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Abstract

Modeling long-haul data transmission through dispersion-managed opti-
cal fiber cables leads to a nonlinear Schrödinger equation where the linear
part is multiplied by a large, discontinuous and rapidly changing coeffi-
cient function. Typical solutions oscillate with high frequency and have
low regularity in time, such that traditional numerical methods suffer from
severe step-size restrictions and typically converge only with low order.
We construct and analyze a norm-conserving, uniformly convergent time-
integrator called the adiabatic exponential midpoint rule by extending
techniques developed in [26]. This method is several orders of magnitude
more accurate than standard schemes for a relevant set of parameters. In
particular, we prove that the accuracy of the method improves consider-
ably if the step-size is chosen in a special way.
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1 Introduction

We consider the dispersion-managed nonlinear Schrödinger equation (DMNLS)

∂tu(t, x) = i
εγ
(
t
ε

)
∂2xu(t, x) + i |u(t, x)|2 u(t, x) , x ∈ T, t ∈ (0, T ]

u(0, x) = u0(x) ,
(1)

on the one-dimensional torus T = R/2πZ and on a time-interval of length T > 0.
This equation provides a model for the propagation of light pulses through op-
tical fibers with strong dispersion management; cf. [1,5,32]. The DMNLS (1)
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differs from the “classical” semilinear Schrödinger equation with cubic nonlin-
earity in two characteristic features. First, Eq. (1) involves a small positive
parameter 0 < ε � T . Second, the differential operator is multiplied with the
coefficient function γ : R→ R given by

γ(t) = χ(t) + εα , (2)

where α > 0 is the mean dispersion, and where

χ(t) =

{
−δ if t ∈ [n, n+ 1) for even n ∈ N,

δ if t ∈ [n, n+ 1) for odd n ∈ N
(3)

is called the dispersion map. We assume that δ > εα > 0 such that γ(t) 6= 0 for
every t ∈ [0, T ].

Approximating the solution of (1) is a considerable challenge. Typical so-
lutions of (1) exhibit a highly oscillatory behavior due to the factor i/ε in the
right-hand side. Hence, applying traditional numerical time-integrators (e.g.
Runge-Kutta or multistep methods) is inefficient, because these schemes yield
a very poor accuracy unless a huge number of time-steps with a very small
step-size τ � ε is made. Additional difficulties are caused by the piecewise
constant coefficient function γ inducing discontinuities in the time-derivative
t 7→ ∂tu(t, ·). Hence, higher order time derivatives do not exist which con-
tradicts key assumptions required to prove higher order convergence of many
time integrators. Moreover, the nonlinear term i |u(t, x)|2 u(t, x) makes implicit
methods prohibitively costly and complicates the construction of novel methods.

There is a rich literature on numerical methods for differential equations
with oscillatory solutions, and reviews can be found, e.g., in [12,13,19,21,31,33].
Time-integration of oscillatory partial differential equations has been analyzed,
e.g., in [2–4,8–11,15–18,20,27] and references therein. However, none of these
works considers a nonlinear, singularly perturbed partial differential equation
with discontinuous and oscillatory coefficients like the DMNLS.

A tailor-made time-integrator for the DMNLS called the adiabatic midpoint
rule has been constructed and analyzed in [26]. This method is based on a trans-
formation of (1) to a more suitable equivalent evolution equation – the trans-
formed dispersion-managed nonlinear Schrödinger equation (tDMNLS) – and
on the fact that certain integrals over highly oscillatory exponential functions
in the tDMNLS can be computed analytically. It was proved that the adiabatic
midpoint rule converges with order one in time with an error constant that does
not depend on ε and without any ε-induced step-size restriction. Moreover, it
was shown that surprisingly the accuracy improves for special choices of the
step-size τ : The error reduces to O(ε2 + τ2) if τ = εk with k ∈ N, and to O(ετ)
if τ = ε/k, respectively. In both cases the error constant remains independent
of ε, which is typically not the case when traditional methods are used. These
features make the adiabatic midpoint rule attractive for solving the tDMNLS.
The disadvantage of this method is, however, that numerical approximations at
different times have a slightly different L2 norm in general. This behavior is
somewhat unphysical, because it can easily be shown that

‖u(t, ·)‖L2(T) = ‖u(0, ·)‖L2(T) for all t ≥ 0

for every solution of the DMNLS. For this reason, we propose an improved time-
integrator for the DMNLS – the adiabatic exponential midpoint rule. We prove
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that this new method has the same favorable error behavior for special step-
sizes as the adiabatic midpoint rule, and that it does preserve the norm of the
numerical solution in contrast to its non-exponential counterpart. Moreover,
we show in Section 5.2 that the adiabatic exponential midpoint rule reproduces
the exact solution of the tDMNLS in certain special but nontrivial cases. It is
expected (and confirmed by our numerical experiments in Section 5.4) that these
properties of the new integrator also improve the accuracy of the approximation.

The construction of the new method is again based on the tDMNLS intro-
duced in [26]. The difference is that now the transformed problem is linearized
in each time-step by freezing some of the degrees of freedom. This leads to a
linear evolution equation with time-dependent coefficients, which can be approx-
imated by the exponential of the first term of the Magnus expansion [6,22,23].
As in [26] we encounter integrals over oscillatory functions which can be com-
puted analytically. The construction of the new integrator is in some sense an
extension of the approach from [26]. However, the error analysis is considerably
more complicated due to the exponential structure of the new method.

In Section 2, we review the derivation of the tDMNLS. After compiling a
suitable analytical framework in Section 3, we discuss the asymptotic limit of
the tDMNLS for ε→ 0 in Section 4. The content of Sections 2, 4 and (partially)
of Section 3 can already be found in [26], but we briefly revisit these important
ingredients in order to keep the presentation self-contained. In Section 5, the
adiabatic midpoint rule is constructed and we prove the qualitative properties
of the method. Furthermore, we state the main results of our error analysis and
illustrate the method by numerical examples. The proofs of the error bounds
are given in Section 6.

Throughout the paper, we denote by C > 0 and C(·) > 0 universal constants,
possibly taking different values at various appearances. The notation C(·) means
that the constant depends only on the values specified in the brackets.

2 Transformation of the problem

If u ∈ C([0, T ], Hs(T)) with s ≥ 2 is a solution of the DMNLS, then

‖∂tu(t, ·)‖L2(T) ∼ 1
ε‖u(t, ·)‖H2(T),

for every t ∈ (0, T ) which implicates that the solution oscillates faster and faster
when ε→ 0. This unpleasant scaling was the main motivation in [26] to consider
the transformed dispersion-managed nonlinear Schrödinger equation (tDMNLS)

y′m(t) = i
∑
Im

yj(t)yk(t)yl(t) exp
(
−iω[jklm]φ̂

(
t
ε

) )
, m ∈ Z . (4)

Here and below we use the abbreviations

ω[jklm] = j2 − k2 + l2 −m2,

Im =
{

(j, k, l) ∈ Z3 : j − k + l = m
}
, (5)

and the short-hand notation∑
Im

ajbkcl =
∑

(j,k,l)∈Z3

j−k+l=m

ajbkcl .
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The tDMNLS is obtained by substituting the Fourier series

u(t, x) =
∑
m∈Z

cm(t)eimx, cm(t) =

∫
T
u(t, x)e−imx dx (6)

into the DMNLS and introducing the new variables

ym(t) := exp
(

im2φ̂
(
t
ε

))
cm(t) , m ∈ Z , (7)

where φ̂ is defined by

φ̂(z) :=

∫ z

0

γ(σ) dσ = φ(z) + αεz with φ(z) :=

∫ z

0

χ(σ) dσ . (8)

The transformation (7) is motivated by the fact that the solution of the linear
part

∂tw(t, x) = i
εγ
(
t
ε

)
∂2xw(t, x) , x ∈ T, t ∈ (0, T ]

w(0, x) = w0(x) ,
(9)

is simply obtained by keeping

ym(t) = ym(0) = cm(0) =

∫
T
w0(x)e−imx dx

constant in time for every m ∈ Z, setting cm(t) = exp
(
−im2φ̂

(
t
ε

))
ym(t) and

then applying the inverse Fourier transform to (cm)m. Hence, solving the linear
part of the DMNLS is trivial in the new variables.

Nevertheless, the transformation (7) does not cure the highly oscillatory be-
havior of solutions completely. In fact, the rapidly changing exponential terms
in (4) still cause fast oscillations of y(t). However, an important advantage of
the tDMNLS in contrast to the DMNLS is that the right-hand side of (4) is
uniformly bounded in the limit ε→ 0 if y(t) = (ym(t))m∈Z ∈ `1, cf. Lemma 3.1
(i) below. A second advantage of the tDMNLS concerns the regularity in time.

Since (4) involves φ̂ instead of γ, the right-hand side is now (weakly) differ-
entiable with respect to t, whereas the right-hand side of (1) is discontinuous.
These benefits suggest to approximate the tDMNLS numerically instead of the
DMNLS as in [26]. However, both evolution equations are equivalent, and so-
lutions of (4) can be obtained from y via the inverse transformation

u(t, x) =
∑
m∈Z

ym(t) exp
(
−im2φ̂

(
t
ε

)
+ imx

)
. (10)

As already pointed out in [26], the drawback of reformulating the DMNLS in
terms of the tDMNLS is the occurring multiple sum in (4). Before the transfor-
mation evaluations of the nonlinear part of the DMNLS could be implemented
in terms of point-wise multiplications, but now the nested summation makes
evaluations more costly from a computational point of view. We will address
this aspect further in the numerical experiments in Section 5.4.
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Before closing this section, we simplify notation: For µ = (µm)m∈Z , z =
(zm)m∈Z and t ∈ [0, T ] we denote by A(t, µ)z the sequence with entries(

A(t, µ)z
)
m

= i
∑
Im

µjµ̄kzl exp
(
−iω[jklm]φ̂

(
t
ε

))
, m ∈ Z . (11)

With this notation the tDMNLS reads

y′(t) = A
(
t, y(t)

)
y(t) . (12)

3 Analytic setting

First, we point out that the global well-posedness of the DMNLS (1) in the
Sobolev space Hs(T) for arbitrary s ∈ N0 follows immediately from Theorem 2.1
in [7] due to the fact that γ(t/ε) is constant on every interval [nε, (n+1)ε). In the
following, we provide a suitable analytic setting for investigating the tDMNLS
and the related numerical methods.

Every solution u(t, ·) ∈ Hs(T) of the DMNLS is related to a sequence y(t) =
(ym(t))m∈Z given by (6) and (7). According to (10) we have

∂kxu(t, x) =
∑
m∈Z

(im)kym(t) exp
(
−im2φ̂

(
t
ε

)
+ imx

)
,

and hence

‖u(t, ·)‖2Hs(T) =

s∑
k=0

∥∥∂kxu(t, ·)
∥∥2
L2(T)

= 2π

s∑
k=0

∑
m∈Z
|m|2k|ym|2 . (13)

We define the inner product

〈w, z〉`2s :=
∑
m∈Z
|m|2s+wmzm, |m|+ := max{1, |m|}

(zm is the complex conjugate of zm) and consider the tDMNLS in the Hilbert
spaces

`2s :=
{

(zm)m∈Z in C | ‖z‖`2s <∞
}
,

with the induced norm ‖z‖`2s :=
√
〈z, z〉`2s ; cf. [14]. Then, (6), (7) and (10) yield

an isomorphism `2s
∼= Hs(T) with norm equivalence

√
2π‖y(t)‖`2s ≤ ‖u(t, ·)‖Hs(T) ≤

√
2π(s+ 1)‖y(t)‖`2s

for every s ∈ N.
It was pointed out in [14] that treating convolution-type sums originating

from the Fourier transform of a cubic nonlinearity as in (4) is much more con-
venient in the sequence spaces `1s

`1s =
{

(zm)m∈Z in C | ‖z‖`1s <∞
}
, (14)

‖z‖`1s =
∑
m∈Z
|m|s+ |zm| ,
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than in `2s. These spaces are related to `2s by the following embedding: If r, s ∈ N
with r > s, then

`2r ↪→ `1s ↪→ `2s , i.e. ‖z‖`2s ≤ ‖z‖`1s ≤ C ‖z‖`2r , (15)

see [14, Proposition III.2.]. This allows us to prove error bounds in `10 in order
to obtain error bounds in `20. Henceforth, we write `p instead of `p0 for p ∈ {1, 2}.

The benefit of the space `1 is reflected in the following principle: If a, b, c ∈ `1
and d =

(
dm
)
m∈Z is given by

dm =
∑
Im

ajbkcl ,

then d ∈ `1 and

‖d‖`1 =
∑
m∈Z

∣∣∣∑
Im

ajbkcl

∣∣∣
≤
(∑
j∈Z
|aj |

)(∑
k∈Z
|bk|

)(∑
l∈Z
|cl|
)

= ‖a‖`1 ‖b‖`1 ‖c‖`1 . (16)

This general principle will often be used in the proofs below.
Finally, for given t ∈ [0, T ] and µ we consider the linear operator

A(t, µ) : z 7→ A(t, µ)z

with A(t, µ)z defined by (11). For the construction and analysis of our method
the following properties of this operator are crucial.

Lemma 3.1. If t ∈ [0, T ] and µ ∈ `1 with M := ‖µ‖`1 , then the following
assertions hold.

(i) The operator A(t, µ) : `1 → `1 is bounded and

‖A(t, µ)z‖`1 ≤ C(M) ‖z‖`1 for all z ∈ `1 .

(ii) The operator A(t, µ) : `2 → `2 is bounded and

‖A(t, µ)z‖`2 ≤ C(M)‖z‖`2 for all z ∈ `2 .

(iii) The operator A(t, µ) : `2 → `2 is skew-adjoint.

Remark.

• With the abbreviation

My
s := max

t∈[0,T ]
‖y(t)‖`1s , (17)

part (i) yields
‖y′(t)‖`1 ≤ C(My

0 ) (18)

for the solution y of the tDMNLS (12). We will frequently apply (18) in
the proofs in Section 6.
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• In (ii) and (iii) we require µ ∈ `1 although the operator acts on `2.

Proof. Assertion (i) follows from (11), (16), and the fact that | exp(−iz)| = 1
for z ∈ R. In order to prove the Assertions (ii) and (iii), we define

am,l(t, µ) := i
∑

(j,k)∈Z2

j−k=m−l

µjµk exp
(
−iω[jklm]φ̂

(
t
ε

))
for m, l ∈ Z (19)

which allows us to write(
A(t, µ)z

)
m

=
∑
l∈Z

am,l(t, µ)zl . (20)

Because we have∑
l∈Z
|am,l(t, µ)| ≤

∑
l∈Z

∑
(j,k)∈Z2

j−k=m−l

|µj | · |µk| = ‖µ‖2`1 = M2 , m ∈ Z

and ∑
m∈Z
|am,l(t, µ)| ≤

∑
m∈Z

∑
(j,k)∈Z2

j−k=m−l

|µj | · |µk| = ‖µ‖2`1 = M2 , l ∈ Z

Assertion (ii) follows from the Cauchy-Schwarz inequality via

‖A(t, µ)z‖2`2 ≤
∑
m∈Z

(∑
l∈Z

√
|am,l(t, µ)|

√
|am,l(t, µ)| |zl|

)2

≤
∑
m∈Z

(∑
l∈Z
|am,l(t, µ)|

)(∑
l∈Z
|am,l(t, µ)| |zl|2

)
≤M2

∑
l∈Z

∑
m∈Z
|am,l(t, µ)| |zl|2

≤M4‖z‖2`2 .

In order to prove that A(t, µ) : `2 → `2 is skew-adjoint, we note that

−al,m(t, µ) = i
∑

(j,k)∈Z2

j−k=l−m

µjµk exp
(

i(j2 − k2 −m2 + l2)φ̂
(
t
ε

))

= i
∑

(j,k)∈Z2

k−j=m−l

µjµk exp
(
−i(k2 − j2 +m2 − l2)φ̂

(
t
ε

))
,

and hence interchanging the summation indices j and k shows that

−al,m(t, µ) = am,l(t, µ) . (21)

Now the assertion (iii) follows from

〈A(t, µ)z, x〉 =
∑
m∈Z

∑
l∈Z

am,l(t, µ)zlxm

= −
∑
m∈Z

∑
l∈Z

al,m(t, µ)zlxm = −〈z,A(t, µ)x〉 . �
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4 The limit system

The highly oscillatory behavior of solutions of the tDMNLS (12) originates from
the exponentials of the form

exp
(
−iωφ̂

(
t
ε

) )
= exp(−iωαt) exp

(
−iωφ

(
t
ε

) )
, ω ∈ Z (22)

in (11). Averaging the fast part over one period yields

exp
(
−iωφ

(
t
ε

) )
≈ 1

2ε

∫ 2ε

0

exp
(
−iωφ

(
s
ε

) )
ds =

∫ 1

0

exp(iωδξ) dξ . (23)

After substituting this approximation into (11), we obtain(
Alim(t, µ)z

)
m

:= i
∑
Im

µjµ̄kzl exp(−iω[jklm]αt)

∫ 1

0

exp(iω[jklm]δξ) dξ (24)

for two sequences µ = (µm)m∈Z and z = (zm)m∈Z. Theorem 4.1 below states
that the corresponding evolution equation

v′(t) = Alim
(
t, v(t)

)
v(t) (25)

is the limit system of (12) in the sense that solutions of the tDMNLS converge
to solutions of (25) for ε → 0. Note that the smallness parameter ε does not
appear in (24).

Assumption 1. We suppose that for s = 0, 1, 2, 3 the limit system (25) with
initial value v0 ∈ `2s has a unique solution v ∈ C

(
[0, T ], `2s

)
.

Henceforth, we use the abbreviations

Mv
s := max

t∈[0,T ]
‖v(t)‖`1s and Ms := max{My

s ,M
v
s } (26)

where My
s is given in (17).

Theorem 4.1 (cf. Theorem 1 in [26], see also [30,34]). Let y and v be solutions of
the tDMNLS (12) and the limit system (25), respectively. Under Assumption 1
the following estimates hold.

(i) If y(0) = v(0) ∈ `21, then

‖y(t)− v(t)‖`1 ≤ εC(t, α, δ,M0) . t ∈ [0, T ] .

(ii) If y(0) = v(0) ∈ `23 and tk = εk ∈ [0, T ] for some k ∈ N, then

‖y(tk)− v(tk)‖`1 ≤
ε2

δ
C(tk, α,M2) .

If α = 0, then the constant depends only on M0.

Theorem 4.1 states that the solution of the tDMNLS can be approximated
by solving the non-oscillatory limit system (25) numerically with a standard
method. The problem of this approach is, however, that the error of this ap-
proximation cannot be made arbitrarily small. The accuracy depends on the
parameter ε, which has a fixed value in applications. Nevertheless, the limit sys-
tem will be useful later for analyzing the accuracy of the adiabatic exponential
integrator constructed in the next section.
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5 Adiabatic exponential midpoint rule

5.1 Construction

We are now ready to construct numerical methods to approximate solutions of
the tDMNLS (12) at times tn = nτ with a step-size τ > 0. Let y(n) ≈ y(tn)
and y(n−1) ≈ y(tn−1) be available. As a first step, we substitute the tDMNLS
y′(t) = A

(
t, y(t)

)
y(t) locally by

ỹ′(t) = A
(
t, y(n)

)
ỹ(t) for t ∈ [tn−1, tn+1], ỹ(tn−1) = y(n−1) (27)

such that the second argument of A is the approximation at the midpoint of
the time interval. Then, Eq. (27) is a linear evolution equation with a time-
dependent operator. A popular class of integrators for such problems are Mag-
nus methods (cf. [6,22,23]), but applying a standard Magnus method to (27)
would be inefficient due to the particular properties of our problem. First, we
observe that the multiple sum structure of the operator A makes evaluations of
compositions of the form A

(
t, y(n)

)
A
(
s, y(n)

)
z computationally very expensive,

which would spoil the efficiency of high-order methods. Moreover, the regularity
of t 7→ A

(
t, y(n)

)
is low such that high-order methods cannot be expected to

converge with their classical order. For these reasons we truncate the Magnus
expansion already after the first term. This yields the approximation

y(tn+1) ≈ ỹ(tn+1) ≈ exp
(
2τMn

[
τ, y(n)

])
y(n−1) (28)

with

Mn[τ, µ] :=
1

2

∫ 1

−1
A(tn + στ, µ) dσ . (29)

The operatorMn[τ, µ] : `1 → `1 is bounded for every µ ∈ `1 because Lemma 3.1 (i)
yields

‖Mn[τ, µ]z‖`1 ≤ sup
t∈[tn,tn+1]

‖A(t, µ)z‖`1 ≤ C(M) ‖z‖`1 (30)

for all z ∈ `1. Thus, the operator exponential in (28) is well-defined in terms of
the exponential series if y(n) ∈ `1.

In order to turn the approximation (28) into a numerical method, we have
to compute the integral

1

2

∫ 1

−1
am,l(tn + στ, y(n)) dσ =

i

2

∑
(j,k)∈Z2

j−k=m−l

y
(n)
j y

(n)
k

∫ 1

−1
exp

(
−iω[jklm]φ̂

(
tn+στ
ε

))
dσ,

which is the entry with indices (m, l) of (29) for µ = y(n) according to (19) and
(20). Using quadrature rules for this task (as in interpolatory Magnus methods)

would require a tiny step-size τ � ε because t 7→ φ̂
(
tn+στ
ε

)
oscillates rapidly,

and the discontinuity of the (weak) derivative of φ̂ would cause additional prob-
lems. Fortunately, all integrals of the form∫ 1

−1
exp

(
−iω[jklm]φ̂

(
tn+στ
ε

))
dσ (31)
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can be computed analytically because the piecewise linear function φ̂ is explicitly
known from (2), (3), and (8); details can be found in [29, Chapter 4.1]. This is
one reason for the favorable approximation properties of adiabatic integrators.
All in all, we obtain the adiabatic exponential midpoint rule

y(n+1) = exp
(

2τMn

[
τ, y(n)

])
y(n−1) , n ∈ N . (32)

Clearly, the adiabatic exponential midpoint rule is a two-step scheme since both
y(n) and y(n−1) are required to compute y(n+1). The starting step can be done
with the corresponding one-step method

y(n+1) = exp
(
τEn[τ, y(n)]

)
y(n) , (33)

with

En[τ, µ] :=

∫ 1

0

A(tn + στ, µ) dσ . (34)

This method will be referred to as adiabatic exponential Euler method1.
An approximation u(n) ≈ u(tn, ·) to the solution of the original DMNLS can

be obtained via the inverse transformation

u(n)(x) =
∑
m∈Z

y(n)m exp
(
−im2φ̂

(
tn
ε

)
+ imx

)
(35)

which is the counterpart of (10).

Remarks.

1. The term “adiabatic” in the names of the above methods refers to the
fact that the construction principle is adapted from [24,25] where similar
methods for quantum dynamics close to the adiabatic limit have been
proposed. We remark, however, that the differential equation considered
there is linear and does not involve any discontinuous coefficients. The
name “adiabatic integrator” was coined in [19,28].

2. In the construction of the adiabatic integrators (33) and (32) we assume
that the approximation y(n) is in `1. This is necessary in order to apply
Lemma 3.1, which ensures that En

[
τ, y(n)

]
and Mn[τ, y(n)] are bounded

operators on `1. However, it can be shown by a classical bootstrapping
argument that we have indeed y(n) ∈ `1 for all n ∈ N with nτ ∈ [0, T ] if
y(0) ∈ `1 and if the step-size τ is sufficiently small; cf. Appendix B in [29].

3. Because the function φ̂ in (31) consists of a slowly moving linear α-part
and a rapidly changing periodic φ-part (see (8)) there are at least two
possible ways to deal with this integral. We can either fix the α-part
at tn, i.e. at the midpoint of the time interval, or retain it inside the
integral. Fixing the α-part gives us a periodic integral allowing for a more
efficient computation. However, this comes at a cost of higher regularity
requirements for the initial value and we observe a slightly higher error
constant in our numerical experiments. In case of the adiabatic midpoint
rule the α-part was fixed, cf. [26], whereas we keep the α-part inside the
integral in the adiabatic exponential midpoint rule. For more details on
this subject we refer to Chapter 4 in [29].

1The En in (33) stands for “Euler”, theMn in (32) is for “midpoint”.
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5.2 Qualitative properties

Next, we will show that the two adiabatic exponential integrators (33) and
(32) yield numerical approximations with constant norm and provide the exact
solution in simple but nontrivial situations, as discussed in the introduction. The
adiabatic integrators proposed in [26] do not have these favourable properties.

Lemma 5.1. Let y(n) be the approximation of the tDMNLS (12) with the adia-
batic exponential Euler method (33), or with the adiabatic exponential midpoint
rule (32) with step-size τ > 0. Let u(n) be defined by (35).

(i) If y(n) ∈ `1 for all n ∈ N0 with tn ≤ T , then the norm of the solution is
conserved by the numerical methods, i.e.

‖y(n)‖`2 = ‖y(0)‖`2 and ‖u(n)‖L2(T) = ‖u(0, ·)‖L2(T) (36)

for all n ∈ N0 with tn ≤ T .

(ii) If u(0, x) = r exp(iκx) for some r > 0 and κ ∈ Z, and if y(0) = y(0) is
related to u(0, x) via the transformation (10), then u(n) is exact, i.e.

u(n) = u(tn, x) = r exp
(

ir2tn − iκ2φ̂
(
tn
ε

)
+ iκx

)
, (37)

for all n ∈ N0 with tn ≤ T .

Proof. If y(n) ∈ `1 for all n, then we know from Lemma 3.1(iii) thatA(t, y(n)) : `2 →
`2 is skew-adjoint for all t. Hence, En[τ, y(n)] and Mn[τ, y(n)] are skew-adjoint
on `2 for arbitrary τ > 0, which means that both exp

(
2τEn[τ, y(n)]

)
and

exp
(
2τMn[τ, y(n)]

)
are unitary on `2. With (33) or (32), respectively, this

implies that ‖y(n)‖`2 = ‖y(0)‖`2 for both methods. The assertion for u(n) in
(36) follows from the fact that ‖u(n)‖L2(T) =

√
2π‖y(n)‖`2 according to (13).

It can easily be verified that (37) is indeed the exact solution of (1) with
initial data u(0, x) = r exp(iκx). Now we consider the adiabatic exponential
Euler method and prove (ii) by induction. For n = 0, (37) is true by assumption

because φ̂(0) = 0 by definition (8). Now suppose that (37) holds for some n ∈ N.
Then, the m-th entry of the transformed variable y(n) is

y(n)m =

{
r exp

(
ir2tn

)
if m = κ

0 otherwise

according to (10). With (34) and (11) we see that them-th entry of En
[
τ, y(n)

]
y(n)

simplifies to(
En
[
τ, y(n)

]
y(n)

)
m

= i
∑
Im

y
(n)
j ȳ

(n)
k y

(n)
l

∫ 1

0

exp
(
−iω[jklm]φ̂

(
tn+στ
ε

))
dσ

= iδmκ|y(n)κ |2y(n)κ

= iδmκr
2y(n)κ

where δmκ is the Kronecker symbol. Hence, the next approximation computed
with (34) is

y(n+1)
m =

{
exp(ir2τ)y

(n)
m = r exp

(
ir2tn+1

)
if m = κ,

0 otherwise,

11



and via (10) we obtain

u(n+1) = r exp
(

ir2tn+1 − iκ2φ̂
(
tn+1

ε

)
+ iκx

)
= u(tn+1, x).

The same arguments apply mutatis mutandis to the adiabatic exponential mid-
point rule (32). �

5.3 Accuracy

In this section we summarize the results of our error analysis for the time-
discretization with the adiabatic exponential midpoint rule. The three error
bounds stated in Theorems 5.2, 5.3, and 5.4 below are similar to Theorems 2-
4 from [26] for the (non-exponential) adiabatic midpoint rule, but the proofs
require new techniques in addition to those developed in [26] because the expo-
nential integrator (32) has a completely different structure.

Henceforth, y(t) always denotes the exact solution of the tDMNLS (12)
and y(n) is the approximation at time tn = nτ computed by the adiabatic
exponential midpoint rule (32) with starting step (33).

The initial data y(0) = y(0) are obtained by transforming u0 of (1) via (6)
and (7). We recall that the assumption u0 ∈ Hs(T) for some s ∈ N0 implies that
u(t, ·) ∈ Hs(T) for all t ∈ [0, T ], and hence y(t) ∈ `2s ⊂ `1s−1 for all t ∈ [0, T ];
cf. Section 3. Conversely, the following error bounds in `1 for the transformed
variables yield error bounds in L2(T) for the original variables because it follows
from (10), (35) and (15), that

‖u(tn, ·)− u(n)‖L2(T) =
√

2π‖y(tn)− y(n)‖`2 ≤
√

2π
∥∥∥y(tn)− y(n)

∥∥∥
`1
.

Theorem 5.2. If u0 ∈ H1(T), then the bound∥∥∥y(tn)− y(n)
∥∥∥
`1
≤ τC(T,My

0 ) , τn ≤ T,

holds for sufficiently small step-sizes τ .

Theorem 5.3. If u0 ∈ H3(T) and if we choose step-sizes τ = ε/k for some
k ∈ N, then the bound∥∥∥y(tn)− y(n)

∥∥∥
`1
≤ ετ

(
C(T,My

0 ) + αC(T,My
2 )
)
, τn ≤ T,

holds for sufficiently small step-sizes τ .

Theorem 5.4. Suppose that Assumption 1 holds. If u0 ∈ H3(T) and if we
choose step-sizes τ = εk for some k ∈ N, then the bound∥∥∥y(tn)− y(n)

∥∥∥
`1
≤
(
ε2

δ + τ2
)
C(T, α,M2) , τn ≤ T,

holds for sufficiently small step-sizes τ . In case of α = 0 the constant depends
only on T and M0.

Theorems 5.2-5.4 will be proved in Section 6.
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Discussion. For traditional methods of order p ∈ N the error constant typ-
ically scales like ε−q for some q ≥ p such that a reasonable accuracy can only
be expected if τ � εq/p. Theorem 5.2 states that the adiabatic exponential
midpoint rule converges at least with order one, and that the error constant
does not depend on ε. For this reason the method yields higher accuracy for
“large” step-sizes than, e.g., the second-order Strang splitting, as we will see in
the numerical examples below.

For smooth and non-oscillatory problems (i.e. for ε = 1 and smooth functions

ξ and φ̂) one would expect a global error in O(τ2) for the adiabatic exponential
midpoint rule. Unfortunately, second-order convergence is not achieved in the
present setting with oscillations and discontinuities. However, Theorems 5.3
and 5.4 state that the accuracy improves significantly if a special step-size is
chosen, namely an integer multiple or fraction of ε. This interesting behavior is
illustrated by numerical examples in Section 5.4.

The condition “for sufficiently small step-sizes” in Theorems 5.2-5.4 is nec-
essary to ensure the `1-regularity of the numerical solution; cf. Remark 2 in Sec-
tion 5.1. This regularity is required for the construction of the scheme (cf. (30))
and to apply the principle (16) if one of the factors is the numerical solution.
We point out that this condition does not depend on ε, it does not impose a
severe restriction on the length of the time-step. In all our numerical tests –
not only those presented in this paper – we have never observed any problems
even when the step-size was much larger than ε.

5.4 Numerical examples

In the following, we illustrate Theorems 5.2-5.4 by numerical examples. We
consider the tDMNLS with T = 1, ε ∈ {0.01, 0.002}, α = 0.1 and δ = 1.

Moreover, we choose the initial value u0(x) = e−3x
2

e3ix and 64 equidistant grid
points in the interval [−π, π]. To this setting, we apply the adiabatic exponential
midpoint rule (32) as well as the adiabatic exponential Euler method (33). These
methods are compared with the adiabatic midpoint rule proposed in [26] and the
classical Strang splitting (for the DMNLS). The reference solution is computed
by the Strang splitting with a very large number of steps (> 106).

The left panels of Figure 1 show the accuracy of the Strang splitting, the adi-
abatic exponential Euler method (33), and the adiabatic exponential midpoint
rule (32) for different step-sizes τ and ε = 0.01 (top) and ε = 0.002 (bottom).
The behavior of the Strang splitting and the adiabatic exponential midpoint rule
appears to be volatile, i.e. small changes of the step-size may change the error
by a factor of 10 or even 100. Moreover, we observe that the adiabatic Euler – a
first-order method – yields a significantly higher accuracy than Strang splitting
for large step-sizes. However, the highest accuracy is obtained with the adia-
batic exponential midpoint rule. Apparently, the method is “better than order
one for many step-sizes”, however, several outliers reveal first order convergence
as stated in Theorem 5.2. The right panels of Figure 1 display again the error
of the adiabatic exponential midpoint rule but now only for step-sizes chosen
as integer multiples and fractions of ε, again for ε = 0.01 (top) and ε = 0.002
(bottom). Moreover, the accuracy of the (non-exponential) adiabatic midpoint
rule is shown. We observe second-order convergence for τ > ε and convergence
in O(τε) for τ < ε as stated in Theorem 5.3 and Theorem 5.4, respectively. In
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Figure 1: Maximal `2-error over time of the adiabatic exponential midpoint rule
(32) for ε = 0.01 (top) and ε = 0.002 (bottom). In the left panels the accuracy
of the adiabatic exponential Euler rule (33) and the Strang splitting is shown
for comparison. In the two panels on the right the accuracy of the adiabatic
exponential midpoint rule is compared with the (non-exponential) adiabatic
midpoint rule from [26], and the step-sizes are chosen according to Theorem 5.3
and Theorem 5.4, respectively.
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Figure 2: CPU-time in seconds versus maximal `2-error over time of the Strang
splitting, the (non-exponential) adiabatic midpoint rule, and the adiabatic ex-
ponential midpoint rule for ε = 0.002 and 64 (top left), 128 (top right) and
256 (bottom left) equidistant grid points in space. All computations have been
conducted in Matlab (version R2015a) on a laptop with an Intel i7-4710MQ
CPU (4 cores at 2.50 GHz) and 16 GB of RAM.

addition, the experiment confirms our conjecture that the adiabatic exponential
method has a smaller error constant than its non-exponential counterpart.

In the next numerical experiment, we investigate the trade-off between the
tiny, cheap time steps of the Strang splitting method and the larger, more ex-
pensive time steps of the adiabatic exponential midpoint rule. For this purpose,
we consider 64, 128, and 256 equidistant grid points in the interval [−π, π] in
the above experiment and fix ε = 0.002.

The panels of Figure 2 show the computational times in relation to the
accuracy of adiabatic exponential midpoint rule (32) for these different space
discretizations. In addition, the performance of the Strang splitting method and
the (non-exponential) adiabatic midpoint rule from [26] is shown. The time step-
sizes2 are chosen as integer multiples and fractions of ε. We compute up to 5·103

2A better performance of the Strang splitting might be obtained with a “lucky guess” for
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time-steps with the adiabatic methods and up to 105 time-steps with the Strang
splitting method. In the top left panel, we observe that the adiabatic methods
clearly outperform the Strang splitting method in terms of computational costs
versus accuracy for 64 grid points in space. The adiabatic exponential midpoint
rule also outperforms the Strang splitting for 128 grid points in space (top
right), whereas the (non-exponential) adiabatic method is only on a par with
the Strang splitting in this setting. Although the adiabatic exponential midpoint
rule is still equal to the Strang splitting for 256 grid points in space (bottom
left), the Strang splitting becomes more efficient for finer discretizations because
the computational work required for computing the nested summation in the
adiabatic methods increases cubically with the number of grid points in space.

However, we remark that typical solutions considered in mathematical physics
are somewhat smooth in space, such that a moderate number of Fourier modes
provides a reasonable accuracy of the space discretization; cf. Figures 3 and 6
in [32]. Moreover, increasing the number of time-steps for the Strang splitting
yields only more accuracy to a certain extend because at some point round-
ing errors prevent a higher accuracy. We report a decreasing accuracy for our
implementation of the Strang splitting method for step-sizes τ < 10−7.

6 Error analysis

6.1 Preparations

Before we start the proofs of Theorems 5.2-5.4, we make a few preparations. If
µ ∈ `1, then the operator Mn[τ, µ] : `1 → `1 defined in (29) is bounded and
thus generates a uniformly continuous semigroup of bounded linear operators
in `1. Hence, we have for µ ∈ `1 and M := ‖µ‖`1 the basic estimate∥∥exp

(
tMn[τ, µ]

)
z
∥∥
`1
≤ etC(M) ‖z‖`1 . (38)

Moreover, we introduce the (possibly) operator-valued functions

ϕk(z) =

∫ 1

0

e(1−θ)z
θk−1

(k − 1)!
dθ for k ≥ 1 , (39)

cf. [21]. These ϕ-functions allow us to expand

exp
(
tMn[τ, µ]

)
=

m−1∑
k=0

tk

k!
Mk

n[τ, µ] + (tMn[τ, µ])mϕm
(
tMn[τ, µ]

)
, (40)

for m ≥ 1. Here, the operator ϕm
(
tMn[τ, µ]

)
: `1 → `1 in the remainder term

is bounded by ∥∥ϕm(tMn[τ, µ]
)
z
∥∥
`1
≤ C(M) ‖z‖`1 . (41)

Henceforth, we use the abbreviations

Mn :=Mn[τ, y(n)] and Mex
n :=Mn[τ, y(tn)] (42)

a better step-size.
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to simplify notation. As a first step, we reformulate the adiabatic exponential
midpoint rule (32) as a one-step method: If we define

yn+1 =

(
y(n+1)

y(n)

)
, y(tn+1) =

(
y(tn+1)
y(tn)

)
,

then method (32) is given by

yn+1 = Mnyn with Mn =

(
0 exp

(
2τMn

)
I 0

)
. (43)

In particular, one can use the one-step formulation (43) to show that∥∥∥y(n)∥∥∥
`1
≤ C(My

0 ) for all nτ ≤ T , (44)

for sufficiently small step-sizes τ using a standard bootstrapping argument;
cf. Remark 2 in Section 5.1. Moreover, the global error eN = yN − y(tN )
propagates according to

eN+1 = MNeN + dN+1 , e0 = 0 ,

where
d1 = e1 and dn+1 = Mny(tn)− y(tn+1) , n ≥ 1 . (45)

Solving this recursion yields

eN = M1d1 +

N−1∑
n=1

Mn+1dn+1 (46)

with MN = I and Mn+1 = MN−1MN−2 . . .Mn+1 for n+ 1 ≤ N − 1. It follows
from the basic estimate (38) that

‖Mnz‖`1 ≤ e
TC(My

0 ) ‖z‖`1 (47)

for z ∈ `1.
Finally, we recall that the starting step y(1) is obtained by the adiabatic

exponential Euler method (33). For arbitrary y(0) = y(0) ∈ `21 it can be shown
with (47) and straightforward computation that

‖M1d1‖`1 ≤ e
TC(My

0 )
∥∥∥y(1) − y(t1)

∥∥∥
`1
≤ τ2C(T,My

0 ) . (48)

Remark. One can show that the adiabatic exponential Euler method (33) is a
first-order scheme, and that its error constant is independent of ε. The proof is
a rather straightforward application of the principle “stability and consistency
yield convergence” and is therefore omitted in this paper. The details are given
in [29, Section 7.3].

Combining (48) with (46) yields

‖eN‖`1 ≤ τ
2C(T,My

0 ) +

∥∥∥∥∥
N−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

. (49)

This estimate is the starting point for each of the proofs of Theorems 5.2 and 5.3,
where we derive suitable `1-estimates for the remaining sum in the right-hand
side.
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6.2 Proof of Theorem 5.2

For arbitrary step-sizes τ > 0, we aim for the bound∥∥∥∥∥
N−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

≤ τC(T,My
0 )

N−1∑
n=1

‖en‖`1 + τC(T,My
0 ) . (50)

Then, substituting into (49) and applying the discrete Gronwall lemma com-
pletes the proof. Thanks to (47), we immediately obtain∥∥∥∥∥

N−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

≤ C(T,My
0 )

N−1∑
n=1

‖dn+1‖`1 . (51)

If we can prove that

‖dn+1‖`1 ≤ τC(My
0 ) ‖en‖`1 + τ2C(T,My

0 ) , (52)

then the bound (50) follows. As a first step, we observe that by (45) and (43)

dn+1 =

(
dn+1

0

)
with dn+1 = exp

(
2τMn

)
y(tn−1)− y(tn+1) , (53)

and hence it is sufficient to derive an estimate for dn+1. According to (12) we
have

y′(t) =Mny(t) +
(
A
(
t, y(t)

)
−Mn

)
y(t) .

Thus, applying the variation of constants formula gives

y(tn+1) = exp
(
2τMn

)
y(tn−1)

+

∫ tn+1

tn−1

exp
(
2(τ − s)Mn

) (
A
(
s, y(s)

)
−Mn

)
y(s) ds . (54)

Now, inserting (54) into (53) results in

dn+1 = −
∫ tn+1

tn−1

exp
(
2(τ − s)Mn

) (
A
(
s, y(s)

)
−Mn

)
y(s) ds . (55)

Using (40) we get the partition

dn+1 = −
(
d
(1)
n+1 + d

(2)
n+1 +R

(1)
n+1

)
, (56)

where

d
(1)
n+1 =

∫ tn+1

tn−1

exp
(
2(τ − s)Mn

)(
Mex

n −Mn

)
y(s) ds , (57)

d
(2)
n+1 =

∫ tn+1

tn−1

(
A
(
s, y(s)

)
−Mex

n

)
y(tn) ds , (58)

R
(1)
n+1 =

∫ tn+1

tn−1

∫ s

tn

(
A
(
s, y(s)

)
−Mex

n

)
y′(σ) dσ ds

+ 2Mn

∫ tn+1

tn−1

(τ − s)ϕ1

(
2(τ − s)Mn

)(
A
(
s, y(s)

)
−Mex

n

)
y(s) ds .
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Thanks to Lemma 3.1, (30), (41), and (18) the bound∥∥∥R(1)
n+1

∥∥∥
`1
≤ τ2C(My

0 ) (59)

follows. Because∣∣∣yj(tn)yk(tn)− y(n)j y
(n)
k

∣∣∣ ≤ ∣∣∣yj(tn)− y(n)j

∣∣∣ · |yk(tn)|+ |yj(tn)| ·
∣∣∣yk(tn)− y(n)k

∣∣∣ ,
we obtain for z ∈ `1∥∥(Mex

n −Mn

)
z
∥∥
`1
≤ C(My

0 )
∥∥∥y(tn)− y(n)

∥∥∥
`1
‖z‖`1 ≤ C(My

0 ) ‖en‖`1 ‖z‖`1 ,
(60)

and hence ∥∥∥d(1)n+1

∥∥∥
`1
≤ τC(My

0 ) ‖en‖`1 , (61)

by (38) and (44). Moreover, a small computation shows that

d
(2)
n+1 =

∫ tn+1

tn−1

(
A
(
s, y(s)

)
−A

(
s, y(tn)

))
y(tn) ds .

Now, let [d
(2)
n+1]m be the m-th entry of d

(2)
n+1. If we partition

[d
(2)
n+1]m = [S

(1)
n+1]m + [S

(2)
n+1]m (62)

with

[S
(1)
n+1]m = i

∑
Im

∫ tn+1

tn−1

∫ s

tn

yj(tn)y′k(σ)yl(tn) exp
(
−iω[jklm]φ̂

(
s
ε

))
dσ ds , (63)

[S
(2)
n+1]m = i

∑
Im

∫ tn+1

tn−1

∫ s

tn

y′j(σ)yk(s)yl(tn) exp
(
−iω[jklm]φ̂

(
s
ε

))
dσ ds , (64)

then (16) and (18) imply the estimate∥∥∥d(2)∥∥∥
`1
≤ τ2C(My

0 ) . (65)

Finally, combining (59), (61) and (65) yields the desired bound (52).

6.3 Proof of Theorem 5.3

In the setting of Theorem 5.3, i.e. τ = ε/k for some k ∈ N, we can improve the
bound (50) for the remaining sum in (49). Here, we aim for the estimate∥∥∥∥∥
N−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

≤ τC(My
0 )

N−1∑
n=1

‖en‖`1 +τε
(
C(T,My

0 )+αC(T,My
2 )
)
. (66)

Again, substituting into (49) and applying the discrete Gronwall lemma then
completes the proof.

The key idea to prove (66) is to exploit cancellation effects in the summation
of the error terms; cf. Lemma 6.2. It turns out that these cancellations occur
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over time intervals of the length 2ε. Since the endpoint of the time interval
[0, T ] is not necessarily an integer multiple of 2ε, we have to take into account
potential extra summands without cancellation. Therefore, we decompose N −
1 = 2kL+ n∗ with L ∈ N0, n∗ ∈ {0, . . . , 2k − 1} and partition∥∥∥∥∥

N−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

≤

∥∥∥∥∥
2kL−1∑
n=1

Mn+1dn+1

∥∥∥∥∥
`1

+

∥∥∥∥∥
2kL+n∗∑
n=2kL

Mn+1dn+1

∥∥∥∥∥
`1

. (67)

Because n∗τ2 < 2kτ2 = 2τε, we immediately conclude from (47) and (52) that∥∥∥∥∥
2kL+n∗∑
n=2kL

Mn+1dn+1

∥∥∥∥∥
`1

≤ τC(T,My
0 )

2kL+n∗∑
n=2kL

‖en‖`1 + τεC(T,My
0 ) . (68)

In order make use of the cancellation effects for estimating the other sum in (67),
we must avoid the triangle inequality. Hence, we cannot employ the bound (47)
in order to estimate the operators Mn+1. The following lemma provides an
alternative.

Lemma 6.1. Let k, L ∈ N. Then, we have

(i)

∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

Mn+1dn+1

∥∥∥∥∥∥∥
`1

≤ C(T,My
0 )

∥∥∥∥∥
kL∑
n=1

d2n

∥∥∥∥∥
`1

+ τC(My
0 )

kL−1∑
n=1

∥∥∥∥∥∥
n∑
j=1

d2j

∥∥∥∥∥∥
`1

and

(ii)

∥∥∥∥∥∥∥
2kL−1∑
n=1
n odd

Mn+1dn+1

∥∥∥∥∥∥∥
`1

≤ C(T,My
0 )

∥∥∥∥∥
kL−1∑
n=1

d2n+1

∥∥∥∥∥
`1

+ τC(My
0 )

kL−2∑
n=1

∥∥∥∥∥∥
n∑
j=1

d2j+1

∥∥∥∥∥∥
`1

.

Proof. First, we apply the summation by parts formula and obtain

2kL−1∑
n=1
n even

Mn+1dn+1 =

kL∑
n=1

M2nd2n

= M2kL

kL∑
n=1

d2n −
kL−1∑
n=1

(
M2n+2 −M2n

)( n∑
j=1

d2j

)
.

With the factorization

M2n+2 −M2n = M2n+2 −M2n+2M2n+1M2n

= M2n+2

((
I 0
0 I

)
−
(

exp
(
2τM2n+1

)
0

0 exp
(
2τM2n

)))
and (40), we get

M2n+2 −M2n = 2τM2n+2

(
M2n+1ϕ1

(
2τM2n+1

)
0

0 M2nϕ1

(
2τM2n

)) ,

and hence (30), (47) and (41) yield the bound∥∥(M2n+2 −M2n

)
z
∥∥
`1
≤ τC(My

0 ) ‖z‖`1 for z ∈ `1

which implies the first estimate. The second estimate follows analogously. �
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According to Lemma 6.1 it suffices to derive estimates for∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

dn+1

∥∥∥∥∥∥∥
`1

and

∥∥∥∥∥∥∥
2kL−1∑
n=1
n odd

dn+1

∥∥∥∥∥∥∥
`1

with k, L ∈ N . (69)

This is because these estimates can also be employed to bound the remaining
double sums in Lemma 6.1. Here, we partition n = (lk + n∗) with l ∈ N0,
n∗ ∈ {0, . . . , k − 1} to subdivide the inner sum as in (67), but with Mn+1

replaced by identity. Then, the first sum can be bounded by the (yet to be
derived) estimates for (69), whereas the second can be treated analogously to
(68).

In the following two lemmas, we specify the cancellation effects, which allow
us to obtain suitable bounds for the sums (69). The crucial terms for these
cancellations are double integrals of the form

In =

∫ tn+1

tn−1

∫ s

tn

exp
(
−iωφ

(
σ
ε

))
dσ exp

(
−iω̃φ

(
s
ε

))
ds. (70)

Lemma 6.2. Let k, L ∈ N and suppose that τ = ε/k. Further, we consider the
double integral In given in (70), a sequence (an)n∈N, and a sequence (bn)n∈N
with |bn| ≤M for all n ∈ N and with the property

b2n = b2(k−n), for n = 1, . . . , k/2− 1

and

b2n−1 = b2(k−n)+1, for n = 1, . . . , k/2 .

Then, we have the estimates

(i)

∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

anbnIn

∣∣∣∣∣∣∣ ≤ ετC(M)

kL−2∑
n=1

∣∣a2(n+1) − a2n
∣∣

and

(ii)

∣∣∣∣∣∣∣
2kL−1∑
n=1
n odd

anbnIn

∣∣∣∣∣∣∣ ≤ ετC(M)

kL−2∑
n=1

|a2n+1 − a2n−1|

Remark. Lemma 6.2 is the foundation to improve the error estimate from
O(τ) in Theorem 5.2 to O(ετ) in Theorem 5.3. Suppose that |anbn| ≤ Cab
for all n = 1, . . . , 2kL − 1 for some constant Cab > 0 independent of τ or ε.
Because |In| ≤ τ2 and (2kL − 1)τ ≤ T a straightforward estimate via the
triangle inequality yields∣∣∣∣∣∣∣

2kL−1∑
n=1
n even

anbnIn

∣∣∣∣∣∣∣ ≤ Cab
2kL−1∑
n=1
n even

|In| ≤ CabTτ = O(τ)
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for the left-hand side of (i). In the proof of Theorem 5.3, however, we have

an = F̂ (tn) where F̂ is a differentiable function with bounded derivative F̂ ′;
cf. (94) below. In this case, Lemma 6.2 yields the stronger estimate∣∣∣∣∣∣∣

2kL−1∑
n=1
n even

anbnIn

∣∣∣∣∣∣∣ ≤ ετC(M)

kL−2∑
n=1

∣∣a2(n+1) − a2n
∣∣

≤ ετC(M)(kL− 2)2τ max
t∈[0,T ]

∣∣∣F̂ ′(t)∣∣∣
≤ C(M, F̂ ′, T )ετ = O(ετ).

Of course, the same consideration holds for part (ii) of Lemma 6.2.

Proof of Lemma 6.2. A short computation using the symmetry and period-
icity of φ, i.e.

φ(1 + s) = φ(1− s) , φ(2 + s) = φ(2− s) (71)

and

φ(s) = φ(2 + s) , (72)

shows that I2k = 0. Moreover, one can verify that

Ik = 0 , I2n + I2(k−n) = 0 , for n = 1, . . . , k/2− 1

and

I2n−1 + I2(k−n)+1 = 0 , for n = 1, . . . , k/2 .

For more details of these computations we refer to [26] or [29, Lemma 13]. These
symmetric behavior results in

lk−1∑
n=1

b2nI2n = 0 for l ∈ N . (73)

Applying the summation by parts formula gives

2kL−1∑
n=1
n even

anbnIn =

kL−1∑
n=1

a2nb2nI2n

=

(
kL−1∑
n=1

b2nI2n

)
a2(kL−1) −

kL−2∑
n=1

 n∑
j=1

b2jI2j

 (a2(n+1) − a2n) .

(74)

The first part vanishes immediately with (73). For the second part, we partition
n = (kl − 1) + n∗ for l ∈ N, n∗ ∈ {0, . . . , k − 1} and subdivide

n∑
j=1

b2jI2j =

lk−1∑
j=1

b2jI2j +

lk+n∗∑
j=lk

b2jI2j . (75)
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Again, the first sum vanishes with (73). Because |In| ≤ 2τ2 and n∗τ2 ≤ ετ , we
obtain ∣∣∣∣∣∣

lk+n∗∑
j=lk

b2jI2j

∣∣∣∣∣∣ ≤ τ2n∗C(M) ≤ τεC(M) ,

and hence the estimate∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

anbnIn

∣∣∣∣∣∣∣ ≤ ετC(M)

kL−2∑
n=1

∣∣a2(n+1) − a2n
∣∣ (76)

follows. The estimate (ii) follows analogously. �

For technical reasons we also need the following variant of Lemma 6.2.

Lemma 6.3. Let k, L ∈ N and suppose that τ = ε/k and τkL ≤ T . Further,
we consider the double integral

În =

∫ tn+1

tn−1

∫ s

tn

exp
(
−iωφ̂

(
σ
ε

))
dσ exp

(
−iω̃φ̂

(
s
ε

))
ds . (77)

and a sequence (an)n∈N. Then, with the sequence (ân)n∈N given by

ân = exp
(
−i(ω + ω̃)αtn

)
an ,

we have the estimates

(i)

∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

anÎn

∣∣∣∣∣∣∣ ≤ ετC
kL−2∑
n=1

∣∣â2(n+1) − â2n
∣∣+ ατ2C(T ) max

n≤2kL

{
|ωan|+ |ω̃an|

}
and

(ii)

∣∣∣∣∣∣∣
2kL−1∑
n=1
n odd

anÎn

∣∣∣∣∣∣∣ ≤ ετC
kL−2∑
n=1

|â2n+1 − â2n−1|+ ατ2C(T ) max
n≤2kL

{
|ωan|+ |ω̃an|

}
.

Proof. By the definition (8), we have

exp
(
−iωφ̂

(
s
ε

) )
=
(

exp (−iωαtn)− iωα

∫ s

tn

exp (−iωαξ) dξ
)

exp
(
−iωφ

(
s
ε

))
.

(78)
This allows us to partition (77) into

În = exp (−i(ω + ω̃)αtn) In − iα(ωR(1) + ω̃R(2)) ,

with ∣∣∣R(1)
∣∣∣ ≤ τ3C and

∣∣∣R(2)
∣∣∣ ≤ τ3C ,

Now we obtain inequality (i) by estimating∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

anÎn

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

ânIn

∣∣∣∣∣∣∣+ ατ2C(T ) max
n≤2kL

{
|ωan|+ |ω̃an|

}
,

and then applying Lemma 6.2 to the first sum. Inequality (ii) follows analo-
gously. �

23



We are now in a position to derive estimates for the sums in (69). However,
we consider only the sum over even n, because a corresponding bound for the
sum over odd n follows analogously. It suffices to estimate the non-zero part
dn+1 of dn+1, cf. (53). First, we partition

dn+1 = −
(
d
(1)
n+1 + d

(2)
n+1 + d

(3)
n+1 + d

(4)
n+1 +R

(2)
n+1

)
, (79)

with d
(1)
n+1 and d

(2)
n+1 defined in (57) and (58), respectively, and

d
(3)
n+1 =

∫ tn+1

tn+1

∫ s

tn

(
A
(
s, y(s)

)
−Mex

n

)
y′(σ) dσ ds ,

d
(4)
n+1 =

∫ tn+1

tn−1

2(τ − s)Mn

(
A
(
s, y(s)

)
−Mex

n

)
y(tn) ds ,

R
(2)
n+1 =

∫ tn+1

tn−1

∫ s

tn

2(τ − s)Mn

(
A
(
s, y(s)

)
−Mex

n

)
y′(σ) dσ ds

+

∫ tn+1

tn−1

(
2(τ − s)Mn

)2
ϕ2

(
2(τ − s)Mn

)(
A
(
s, y(s)

)
−Mex

n

)
y(s) ds .

By Lemma 3.1, (30), (41), and (18) the bound∥∥∥R(2)
n+1

∥∥∥
`1
≤ τ3C(My

0 ) (80)

follows immediately. Moreover, we reuse the estimate (61) for the term d
(1)
n+1.

It remains to derive suitable estimates for d
(2)
n+1, d

(3)
n+1, and d

(4)
n+1.

Step 1. We start at the partition (62) and solely consider the term (64)

because an estimate for [S
(1)
n+1]m follows analogously. Replacing y′j(σ) by the

tDMNLS gives

[S
(2)
n+1]m = −

∑
Im

∑
Ij

∫ tn+1

tn−1

∫ s

tn

yp(σ)yq(σ)yr(σ)yk(σ)yl(σ)

exp
(
−iω[pqrj]φ̂

(
σ
ε

))
dσ exp

(
−iω[jklm]φ̂

(
s
ε

))
ds . (81)

Now, we fix m ∈ Z, (j, k, l) ∈ Im and (p, q, r) ∈ Ij and write ω = ω[pqrj], ω̃ =
ω[jklm] and Y (σ) = yp(σ)yq(σ)yr(σ)yk(σ)yl(σ) for short. Then, any summand
of (81) can be expanded via∫ tn+1

tn−1

∫ s

tn

Y (σ) exp
(
−iωφ̂

(
σ
ε

))
dσ exp

(
−iω̃φ̂

(
s
ε

))
ds = Y (tn)În + R̂n ,

with În given in (77) and ∣∣∣R̂n∣∣∣ ≤ τ3 max
σ∈[0,T ]

|Y ′(σ)| . (82)

Moreover, using the abbreviation

F̂ (σ) = exp
(
−i(ω + ω̃)ασ

)
Y (σ) ,
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Lemma 6.3 implies∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

Y (tn)În

∣∣∣∣∣∣∣ ≤ C(T )
(
ετ max

σ∈[0,T ]

∣∣∣F̂ ′(σ)
∣∣∣+ατ2 max

σ∈[0,T ]

{
|ωY (σ)|+ |ω̃Y (σ)|

})
.

Ultimately, we obtain with the principle (16), (18), and Lemma A.1 (in Ap-
pendix) the final estimate∥∥∥∥∥∥∥

2kL−1∑
n=1
n even

d
(2)
n+1

∥∥∥∥∥∥∥
`1

≤ ετ
(
C(T,My

0 ) + αC(T,My
2 )
)
. (83)

Step 2. We partition d
(3)
n+1 = S

(3)
n+1 − S

(4)
n+1 with

S
(3)
n+1 =

∫ tn+1

tn−1

∫ s

tn

A
(
s, y(s)

)
y′(σ) dσ ds ,

S
(4)
n+1 =

∫ tn+1

tn−1

∫ s

tn

Mex
n y′(σ) dσ ds . (84)

Because S
(3)
n+1 has the same structure as the terms (63) and (64), we obtain as

in the previous step∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

S
(3)
n+1

∥∥∥∥∥∥∥
`1

≤ ετ
(
C(T,My

0 ) + αC(T,My
2 )
)
. (85)

Moreover, substituting the tDMNLS for y′(σ) the m-th entry of S
(4)
n+1 reads

[S
(4)
n+1]m = −1

2

∑
Im

∑
Il

yj(tn)yk(tn)

∫ 1

−1
exp

(
−iω[jklm]φ̂

(
tn+τξ
ε

))
dξ

∫ tn+1

tn−1

∫ s

tn

Ŷpqrl(σ) exp
(
−iω[pqrl]φ

(
σ
ε

))
dσ ds , (86)

with
Ŷpqrl(σ) = yp(σ)yq(σ)yr(σ) exp(−iω[pqrl]σα) .

For fixedm ∈ Z, (j, k, l) ∈ Im, and (p, q, r) ∈ Il, we write ω = ω[pqrl], ω̃ = ω[jklm]

and Ŷ (s) = Ŷpqrl(s) for short. In addition, we abbreviate

f(s) = yj(s)yk(s) and K̂n =

∫ 1

−1
exp

(
−iω̃φ̂

(
tn+τξ
ε

))
dξ . (87)

Now, we decompose any summand of (86) into

f(tn)K̂n

∫ tn+1

tn−1

∫ s

tn

Ŷ (σ) exp
(
−iωφ

(
σ
ε

))
dσ ds = f(tn)Ŷ (tn)K̂nIn +R(1)

n ,
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where In is given by (70) with ω̃ = 0 and

R(1)
n = f(tn)K̂n

∫ tn+1

tn−1

∫ s

tn

∫ σ1

tn

Ŷ ′(σ2) dσ2 exp
(
−iωφ

(
σ1

ε

))
dσ1 ds . (88)

Moreover, we observe that

K̂n = Kn exp (−iω̃αtn)

− τ iω̃α

∫ 1

−1
exp

(
−iω̃φ

(
tn+τξ
ε

))∫ ξ

0

exp (−iω̃α(tn + τθ)) dθ dξ ,

with

Kn :=

∫ 1

−1
exp

(
−iω̃φ

(
tn+τξ
ε

))
dξ . (89)

Hence, if we define
F̂ (s) = f(s) exp (−iω̃αs) Ŷ (s) , (90)

we can write any summand of (86) in terms of

f(tn)Ŷ (tn)K̂nIn +R(1)
n = F̂ (tn)KnIn +R(1)

n −R(2)
n ,

where R(1)
n is given by (88) and

R(2)
n = iταω̃f(tn)Ŷ (tn)In

∫ 1

−1
exp

(
−iω̃φ

(
tn+τξ
ε

))∫ ξ

0

exp (−iω̃α(tn + τθ)) dθ dξ .

(91)
It is clear that ∣∣∣∣∣

2kL−1∑
n=1

R(1)
n

∣∣∣∣∣ ≤ τ2C(T ) max
σ∈[0,T ]

∣∣∣f(σ)Ŷ ′(σ)
∣∣∣ (92)

and since In = O(τ2), we have∣∣∣∣∣
2kL−1∑
n=1

R(2)
n

∣∣∣∣∣ ≤ τ2αC(T ) max
σ∈[0,T ]

∣∣∣ω̃f(σ)Ŷ (σ)
∣∣∣ . (93)

Furthermore, we observe that

K2n = K2(k−n), for n = 1, . . . , k/2− 1

and

K2n−1 = K2(k−n)+1, for n = 1, . . . , k/2 ,

and hence Lemma 6.2 gives the estimate∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

F̂ (tn)KnIn

∣∣∣∣∣∣∣ ≤ ετ max
σ∈[0,T ]

∣∣∣F̂ ′(σ)
∣∣∣ . (94)

Because the principle (16), (18), and Lemma A.1 (see Appendix) imply suitable
bounds for the terms

max
σ∈[0,T ]

∣∣∣f(σ)Ŷ ′(σ)
∣∣∣ , max

σ∈[0,T ]

∣∣∣ω̃f(σ)Ŷ (σ)
∣∣∣ and max

σ∈[0,T ]

∣∣∣F̂ ′(σ)
∣∣∣ ,
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we can combine (92), (93) and (94) to obtain∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

S
(4)
n+1

∥∥∥∥∥∥∥
`1

≤ τε
(
C(T,My

0 ) + αC(T,My
2 )
)
. (95)

Finally, it follows from (85) and (95) that∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

d
(3)
n+1

∥∥∥∥∥∥∥
`1

≤ τε
(
C(T,My

0 ) + αC(T,My
2 )
)
. (96)

Step 3. A short computation gives the partition d
(4)
n+1 = S

(5)
n+1 + S

(6)
n+1, with

S
(5)
n+1 =

∫ tn+1

tn−1

2(tn − s)MnA
(
s, y(s)

)
y(tn) ds , (97)

S
(6)
n+1 =

∫ tn+1

tn−1

2(τ − tn)Mn

(
A
(
s, y(s)

)
−A

(
s, y(tn)

))
y(tn) ds . (98)

Because of the relation

yj(s)yk(s)− yj(tn)yk(tn) = yk(s)

∫ s

tn

y′j(σ) dσ + yj(tn)

∫ s

tn

y′k(σ) dσ ,

the estimate ∥∥∥(A(s, y(s)
)
−A

(
s, y(tn)

))
y(tn)

∥∥∥
`1
≤ τC(My

0 )

follows from (18), and hence we obtain with (30) the bound∥∥∥∥∥
2kL−1∑
n=1

S
(6)
n+1

∥∥∥∥∥
`1

≤ τ2C(T,My
0 ) . (99)

The term (97) requires more attention. First, we expand S
(5)
n+1 = T

(1)
n+1 + T

(2)
n+1

with

T
(1)
n+1 =

∫ tn+1

tn−1

2(tn − s)
(
Mn −Mex

n

)
A
(
s, y(s)

)
y(tn) ds ,

T
(2)
n+1 =Mex

n

∫ tn+1

tn−1

2(tn − s)A
(
s, y(s)

)
y(tn) ds .

By (60) and Lemma 3.1, we obtain∥∥∥∥∥
2kL−1∑
n=1

T
(1)
n+1

∥∥∥∥∥
`1

≤ τ2C(My
0 )

2kL−1∑
n=1

‖en‖`1 . (100)

Moreover, let [T
(2)
n+1]m denote the m-th entry of T

(2)
n+1. Then, we have

[T
(2)
n+1]m =

∑
Im

∑
Il

yj(tn)yk(tn)

∫ 1

−1
exp

(
−iω[jklm]φ̂

(
tn+τξ
ε

))
dξ

∫ tn+1

tn−1

(s− tn)Ŷpqrl(s) exp
(
−iω[pqrl]φ

(
s
ε

))
ds . (101)
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With the abbreviations (87) and (90) any fixed summand of (101) reads

f(tn)K̂n

∫ tn+1

tn−1

(s− tn)Ŷ (s) exp
(
−iω[pqrl]φ

(
s
ε

))
ds = F̂ (tn)KnIn + R̃(1)

n −R(2)
n ,

where In is given by (70) with ω̃ = 0, R(2)
n is given by (91) and

R̃(1)
n = f(tn)K̂n

∫ tn+1

tn−1

∫ s

tn

(s− tn)Ŷ ′(σ) exp
(
−iω[pqrl]φ

(
s
ε

))
dσ ds .

Because we have ∣∣∣∣∣
2kL−1∑
n=1

R̃(1)
n

∣∣∣∣∣ ≤ τ2C(T,My
0 ) max

σ∈[0,T ]

∣∣∣Ŷ ′(σ)
∣∣∣ ,

we obtain analogously to (95) with Lemma 6.2 the estimate∣∣∣∣∣∣∣
2kL−1∑
n=1
n even

T
(2)
n+1

∣∣∣∣∣∣∣ ≤ ετ
(
C(T,My

0 + αC(T,My
2 )
)
. (102)

Now, we recall that

d
(4)
n+1 = S

(5)
n+1 + S

(6)
n+1 = T

(1)
n+1 + T

(2)
n+1 + S

(6)
n+1 ,

and hence combining (99), (100), and (102) results in∥∥∥∥∥∥∥
2kL−1∑
n=1
n even

d
(4)
n+1

∥∥∥∥∥∥∥
`1

≤ τ2C(My
0 )

2kL−1∑
n=1
n even

‖en‖`1 + τε
(
C(T,My

0 ) +αC(T,My
2 )
)
. (103)

Finally, substituting the estimates (61), (80), (83), (96), and (103) into (79)
gives the bound∥∥∥∥∥∥∥

2kL−1∑
n=1
n even

dn+1

∥∥∥∥∥∥∥
`1

≤ τC(My
0 )

2kL−1∑
n=1
n even

‖en‖`1 + τε
(
C(T,My

0 ) + αC(T,My
2 )
)
. (104)

Analogously, one can show a similar bound for the sum over the odd indices
resulting in the desired estimate (66).

6.4 Proof of Theorem 5.4

In the setting of Theorem 5.4, i.e. τ = εk for k ∈ N, we consider approximations
of the tDMNLS by the adiabatic exponential midpoint rule (32) as approxima-
tions of the limit system (25). According to Theorem 4.1, we have∥∥∥y(tn)− y(n)

∥∥∥
`1
≤ ‖y(tn)− v(tn)‖`1 +

∥∥∥v(tn)− y(n)
∥∥∥
`1

≤ ε2

δ
C(T, α,M2) +

∥∥∥v(tn)− y(n)
∥∥∥
`1
. (105)
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Now, it remains to show that the numerical solution y(n) yields sufficiently
accurate approximations of the exact solution v(tn) of the limit system. For
this purpose, we require a technical lemma from [26] concerning estimates for
integrals over products of the function

gω(σ) = exp
(
−iωφ(σ)

)
− exp(iωδ)− 1

iωδ
, ω 6= 0 , (106)

with a sufficiently smooth function.

Lemma 6.4 (cf. Lemma 1 in [26]). Let ε > 0, ω 6= 0, f ∈ C2(R), and let gω be
as in (106). Then we have

(i)

∣∣∣∣∫ 2

0

f(εσ)gω(σ) dσ

∣∣∣∣ ≤ ε2

δ
C max
σ∈[0,2]

∣∣ω−1f ′′(εσ)
∣∣

and

(ii)

∣∣∣∣∫ 3

1

f(εσ)gω(σ) dσ

∣∣∣∣ ≤ ε2

δ
C max
σ∈[1,3]

∣∣ω−1f ′′(εσ)
∣∣ .

Next, we define

v(tn+1) =

(
v(tn+1)
v(tn)

)
, ẽN = yN − v(tN ),

d̃1 = ẽ1 , d̃n+1 = Mnv(tn)− v(tn+1) for n ≥ 1. (107)

As in the proof of Theorem 5.3, this allows us to express the global error ẽN by
the recursion formula

ẽN = M1d̃1 +

N−1∑
n=1

Mn+1d̃n+1

similar to (46). With (48) and (47), we obtain

‖ẽN‖`1 ≤ τ
2C(T,Mv

0 ) + C(T,Mv
0 )

N−1∑
n=1

∥∥∥d̃n+1

∥∥∥
`1
. (108)

In the following, we aim for the bound

N−1∑
n=1

∥∥∥d̃n+1

∥∥∥
`1
≤
(
ε2

δ + τ2
)(
C(T,Mv

0 ) + (α+ α2)C(T,Mv
2 )
)
. (109)

If (109) is shown, the desired result follows from the discrete Gronwall lemma as
in the previous proofs. In particular, we observe that the constant for the global
error bound improves as specified if α = 0. The key difference to the proof of
Theorem 5.2 is that higher order time derivatives of the solution v of the limit
equation exist. Hence, higher order Taylor expansions of v are available, whereas
we were restricted to the first-order time derivative y′ before. As in (53), we
have

d̃n+1 =

(
d̃n+1

0

)
, with d̃n+1 := exp

(
2τMn

)
v(tn−1)− v(tn+1) , (110)
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where Mn is given by (42). Thus it remains to derive an estimate for the
non-zero part d̃n+1 of d̃n+1. Thanks to the variation of constant formula we
have

v(tn+1) = exp
(
2τMn

)
v(tn−1)

+

∫ tn+1

tn−1

exp
(
2(τ − s)Mn

) (
Alim

(
s, v(s)

)
−Mn

)
v(s) ds , (111)

cf. (55). Henceforth, we abbreviate

Mlim
n :=Mn[τ, v(tn)]

in the spirit of (42). Substituting (111) into (110) and using the expansion (40)
gives

d̃n+1 = −
(
d̃
(1)
n+1 + d̃

(2)
n+1 + d̃

(3)
n+1 + d̃

(4)
n+1 + R̃n+1

)
, (112)

where

d̃
(1)
n+1 =

∫ tn+1

tn−1

exp
(
2(τ − s)Mn

)(
Mlim

n −Mn

)
v(s) ds , (113)

d̃
(2)
n+1 =

∫ tn+1

tn−1

(
Alim

(
s, v(s)

)
−Mlim

n

)
v(tn) ds , (114)

d̃
(3)
n+1 =

∫ tn+1

tn−1

(s− tn)
(
Alim

(
s, v(s)

)
−Mlim

n

)
v′(tn) ds , (115)

d̃
(4)
n+1 =

∫ tn+1

tn−1

2(τ − s)Mn

(
Alim

(
s, v(s)

)
−Mlim

n

)
v(tn) ds , (116)

R̃n+1 =

∫ tn+1

tn−1

∫ s

tn

∫ σ1

tn

(
Alim

(
s, v(s)

)
−Mlim

n

)
v′′(σ2) dσ2 dσ1 ds

+

∫ tn+1

tn−1

∫ s

tn

2(τ − s)Mn

(
Alim

(
s, v(s)

)
−Mlim

n

)
v′(σ) dσ ds

+

∫ tn+1

tn−1

(
2(τ − s)Mn

)2
ϕ2

(
2(τ − s)Mn

)(
Alim

(
s, v(s)

)
−Mlim

n

)
v(s) ds ,

From (38), (30) and (44) it follows that

N−1∑
n=1

∥∥∥d̃(1)n+1

∥∥∥
`1
≤ τC(M0)

N−1∑
n=1

‖ẽn‖`1 , (117)

with M0 given in (26), cf. (61). Moreover, we obtain

N−1∑
n=1

∥∥∥R̃n+1

∥∥∥
`1
≤ τ2

(
C(T,M0) + αC(T,Mv

2 )
)
, (118)

with (30), Lemma 3.1, (41), and Lemma A.1 (see Appendix). In the next three

steps, we derive bounds for d̃
(2)
n+1, d̃

(3)
n+1 and d̃

(4)
n+1.
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Step 1. A short computation yields

d̃
(2)
n+1 =

∫ tn+1

tn−1

(
Alim

(
s, v(s)

)
−A

(
s, v(tn)

))
v(tn) ds ,

and hence the m-th entry of d̃
(2)
n+1 can be split into [d̃

(2)
n+1]m = [S̃

(1)
n+1]m−[S̃

(2)
n+1]m,

with

[S̃
(1)
n+1]m = i

∑
Im

∫ tn+1

tn−1

(
vj(s)vk(s)− vj(tn)vk(tn)

)
vl(tn)

exp(−iω[jklm]αs) ds

∫ 1

0

exp(iω[jklm]δξ) dξ , (119)

[S̃
(2)
n+1]m = i

∑
Im

vj(tn)vk(tn)vl(tn)

∫ tn+1

tn−1

exp(−iω[jklm]αs)(
exp

(
−iω[jklm]φ

(
s
ε

))
−
∫ 1

0

exp(iω[jklm]δξ) dξ

)
ds .

(120)

Further, we decompose [S̃
(1)
n+1]m = [T̃

(1)
n+1]m + [T̃

(2)
n+1]m with

[T̃
(1)
n+1]m = i

∑
Im

∫ 1

0

exp(iω[jklm]δξ) dξ

∫ tn+1

tn−1

∫ s

tn

vj(tn)v′k(σ)vl(tn) exp(−iω[jklm]αs) dσ ds (121)

and

[T̃
(2)
n+1]m = i

∑
Im

∫ 1

0

exp(iω[jklm]δξ) dξ

∫ tn+1

tn−1

∫ s

tn

v′j(σ)vk(s)vl(tn) exp(−iω[jklm]αs) dσ ds .

Then, fixing v′k(σ) at σ = tn followed by fixing exp(−iω[jklm]αs) at s = tn yields

[T̃
(1)
n+1]m = [R̃

(1)
n+1]m + [R̃

(2)
n+1]m, where

[R̃
(1)
n+1]m = i

∑
Im

∫ 1

0

exp(iω[jklm]δξ) dξ

∫ tn+1

tn−1

∫ s

tn

∫ σ1

tn

vj(tn)v′′k(σ2)vl(tn) exp(−iω[jklm]αs) dσ2 dσ1 ds

and

[R̃
(2)
n+1]m = α

∑
Im

∫ 1

0

exp(iω[jklm]δξ) dξ

∫ tn+1

tn−1

(s− tn)

∫ s

tn

ω[jklm]vj(tn)v′k(tn)vl(tn) exp(−iω[jklm]ασ) dσ ds .

Because estimates for∣∣vj(t)v′′k(t)vl(t) exp(−iω[jklm]αt)
∣∣ = |vj(t)v′′k(t)vl(t)|
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and ∣∣ω[jklm]vj(t)v
′
k(t)vl(t) exp(−iω[jklm]αt)

∣∣ =
∣∣ω[jklm]vj(t)v

′
k(t)vl(t)

∣∣
follow from Lemma A.1 (see Appendix), we infer∥∥∥R̃(1)

n+1

∥∥∥
`1
≤ τ3

(
C(Mv

0 ) + αC(Mv
2 )
)

and
∥∥∥R̃(2)

n+1

∥∥∥
`1
≤ τ3αC(Mv

2 ) .

Hence, we obtain ∥∥∥T̃ (1)
n+1

∥∥∥
`1
≤ τ3

(
C(Mv

0 ) + αC(Mv
2 )
)
.

Since an estimate for T̃
(2)
n+1 follows analogously, we get

N−1∑
n=1

∥∥∥S̃(1)
n+1

∥∥∥
`1
≤ τ2

(
C(T,Mv

0 ) + αC(T,Mv
2 )
)
. (122)

In order to bound the sum over the terms S̃
(2)
n+1, we aim to apply Lemma 6.4. For

fixed m ∈ Z and (j, k, l) ∈ Im we write ω = ω[jklm] and V (s) = vj(s)vk(s)vl(s).

Moreover, we define fω(s) := exp (−iωαs). Then, any fixed summand of S̃
(2)
n+1

reads

V (tn)

∫ tn+1

tn−1

fω(s)

(
exp

(
−iωφ

(
s
ε

))
−
∫ 1

0

exp (iωδξ) dξ

)
ds

= V (tn)

∫ tn+1

tn−1

fω(s)gω
(
s
ε

)
ds

= εV (tn)

∫ 2k

0

fω(εσ + tn−1)gω(σ) dσ

= εV (tn)

k∑
κ=1

∫ 2

0

fω
(
ε(σ + 2(κ− 1)) + tn−1

)
gω(σ) dσ ,

where gω is the 2-periodic function given in (106). Because
∣∣ω−1f ′′ω(s)

∣∣ = α2 |ω|,
Lemma 6.4 implies∣∣∣∣∣εV (tn)

k∑
κ=1

∫ 2

0

fω
(
ε(σ + 2(κ− 1)) + tn−1

)
gω(σ) dσ

∣∣∣∣∣ ≤ τα2 ε
2

δ
C |ωV (tn)| ,

and hence we obtain with the principle (16) and Lemma A.1 (see Appendix)

N−1∑
n=1

∥∥∥S̃(2)
n+1

∥∥∥
`1
≤ α2 ε

2

δ
C(T,Mv

2 ) . (123)

Combining (123) and (122) yields

N−1∑
n=1

∥∥∥d̃(2)n+1

∥∥∥
`1
≤
(
ε2

δ + τ2
)(
C(T,Mv

0 ) + (α+ α2)C(T,Mv
2 )
)
. (124)
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Step 2. Since
∫ tn+1

tn−1
(s− tn)Mlim

n v′(tn) ds = 0, we only have to estimate

d̃
(3)
n+1 =

∫ tn+1

tn−1

(s− tn)Alim
(
s, v(s)

)
v′(tn) ds .

FixingAlim
(
s, v(s)

)
at s = tn and bounding the remainder terms with Lemma A.1

(see Appendix) yields the estimate

N−1∑
n=1

∥∥∥d̃(3)n+1

∥∥∥
`1
≤ τ2

(
C(T,Mv

0 ) + αC(T,Mv
2 )
)
. (125)

Step 3. A short computation gives

d̃
(4)
n+1 =

∫ tn+1

tn−1

2(τ − s)Mn

(
Alim

(
s, v(s)

)
−Alim

(
s, v(tn)

))
v(tn) ds

−
∫ tn+1

tn−1

2(s− tn)MnA
lim
(
s, v(tn)

)
v(tn) ds .

One can estimate the first term in (126) analogously to the term (98). Moreover,
one can bound the second term by fixing Alim

(
s, v(tn)

)
at s = tn. Then, the

leading order term vanishes due to the symmetry of the integral and the remain-
der terms can be dealt with the principle (16) and Lemma A.1 (see Appendix).
Ultimately, we obtain the estimate

N−1∑
n=1

∥∥∥d̃(4)n+1

∥∥∥
`1
≤ τ2

(
C(T,Mv

0 ) + αC(T,Mv
2 )
)
. (126)

Finally, combining (117), (124), (125), (126) and (118) yields the desired
bound (109).

�

A Appendix

Let y and v be the solutions of the tDMNLS (12) and the limit system (25),
respectively, and let

Yjkl(t) = yj(t)yk(t)yl(t) and Vjkl(t) = Vj(t)V k(t)Vl(t) ,

Lemma A.1. If y0 ∈ `23, then

(i)
∑
m∈Z

∑
Im

∣∣ω[jklm]Yjkl(t)
∣∣ ≤ C(My

2 ) for all t ∈ [0, T ] ,

Suppose that Assumption 1 holds. Let v0 ∈ `23, then

(ii) ‖v′(t)‖`1 ≤ C(Mv
0 ) for all t ∈ [0, T ] ,

(iii)
∑
m∈Z

∑
Im

∣∣ω[jklm]Vjkl(t)
∣∣ ≤ C(Mv

2 ) for all t ∈ [0, T ] ,

(iv) ‖v′′(t)‖`1 ≤ C(Mv
0 ) + αC(Mv

2 ) for all t ∈ [0, T ] ,
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Proof. (i) Because

ω[jklm] = −2(k2 + jk − jl + kl) for (j, k, l) ∈ Im ,

we obtain with the principle (16)∑
m∈Z

∑
Im

∣∣ω[jklm]Yjkl(t)
∣∣ = 2

∑
m∈Z

∑
Im

∣∣(k2 + jk − jl + kl)Yjkl(t)
∣∣

≤ 2
(
‖y(t)‖2`10 ‖y(t)‖`12 + 3 ‖y(t)‖`10 ‖y(t)‖2`11

)
≤ C(My

2 ) . (127)

(ii) follows like (18) and (iii) is the same as (i).
(iv) Differentiating (25) yields

‖v′′(t)‖`1 ≤
∑
m∈Z

∑
Im

∣∣V ′jkl(t)− iω[jklm]αVjkl(t)
∣∣ , (128)

and hence (ii) and (iii) yield the desired estimate.
�
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