSt do

0:

1:

—_
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7 A numerical experiment

The code is installed (with user m++ and password m++) and the examples are started by

svn co https://svn.math.kit.edu/svn/M++/SummerSchool
cd SummerSchool

make TimeStepping

make SpaceTime

mpirun -n 4 M++TimeStepping

mpirun -n 4 M++SpaceTime

paraview

The results are found in the log-files in the directory log, vtk-files are in data/vtk and
can be viewed with paraview. Parameters of the configuration can be changed in
TimeStepping/conf/acoustic.conf and SpaceTime/conf/spacetime_acoustic.conf.

Figure 4. Solution at different time steps.

Problem configuration We consider an acoustic wave in Q C (0,4) x (—2.1,6) C R? as given
in Fig. 4. At ¢t = 0 we start with the initial conditions

100 eXp(—4(Pmid — :172)2) (1 — 4(Pmid — x2)2) if 2|Pmid — SCQ| <1,

0 else,

po(T1,x2) = {

N

(0, —100 exp(—4(Pmig — 72)?) (1 — 4(Prig — 362)2)) if 2| Pmig — 22| < 1,
T

(0,0) else

for all x = (z1,22)" € Q. The location in zy-direction of the plane wave is controlled by the
variable Pyiq € R. The final time is T' = 6, and the right-hand side f = 0.

vo(z1,x2) =

We consider the linear error functional in the region of interest S = {T'} x (1,3) x (—1,0)
E(pv) = g [ pdx
7 S| Js

Challenge Compute the value E(p,v) up to an accuracy of approx. 1% with time stepping
methods (see Appendix B) on uniform meshes and with the adaptive space-time method. Find
out by numerical experiments which time step size and which polynomial degree is required for
the time stepping method to achieve this accuracy. The same accuracy should by obtained with
less degrees of freedom with the fully adaptive space-time method.
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Appendix A: An identity for Legendre polynomials

Let A7, € Py, be the orthonormal Legendre polynomials with respect to the inner product in Ly (1)
in the interval I = (t,,—1,ty).

Lemma 7.1 We have (td:\rx, A1), = k fork > 0.

Proof. We prove the result for the orthonormal Legendre polynomials A\, € Py in Lo(—1, 1); then,
the general case follows directly from \; ;. (¢) = \/%Ak (Qtf:fn__ll — 1)_

Starting with A_; = 0 and \q = 1//2, we obtain recursively

(k —m + DO Apya (t) = (2k + DT \e(t) — (k+m)omA™ @), k>0, m>0,
see [ , Lem. 8.5.3]. We have 9;\p = 0. For £k > 0 we obtain from (k + 1)A\z11(t) = (2k +

D)tAR(t) — kAr—1(t)
(k4 1) Ak+1(t) = (2k + D) Ai(t) + (2k + 1)tO Mg (t) — kOpNe—1(t) .

Subtracting k0;A\i+1(t) = (2k+ 1)t0 k() — (K +1)0eAg—1 () results in O Ag41(t) = (2k+ 1) A (t) +
Ot Ai—1(t). This yields the assertion by

(t@t)\kH, )\k+1)07(_171) = (t(Qk + 1)/\k, /\k+1)07(_171) = ((k‘ + I)Ak+1, )\k+1)07(_171) =k+1.
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Appendix B: Time integration for linear systems
We consider time integration methods for the discrete evolution equation (7) in the form
Mowu+Au=0, u(0) = uy, (17)

where the (symmetric, positive definite, block-diagonal) mass matrix M and the non-symmetric
stiffness matrix A with respect to a discontinuous finite element basis ¢+, ¢o, ... are defined by

M = ((thm, ¢j)0,ﬂ>j L A= ((Ahﬁbka ¢j)0,ﬂ)j .
The coefficient vector of the solution at time ¢ with respect to the finite element basis and the

corresponding element function u;, are denoted by
u(t) = (u;(t); € RE™He 0wy () = Zj uj(t)d; € Hy, .
The solution of this finite dimensional linear problem is given by
u(t) = eXp(—tMﬂA)gO , t>0, (18)

where exp(-) is the matrix exponential function. For a fixed time step 7 > 0 we compute approxi-
mations u" = u(t,) for t,, = nT. For one-step methods the approximations to the solution of (17)
can be written as

" =@, (—TM A, n=0,1,..., (19)

where ®,, denotes the stability function of the method.

Explicit Runge-Kutta methods For an m-stage explicit Runge-Kutta method, ®,, is a fixed
polynomial of degree m, which approximates the exponential function in a neighborhood of zero.
For instance, for the classical forth-order Runge-Kutta method we have m = 4 and

1 1 1
‘I’n(f):1+§+§§2+6€3+ﬁ§4, forall n.

Each time step requires m multiplications with A and m solutions of linear systems with the
block-diagonal matrix M. These methods are simple to implement and computationally cheap,
but the main disadvantage is the stability issue: all explicit Runge-Kutta schemes have a bounded
stability region requiring time steps proportional to A~ for first-order systems (CFL condition).

Implicit Runge-Kutta methods Implicit m-stage Runge-Kutta methods use a fixed rational
function ®,, with numerator and denominator degree at most m to approximate the exponen-
tial function. For hyperbolic problems as considered in this paper, GauB collocation methods
are particularly attractive [ , Chap. IV]. Here, ®,, is the (m, m) Padé approximation to the
exponential function. GauB methods are A-stable and thus do not suffer from restrictions on the
time step size 7 for stability reasons. For m = 1 the the implicit midpoint rule is given by

utl =yt — (M 4+ TA) A

For m > 1, a factorization into (in general complex) linear factors numerator and denominator is
required. Each time step requires one matrix-vector multiplication with A, two with M + 7 A for
some (complex) coefficient v and m solutions of linear systems with such coefficient matrices.
Note that the stability property (12) for the upwind discretization shows that the linear system is
dissipative, so that the implicit Gauss collocation methods are well-defined for all time steps.
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Polynomial Krylov methods An alternative to explicit or implicit Runge-Kutta methods, for
which the stability function ®,, in (19) is fixed for all time steps, is to choose ®,, adaptively. This
can be accomplished by Krylov subspace methods. Standard Krylov subspace methods compute
an approximation to = = exp(—7M ! A)u” in the polynomial Krylov space

K = Kn(M ™ 'A,u") = span {u", M1 Au", ..., (M~ TA)™ 1"},

The approximation proceeds in two steps. First, a basis of K,,, is computed by the Lanczos or
by the Arnoldi algorithm. Here, we only consider the Arnoldi algorithm with respect to the inner
product (-, ). This yields a matrix V,, = [vy,...,v,,] € R¥V*™ and an upper Hessenberg matrix
H,, € R™*™ such that

AV, =MV, H, +hpy1mMo, e, VIMV, =1

m*

(20)

The M-orthogonality of V., shows that H,, = VI AV, . Now the approximation is given as
oxp(—TM ' A" =V, exp(—=TH,, )V, M u",

see [ , ]. Inserting VI M v = |[u" | €1 this yields the polynomial approximation

W = [y Vo exp(—TH, ey = B (—7M T A)u” (21)

for some polynomial ¢,, of degree at most m — 1, which is chosen automatically.

Algorithm 3 Polynomial Krylov method
1: Input: M, A, v, 7, Maxlter, Tol
2: Output: z,, ~ exp(—erlé)y, m < Maxlter, estimated error < Tol
3 B=|vllpy, vi=v/8
4: form =1,2,...,Maxlter do
w=Av,
solve Mv,, .1 =w
fork=1,...,mdo
P = vEw

9 U1 = U1 — Memy,
100 hyngtim = [0 ||y

11: YUmt+1 = Qm+1/hm+1,m

122y = pPexp(—7H,,)e;

13: gm = Hgm - [ym_ﬁO]H / HgmH
140 € =1+ Hy

v,

15 if é,, < 1 then

16: €yn = Min (1—|—Hgm
17:  if ¢, < Tol then

18: break

19: if m > Maxlter and ¢,,, > Tol then
20:  no convergence

21: Ly = [le"' 7Qm]gm

/(1= 6) |1

The stopping criteria in Line 17 of Alg. 3, was introduced in [ ], see also | ] for a
detailed investigation of residuals of the matrix exponential. Here, §,, is an estimation of the
relative error ||z, — |5, / 2o — 2|, in the mth Krylov step. Note thaty = has to be measured in
the Euclidean norm; since for z,,, = V,,,y , we have [z, [,, = |ly, |-
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