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This paper provides a unified error analysis for non-conforming space discretizations of linear wave
equations in time-domain. We propose a framework which studies wave equations as first-order evolution
equations in Hilbert spaces and their space discretizations as differential equations in finite dimensional
Hilbert spaces. A lift operator maps the semi-discrete solution from the approximation space to the
continuous space. Our main results are a priori error bounds in terms of interpolation, data and conformity
errors of the method. Such error bounds are the key to the systematic derivation of convergence rates for
a large class of problems. To show that this approach significantly eases the proof of new convergence
rates, we apply it to an isoparametric finite element discretization of the wave equation with acoustic
boundary conditions in a smooth domain. Moreover, our results reproduce known convergence rates
for already investigated conforming and non-conforming space discretizations in a concise and unified
way. The examples discussed in this paper comprise discontinuous Galerkin discretizations of Maxwell’s
equations and finite elements with mass lumping for the acoustic wave equation.

This article has been accepted for publication in IMA Journal of Numerical Analysis published by Oxford
University Press.
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1. Introduction

In this paper we investigate the convergence behavior of possibly non-conforming space discretizations
of wave equations written as first-order or as second-order partial differential equations in time and
space. Both types of equations arise as mathematical models for wave phenomena in elastodynamics,
electromagnetics and acoustics, cf. Joly (2003). In the last few decades, there has been a remarkable
progress in understanding and analyzing such numerical approximations. Despite sharing the main ideas
of proof, most contributions focus on a particular wave-type equation and a particular space discretiza-
tion method, cf. e.g. Baker (1976), Zhao (2004), Cohen & Pernet (2017).

Only a few papers proceed in a unified way and harness the analogies shared between the individual
studies. Among them are several works which develop a unified error analysis for a particular class
of space discretization methods for wave equations, cf. Fujita et al. (2001), Joly (2003), Burman et al.
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(2010). On the other hand, abstract approximation theory for evolution equations mostly shows conver-
gence but does not provide error bounds or convergence rates, e.g. Ito & Kappel (2002), Guidetti et al.
(2004), Bátkai et al. (2012). The few abstract error estimates available in the literature are not ready-
to-apply such that information about basic approximation properties of the numerical method lead to a
convergence rate, cf. for example Brenner et al. (1982) and Hussein & Kappel (2002). Finally, there is
the framework of gradient discretization methods which was designed for a unified error analysis, but
only covers elliptic and parabolic problems so far, cf. Droniou et al. (2017).

unified error analysis

numerical method

w
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eq
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n

space discretization

a priori bound

approximation properties

spatial convergence ratea priori bound

In order to systemize the derivation of convergence rates for other wave-type equations or new space
discretizations thereof, we proceed in three steps. First, we propose a unified and abstract framework for
wave-type equations and their space discretizations. Second, within this framework, we show that wave-
type equations are well-posed and that the errors of their abstract space discretizations are bounded by a
sum of interpolation errors, data errors and discretization errors. Third, we use more specific properties
of the numerical method to prove the final a priori estimates. These a priori estimates allow to infer
convergence rates by inserting known information about the numerical method in a modular way. We
demonstrate the easy handling of our results by deriving new convergence results for an isoparametric
bulk-surface finite element discretization of the wave equation with acoustic boundary conditions in a
smooth domain Ω . Such discretizations are non-conforming since the computational domain does not
coincide with Ω . In Hochbruck et al. (2017), the authors apply our a priori bounds to prove convergence
rates of a heterogeneous multiscale discretization of Maxwell’s equations using edge elements. More-
over, our results generalize former error estimates as they successfully reproduce convergence rates
for several examples as the discontinuous Galerkin method for linear Maxwell’s equations and finite
elements with mass lumping for the acoustic wave equation.

The paper is organized as follows. In Sections 2.1 and 2.2, we introduce and analyze quasi-monotone
evolution equations. For a unified treatment, we consider their space discretizations as differential equa-
tions in finite dimensional Hilbert spaces, as described in Section 2.3. In Section 2.4, we provide an
overview of the tools and main ideas of the error analysis. Then, we prove a general error bound for sta-
ble space discretizations of quasi-monotone evolution equations in Section 2.5 and show a convergence
result in the spirit of the Lax equivalence theorem in Section 2.6. The general error bound consists of
data and discretization errors of the method. Under more specific assumptions on the structure of the
wave equation and the numerical method, the discretization errors can be further analyzed against a sum
of interpolation and conformity errors. The resulting error bounds then ultimately provide convergence
rates. We discuss this for first-order wave-type equations in Section 3 and for second-order wave-type
equations in Section 4. In order to provide a guideline for the reader who wants to find a concrete
bound, or to prove convergence rates for a new application, we collected the most important assump-
tions, results and examples in two reference cards on the next page. In total, we show that our error
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analysis is able to reproduce state-of-the-art convergence results for four applications. These examples
are supplemented by a novel application presented in Section 5. There we use our a priori estimates to
derive new convergence rates for an isoparametric bulk-surface finite element discretization of the wave
equation with acoustic boundary conditions.

Reference card for first-order wave-type equations

co
nt

in
uo

us Assumption The variational formulation of the PDE can be written as (3.1)
and satisfies Assumption 3.1.

Well-posedness Follows from Theorem 2.4, see also (3.2)
Examples Advection equation in Example 2.6 and Maxwell’s equation in

Section 3.2

se
m

i-
di

sc
re

te

Assumption The space discretization is given by (3.3) and stable in the
sense of Assumption 3.2.

If X `
h ⊂ Y : If X `

h 6⊂ Y :
Error bounds Non-conforming: Theorem 3.3 Non-conforming: Theorem 3.5

Conforming: Corollary 3.4 Conforming: Remark 3.6
Examples Edge elements for Maxwell in

Section 3.2.1
DG method for Maxwell in
Section 3.2.2

We emphasize that we focus on linear, inhomogeneous wave-type equations and error bounds in the
energy norm. Error estimates in discrete norms, as derived for interior penalty discontinuous Galerkin
discretizations in Grote et al. (2006), and convergence rates for parabolic problems, as given in Kovács
& Lubich (2017) and Thomée (2006), are not covered. Moreover, we obtain sub-optimal convergence
rates for discontinuous Galerkin discretizations stabilized with upwind fluxes as in Hochbruck & Pažur
(2015). We further remark that the examples provided in this paper discuss finite element and discon-
tinuous Galerkin methods, since they can deal with complex domains and provide high order approxi-
mations. However, we are convinced that our abstract estimates can also be used to derive convergence
rates for other methods, e.g. finite difference or pseudospectral methods.

Reference card for second-order wave-type equations

co
nt

in
uo

us

Assumption The variational formulation of the PDE can be written as (4.1)
and satisfies Assumption 4.1.

Well-posedness Follows from Theorem 4.3
Examples Acoustic wave equation with Dirichlet boundary conditions in

Section 4.5 and with acoustic boundary conditions in Section 5

se
m

i-
di

sc
re

te

Assumption The space discretization is given by (4.8) and stable in the
sense of Assumption 4.4.

Error bounds Non-conforming: Theorem 4.8 and Remark 4.9
Conforming: Corollary 4.10

Examples Lagrange elements with mass lumping in Section 4.5 and
isoparametric bulk-surface finite elements in Section 5



4 of 37 D. HIPP ET AL.

Notation

In this section we collect the notation used throughout this paper. By C we denote a generic constant
independent of time t and the space discretiziation parameter h. We consider problems on finite time
intervals [0,T ], T > 0.

SPACES, NORMS, AND INNER PRODUCTS Let X , Y be two real Hilbert spaces with corresponding
norms ‖·‖X , ‖·‖Y , respectively. By L (X ,Y ) we denote the space of all bounded linear operators from
X to Y endowed with the operator norm

‖M‖Y←X := sup
x∈X
x 6=0

‖Mx‖Y
‖x‖X

= sup
x∈X
‖x‖X=1

‖Mx‖Y , M ∈L (X ,Y ).

If Y = R, then X∗ := L (X ,R) is the dual space of X and ‖·‖X∗ := ‖·‖R←X . Moreover, for ϕ ∈ X∗ we
define the duality pairing between X∗ and X as

〈ϕ,x〉X := ϕ(x), x ∈ X .

Let b : Y ×X → R be a continuous bilinear form. Fixing the first argument of b yields an operator
b(y) := b(y, ·) ∈ X∗ whose norm is given by

‖b(y)‖X∗ := sup
x∈X
‖x‖X=1

|b(y,x)|, y ∈ Y.

Let A : D(A)→ X be a linear operator defined on the subspace D(A) of X . Then we denote by [D(A)]
the space D(A) equipped with the graph norm of A (which is a Banach space if A is closed). In product
spaces, we write

(
u,v
)

:=

[
u
v

]
∈ X2 = X×X .

The diagonal operator diag(A1,A2) : X1×X2→ Y1×Y2 for Ai : Xi→ Yi, i = 1,2 is defined by

diag(A1,A2)

[
u
v

]
:=

[
A1u
A2v

]
.

Let U ⊂ Rd be a non-empty set. We define the supremum norm of f : U → X as

‖ f‖
∞,U→X := sup

x∈U
‖ f (x)‖X

and use the short notation ‖ f‖
∞,X := ‖ f‖

∞,[0,T ]→X for X-valued functions defined on U = [0,T ].

DOMAINS, BOUNDARIES, MESHES, AND DISCRETE SPACES The partial differential equations in this
paper are considered in an open and bounded domain Ω ⊂ Rd . We denote its boundary by Γ := ∂Ω

and the outer unit normal by n : Γ → Rd . For the scalar product in Rd we write x · y for x,y ∈ Rd

and |x| :=
√

x ·x denotes the Euclidean norm. We write γ : H1(Ω)→ L2(Γ ) for the trace operator
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and ∂n f : Γ → R is the normal derivative of f : Ω → R. We use Pk for the space of polynomials of
maximal degree k. If not specified differently, we consider space discretizations based on an admissible
mesh sequence TH = {Th | h ∈H } of Ω where the index h in Th denotes the maximal diameter of all
the elements K ∈ Th and Ωh := ∪K∈ThK is the computational domain. An admissible mesh sequence
is shape-regular, contact-regular and satisfies an optimal polynomial approximation property, cf. (Di
Pietro & Ern, 2012, Def. 1.57). We assume that Th consists of triangles or tetrahedra for d = 2 or d = 3,
respectively, but our theory is not restricted to simplicial elements.

2. Evolution equations with linear monotone operators

We start the presentation of the unified framework by introducing evolution equations with linear mono-
tone operators as an abstract formulation for wave-type equations. Such problems were already con-
sidered and analyzed by Showalter (1994), Showalter (1997) and Zeidler (1990a). After recalling con-
ditions for their well-posedness, we then develop a theory for non-conforming space discretizations of
evolution equations with linear monotone operators. For an overview of similar abstract approaches to
space discretizations, we refer to Guidetti et al. (2004) and Ito & Kappel (2002).

2.1 Description of the continuous problem

Given a Gelfand triple of real Hilbert spaces

Y d↪→ X ' X∗ d↪→ Y ∗

we seek a solution x : [0,T ]→ Y of the evolution equation

x′(t)+S x(t) = g(t) for t ∈ [0,T ], (2.1a)

x(0) = x0, (2.1b)

where g : [0,T ]→ Y ∗ is a function and S ∈L (Y,Y ∗) is a quasi-monotone operator.

DEFINITION 2.1 (Maximal and linear quasi-monotone operators) Let W = Y ∗ or W = X .
(i) An operator S ∈L (Y,W ) is called quasi-monotone if there exists a constant cqm > 0 s.t.

〈S y,y〉Y + cqm‖y‖2
X > 0 ∀y ∈ Y. (2.2a)

(ii) A quasi-monotone operator S ∈L (Y,W ) is called maximal w.r.t. W if there exists a λ > cqm s.t.

range(λ +S ) =W. (2.2b)

REMARK 2.2 The theory of monotone operators is mostly used for non-linear functional problems.
However, we feel that the term “quasi-monotone” is also suitable in our (linear) context, cf. also Showal-
ter (1997) and Zeidler (1990a). A related notion can be found in ter Elst et al. (2015).

2.2 Well-posedness of the continuous problem

To apply semigroup theory, we restrict the operator S to the Hilbert space X . The part of S ∈L (Y,Y ∗)
in X , as defined in Engel & Nagel (2000), is given by

S : D(S)⊂ Y → X , y 7→ Sy := S y on D(S) =
{

y ∈ Y
∣∣S y ∈ X

}
. (2.3)
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The following lemma establishes a connection between quasi-monotone and dissipative operators. A
similar result was shown in (Zeidler, 1990b, Sect. 31.4).

LEMMA 2.3. Let S ∈L (Y,Y ∗) and S be the part of S in X as defined in (2.3).
(i) If S is quasi-monotone, then −(S+ cqm) is dissipative.

(ii) If S is quasi-monotone and maximal w.r.t. Y ∗, then range(λ +S) = X for all λ > cqm and D(S)
is dense in X.

Proof. We only prove (ii), since (i) is obvious.
Let f ∈ X be arbitrary. Since X d↪→Y ∗, the maximality of S ensures the existence of some λ0 > cqm

s.t. there is a y ∈ Y which satisfies (λ0 +S )y = f . Hence we have S y = f −λ0y ∈ X , so that y ∈ D(S)
with (λ0 + S)y = f . The surjectivity of λ + S for all λ > cqm and the density of D(S) follow from
(Showalter, 1997, Prop. I.4.2). �

To show the well-posedness of (2.1), we consider its corresponding abstract Cauchy problem in X .

THEOREM 2.4. Let W =Y ∗ or W = X and assume that S ∈L (Y,W ) is quasi-monotone and maximal
w.r.t. W . If x0 ∈ D(S) and g ∈C

(
[0,T ]; [D(S)]

)
+C1([0,T ];X), then (2.1) has a unique solution

x ∈C1([0,T ];X)∩C([0,T ]; [D(S)])

which satisfies the stability estimate

‖x(t)‖X 6 ecqmt
(
‖x0‖X + t‖g‖

∞,X

)
, t ∈ [0,T ]. (2.4)

Proof. By Lemma 2.3 −(S+ cqm) is dissipative and satisfies the range condition. Hence it generates a
contraction semigroup due to the Lumer-Philipps theorem (Pazy, 1983, Sect. 1.3). This implies that −S
generates the C0-semigroup

(
e−tS

)
t>0 which satisfies∥∥e−tS∥∥

X←X 6 ecqmt .

Under the assumptions on x0 and g, the abstract Cauchy problem

x′(t)+Sx(t) = g(t), t ∈ [0,T ], x(0) = x0 (2.5)

has a unique solution x ∈C1([0,T ];X)∩C([0,T ]; [D(S)]) which is given by Duhamel’s formula

x(t) = e−tSx0 +
∫ t

0
e−(t−s)Sg(s)ds,

cf. (Pazy, 1983, Sect. 4.2). The stability estimate thus follows from

‖x(t)‖6 ecqmt‖x0‖X +
∫ t

0
ecqm(t−s)‖g(s)‖X ds6 ecqmt

(
‖x0‖X +‖g‖

∞,X

∫ t

0
1ds
)
.

Finally, since X ' X∗ d↪→ Y ∗ and S = S
∣∣
D(S), every solution of (2.5) also solves (2.1). �

In the following, let p : X ×X → R denote the inner product on X and 〈·, ·〉Y the duality pairing
between Y ∗ and Y . Then we have

p
(
z,y
)
= z(y) = 〈z,y〉Y ∀z ∈ X , y ∈ Y, (2.6)

as an immediate consequence of the identification X ' X∗.
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2.3 Space discretization

This section is dedicated to non-conforming space discretizations of (2.1). Such space discretizations
seek to approximate the solution x ∈ X in a finite dimensional Hilbert space Xh with inner product
ph
(
·, ·
)

and norm ‖·‖Xh
. Here, h > 0 corresponds to a discretization parameter of Xh, e.g. the maximal

diameter of all elements of a mesh. We emphasize that in general

Xh 6⊂ X .

A space discretization of (2.1) is a differential equation in Xh seeking xh : [0,T ]→ Xh s.t.

x′h(t)+Shxh(t) = gh(t) for t ∈ [0,T ], (2.7a)

xh(0) = x0
h ∈ Xh, (2.7b)

where Sh ∈L (Xh,Xh) is a discretization of S, e.g. resulting from a finite element or dG method, and
gh : [0,T ]→ Xh is an approximation of g.

Following (Ciarlet, 2002, Chap. 4), we define conforming space discretizations. For that purpose, it
is convenient to write the operators as bilinear forms. We denote the bilinear form associated with S
by

s
(
z,y
)

:= 〈S z,y〉Y , z,y ∈ Y, (2.8)

and, analogously, the bilinear form associated with Sh by

sh
(
zh,yh

)
:= ph

(
Shzh,yh

)
, zh,yh ∈ Xh. (2.9)

To motivate the criteria for a conforming method, we give the variational formulations of the continuous
and the semi-discrete problem. Theorem 2.4 shows that the evolution equation (2.1) has, under suitable
assumptions on the data, a solution x satisfying x(t) ∈ D(S) and x′(t) ∈ X , t > 0. Considering (2.1) in
variational form and using (2.6), we thus obtain that x solves

p
(
x′(t),y

)
+ s
(
x(t),y

)
= p
(
g(t),y

)
∀y ∈ Y. (2.10)

Analogously, the differential equation (2.7a) can be cast as

ph
(
x′h(t),yh

)
+ sh

(
xh(t),yh

)
= ph

(
gh(t),yh

)
∀yh ∈ Xh.

DEFINITION 2.5 The space discretization (2.7) of the evolution equation (2.1) is called conforming
if the following three conditions are satisfied.

(i) Xh ⊂ Y ,

(ii) p
(
zh,yh

)
= ph

(
zh,yh

)
for all zh,yh ∈ Xh,

(iii) s
(
zh,yh

)
= sh

(
zh,yh

)
for all zh,yh ∈ Xh.

Space discretizations which violate at least one of these conditions are called non-conforming.

Note that these conditions are not completely independent of each other: Xh ⊂ X is needed for the
second and Xh⊂Y for the third condition. An overview of examples which fit into the unified framework
and a classification of their non-conformity is given in Table 1.
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Table 1. Overview and classification of non-conformity of examples from the unified framework

Xh ⊂ Y p = ph s = sh Discussed in

Advection eq. with Lagrange elements 3 3 3 Example 2.6

Maxwell’s eq. with Nédélec elements 3 3 3 Section 3.2.1

Maxwell’s eq. with discontinuous Galerkin 7 3 7 Section 3.2.2

Heterogeneous multiscale method for
Maxwell’s eq.

3 7 3 Hochbruck et al.
(2017)

Wave eq. with Lagrange elements 3 3 3 Section 4.5

Wave eq. with Lagrange elements with
mass lumping

3 7 3 Section 4.5

Wave eq. with acoustic bc. in smooth domains 7 7 7 Section 5

EXAMPLE 2.6 To illustrate our exposition we consider the advection equation as a model problem, see,
e.g. (Di Pietro & Ern, 2012, Chap. 2). Let Ω ⊂ Rd be a bounded, polygonal, convex domain. We seek
a function x : [0,T ]×Ω → R s.t.

xt +β ·∇x+µx = f in Ω , (2.11a)

x = 0 on Γ
−, (2.11b)

x(0) = x0 in Ω . (2.11c)

Here, µ > 0, β ∈ Rd , ∇x denotes the gradient of x and

Γ
− = {x ∈ Γ | β ·n(x)< 0} (2.12)

denotes the inflow part of the boundary Γ .
Comparing the variational formulation of this problem with (2.10) shows that p is the L2(Ω) inner

product and

s
(
z,y
)
=
∫

Ω

µzy+(β ·∇z)ydx. (2.13)

Therefore, we choose X = L2(Ω) and Y as the natural domain of the differential operator

Y =
{

y ∈ L2(Ω) | β ·∇y ∈ L2(Ω), y|Γ− = 0
}

(2.14)

equipped with the graph norm

‖y‖2
Y = p

(
y,y
)
+ p
(
β ·∇y,β ·∇y

)
. (2.15)

It is easy to see that Y is a dense subspace of X and that the associated operator S ∈L (Y,X) of s is
monotone (i.e. cqm = 0) and maximal w.r.t. X , see, e.g., (Di Pietro & Ern, 2012, Theorem 2.9). Thus the
problem is well-posed for suitable initial values and source terms due to Theorem 2.4.

We consider a space discretization with linear finite elements on a triangulation Th of Ω . Hence
Xh is the space of piecewise linear functions defined on Th equipped with the inner product ph = p.
We further have Ωh = Ω s.t. Xh ⊂ Y and sh = s, since the polygonal domain Ω is exactly triangulated.
Therefore, the finite element discretization is conforming due to Definition 2.5.
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Z, Zip X

Xh

X `
h⊃

Ph,Πh
Q
∗ hJh , Ih Q h

Spaces
X solution space
Xh approximation space
Z reference space
Zip interpolation space
X `

h = Qh(Xh)

Operators
Qh lift operator
Jh reference operator
Ih interpolation operator
Πh orthogonal projection
Ph = QhQ∗h

FIG. 1. Overview of spaces and operators

2.4 Notation for spaces and operators

The approximation xh ∈ Xh obtained from a non-conforming space discretization with Xh 6⊂ X cannot
be compared directly with the solution x ∈ X . Consider for example a finite element discretization of
a partial differential equation in a smooth domain Ω where the computational domain Ωh 6= Ω only
approximates Ω . In such a situation, we have Xh 6⊂ X , since the finite element functions in Xh are
defined in Ωh and not in Ω . To deal with this issue, we assume there exists a linear operator

Qh : Xh→ X (2.16)

which reconstructs the approximation Qhxh ≈ x in X . We call Qh the lift operator, as it “lifts” the
approximation xh to the lifted discrete space

X `
h := Qh(Xh).

For conforming methods, the lift operator can be chosen as Qh = I which implies X `
h = Xh. Examples

of non-trivial lift operators can be found in, e.g., Elliott & Ranner (2013), (Ciarlet, 2002, Chap. 4) and
Cockburn et al. (2014). To map from continuous function spaces into the discrete space Xh, we introduce
Jh ∈L (Z,Xh) where Z is a Hilbert space that is continuously embedded in X . We call Jh the reference
operator, since we base our error bounds on the following splitting of the error:

‖Qhxh− x‖X 6 ‖Qh(xh− Jhx)‖X +‖(QhJh− I)x‖X .

To obtain optimal convergence rates, the choice of Jh has to fit to the application. For conforming
methods, we choose the standard orthogonal projection onto Xh (w.r.t. p). However, for non-conforming
methods, we will see below that a suitable interpolation operator Ih : Zip→ Xh has to be used for Jh to
prove optimal convergence rates. In this case, the space Z = Zip is typically a higher order (broken)
Sobolev space which ensures that the interpolation operator is continuous, i.e., Ih ∈L (Zip,Xh).

The X-orthogonal projection onto the lifted discrete space X `
h is denoted by

Πh : X → X `
h , p

(
(I−Πh)z,Qhyh

)
= 0 ∀z ∈ X , yh ∈ Xh. (2.17a)

Moreover, we introduce the adjoint lift Q∗h to map between these spaces via

Q∗h : X → Xh, ph
(
Q∗hz,yh

)
= p
(
z,Qhyh

)
∀z ∈ X , yh ∈ Xh, (2.17b)

and further set
Ph := QhQ∗h : X → X `

h . (2.17c)

An overview of all involved mappings and spaces is given in Figure 1.
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REMARK ON CONFORMING METHODS For a conforming method, where Qh = I and X `
h = Xh, many of

these operators coincide. More precisely,

Ph = Πh = Q∗h

is just the p-orthogonal projection of X onto Xh.

Our error bounds will be given in terms of the remainder operator

Rh := Q∗hS−ShJh : D(S)∩Z→ Xh (2.18a)

and in terms of conformity errors represented by the differences of the bilinear forms which are

∆ p
(
zh,yh

)
:= p

(
Qhzh,Qhyh

)
− ph

(
zh,yh

)
, zh,yh ∈ Xh (2.18b)

∆s
(
zh,yh

)
:= s

(
Qhzh,Qhyh

)
− sh

(
zh,yh

)
, zh,yh ∈ Xh. (2.18c)

Note that the definition of ∆s requires X `
h ⊂ Y .

2.5 A priori error bounds

In applications where S is a differential operator, Sh ∈ L (Xh,Xh) is not uniformly bounded w.r.t. h.
Therefore, we assume the semi-discretization to be stable in the following sense.

DEFINITION 2.7 (Stability) We call the space discretization (2.7) stable if
(i) the discrete operator Sh ∈L (Xh,Xh) is quasi-monotone in Xh with ĉqm > 0 s.t.

ph
(
Shyh,yh

)
+ ĉqm‖yh‖2

Xh
> 0 ∀yh ∈ Xh,

(ii) the lift operator Qh : Xh→ X is continuous with cX > 0 s.t.

‖Qhyh‖X 6 cX‖yh‖Xh
∀yh ∈ Xh. (2.19)

REMARK 2.8 Under this assumption, Theorem 2.4 (with X replaced by Xh) shows that there exists a
unique solution xh of (2.7) with

‖xh(t)‖Xh
6 eĉqmt(‖x0

h‖Xh
+ t‖gh‖∞,Xh

)
. (2.20)

Note that our error analysis only makes use of (2.20) and not the quasi-monotonicity of Sh directly.

REMARK ON CONFORMING METHODS For conforming methods, the stability assumptions follow di-
rectly from the monotonicity of S with ĉqm = cqm. Moreover, since the inner products of X and Xh
coincide and Qh = I, we have cX = 1.

We now state the most general error bound of the unified error analysis.

THEOREM 2.9. Let the assumptions of Theorem 2.4 be fulfilled and assume that the solution x of (2.1)
satisfies x ∈C1([0,T ];Z). If the space discretization (2.7) is stable, then the error of the semi-discrete
approximation Qhxh is bounded by

‖Qhxh(t)− x(t)‖X 6Ceĉqmt
(

Edata(t)+ t‖(Q∗h− Jh)x′‖∞,Xh
+ t‖Rhx‖

∞,Xh

)
+‖(I−QhJh)x(t)‖X (2.21)
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for t ∈ [0,T ], a constant C which is independent of h and t,

Edata(t) := ‖x0
h− Jhx0‖Xh

+ t‖gh−Q∗hg‖
∞,Xh

(2.22)

and Rh defined in (2.18a).

Proof. Let eh := xh− Jhx denote the discrete error. By splitting the error and using that Qh ∈L (Xh,X)
for stable space discretizations, we obtain

‖Qhxh− x‖X 6 ‖Qheh‖X +‖(QhJh− I)x‖X 6 cX‖eh‖Xh
+‖(QhJh− I)x‖X . (2.23)

Hence it is sufficient to bound the discrete error.
Since x ∈C1([0,T ];Z) and Jh ∈L (Z,Xh), we have eh ∈C1([0,T ];Xh) and

e′h = x′h− Jhx′ = x′h−Q∗hx′+(Q∗h− Jh)x′.

We rewrite the first part using (2.7a) and (2.5)

x′h−Q∗hx′ =−Shxh +gh−Q∗h
(
−Sx+g

)
=−Sheh +gh−Q∗hg+

(
Q∗hS−ShJh

)
x.

Inserting this into the previous equation shows that the discrete error eh satisfies the differential equation

e′h +Sheh = gh−Q∗hg+
(
Q∗hS−ShJh

)
x+(Q∗h− Jh)x′.

The discrete stability estimate (2.20) therefore yields

‖eh(t)‖Xh
6 eĉqmt

(
‖eh(0)‖Xh

+ t
(
‖gh−Q∗hg‖

∞,Xh
+‖(Q∗h− Jh)x′‖∞,Xh

+‖Rhx‖
∞,Xh

))
.

Using this estimate in (2.23) completes the proof. �

REMARK 2.10 For Jh = Q∗h the error bound (2.21) simplifies to

‖Qhxh(t)− x(t)‖X 6Ceĉqmt
(

Edata(t)+ t‖Rhx‖
∞,Xh

)
+‖(I−Ph)x(t)‖X ,

where Rh = Q∗hS−ShQ∗h. Since Z = X in this case, the error bound is valid without further assumptions
on the solution obtained by Theorem 2.4 .

2.6 Convergence

In the rest of this section, we show that Qhxh converges to the exact solution for h→ 0, if the space
discretization is stable and consistent in the following sense.

DEFINITION 2.11 (Consistency) We call the space discretization (2.7) of (2.1) consistent if
(i) for all yh ∈ Xh, we have ‖∆ p(yh)‖X∗h

→ 0, h→ 0,

(ii) for all z ∈ Z, we have ‖(I−QhJh)z‖X → 0, h→ 0,

(iii) for all z ∈ D(S)∩Z, we have ‖Rhz‖Xh
→ 0, h→ 0.
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EXAMPLE 2.6 (continued) For the finite element discretization of the advection equation (2.11), we
have X = L2(Ω) and ∆ p = 0. Therefore, Assumption 2.11 (i) is fulfilled. If we choose Jh as the nodal
interpolation operator Ih : Z→ Xh with Z = H2(Ω), then Assumption 2.11 (ii) follows from

‖(I− Ih)z‖L2(Ω) 6Ch2|z|H2(Ω), z ∈ H2(Ω), (2.24)

cf. (Brenner & Scott, 2008, Sect. 4.4). Hence only Assumption 2.11 (iii) remains to be verified. This
will be done in the course of Section 3.

The following lemma provides a fundamental estimate which we will use frequently in the rest of
this article. It bounds the difference between the adjoint lift operator and the reference operator by the
sum of a reference error and a conformity error of the inner products.

LEMMA 2.12. If Qh ∈L (Xh,X) satisfies (2.19), then

‖(Q∗h− Jh)z‖Xh
6 cX‖(I−QhJh)z‖X +‖∆ p(Jhz)‖X∗h

, z ∈ Z.

Proof. First observe that for all zh ∈ Xh

‖zh‖Xh
= max
‖yh‖Xh

=1
ph
(
zh,yh

)
. (2.25)

Therefore, we have for z ∈ Z by (2.18b)

‖(Q∗h− Jh)z‖Xh
= max
‖yh‖Xh

=1
ph
(
(Q∗h− Jh)z,yh

)
= max
‖yh‖Xh

=1
ph
(
Q∗hz,yh

)
− ph

(
Jhz,yh

)
= max
‖yh‖Xh

=1
p
(
z,Qhyh

)
− p
(
QhJhz,Qhyh

)
+ p
(
QhJhz,Qhyh

)
− ph

(
Jhz,yh

)
= max
‖yh‖Xh

=1
p
(
(I−QhJh)z,Qhyh

)
+∆ p

(
Jhz,yh

)
6 cX‖(I−QhJh)z‖X +‖∆ p(Jhz)‖X∗h

.

This was the claim. �

COROLLARY 2.13. Let the assumptions of Theorem 2.4 be fulfilled and assume that the unique solution
x of (2.1) satisfies x ∈C1([0,T ];Z).

(i) If the space discretization (2.7) is stable, then the error of the semi-discrete approximation Qhxh
is bounded by

‖Qhxh(t)− x(t)‖X 6Ceĉqmt(1+ t)
(

Edata(1)+‖(I−QhJh)x‖∞,X +‖(I−QhJh)x′‖∞,X

+‖∆ p(Jhx′)‖
∞,X∗h

+‖Rhx‖
∞,Xh

)
(2.26)

for t ∈ [0,T ], a constant C which is independent of h and t, and Edata and Rh as defined in (2.22)
and (2.18a), respectively.
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(ii) If the space discretization (2.7) is stable and consistent, and g(t) ∈ Z, t ∈ [0,T ] with

‖x0
h− Jhx0‖Xh

→ 0 and ‖gh− Jhg‖
∞,Xh
→ 0, h→ 0,

then the semi-discrete approximation converges, i.e.,

‖Qhxh(t)− x(t)‖X → 0, h→ 0,

for t ∈ [0,T ].

Proof. (i) The desired estimate follows directly from the general error bound (2.21) and Lemma 2.12.
(ii) Using Lemma 2.12 and Assumptions 2.11 (i)-(ii) to estimate the source term error in Edata, we

obtain

‖gh(t)−Q∗hg(t)‖Xh
6 ‖gh(t)− Jhg(t)‖Xh

+‖(Jh−Q∗h)g(t)‖Xh

6 ‖gh(t)− Jhg(t)‖Xh
+ cX‖(I−QhJh)g(t)‖X +‖∆ p(Jhg(t))‖X∗h

→ 0

for h→ 0, since g(t)∈ Z. Because the initial value converges by assumption, we thus showed Edata→ 0,
h→ 0. All other terms in the upper bound of (2.26) vanish as h→ 0 due to the consistency of the
method. This completes the proof. �

For a specific application, the a priori error estimate (2.26) still needs to be complemented with a
bound on the remainder term ‖Rhx‖Xh

. In the following, we will show such bounds for space discretiza-
tions of first-order wave-type equations and second-order wave-type equations.

3. First-order wave-type equations

This section is devoted to the error analysis of non-conforming space discretizations of first-order wave-
type equations. This class of wave equations comprises symmetric hyperbolic systems as defined in
Benzoni-Gavage & Serre (2007) or Burazin & Erceg (2016), but also general dissipative first-order
partial differential equations.

Let Y d↪→ X ' X∗ d↪→Y ∗ be a Gelfand triple of real Hilbert spaces. We seek the solution x : [0,T ]→Y
of the first-order wave-type equation

p
(
x′(t),y

)
+ s
(
x(t),y

)
= p
(
g(t),y

)
∀y ∈ Y, (3.1a)

x(0) = x0, (3.1b)

where p denotes the inner product on X , g : [0,T ]→ X is a function and s is a bilinear form which
satisfies the following assumption.

ASSUMPTION 3.1 (First-order wave-type equations)
(i) The bilinear form s : Y ×X → R is continuous, i.e. there is a constant cs > 0 s.t.

|s
(
z,y
)
|6 cs‖z‖Y‖y‖X ∀z ∈ Y,y ∈ X .

(ii) The bilinear form s is quasi-monotone and maximal w.r.t. X , i.e. there is a constant cqm > 0 s.t.

s
(
y,y
)
+ cqm‖y‖2

X > 0 ∀y ∈ Y

and there exists a λ > cqm s.t. for every f ∈ X there is a unique z ∈ Y s.t.

λ p
(
z,y
)
+ s
(
z,y
)
= p
(

f ,y
)

∀y ∈ X .



14 of 37 D. HIPP ET AL.

Note that (3.1) is equivalent to the evolution equation (2.1) where S is induced by s. As a conse-
quence of Assumption 3.1, S ∈ L (Y,X) is a maximal and quasi-monotone operator with D(S) = Y
and ‖S ‖X←Y = cs. Therefore the first-order wave-type equation (3.1) has a unique solution

x ∈C1([0,T ];X)∩C([0,T ];Y ) (3.2)

for initial values x0 and source terms g which satisfy the conditions of Theorem 2.4 with W = X .

3.1 A priori error bounds

Next we consider space discretizations of first-order wave-type equations which yield an approximation
xh : [0,T ]→ Xh in the finite dimensional vector space Xh s.t.

ph
(
x′h(t),yh

)
+ sh

(
xh(t),yh

)
= ph

(
gh(t),yh

)
∀yh ∈ Xh, (3.3a)

xh(0) = x0
h. (3.3b)

Here gh : [0,T ]→ Xh is a function and ph, sh are bilinear forms which satisfy the following assumption.

ASSUMPTION 3.2 (Stability)
(i) The bilinear form ph is an inner product on Xh and induces the norm ‖yh‖2

Xh
:= ph

(
yh,yh

)
.

(ii) There is a constant ĉqm > 0 s.t.

sh
(
yh,yh

)
+ ĉqm‖yh‖2

Xh
> 0 ∀yh ∈ Xh.

(iii) The lift operator Qh : Xh→ X is continuous with ‖Qhyh‖X 6 cX‖yh‖Xh
for all yh ∈ Xh.

The goal of this section is to derive a priori error estimates for Qhxh in terms of interpolation and
conformity errors. Since Assumption 3.2 guarantees that the evolution equation (2.7) associated with
(3.3) is stable in the sense of Definition 2.7, we can employ the estimate from Corollary 2.13 (i). There-
fore it only remains to estimate ‖Rhx‖Xh

in terms of errors of the interpolation operator Ih ∈L (Zip,Xh),
Zip

d↪→ Y , and the conformity errors ∆ p and ∆s as defined in (2.18).
Motivated by the applications presented in Section 3.2, we distinguish between two different cases.

The finite element method leads to semi-discrete problems where X `
h ⊂Y and the discontinuous Galerkin

method to X `
h 6⊂ Y but X `

h ⊂ X .

3.1.1 Space discretizations with X `
h ⊂Y . In this section, we consider space discretizations where the

lifted discrete space X `
h is not only contained in X but also in the smaller space Y .

THEOREM 3.3. Let the assumptions of Theorem 2.4 be fulfilled and assume that the solution x of the
first-order wave-type equation (3.1) satisfies x ∈C1([0,T ];Zip). If the space discretization (3.3) satisfies
Assumption 3.2 and X `

h ⊂ Y , then the error of the semi-discrete approximation Qhxh is bounded by

‖Qhxh(t)− x(t)‖X 6Ceĉqmt(1+ t)
(

edata +‖(I−QhIh)x′‖∞,X +‖(I−QhIh)x‖∞,Y

+‖∆ p(Ihx′)‖
∞,X∗h

+‖∆s(Ihx)‖
∞,X∗h

)
for t ∈ [0,T ], a constant C which is independent of h and t, and

edata := ‖x0
h− Ihx0‖Xh

+‖gh−Q∗hg‖
∞,Xh

. (3.4)
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Proof. By assumption we have X `
h ⊂ Y and S ∈L (Y,X). Therefore, we obtain for yh ∈ Xh

ph
(
Rhx,yh

)
= ph

(
(Q∗hS−ShJh)x,yh

)
= p
(
Sx,Qhyh

)
− ph

(
ShJhx,yh

)
= s
(
x,Qhyh

)
− sh

(
Jhx,yh

)
= s
(
(I−QhJh)x,Qhyh

)
+ s
(
Qh(Jhx),Qhyh

)
− sh

(
Jhx,yh

)
6 cs‖(I−QhJh)x‖Y‖Qhyh‖X +∆s(Jhx,yh)

6 cs‖(I−QhJh)x‖Y cX‖yh‖Xh
+∆s(Jhx,yh),

where we used Assumption 3.2 (iii) for the last inequality. Thus it follows from (2.25) that

‖Rhx‖Xh
= max
‖yh‖Xh

=1
ph
(
Rhx,yh

)
6 cX cs‖(I−QhJh)x‖Y +‖∆s(Jhx)‖X∗h

. (3.5)

Finally, we choose Jh = Ih. The desired estimate then follows from Y d↪→ X and Corollary 2.13 (i). �
For conforming methods, we obtain an error bound independent of x′ if we choose Jh = Πh. To

prove this bound, we use that any two norms on the finite dimensional space Xh are equivalent. This
implies that there exists a δh > 0 s.t.

δh‖yh‖Y 6 ‖yh‖X , yh ∈ Xh. (3.6)

In the context of finite element methods, such inequalities are called inverse estimates and we usually
have δh→ 0 as h→ 0.

COROLLARY 3.4. Let the assumptions of Theorem 2.4 be fulfilled and let x be the unique solution
of the first-order wave-type equation (3.1) satisfying x(t) ∈ Zip, t ∈ [0,T ]. If the space discretization
(3.3) is conforming due to Definition 2.5 and fulfills Assumption 3.2 for Qh = I, then the error of the
semi-discrete approximation xh is bounded by

‖xh(t)− x(t)‖X 6Cecqmt(1+ t)
(

edata +δ
−1
h ‖(I− Ih)x‖∞,X +‖(I− Ih)x‖∞,Y

)
for t ∈ [0,T ], a constant C which is independent of h and t, and edata defined in (3.4).

Proof. First note that conforming methods are stable with ĉqm = cqm and cX = 1. For the error analysis
of conforming methods, we choose Jh = Πh = Q∗h ∈ L (X ,Xh) with Z = X such that the simplified
estimate from Remark 2.10 applies. Moreover, (3.5) and ∆s≡ 0 imply

‖Rhx‖Xh
6C‖(I−Πh)x‖Y .

To obtain an estimate in terms of interpolation errors, we apply (3.6) and use that Πh is the best approx-
imation w.r.t. the X-norm

‖(I−Πh)x‖Y 6 ‖(I− Ih)x‖Y +‖(Ih−Πh)x‖Y
6 ‖(I− Ih)x‖Y +δ

−1
h ‖(Ih−Πh)x‖X

6 ‖(I− Ih)x‖Y +δ
−1
h

(
‖(Ih− I)x‖X +‖(I−Πh)x‖X

)
,

6 ‖(I− Ih)x‖Y +2δ
−1
h ‖(I− Ih)x‖X . (3.7)

Collecting terms then yields the final estimate. �
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EXAMPLE 2.6 (continued) For the finite element discretization of the advection equation (2.11), there
exists a δh s.t. δ

−1
h 6Ch−1, cf. (Brenner & Scott, 2008, Lem. 4.5.3). Moreover, the interpolation error

converges linearly in the Y -norm, since

‖(I− Ih)z‖Y 6 ‖(I− Ih)z‖H1(Ω) 6Ch|z|H2(Ω), z ∈ H2(Ω),

and quadratically in X = L2(Ω), as we showed in (2.24). Thus, we obtain from Corollary 3.4 that the
error of the finite element approximation is bounded by

‖xh(t)− x(t)‖L2(Ω) 6C(1+ t)h‖x‖
∞,H2(Ω),

if x(t) ∈ H2(Ω), t ∈ [0,T ] and x0
h = Πhx0, gh(t) = Πhg(t), t ∈ [0,T ]. For similar results, we refer to

Layton (1983) and Dunca (2017).

3.1.2 Space discretizations with X `
h 6⊂ Y . In this section, we consider space discretizations where

X `
h ⊂ X and X `

h 6⊂ Y.

This situation appears e.g. for discontinuous Galerkin (dG) methods which approximate the solution
by a function which may have discontinuities between elements of the mesh. A typical example is
the discretization of an advection equation in the broken polynomial space Xh = Pk(Th) consisting of
piecewise polynomials of degree k on a triangulation Th of Ω .

For our error analysis of such space discretizations it is necessary to insert the exact solution x into
sh
(
·,yh
)

for yh ∈ Xh. Thus we assume that sh : Xh×Xh→ R can be extended to

sh : (Xh +Zip)×Xh→ R. (3.8a)

Furthermore, we define

∆s
(
z,yh

)
:= s

(
z,Qhyh

)
− sh

(
z,yh

)
, z ∈ Zip∩Y, yh ∈ Xh. (3.8b)

In this setting we can show the following error bound.

THEOREM 3.5. Let the assumptions of Theorem 2.4 be fulfilled and assume that the solution x of the
first-order wave-type equation (3.1) satisfies x ∈C1([0,T ];Zip). If the space discretization (3.3) fulfills
Assumption 3.2 and sh can be extended to (3.8a), then the error of the semi-discrete approximation Qhxh
is bounded by

‖Qhxh(t)− x(t)‖X 6Ceĉqmt(1+ t)
(

edata +‖(I−QhIh)x′‖∞,X +‖(I−QhIh)x‖∞,X

+‖sh
(
(I− Ih)x

)
‖

∞,X∗h
+‖∆s(x)‖

∞,X∗h
+‖∆ p(Ihx′)‖

∞,X∗h

)
for t ∈ [0,T ], a constant C which is independent of h and t, and edata defined in (3.4).

Proof. Since the solution x belongs to Zip∩Y , we find for yh ∈ Xh

ph
(
Rhx,yh

)
= s
(
x,Qhyh

)
− sh

(
Jhx,yh

)
= s
(
x,Qhyh

)
− sh

(
x,yh

)
+ sh

(
x,yh

)
− sh

(
Jhy,yh

)
= ∆s

(
x,yh

)
+ sh

(
(I− Jh)x,yh

)
.
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By (2.25), taking the maximum over all yh with ‖yh‖Xh
= 1 thus yields

‖Rhx‖Xh
6 ‖sh

(
(I− Jh)x

)
‖X∗h

+‖∆s(x)‖X∗h
.

The claim now follows from Corollary 2.13 (i) and setting Jh = Ih. �

REMARK 3.6 If Qh = I, ∆ p≡ 0, and ∆s≡ 0, and if the assumptions of Theorem 3.5 are satisfied, then
similar arguments with Jh = Πh show

‖xh(t)− x(t)‖X 6 Ceĉqmt(1+ t)
(

edata +‖sh
(
(I−Πh)x′

)
‖

∞,X∗h
+‖(I− Ih)x‖∞,X

)
, (3.9)

cf. Corollary 3.4. Note that instead of x ∈ C1([0,T ];Zip), we only need to assume x(t) ∈ Zip for this
estimate.

3.2 Examples: Maxwell’s equations

As the prototype of a first-order wave-type equation we consider Maxwell’s equations for linear isotropic
materials with perfectly conducting boundary conditions, cf. Kirsch & Hettlich (2015).

Let E : [0,T ]×Ω → R3 be the electric field and H : [0,T ]×Ω → R3 be the magnetic field in a
polyhedral domain Ω ⊂ R3 given by

µHt =−curlE in Ω ,

εEt = curlH in Ω ,

n×E = 0 on Γ ,

H(0) = H0, E(0) = E0 in Ω ,

where the permittivity and the permeability ε,µ ∈ L∞(Ω) are uniformly positive. We assume that the
initial values satisfy div(εE0) = div(µH0) = 0 in Ω and n ·(µH0) = 0 on Γ . Then E(t) and H(t) satisfy
these conditions for all t > 0, cf. (Hochbruck et al., 2015, Prop. 3.5).

The suitable functional analytic setting for x = [H,E]T is given by the Hilbert space X := L2(Ω)6

endowed with a weighted inner product and Y = H(curl,Ω)×H0(curl,Ω) which is densely and contin-
uously embedded into X . Maxwell’s equations are a first-order wave-type equation since the Maxwell
operator S ∈L (Y,X) is skew-symmetric and maximal, cf., e.g. (Hochbruck et al., 2015, Sect. 3.2).
Hence Maxwell’s equations are well-posed due to Theorem 2.4 for x0 ∈ Y .

Since Ω is polyhedral in this application, we assume that the computational domain satisfies Ωh =Ω

in the following examples. Moreover, we assume that x0
h = Ihx0 s.t. edata = 0.

3.2.1 Edge element discretizations. In this example, we consider a space discretization of Maxwell’s
equation using first order curl-conforming elements of Nédélec’s second type on a quasi-uniform mesh
Th, cf. Nédélec (1986). For such space discretizations, we have Xh =Vh(curl)×Vh,0(curl) where

Vh(curl) =
{

Uh ∈ H(curl,Ω) |Uh
∣∣
K ∈ (P1)

3 for K ∈Th

}
,

Vh,0(curl) = {Uh ∈Vh(curl) | ν×Uh = 0 on Γ },

and the discrete inner product and differential form are given by ph = p and sh = s. This is possible since
Xh ⊂ Y by construction. Moreover, there exists an interpolation operator Ih : Zip → Xh, Zip = H2(Ω)6
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s.t.

‖(I− Ih)z‖X +h‖(I− Ih)z‖Y 6Ch2‖z‖H2(Ω)6 , z ∈ H2(Ω)6,

cf. (Nédélec, 1986, Prop. 3), and the inverse estimate between L2(Ω) and H1(Ω) implies δ
−1
h 6Ch−1

if 0 < h6 1.
Therefore, we are in the situation of Section 3.1.1 and the a priori estimate from Corollary 3.4

applies. If x =
(
H,E

)
∈C
(
[0,T ];H2(Ω)6

)
, then the approximation properties of the interpolation imply

that the semi-discrete solution xh =
(
Hh,Eh

)
converges linearly in h with

‖xh(t)− x(t)‖L2(Ω)6 6C(1+ t)h.

A similar convergence result for elements of Nédélec’s first type can be found in (Zhao, 2004, Thm. 4.1).
Observe that x =

(
H,E

)
∈C
(
[0,T ];H2(Ω)6

)
can only be guaranteed under additional assumptions

on x0, ε , µ and Ω , cf. for example (Hochbruck et al., 2015, Lem. 3.7) for sufficient conditions if Ω is a
cuboid.

3.2.2 Discontinuous Galerkin discretizations. Discontinuous Galerkin methods are a very competi-
tive approach to approximate Maxwell’s equation numerically. This example investigates a discontinu-
ous Galerkin discretization where sh stems from a central (also centered) fluxes dG discretization of the
Maxwell operator, cf. Di Pietro & Ern (2012), and which seeks an approximation in the set of piecewise
polynomials Xh = Pk(Th)

6, k> 0 on Th. Then the extension of sh to
(
Y ∩H1(Th)

6
)
×Xh is consistent

in the sense that ∆s≡ 0. Moreover, we have by (Hochbruck & Sturm, 2016, (5.3) and (5.5))

‖(I− Ih)z‖X +h‖sh((I−Πh)z)‖X∗h
6C

(
∑

K∈Th

h2k+2
K |z|2Hk+1(K)6

)1/2

, z ∈ Y ∩Hk+1(Th)
6,

where Ih : H2(Th)
6 → Xh is the piecewise nodal interpolation operator and |x|Hk+1(K)6 the Hk+1(K)6

semi-norm of x. Hence Zip = Y ∩H2(Th)
6 is a suitable choice for our setting.

The convergence result then follows from (3.9). If the solution x of Maxwell’s equations belongs to
C
(
[0,T ];H2(Th)

6) then the dG approximation xh =
(
Eh,Hh

)
satisfies

‖xh(t)− x(t)‖L2(Ω)6 6C(t)hk.

This result can for example be found in (Fezoui et al., 2005, Thm. 3.5).

4. Second-order wave-type equations

In this section, we consider wave-problems formulated as second-order evolution equations. Our ab-
stract formulation covers a wide range of problems including wave equations with dynamic boundary
conditions and problems with damping or advection effects.

4.1 Description of the continuous problem

Let H and V be two Hilbert spaces with V d↪→ H, i.e., there is a constant CH,V > 0 s.t.

‖v‖H 6CH,V‖v‖V , v ∈V.
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By m : H×H→R we denote the inner product of H and we identify H 'H∗ to form the Gelfand triple

V d↪→ H ' H∗ d↪→V ∗.

The second-order wave-type equation then reads: Find u : [0,T ]→V s.t.

〈u′′(t),v〉V +b
(
u′(t),v

)
+a
(
u(t),v

)
= 〈 f (t),v〉V ∀v ∈V, (4.1a)

u(0) = u0
1, u′(0) = u0

2, (4.1b)

where f : [0,T ]→ V ∗ is a given function and where the bilinear forms a and b satisfy the following
assumption.

ASSUMPTION 4.1 (Second-order wave-type equations)
(i) The bilinear form a : V ×V → R is continuous, symmetric and satisfies the Gårding inequality

a
(
v,v
)
+ cG‖v‖2

H > α‖v‖2
V , v ∈V, (4.2)

for constants cG > 0 and α > 0.

(ii) The bilinear form b : V ×V → R is continuous and there is a constant ρqm > 0 s.t. b+ρqmm is
monotone, i.e.,

b
(
v,v
)
+ρqm‖v‖2

H > 0, v ∈V.

Since the bilinear forms a and b induce operators A ,B ∈L (V,V ∗), respectively, we can write (4.1)
equivalently as the evolution equation

u′′+Bu′+A u = f in V ∗ (4.3)

supplemented by initial conditions u(0) = u0
1 and u′(0) = u0

2.
Furthermore, we introduce the bilinear form

ã
(
w,v
)

:= a
(
w,v
)
+ cG m

(
w,v
)
, w,v ∈V, (4.4)

which is coercive on V ×V due to (4.2), and define Ṽ = (V, ã) as the Hilbert space equipped with ã.
Note that the Gårding inequality implies

‖v‖H 6CH,V‖v‖V 6CH,V α
−1/2‖v‖Ṽ , v ∈ Ṽ . (4.5)

4.2 Well-posedness of the continuous problem

Introducing u1 = u and the velocity u2 = u′, the second order problem (4.3) can be written as a first-order
in time problem (2.1) with

x(t) =

[
u1(t)
u2(t)

]
, S =

[
0 −I
A B

]
, g(t) =

[
0

f (t)

]
, x0 =

[
u0

1
u0

2

]
. (4.6a)

A suitable Gelfand triple for this evolution equation is given via

Y = Ṽ ×V and X = Ṽ ×H, (4.6b)

equipped with their canonical inner products. In the following, we will refer to (2.1) with (4.6) as the
first-order in time formulation of the second-order wave-type equation (4.3).

Variants of the following results can be found in the proof of (Showalter, 1994, Thm. VI.2.1). A
complete proof is given in (Hipp, 2017, Lem. 6.2).
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LEMMA 4.2. If Assumption 4.1 is satisfied, then S ∈L (Y,Y ∗) is quasi-monotone with

cqm = 1
2 cGCH,V α

−1/2 +ρqm (4.7)

and maximal w.r.t. Y ∗.

Expressing Theorem 2.4 in terms of (4.6) gives the following result.

THEOREM 4.3. Let Assumption 4.1 be fulfilled. If the initial values u0
1,u

0
2 ∈V satisfy A u0

1 +Bu0
2 ∈ H

and f ∈ C1([0,T ];H) or
(

f ,B f
)
∈ C([0,T ];V ×H), then the second-order wave-type equation (4.3)

has a unique solution u ∈C2([0,T ];H)∩C1([0,T ];V ) which satisfies A u+Bu′ ∈C([0,T ];H) and(
‖u(t)‖2

Ṽ +‖u′(t)‖2
H

)1/2
6 ecqmt

((
‖u0

1‖
2
Ṽ +‖u0

2‖
2
H

)1/2
+ t‖ f‖

∞,H

)
, t ∈ [0,T ],

for cqm from (4.7).
If further B ∈ L (V,H), then we have u ∈ C2([0,T ];H)∩C1([0,T ];V )∩C([0,T ]; [D(A)]) where

D(A) = {v ∈V |A v ∈ H} and A = A
∣∣
D(A).

Proof. The assumptions guarantee that S , x0 and g from (4.6) are such that Theorem 2.4 applies.
More precisely, S is quasi-monotone due to Lemma 4.2, x0 =

(
u0

1,u
0
2
)
∈ D(S), and, g ∈C1([0,T ];X)

or Sg ∈C([0,T ];X). By Theorem 2.4, (2.1) has the unique solution x and we obtain from (4.6) that

x ∈C([0,T ]; [D(S)])∩C1([0,T ];Ṽ ×H),

where
D(S) =

{
y ∈ Y |S y ∈ X

}
=
{(

v1,v2
)
∈ Ṽ ×V |A v1 +Bv1 ∈ H

}
.

Since x =
(
u1,u2

)
and u1 = u, u2 = u′, the stability estimate follows from (2.4) and we have u′′ = u′2 ∈

C([0,T ];H). Moreover, Sx ∈C([0,T ];X) implies t 7→A u(t)+Bu′(t) ∈C([0,T ];H).
If B ∈L (V,H), then D(S) = D(A)×V and therefore u ∈C([0,T ]; [D(A)]), which gives the second

claim. �

4.3 Space discretization

The aim of this section it to derive a priori estimates for non-conforming space discretizations of (4.1)
in the finite dimensional vector space Vh, which determine the approximation uh : [0,T ]→ Vh as the
solution of

mh
(
u′′h(t),vh

)
+bh

(
u′h(t),vh

)
+ah

(
uh(t),vh

)
= mh

(
fh(t),vh

)
∀vh ∈Vh, (4.8a)

uh(0) = u0
h,1, u′h(0) = u0

h,2. (4.8b)

Here u0
h,1,u

0
h,2 ∈Vh, fh : [0,T ]→Vh and mh, bh, ah : Vh×Vh→R are the discrete counterparts of u0

1, u0
2,

f and m, b, a, respectively. Since we do not assume that Vh ⊂ V this ansatz covers a wide range of
non-conforming space discretizations. Analogously to Section 2.4, we assume that there exists a lift
operator

QV
h : Vh→V,

which yields the lifted approximation QV
h uh ∈V of the exact solution u of (4.1).
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STABILITY For the stability of the space discretization (4.8) and our error analysis, we assume that it
satisfies the following properties.

ASSUMPTION 4.4 (Stability) The following conditions hold for wh,vh ∈Vh.
(i) The bilinear form mh is an inner product on Vh and induces the norm

‖vh‖2
mh

:= mh
(
vh,vh

)
.

(ii) The bilinear form ah is monotone and symmetric and there is a constant 06 ĉG 6 1 s.t.

ãh
(
wh,vh

)
:= ah

(
wh,vh

)
+ ĉGmh

(
wh,vh

)
(4.9a)

is positive definite and induces the norm

‖vh‖2
ãh

:= ãh
(
vh,vh

)
.

(iii) There is a constant Cmh,ãh > 0 independent of h s.t. ‖vh‖mh
6Cmh,ãh‖vh‖ãh

.

(iv) There is a constant ρ̂qm > 0 s.t. the bilinear form bh + ρ̂qmmh is monotone.

(v) The lift operator QV
h is continuous from

(
Vh,‖·‖mh

)
into H with cH > 0 s.t.

‖QV
h vh‖H 6 cH‖vh‖mh

.

(vi) The lift operator QV
h is continuous from

(
Vh,‖·‖ãh

)
into Ṽ with cV > 0 s.t.

‖QV
h vh‖Ṽ 6 cV‖vh‖ãh

.

If Assumption 4.4 is satisfied then we write Hh :=
(
Vh,mh

)
and Ṽh :=

(
Vh, ãh

)
for Vh equipped with

the inner product mh and ãh, respectively. Furthermore, note that ah : Ṽh×Ṽh→ R satisfies

|ah
(
wh,vh

)
|6 ‖wh‖ãh

‖vh‖ãh
, wh,vh ∈ Ṽh, (4.10)

since it is a monotone symmetric bilinear form.

REMARK 4.5 If we choose ĉG = 1, then Assumption 4.4 (ii) and Assumption 4.4 (iii) with Cmh,ãh = 1
are always fulfilled. However, ĉG > 0 leads to exponential growth of the constants in t, while equations
where ĉG = ρ̂qm = 0, only exhibit linear growth, cf. Theorem 4.8. Therefore, smaller constants cG are
to be favored, since they lead to sharper bounds.

FORMULATION IN THE FRAMEWORK OF MONOTONE OPERATORS To write (4.8) as a differential
equation, we define the operators

Ah : Hh→ Hh, mh
(
Ahwh,vh

)
= ah

(
wh,vh

)
, wh, vh ∈Vh,

and Bh : Hh→ Hh, mh
(
Bhwh,vh

)
= bh

(
wh,vh

)
, wh, vh ∈Vh.

Then we can express the variational problem (4.8) as the second-order differential equation

u′′h(t)+Bhu′h(t)+Ahuh(t) = fh(t), uh(0) = u0
h,1, u′h(0) = u0

h,2,
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or, equivalently, as the first-order differential equation (2.7) with

xh =

[
uh

u′h

]
, Sh =

[
0 −IVh

Ah Bh

]
, gh =

[
0

fh(t)

]
, x0

h =

[
u0

h,1

u0
h,2

]
(4.11a)

in the Hilbert space

Xh = Ṽh×Hh (4.11b)

endowed with the inner product

ph
((

wh,1,wh,2
)
,
(
vh,1,vh,2

))
:= ãh

(
wh,1,vh,1

)
+mh

(
wh,2,vh,2

)
. (4.11c)

Finally, we define the lift operator Qh : Xh→ X as

Qh

[
wh,1

wh,2

]
:=

[
QV

h wh,1

QV
h wh,2

]
.

Note that one can also choose two different lifts for the components wh,1 and wh,2. For the ease of
presentation, we refrain from investigating this here.

NOTATION To apply our results from Section 2 for the second-order wave equations, we need to write
the operators from Section 2.4 componentwise. The components of the adjoint lift Q∗h = diag(QV∗

h ,QH∗
h )

are characterized by

QH∗
h : H→ Hh, mh

(
QH∗

h w,vh
)
= m

(
u,QV

h vh
)
, w ∈ H, vh ∈Vh,

and QV∗
h : V → Ṽh, ãh

(
QV∗

h w,vh
)
= ã
(
w,QV

h vh
)
, w ∈V, vh ∈Vh,

and the components of the orthogonal projections Πh = diag(ΠV
h ,Π

H
h ) by

m
(
(I−Π

H
h )w,QV

h vh
)
= 0, w ∈ H, vh ∈Vh,

and ã
(
(I−Π

V
h )w,Q

V
h vh
)
= 0, w ∈V, vh ∈Vh.

The difference between the bilinear forms is denoted by

∆m
(
wh,vh

)
:= m

(
QV

h wh,QV
h vh
)
−mh

(
wh,vh

)
, wh,vh ∈Vh,

and ∆ ã
(
wh,vh

)
:= ã

(
QV

h wh,QV
h vh
)
− ãh

(
wh,vh

)
, wh,vh ∈Vh.

We define the reference operator Jh = diag(JV
h ,J

H
h ) using the operators JV

h : Z1→ Vh and JH
h : Z2→ Vh

on the Hilbert spaces Z1 ↪→V and Z2 ↪→H. Finally, since norms on finite dimensional vector spaces are
equivalent, there is an εh > 0 s.t.

εh‖vh‖ãh
6 ‖vh‖mh

, vh ∈Vh. (4.12)

REMARK 4.6 If Xh is a finite element space based on a mesh Th of Ω with mesh width h and the
discretization satisfies ‖·‖mh

∼ ‖·‖L2(Ω) and ‖·‖ãh
∼ ‖·‖H1(Ω), then we have ε

−1
h 6 Ch−1 due to the

inverse estimate from (Brenner & Scott, 2008, Lem. 4.5.3).
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4.4 A priori error bounds

As a first step towards an a priori error bound, we estimate the remainder operator Rh from (2.18a).

LEMMA 4.7. Let z=
(
w1,w2

)
∈ (Z1×Z2)∩(V×V ) s.t. A w1+Bw2 ∈H. If Assumption 4.4 is satisfied,

then the remainder term is bounded by

‖Rhz‖Xh
6C

(
‖∆ ã(JH

h w2)‖Ṽ ∗h +‖∆ ã(JH
h w1)‖Ṽ ∗h +‖∆m(JH

h w1)‖H∗h

+‖(I−QV
h JH

h )w1‖Ṽ +‖(I−QV
h JH

h )w2‖Ṽ + ε
−1
h ‖(Q

V∗
h − JV

h )w1‖ãh

+ max
‖vh‖mh

=1
|b
(
w2,QV

h vh
)
−bh

(
JH

h w2,vh
)
|
)
.

Proof. Recall that p and ph denote the inner products on X and Xh respectively, that

Rh

[
w1

w2

]
=

[
−(QV∗

h − JH
h )w2

QH∗
h (A w1 +Bw2)− (AhJV

h w1 +BhJH
h w2)

]
by Rh = Q∗hS−ShJh with (4.6) and (4.11), and that

‖Rhz‖Xh
= max
‖yh‖Xh

=1
ph
(
Rhz,yh

)
, z ∈ Z∩Y. (4.13)

Let yh =
(
vh,1,vh,2

)
∈ Xh with ‖yh‖2

Xh
= ‖vh,1‖2

ãh
+‖vh,2‖2

mh
= 1. Then we have for the right hand side

ph
(
Rhx,yh

)
= − ãh

(
(QV∗

h − JH
h )w2,vh,1

)
+mh

(
QH∗

h (A w1 +Bw2)− (AhJV
h w1 +BhJH

h w2),vh,2
)

= − ãh
(
(QV∗

h − JH
h )w2,vh,1

)
+
(

a
(
w1,QV

h vh,2
)
−ah

(
JV

h w1,vh,2
))

+
(

b
(
w2,QV

h vh,2
)
−bh

(
JH

h w2,vh,2
))

.

For the first term, we use the Cauchy–Schwarz inequality for ãh and ‖vh,1‖ãh
6 1 to obtain

ãh
(
(QV∗

h − JH
h )w2,vh

)
6 ‖(QV∗

h − JH
h )w2‖ãh

‖vh‖ãh
6 cV‖(I−QhJH

h )w2‖Ṽ +‖∆ ã(JH
h w2)‖Ṽ ∗h ,

where we applied Lemma 2.12 with Xh = Ṽh in the second inequality.
For the upper bound of the second term, we first add and subtract QV∗

h and then rewrite a and ah
in terms of ã and ãh using (4.4) and (4.9a), respectively. The first difference then vanishes due to the
definition of QV∗

h , while applying (4.10) and the Cauchy–Schwarz inequality for mh to the remaining
terms yields

a
(
w1,QV

h vh,2
)
−ah

(
JV

h w1,vh,2
)

6 a
(
w1,QV

h vh,2
)
−ah

(
QV∗

h w1,vh,2
)
+ah

(
(QV∗

h − JV
h )w1,vh,2

)
6
(

ã
(
w1,QV

h vh,2
)
− ãh

(
QV∗

h w1,vh,2
))

+
(

cGm
(
w1,QV

h vh,2
)
− ĉGmh

(
QV∗

h w1,vh,2
))

+‖(QV∗
h − JV

h )w1‖ãh
‖vh,2‖ãh

6max{cG, ĉG}
∣∣mh
(
(QV∗

h −QH∗
h )w1,vh,2

)∣∣+‖(QV∗
h − JV

h )w1‖ãh
‖vh,2‖ãh

6max{cG, ĉG}‖(QV∗
h −QH∗

h )w1‖mh
+ ε
−1
h ‖(Q

V∗
h − JV

h )w1‖ãh
.
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Here we used (4.12) and ‖vh,2‖mh
6 1 in the last step. To further estimate the first term, we split it into

two parts, use Assumption 4.4 (iii) for the first one, and then employ the estimate from Lemma 2.12
with Xh = Ṽh and Xh = Hh. This yields

‖(QV∗
h −QH∗

h )w1‖mh

6 ‖(QV∗
h − JH

h )w1‖mh
+‖(JH

h −QH∗
h )w1‖mh

6Cmh,ãh‖(Q
V∗
h − JH

h )w1‖ãh
+‖(JH

h −QH∗
h )w1‖mh

6Cmh,ãh

(
cV‖(I−QV

h JH
h )w1‖Ṽ +‖∆ ã(JH

h w1)‖Ṽ ∗h

)
+ cH‖(I−QV

h JH
h )w1‖H +‖∆m(JH

h w1)‖H∗h
,

6
(

Cmh,ãhcV +CH,V cHα
−1/2

)
‖(I−QV

h JH
h )w1‖V +‖∆ ã(JH

h w1)‖Ṽ ∗h +‖∆m(JH
h w1)‖H∗h

,

where the last estimate follows from (4.5).
Inserting the above estimates in (4.13) and collecting terms yields the desired bound. �
To derive an a priori error bound for non-conforming space discretizations of second-order wave-

type equations, we only need to combine the general error bound for monotone evolution equations from
Theorem 2.21 with the estimate of the remainder term. Since the error is bounded solely in terms of data,
interpolation, and conformity errors, it directly leads to convergence rates for concrete applications. For
this purpose, we introduce the continuous interpolation operator Ih : Zip → Vh which is defined on a
continuously embedded Hilbert space Zip in V .

THEOREM 4.8. Let the assumptions of Theorem 4.3 be fulfilled and assume that the solution u of the
second-order wave-type equation (4.1) satisfies u ∈ C2

(
[0,T ];Zip

)
. If the space discretization (4.8)

fulfills Assumption 4.4, then the error of the semi-discrete approximation QV
h uh is bounded by

‖QV
h uh(t)−u(t)‖Ṽ +‖QV

h u′h(t)−u′(t)‖H 6Ceĉqmt(1+ t)
(
εdata + εip + εforms + ε∆b

)
for t ∈ [0,T ], where C is independent of h and t, ĉqm = ĉGCmh,ãh/2+ ρ̂qm, and

εdata := ‖u0
h,1−QV∗

h u0
1‖ãh

+‖u0
h,2− Ihu0

2‖mh
+‖ fh−QH∗

h f‖
∞,Hh

, (4.14a)

εip := ‖(I−QV
h Ih)u‖∞,Ṽ +‖(I−QV

h Ih)u′‖∞,Ṽ +‖(I−QV
h Ih)u′′‖∞,H , (4.14b)

εforms := ‖∆ ã(Ihu)‖
∞,Ṽ ∗h

+‖∆m(Ihu)‖
∞,H∗h

+‖∆ ã(Ihu′)‖
∞,Ṽ ∗h

+‖∆m(Ihu′′)‖
∞,H∗h

, (4.14c)

ε∆b :=
∥∥∥ max
‖vh‖mh

=1
|b
(
u′,QV

h vh
)
−bh

(
Ihu′,vh

)
|
∥∥∥

∞,R
. (4.14d)

Proof. Theorem 2.9 applies since (2.7) with (4.11) is stable on Xh = Ṽh×Hh in the sense of Def-
inition 2.7: By Assumption 4.4, mh, bh, and ah have the same properties as their continuous coun-
terparts. Hence, Lemma 4.2 applied to Sh yields that Sh is maximal and quasi-monotone with ĉqm =
ĉGCmh,ãh/2+ ρ̂qm. Moreover, Assumptions 4.4 (v) and 4.4 (vi) imply that the lift is continuous from Xh
into X .

Thus the error bound (2.21) holds for x =
(
u,u′

)
and xh =

(
uh,u′h

)
where u is the solution of (4.1)

and uh is the solution of (4.8). Since the left-hand side of (2.21) is bounded from below by

‖QV
h uh−u‖Ṽ +‖QV

h u′h−u′‖H 6
√

2‖Qhxh− x‖X ,
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it remains to provide an upper bound for the terms on the right-hand side of (2.21). First, we choose
JV

h = QV∗
h ∈ L (V,Vh) and JH

h = Ih ∈ L (Zip,Vh). Then we have Edata 6
√

2εdata for Edata defined in
(2.22). Second, we obtain by Lemma 2.12 with X = H

‖
(
Q∗h− Jh

)
x′‖Xh

= ‖(QH∗
h − Ih)u′′‖mh

6 cH‖(I−QV
h Ih)u′′‖H +‖∆m(Ihu′′)‖H∗h

,

and therefore ‖(Q∗h−Jh)x′‖Xh
6C(εip+εforms). Third, we apply Lemma 4.7 to ‖Rhx‖Xh

. Since we chose
JV

h = QV∗
h and JH

h = Ih, the estimate simplifies to

‖Rhx‖Xh
6C

(
‖∆ ã(Ihu′)‖Ṽ ∗h +‖∆ ã(Ihu)‖Ṽ ∗h +‖∆m(Ihu)‖H∗h

+‖(I−QV
h Ih)u‖Ṽ +‖(I−QV

h Ih)u′‖Ṽ + max
‖vh‖mh

=1
|b
(
u′,QV

h vh
)
−bh

(
Ihu′,vh

)
|
)
.

Hence, ‖Rhx‖
∞,Xh
6 C(εip + εforms + ε∆b). Fourth, Assumption 4.4 (vi) and Lemma 2.12 with X = Ṽ

yield

‖(I−QV
h QV∗

h )u‖Ṽ 6 ‖(I−QV
h Ih)u‖Ṽ + cV‖(QV∗

h − Ih)u‖ãh

6 (1+ c2
V )‖(I−QV

h Ih)u‖Ṽ + cV‖∆ ã(Ihu)‖Ṽ ∗h ,

which implies that the error of the reference solution QhJhx is bounded by

‖(I−QhJh)x‖X 6 ‖(I−QV
h QV∗

h )u‖Ṽ +‖(I−QV
h Ih)u′‖H 6C(εip + εforms).

We obtain the final estimate after collecting terms. �

REMARK 4.9 In some situations, it is more practical to further estimate some terms of the error bound.
(i) To compare the discrete data with the interpolated exact data (instead of QV∗

h u0
1 and QH∗

h f as in
εdata), we apply Lemma 2.12 with Xh = Ṽh which shows

‖u0
h,1−QV∗

h u0
1‖ãh
6 ‖u0

h,1− Ihu0
1‖ãh

+‖(Ih−QV∗
h )u0

1‖ãh

6 ‖u0
h,1− Ihu0

1‖ãh
+ cV‖(I−QV

h Ih)u0
1‖Ṽ +‖∆ ã(Ihu0

1)‖Ṽ ∗h , u0
1 ∈ Zip.

Analogously, we obtain

‖ fh−QH∗
h f‖

∞,Hh
6 ‖ fh− Ih f‖

∞,Hh
+ cH‖(I−QV

h Ih) f‖
∞,H +‖∆m(Ih f )‖

∞,H∗h
,

if f (t) ∈ Zip for t ∈ [0,T ].

(ii) If B ∈L (Ṽ ,H) then ε∆b is bounded by an interpolation and a geometric error which contains

∆b
(
wh,vh

)
:= b

(
QV

h wh,QV
h vh
)
−bh

(
wh,vh

)
.

To see this, we apply Assumption 4.4 (v) and obtain for u′ ∈ Ṽ and vh ∈Vh

|b
(
u′,QV

h vh
)
−bh

(
Ihu′,vh

)
|6 |b

(
(I−QV

h Ih)u′,QV
h vh
)
|+ |b

(
QV

h Ihu′,QV
h vh
)
−bh

(
Ihu′,vh

)
|

6 |〈B(I−QV
h Ih)u′,QV

h vh〉V |+ |∆b
(
Ihu′,vh

)
|

6 ‖B‖H←Ṽ‖(I−QV
h Ih)u′‖Ṽ‖Q

V
h vh‖H + |∆b

(
Ihu′,vh

)
|

6 ‖B‖H←Ṽ‖(I−QV
h Ih)u′‖Ṽ cH‖vh‖mh

+ |∆b
(
Ihu′,vh

)
|.
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Therefore, ε∆b is bounded by

ε∆b 6C
(
‖(I−QV

h Ih)u′‖∞,Ṽ +‖∆b(Ihu′)‖
∞,H∗h

)
.

By Definition 2.5 the discretization (4.8) is conforming, if

Vh ⊂V, QV
h = I, ∆m = 0, ∆b = 0, ∆a = 0.

For conforming discretizations we state an error bound which is independent of u′′.

COROLLARY 4.10. Let (4.8) be a conforming discretization and consider the situation from Theo-
rem 4.8. Then the semi-discrete solution uh satisfies

‖uh(t)−u(t)‖Ṽ +‖u′h(t)−u′(t)‖H 6Cecqmt(1+ t
)(

ε̃data + ε̃ip + ε̃b

)
for t ∈ [0,T ], where C is independent of h and t, cqm = cGCH,V/2+ρqm,

ε̃data := ‖u0
h,1−Π

V
h u0

1‖ãh
+‖u0

h,2−Π
H
h u0

2‖mh
+‖ fh−Π

H
h f‖

∞,Hh
,

ε̃ip := ‖(I− Ih)u‖∞,Ṽ + ε
−1
h ‖(I− Ih)u‖∞,H +‖(I− Ih)u′‖∞,Ṽ + ε

−1
h ‖(I− Ih)u′‖∞,H ,

ε̃b := ‖b
(
(I−Π

H
h )u′

)
‖

∞,H∗h
,

where εh is defined in (4.12).

Proof. In comparison to the previous proof, there are only three changes. First, we have ĉqm = cqm,
since ∆m = ∆b = ∆a = 0. Second, we choose Jh = Πh = Q∗h so that Remark 2.10 applies. Third, since
QH∗

h = Π H
h and QV∗

h = ΠV
h , the estimate from Lemma 4.7 reads

‖Rhx‖Xh
6C

(
‖(I−Π

H
h )u‖Ṽ +‖(I−Π

H
h )u′‖Ṽ + max

‖vh‖mh
=1
|b
(
u′,vh

)
−bh

(
Π

H
h u′,vh

)
|
)

6C
(
‖(I−Π

H
h )u‖Ṽ +‖(I−Π

H
h )u′‖Ṽ + max

‖vh‖mh
=1
|b
(
(I−Π

H
h )u′,vh

)
|
)
.

To further bound the two terms with H-orthogonal projection errors in the Ṽ -norm, we use (3.7) with
X = H and Y = Ṽ and the best approximation property of Π H

h . This yields

‖(I−Π
H
h )w‖Ṽ 6 ‖(I− Ih)w‖Ṽ +2ε

−1
h ‖(I− Ih)w‖H , w ∈ Zip.

We apply this estimate for w = u and w = u′ in the above bound of the remainder term. For the final
bound, we estimate the orthogonal projection error ‖(I−Πh)x‖X by interpolation errors and collect
terms. �

4.5 Example: Finite elements for the acoustic wave equation

In this example, we consider the acoustic wave equation with homogeneous Dirichlet boundary condi-
tions and its space discretization using linear Lagrange finite elements with mass lumping, cf. (Cohen,
2002, Chapters 11–13). The aim is to show that our general analysis provides the same order of conver-
gence as in the literature (Dupont (1973), Baker (1976), and Baker & Dougalis (1976)). However, our
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analysis allows to account for errors resulting from numerical quadrature for mass lumping in a simple
way.

We seek the solution u : [0,T ]×Ω → R of

utt −div(cΩ ∇u) = f in Ω , (4.15a)
u(t) = 0 on Γ , (4.15b)

u(0) = u0
1, ut(0) = u0

2 in Ω . (4.15c)

Here, f is a given source term, cΩ ∈ L∞(Ω)d×d models the wave speed, and Ω is polygonal. We assume
that cΩ (x), x ∈Ω is symmetric, and that there are constants c+

Ω
> c−

Ω
> 0 s.t.

c−
Ω
‖ξ‖2 6 cΩ (x)ξ ·ξ 6 c+

Ω
‖ξ‖2 for a.e. x ∈Ω and all ξ ∈ Rd .

We can write the variational formulation of (4.15) in the form of (4.1) by making the following
identifications. For the function spaces we set V = H1

0 (Ω) and H = L2(Ω). As usual, m is the standard
L2(Ω) inner product, the bilinear form a is given by

a
(
u,v
)

:=
∫

Ω

cΩ ∇u ·∇v dx, u,v ∈V,

and b vanishes. Due to the Poincaré inequality, Assumption 4.1 holds with cG = 0 and we have ã = a.
Hence we can apply Theorem 4.3 which yields for suitable u0

1, u0
2, and f the existence of a unique

solution of (4.15) with

u ∈C2([0,T ];L2(Ω))∩C1([0,T ];H1
0 (Ω)))∩C([0,T ]; [D(A)]),

where

D(A) =
{

u ∈ H1
0 (Ω) | div(cΩ ∇u) ∈ L2(Ω)

}
.

For the spatial discretization we restrict us to linear finite elements for this exposition. However,
higher order elements can also be treated without further difficulties. Assume that the mesh Th is a
triangulation of Ω s.t. the computational domain satisfies Ωh = Ω . Then the space of linear finite
elements Vh on Th is a subspace of V and the lift operator QV

h = I is trivial.
First, we study finite elements with exact integration. This means that we choose mh =m and ah = a.

Hence Assumption 4.4 holds trivially since ∆m = ∆ ã = 0 and Corollary 4.10 implies

‖uh(t)−u(t)‖Ṽ +‖u′h(t)−u′(t)‖H

6C(1+ t)
(
‖(I− Ih)u‖∞,Ṽ + ε

−1
h ‖(I− Ih)u‖∞,H +‖(I− Ih)u′‖∞,Ṽ + ε

−1
h ‖(I− Ih)u′‖∞,H

)
,

if ε̃data = 0. To obtain a convergence rate, we use that the error of the nodal interpolation operator Ih is
bounded by

‖(I− Ih)ϕ‖H +h‖(I− Ih)ϕ‖Ṽ 6Ch2|ϕ|H2(Ω), ϕ ∈ H2(Ω),

cf. (Brenner & Scott, 2008, Sect. 4.4), and that ε
−1
h 6 Ch−1 by inverse inequalities. Overall, we find

that the difference in the energy norm between the exact solution u of (4.15) and its corresponding FEM
approximation uh scales like h, if u ∈C1

(
[0,T ];H2(Ω)

)
.
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We next study the effect of numerical integration. The main difference to exact integration is, that
now mh and ah differ from m and a, respectively. In this case, we apply Theorem 4.8 which yields

‖uh(t)−u(t)‖Ṽ +‖u′h(t)−u′(t)‖H

6C(1+ t)
(
‖(I− Ih)u‖∞,Ṽ +‖(I− Ih)u′‖∞,Ṽ +‖(I− Ih)u′′‖∞,H

+‖∆ ã(Ihu)‖
∞,Ṽ ∗h

+‖∆m(Ihu)‖
∞,H∗h

+‖∆ ã(Ihu′)‖
∞,Ṽ ∗h

+‖∆m(Ihu′′)‖
∞,H∗h

)
,

if εdata = 0. Hence it remains to quantify the differences in the bilinear form. For example in the above
setting one can use the d-dimensional trapezoidal rule to approximate the integrals. More precisely, let
{xK, j}d+1

j=1 be vertices of the element K ∈Th. Then mh and ah are given by the quadrature formulas

mh
(
v,w
)
= ∑

K∈Th

d+1

∑
j=1

|K|
d +1

v(xK, j)w(xK, j)

and respectively

ãh
(
v,w
)
= ∑

K∈Th

d+1

∑
j=1

|K|
d +1

cΩ (xK, j)∇v(xK, j) ·∇w(xK, j).

Under appropriate regularity assumptions on the wave speed cΩ , it is known that ‖∆ ã(vh)‖Ṽ ∗h ∈O(h) and
‖∆m(vh)‖H∗h

∈ O(h) for all vh ∈Vh, see e.g. (Ciarlet, 2002, Section 4.1). Inserting this into the a priori

bound above shows that numerical quadrature does not lead to order reduction, if u∈C2
(
[0,T ];H2(Ω)

)
.

5. Application: Finite elements for the wave equation with acoustic boundary conditions

In this section, we use the a priori error bound from Theorem 4.8 to show new convergence rates for
an isoparametric bulk-surface finite element discretization of the wave equation with acoustic boundary
conditions while factoring in non-conforming error sources due to domain approximation.

We are interested in the solutions of the wave equation with acoustic boundary conditions. It models
the propagation of sound waves in a fluid at rest filling a tank Ω , whose walls on Γ are subject to small
oscillations in normal direction and elastic effects in tangential direction. Here u describes the acoustic
velocity potential and δ the displacement of Γ in normal direction. The first well-posedness analysis
was already given in Beale (1976), but acoustic boundary conditions continue to be a topic of research,
see e.g. Gal et al. (2003), Mugnolo (2006), Frota et al. (2011), Graber (2012) and Vedurmudi et al.
(2016).

For the space discretization we consider an isoparametric bulk-surface finite element method. Such
finite element methods are non-conforming, since the computational domain is in general not exact, i.e.
Ωh 6= Ω . Therefore the error analysis requires a non-trivial lift operation. To the best of our knowledge,
such an analysis has not been considered so far for hyperbolic problems. For parabolic problems, it was
recently presented in Kovács & Lubich (2017). Our general framework and our abstract results allows
us to derive convergence rates almost as easy as in the previous example for a conforming discretization
by using the a priori estimate from Theorem 4.8.

The problem can be stated as follows. Let Ω ⊂Rd , where d = 2 or d = 3 and assume that Γ ∈Ck+1
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for some k ∈ N. We seek u : [0,T ]×Ω → R and δ : [0,T ]×Γ → R s.t.

utt +aΩ u− cΩ ∆u = fΩ in Ω , (5.1a)
µΓ δtt + kΓ δ − cΓ ∆Γ δ + cΩ ut = fΓ on Γ , (5.1b)

δt = ∂nu on Γ , (5.1c)

where we assume that cΓ ,cΩ ,µΓ > 0 and aΩ ,kΓ > 0 are constants and that u and δ take initial values
u(0) = u0

1, ut(0) = u0
2, δ (0) = δ 0, δt(0) = ϑ 0. By ∆Γ we denote the Laplace–Beltrami operator.

Well-posedness

Assume that u and δ are sufficiently smooth solutions of (5.1). Multiplying (5.1a) with v ∈ C∞
(
Ω
)
,

integrating over Ω , applying Gauss’ Theorem and inserting the boundary condition (5.1c) yields∫
Ω

uttv+aΩ uv+ cΩ ∇u ·∇vdx−
∫

Γ

cΩ δtvds =
∫

Ω

fΩ vdx. (5.2a)

Analogously, we multiply (5.1b) with ϑ ∈C2(Γ ), integrate over Γ , and use Gauss’ Theorem on surfaces
to find ∫

Γ

µΓ δttϑ + kΓ δϑ + cΓ ∇Γ δ ·∇Γ ϑ + cΩ utϑ ds =
∫

Γ

fΓ ϑ ds. (5.2b)

To obtain the variational problem for~u(t) :=
(
u(t),δ (t)

)
, we add (5.2b) to (5.2a). Altogether, we showed

that any classical solution~u ∈C2(Ω × [0,T ])×C2(Γ × [0,T ]) of (5.1) satisfies the variational problem

m
(
~u′′(t),~v

)
+b
(
~u′(t),~v

)
+a
(
~u(t),~v

)
= 〈 f (t),~v〉 (5.3)

for all ~v =
(
v,ϑ
)
∈C∞

(
Ω
)
×C2(Γ ) and where, for ~w =

(
w,ω

)
and ~v =

(
v,ϑ
)
, the bilinear forms are

given by

m
(
~w,~v
)

:=
∫

Ω

wvdx+
∫

Γ

µΓ ωϑ ds,

b
(
~w,~v
)

:= cΩ

∫
Γ

γ(w)ϑ −ω γ(v)ds,

a
(
~w,~v
)

:=
∫

Ω

aΩ wv+ cΩ ∇w ·∇vdx+
∫

Γ

kΓ ωϑ + cΓ ∇Γ ω ·∇Γ ϑ ds,

〈 f (t),~ϕ〉 :=
∫

Ω

fΩ (t)vdx+
∫

Γ

fΓ (t)ϑ ds, t ∈ [0,T ].

For the corresponding abstract formulation, we choose H =H0 and V =H1, where

H0 := L2(Ω)×L2(Γ ), and Hr := Hr(Ω)×Hr(Γ ), r ∈ N,

and consider the continuous extensions of m and a, b to H×H and V ×V , respectively. Since V is a
dense subspace of H and Assumption 4.1 is fulfilled with cG = α = min{cΩ ,cΓ }> 0 and ρqm = 0, the
abstract interpretation of (5.3) is a second-order wave-type equation (4.1). Thus, if the data satisfies

u0
1,u

0
2 ∈V s.t. A u0

1 +Bu0
2 ∈ H

and f ∈C1([0,T ];H
)

or
(

f ,B f
)
∈C
(
[0,T ];V ×H

)
,
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then Theorem 4.3 implies that (4.1) has a unique solution~u.
The following Lemma states the well-posedness result in terms of Sobolev spaces. Since our con-

vergence result for finite elements will require higher regularity, we do not use it in the error analysis
and refer to (Hipp, 2017, Cor. 6.9 (i)) for the proof. A related result can be found in Beale (1976).

LEMMA 5.1. Let the above assumptions be satisfied. If the initial values
(
u0

1,δ
0
)
,
(
u0

2,ϑ
0
)
∈H1 satisfy(

∆u0
1,∆Γ δ 0

)
∈H0 and ϑ 0 = ∂nu0

1, and
(

fΩ , fΓ
)
∈C1([0,T ];H0) or fΩ ∈C([0,T ];H1(Ω)) with fΓ = 0,

then (5.1) has a unique solution(
u,δ
)
∈C2([0,T ];H0)∩C1([0,T ];H1), (

∆u,∆Γ δ
)
∈C
(
[0,T ];H0).

The bulk-surface finite element method

In this section, we consider the bulk-surface finite element method from Elliott & Ranner (2013) which
was developed and analyzed for coupled bulk-surface partial differential equations of elliptic type.

COMPUTATIONAL DOMAIN Let Th be a mesh consisting of isoparametric elements K of degree p,
where h denotes the mesh parameter, see (Elliott & Ranner, 2013, Sect. 4.1.2) for details on the con-
struction. We denote the computational domain by

Ωh :=
⋃

K∈Th

K ≈Ω

and refer to Γh := ∂Ωh as the computational surface. The construction admits quasi-uniform triangula-
tions Th and Th

∣∣
Γh

of Ωh and Γh, respectively.

FINITE ELEMENT SPACES Let Pp(K̂) denote the space of polynomials of degree p on the reference
triangle K̂, and let FK be the transformation from K̂ to K ∈ Th. For the bulk and the surface finite
element functions of degree p> 1, we introduce

V Ω
h,p :=

{
vh ∈C(Ωh) | vh|K = v̂h ◦ (FK)

−1 with v̂h ∈Pp(K̂) for all K ∈Th

}
,

VΓ
h,p :=

{
ϑh ∈C(Γh) | ϑh = vh|Γh , vh ∈V Ω

h,p

}
,

respectively, cf. (Elliott & Ranner, 2013, Sect. 5.1). An important property of this construction is the
relation

γ(V Ω
h,p) =VΓ

h,p. (5.4)

LIFT OPERATION In general, the finite element approximation is defined in the computational domain
Ωh 6= Ω and its boundary Γh 6=Γ . To compare it with the exact solution, we transform the finite element
solution s.t. it is defined on Ω and Γ , respectively. A major advantage of this approach over extension
or restriction strategies is that it does not depend on whether or not Ωh ⊂Ω .

The transformation is done via the elementwise smooth homeomorphism Gh from (Elliott & Ranner,
2013, Sect. 4.2) with

Gh : Ωh→Ω , Gh|K ∈Cp+1(K) for p6 k and K ∈Th.
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We shortly sketch its construction. The authors start from a base triangulation of Ω consisting of trian-
gles only. It is assumed that each element has at most one boundary face and that all boundary faces lie
within a band about Γ s.t. each point x in this band has a unique normal projection p(x) ∈ Γ . Note that
such a band always exists since Γ ∈C2. The isoparametric mesh Th is then obtained by transforming
each triangle from the boundary layer s.t. its boundary face interpolates the corresponding segment of
Γ with order p. While Gh = I in the interior elements, boundary elements are handled in two steps.
First, they are mapped to their counterparts in the base triangulation. Then, by a smooth extension of
the normal projection p, these elements are transformed s.t. their boundary face lies on Γ while their
other faces remain invariant. For details we refer to (Elliott & Ranner, 2013, Sect. 4).

Given vh ∈V Ω
h,p and ϑh ∈VΓ

h,p, we define their lifted counterparts as

v`h(x) := vh
(
G−1

h (x)
)
, x ∈Ω , (5.5a)

ϑ
`
h(x) := ϑh

(
G−1

h (x)
)
, x ∈ Γ . (5.5b)

Note that the bulk lifting complies with the surface lifting in the sense that

γ(v`h) = γ(vh)
`, vh ∈V Ω

h,p, (5.6)

where we overload the notation with γ : H1(Ω)→ L2(Γ ) on the left-hand side and γ : H1(Ωh)→ L2(Γh)
on the right-hand side.

REMARK 5.2 Actually, our definition of lifted surface functions differs from (Elliott & Ranner, 2013,
Def. 4.12) where a closest point mapping from Γh to Γ is used. However, it follows from Demlow (2009)
that the surface functions lifted by (5.5b) have the same properties and satisfy (5.6) in addition.

INTERPOLATION As the exact solution has two components u and δ , we introduce two interpolation
operators. The nodal interpolation operator IΩ

h : H2(Ω)→V Ω
h,p for bulk functions v ∈Hr+1(Ω) satisfies

‖v−
(
IΩ
h v
)`‖L2(Ω)+h‖v−

(
IΩ
h v
)`‖H1(Ω) 6Chr+1|v|Hr+1(Ω), 16 r 6 p. (5.7a)

Analogously, we write IΓ
h : H2(Γ )→VΓ

h,p for the nodal interpolation on the surface and the interpolation
error of a function ϑ ∈ Hr+1(Γ ) is bounded by

‖ϑ −
(
IΓ
h ϑ
)`‖L2(Γ )+h‖ϑ −

(
IΓ
h ϑ
)`‖H1(Γ ) 6Chr+1|ϑ |Hr+1(Γ ), 16 r 6min{p,k}. (5.7b)

Since the nodes in the bulk and on the surface coincide by construction, it follows from (5.4) that we
have IΓ

h γ(v) = γ(IΩ
h v) for any v ∈ H2(Ω) with γ(v) ∈ H2(Γ ).

A priori error bounds for the wave equation with acoustic boundary conditions

Applying the bulk-surface finite element method to (5.1) yields a differential equation of the form (4.8).
The semi-discrete problem is to find the Vh :=V Ω

h,p×VΓ
h,p-valued function~uh :=

(
uh,δh

)
: [0,T ]→Vh s.t.

mh
(
u′′h(t),~vh

)
+bh

(
u′h(t),~vh

)
+a
(
uh(t),~vh

)
= mh

((
IΩ
h fΩ (t), IΓ

h fΓ (t)
)
,~vh
)

∀~vh ∈Vh,

~uh(0) =
(
IΩ
h u0

1, I
Γ
h δ

0), ~u′h(0) =
(
IΩ
h u0

2, I
Γ
h ϑ

0),
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where, for ~wh =
(
wh,ωh

)
,~vh =

(
vh,ϑh

)
∈V Ω

h,p×VΓ
h,p, the bilinear forms are defined as

mh
(
~wh,~vh

)
:=
∫

Ωh

whvh dx+
∫

Γh

µΓ ωhϑh ds,

bh
(
~wh,~vh

)
:= cΩ

∫
Γh

γ(wh)ϑh−ωh γ(vh)ds,

ah
(
~wh,~vh

)
:=
∫

Ωh

aΩ whvh + cΩ ∇wh ·∇vh dx+
∫

Γh

kΓ ωhϑh + cΓ ∇Γhωh ·∇Γhϑh ds.

Due to the abstract error bound from Theorem 4.8, we can derive convergence rates for the above
discretization in a few simple steps. Basically, we only have to insert the approximation properties of
the finite element method.

THEOREM 5.3. Let Γ ∈Ck+1 for some k ∈N and
(

fΩ (t), fΓ (t)
)
∈H2, t ∈ [0,T ]. Let the assumptions of

Lemma 5.1 be fulfilled and assume that the solution of the wave equation with acoustic boundary condi-
tions (5.1) satisfies

(
u,δ
)
∈C2

(
[0,T ];H2

)
. Moreover, let~uh =

(
uh,δh

)
be the finite element solution as

described above where 1 6 p 6 k and 0 < h 6 1. Then the error of lifted finite element approximation(
u`h,δ

`
h

)
is bounded by

‖
(
u`h−u,δ `

h −δ
)
(t)‖H1 +‖

(
(u′h)

`−u′,(δ ′h)
`−δ

′)(t)‖H0 6CKp(u, f )eĉqmt(1+ t
)
hp

for t ∈ [0,T ], a constant C which is independent of h and t, ĉqm = min{cΩ ,cΓ }1/2/2 and

Kp(u, f ) = ‖
(
u,δ
)
‖

∞,Hp+1 +‖
(
u′,δ ′

)
‖

∞,Hp+1 +‖γ(u′)‖
∞,H2(Γ )+‖

(
u′′,δ ′′

)
‖

∞,Hq +‖
(

fΩ , fΓ
)
‖

∞,Hq

for q = max{2, p}.

REMARK 5.4 Note that the conditions from Lemma 5.1 on Ω and the data are in general not sufficient
for
(
u,δ
)
∈C2

(
[0,T ];H2

)
and the proof requires further considerations, cf. (Beale, 1976, Thm. 2.2).

Proof. Assumptions 4.4 (i)-4.4 (iv) are fulfilled with ĉG =min{cΩ ,cΓ } and ρ̂qm = 0 as in the continuous
case. To compare the finite element approximation with the exact solution, we choose the lift operator

QV
h~vh :=

(
v`h,ϑ

`
h
)
. (5.8)

Since the coefficients in ‖·‖H and ‖·‖Ṽ are constant, (Elliott & Ranner, 2013, Prop. 4.9 and 4.13) imply
that QV

h : Vh→V satisfies Assumptions 4.4 (v) and 4.4 (vi). Altogether the space discretization is stable
in the sense of Assumption 4.4 and the error estimate from Theorem 4.8 applies. Since ‖·‖H0 ∼ ‖·‖H
and ‖·‖H1 ∼ ‖·‖Ṽ , it remains to bound εdata + εip + εforms + ε∆b.

(εip) We choose the interpolation operator as Ih := diag(IΩ
h , IΓ

h ) s.t. Ih ∈ L (Zip,Vh) for Zip = H2.
Using (5.7), we have for~v =

(
v,ϑ
)
∈Hr+1 and 16 r 6 p

‖(I−QV
h Ih)~v‖H +h‖(I−QV

h Ih)~v‖Ṽ 6 ‖v−
(
IΩ
h v
)`‖L2(Ω)+µΓ ‖ϑ −

(
IΓ
h ϑ
)`‖L2(Γ )

+max
{√

aΩ + ĉG,
√

cΩ

}
h‖v−

(
IΩ
h v
)`‖H1(Ω)

+max
{√

kΓ +µΓ ĉG,
√

cΓ

}
h‖ϑ −

(
IΓ
h ϑ
)`‖H1(Γ )

6Chr+1|~v|Hr+1(Ω)×Hr+1(Γ ). (5.9)
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Applying this bound on the interpolation errors εip, yields

εip 6Chp
(
‖
(
u,δ
)
‖

∞,Hp+1 +‖
(
u′,δ ′

)
‖

∞,Hp+1 +‖
(
u′′,δ ′′

)
‖

∞,Hq

)
6ChpKp(u, f ).

(εforms) To estimate the geometric errors, we use (Elliott & Ranner, 2013, Lem. 6.2) which yields

|
∫

Ω

w`
h v`h dx−

∫
Ωh

wh vh dx|6Chp‖wh‖L2(Ωh)
‖vh‖L2(Ωh)

,

|
∫

Ω

∇w`
h ·∇v`h dx−

∫
Ωh

∇wh ·∇vh dx|6Chp‖∇wh‖L2(Ωh)
‖∇vh‖L2(Ωh)

,

|
∫

Γ

ω
`
h ϑ

`
h dx−

∫
Γh

ωh ϑh dx|6Chp+1‖ωh‖L2(Γh)
‖ϑh‖L2(Γh)

, (5.10)

|
∫

Γ

∇Γ ω
`
h ·∇Γ ϑ

`
h dx−

∫
Γh

∇Γhωh ·∇Γhϑh dx|6Chp+1‖∇Γhωh‖L2(Γh)
‖∇Γhϑh‖L2(Ωh)

.

Now consider ∆ ã and let ~wh =
(
wh,ωh

)
,~vh =

(
vh,ϑh

)
∈ V Ω

h,p×VΓ
h,p. From the above geometric error

bounds, we deduce

|∆ ã
(
~wh,~vh

)
|6C max{cΩ ,aΓ ,cΓ ,kΓ }

(
hp‖wh‖H1(Ωh)

‖vh‖H1(Ωh)
+hp+1‖ωh‖H1(Γh)

‖ϑh‖H1(Γh)

)
6Chp‖~wh‖ãh

‖~vh‖ãh
.

Since Ih ∈L (H2,Ṽh), we obtain

‖∆ ã(Ih~w)‖Ṽ ∗h = max
‖~vh‖ãh

=1
|∆ ã
(
Ih~w,~vh

)
|6Chp‖~w‖H2 , ~w ∈H2.

Analogously, it holds ‖∆m(Ih~w)‖H∗h
6Chp‖~w‖H2 for ~w ∈H2. Since q, p+1> 2, we therefore showed

that

εforms 6Chp
(
‖
(
u,δ
)
‖

∞,H2 +‖
(
u′,δ ′

)
‖

∞,H2 +‖
(
u′′,δ ′′

)
‖

∞,H2

)
6ChpKp(u, f ).

(εdata) Since u0
h,1 = Ihu0

1 and fh = Ih f , we can apply the estimates from Remark 4.9 (i) and obtain,
together with the shown bounds for the interpolation and consistency errors, that

εdata 6Chp
(
‖u0

1‖Hq +‖ f‖
∞,Hq

)
6ChpKp(u, f ).

(ε∆b) First, note that b can be written as

b
(
~w,~v
)
=

cΩ

µΓ

(
m
((

0, γ(w)
)
,
(
0,ϑ

))
−m

((
0,ω

)
,
(
0, γ(v)

)))
. (5.11)

Hence, we obtain with (5.6) and (5.8)

µΓ

cΩ

b
(
~w,QV

h~vh
)
= m

((
0, γ(w)

)
,
(
0,ϑ `

h
))
−m

((
0,ω

)
,
(
0, γ(v`h)

))
= m

((
0, γ(w)

)
,
(
0,ϑ `

h
))
−m

((
0,ω

)
,
(
0, γ(vh)

`
))

= m
((

0, γ(w)
)
,QV

h
(
0,ϑh

))
−m

((
0,ω

)
,QV

h
(
0, γ(vh)

))
= mh

(
QH∗

h
(
0, γ(w)

)
,
(
0,ϑh

))
−mh

(
QH∗

h
(
0,ω

)
,
(
0, γ(vh)

))
.
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Since bh satisfies a representation analogous to (5.11), we have with γ(IΩ
h v) = IΓ

h γ(v)

bh
(
Ih~w,~vh

)
=

cΩ

µΓ

(
mh
((

0, γ(IΩ
h w)

)
,
(
0,ϑh

))
−mh

((
0, IΓ

h ω
)
,
(
0, γ(vh)

)))
=

cΩ

µΓ

(
mh
((

0, IΓ
h γ(w)

)
,
(
0,ϑh

))
−mh

((
0, IΓ

h ω
)
,
(
0, γ(vh)

)))
=

cΩ

µΓ

(
mh
(
Ih
(
0, γ(w)

)
,
(
0,ϑh

))
−mh

(
Ih
(
0,ω

)
,
(
0, γ(vh)

)))
.

Thus the difference in ε∆b is bounded by

|b
(
~w,QV

h~vh
)
−bh

(
Ih~w,~vh

)
|

= | cΩ

µΓ

(
mh
(
(QH∗

h − Ih)
(
0, γ(w)

)
,
(
0,ϑh

))
−mh

(
(QH∗

h − Ih)
(
0,ω

)
,
(
0, γ(vh)

)))
|

6
cΩ

µΓ

(
‖(QH∗

h − Ih)
(
0, γ(w)

)
‖mh
‖
(
0,ϑh

)
‖mh

+‖(QH∗
h − Ih)

(
0,ω

)
‖mh
‖
(
0, γ(vh)

)
‖mh

)
,

where we applied the Cauchy–Schwarz inequality for mh in the last step. To deal with the last term,
we use the continuity of the trace operator and the inverse inequality from (Brenner & Scott, 2008,
Lem. 4.5.3), which yields

‖
(
0, γ(vh)

)
‖mh

=
√

µΓ ‖γ(vh)‖L2(Γh)
6 ‖γ‖L2(Γh)←H1(Ωh)

‖vh‖H1(Ωh)
6Ch−1‖vh‖L2(Ωh)

.

Thus, we showed that

ε∆b = max
‖~vh‖mh

=1
|b
(
~u′,QV

h~vh
)
−bh

(
Ih~u′,~vh

)
|

6C
(
‖(QH∗

h − Ih)
(
0, γ(u′)

)
‖mh

+h−1‖(QH∗
h − Ih)

(
0,δ ′

)
‖mh

)
. (5.12)

Using Lemma 2.12 with X = H, the interpolation error estimate (5.9) and the geometric error bound
(5.10), we are able to bound QH∗

h − Ih for surface functions ω ∈ Hr+1(Γ ), 16 r 6 p by

‖(QH∗
h − Ih)

(
0,ω

)
‖mh
6C(‖(I−QV

h Ih)
(
0,ω

)
‖mh

+‖∆m(Ih
(
0,ω

)
)‖H∗h

6C
(

hr+1|ω|Hr+1(Γ )+hp+1‖ω‖H2(Γ )

)
.

If we insert this estimate (with r = p−1, ω = γ(u′) and r = p, ω = δ ′) into (5.12), we obtain

ε∆b 6Chp|γ(u′)|H p(Γ )+Chp+1‖γ(u′)‖H2(Γ )+Ch−1
(

hp+1|δ ′|H p+1(Γ )+hp+1‖δ ′‖H2(Γ )

)
6Chp‖u′‖H p+1(Ω)+Chp+1‖γ(u′)‖H2(Γ )+Chp‖δ ′‖H p+1(Γ )

6ChpKp(u, f ),

since γ ∈L (Hr+1(Ω),Hr(Γ )) for r > 1, cf. (Atkinson & Han, 2009, Thm. 7.3.11). This completes the
proof. �
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