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Abstract

We consider a family {⌦"}">0 of periodic domains in R2 with waveguide geometry and analyse spec-
tral properties of the Neumann Laplacian ��⌦" on ⌦". The waveguide ⌦" is a union of a thin straight
strip of the width " and a family of small protuberances with the so-called “room-and-passage” ge-
ometry. The protuberances are attached periodically, with a period ", along the strip upper boundary.
For " ! 0 we prove a (kind of) resolvent convergence of ��⌦" to a certain ordinary di↵erential
operator. Also we demonstrate Hausdor↵ convergence of the spectrum. In particular, we conclude
that if the sizes of “passages” are appropriately scaled the first spectral gap of ��⌦" is determined
exclusively by geometric properties of the protuberances. The proofs are carried out using methods of
homogenization theory.

Keywords: singularly perturbed domains, periodic waveguides, Neumann Laplacian, spectral gaps,
homogenization

1. Introduction

In the paper we study the limiting behaviour as " ! 0 of the Neumann Laplacian on a thin
periodic domain ⌦" ⇢ R2 with waveguide geometry – see Figure 1. The domain ⌦" is obtained from
the straight unbounded strip ⇧" = R ⇥ (0, ") by attaching an array of small identical protuberances
(counted by the parameter j 2 Z). Each protuberance consists of two parts (below ' means that
domains coincide up to a translation):

• the “room” B"j ' "B, where B ⇢ R2 is a fixed domain,

• the “passage” T "j ' (0, d") ⇥ [0, h"] connecting the “room” B"j with the strip ⇧". Here h" ! 0,
d" = o(") as "! 0.

The protuberances T "j [ B"j , j 2 Z are attached periodically, with a period ", along the strip upper
boundary.

Peculiar properties of Neumann spectral problems on domains perturbed by attaching small “room-
and-passage” protuberances were observed for the first time by R. Courant and D. Hilbert [10, Vol-
ume I, Chapter VI, § 2.6]. Below we sketch the example considered in [10]. Let us perturb a bounded
connected domain ⌦ to a domain ⌦" by attaching a single “room-and-passage” protuberance. The
domain ⌦" di↵ers from ⌦ only in a ball of the radius tending to zero as " ! 0. One can easily show
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Fig. 1: Domain ⌦"

(using, e.g., [31, Theorem 1.5]) that for each k 2 N the k-th eigenvalue of the Dirichlet Laplacian on
⌦" converges to the k-th eigenvalue of the Dirichlet Laplacian on ⌦. In contrast, for the Neumann
Laplacians (we denote them ��⌦" and ��⌦) the continuity of eigenvalues does not hold in general:
the first eigenvalues �1 and �"1 of ��⌦ and ��⌦" are zero, the second eigenvalue �2 of ��⌦ is strictly
positive, while the second eigenvalue �"2 of ��⌦" tends to zero as " ! 0 provided h" = ", d" = "↵,
↵ > 3.

Later the aforementioned example was studied in [1] for more general geometry of “rooms” and
“passages”. The authors also inspected the case of finitely many attached “room-and-passage” do-
mains proving that lim

"!0
�"k = 0 as k = 2, . . . , r + 1 and lim

"!0
�"k = �k�r as k � r + 2, where r 2 N is the

number of attached domains.
The case, when the number of attached “room-and-passage” protuberances tends to infinity as

"! 0, was studied in our previous paper [11] (still with a bounded ⌦). We considered the operator

H" = �(⇢")�1�⌦" ,

where ��⌦" is the Neumann Laplacian on ⌦", the weight ⇢" is equal to 1 everywhere except the union
of the “rooms”, where it is equal to the constant %" > 0 satisfying lim

"!0
%"" < 1. It was proved that the

spectrum �(H") of the operatorH" converges in the Hausdor↵ sense as "! 0 to the set �(H) [ {q},
where q = lim

"!0
d"

h"%""2 |B| 2 [0,1] (by | · | we denote the Lebesgue measure of a domain) and H is the
operator associated with the following spectral problem:

��u = �u in ⌦,
@u
@n
= V(�)u on �,

@u
@n
= 0 on @⌦ \ �,

where � is the perturbed part of @⌦, n is the outward-pointing unit normal to @⌦. If lim
"!0
%"" = 0 one

has V(�) ⌘ 0, otherwise V(�) is either linear function (q = 1) or rational function (q < 1) with a
pole at q, which is also a point of accumulation of eigenvalues ofH .

Note, that in the case %" = 1 (i.e.,H" is simply the Neumann Laplacian on ⌦") one hasV(�) ⌘ 0,
i.e. H is the Neumann Laplacian on ⌦. The case %" = 1, q = 0 was also studied in [34, Chapter XII].

The results of [11] were extended in [12]1 to ⌦, which is an unbounded straight strip of the fixed
width L > 0. In this case � is its upper (or lower) boundary. It turns out that the form of the limit
problem remains the same as in the case of a bounded domain, but the structure of its spectrum is
essentially di↵erent: it is either the whole positive semi-axis or the set [0,1) \ (q,bq) (this case occur

1In fact, in [12] we deal with the most interesting case q > 0, lim
"!0
%"" > 0 only. The analysis for the rest cases can be

carried out a similar way.
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if lim
"!0
%"" > 0 and 0 < q <

⇣

⇡
2L

⌘2
). The number bq 2 (q,1) is a solutions to some transcendental

equation involving q and L. In the last instance we are able to make the following useful conclusion:
the spectrum ofH" has a gap provided " is small enough, the edges of this gap converge to q and bq.

In the current paper we study the asymptotic behaviour of the “pure” Neumann Laplacian (i.e.,
%" = 1), but now, in contrast to [12], the “basic” strip ⌦ = ⇧" also depends on ". Since ⌦" shrinks to
R as "! 0 it is natural to expect that ��⌦" converges (in suitable sense) to some ordinary di↵erential
operator on the line. It turns out that the form of this operator depends on q = lim

"!0
d"

h""2 |B| 2 [0,1].
Boundary value and spectral problems on thin domains with oscillating boundary were studied

in a lot works – see, e.g., [2, 18, 32, 33] and references therein. In these papers the authors deal
with thin domains, whose boundary (or its part) has the form of a graphic of some smooth oscillating
function (for example, ⌦" =

n

x 2 R2 : �" < x2 < "'"(x1)
o

, where " > 0 is again a small parameter,
'"(x) = '(x, x"�↵), ↵ > 0, '(x, y) is a smooth positive function, periodic with respect to y). More
general geometries were treated in [3], where thin strip is perturbed by attaching small protuberances,
"↵-periodically along it boundary; the protuberances are obtained from a fixed bounded domain by
"↵-rescaling in x1 direction and "-rescaling in x2 direction. In [22, 23], besides an oscillating external
boundary, additional internal holes are allowed.

At first, we study the resolvent equation

��⌦"u" + µu" = f ", µ > 0. (1.1)

We prove (see Theorems 2.1-2.2) that under some natural assumptions on f " the solution u" to the
problem (1.1) converges in a suitable sense to the solution of the following problem on the line:

�u00(x) +V(µ)u(x) = F (µ, x). (1.2)

The functions V(µ), F (µ, x) are either linear (q = 1) or rational (q < 1) functions of µ. In the later
case they both have one pole – at the point q.

Problem (1.2) can be associated with a resolvent equation for some self-adjoint operatorH acting
in [L2(R)]2. The spectrum of this operator has the form

�(H) = [0,1) \ (q, q + q|B|) (1.3)

provided q > 0, otherwise �(H) = [0,1).
Our second result concerns the spectral convergence in the most interesting case q < 1. Period-

icity of ⌦" leads to the band structure of �(��⌦"), i.e. �(��⌦") is a locally finite union of compact
intervals called bands. In general they may overlap, otherwise we have a gap in the spectrum – a
bounded open interval having an empty intersection with the spectrum but with ends belonging to it.

We prove (see Theorem 2.3) that the spectrum of ��⌦" converges as " ! 0 to the spectrum ofH
in the Hausdor↵ sense. This means that �(��⌦") has a gap provided " is small enough; when " ! 0
this gap converges to the interval (q, q+ q|B|). Moreover, we show (see Lemma 2.1) that other gaps (if
any) “escape” from any finite interval when "! 0.

Theorems 2.1-2.3 remain valid if ⌦ is a bounded strip, cf. Remark 2.3 below.

Note, that using the same ideas one can also construct a waveguide with several gaps. Namely, if
we attach to ⇧" m 2 N di↵erent families of “room-and-passage” domains we will arrive at the same
limit problem (1.2), but the functionsV(µ), F (µ, x) will have m poles. The corresponding operatorH

3



will act in [L2(R)]m+1 and have m gaps. The proof relies on the same methods as in the case m = 1,
but is more cumbersome.

The possibility to open up gaps in the spectrum of periodic di↵erential operators is important from
the point of view of applications, in particular, to the so-called photonic crystals – periodic nanostruc-
tures that have been attracting much attention in recent years. The characteristic property of photonic
crystals is that the light waves at certain optical frequencies fail to propagate in them, which is caused
by gaps in the spectrum of the Maxwell operator or related scalar operators. Pioneer mathematical
results justifying the opening of spectral gaps for some 2D dielectric media were obtained in [16]. We
refer to the overview [21] and the book [15] concerning mathematical problems arising in this field.

As we already mentioned, in general, the presence of gaps is not guaranteed – for instance, if ⌦
is a straight unbounded strip then the spectrum of the Laplace operator is a ray [⇤,1), where ⇤ = 0
for the Neumann Laplacian and ⇤ > 0 for the Dirichlet Laplacian. There exist several approaches
how to construct a periodic waveguide-like domain with non-void gaps in the spectrum of the Laplace
operator on this domain subject to Neumann or Dirichlet boundary conditions. The simplest way
is to consider the waveguide consisting of an array of identical compact domains connected by thin
passages or windows – see, e.g., [5, 9, 29]. In this case the spectrum typically has small bands sepa-
rated by relatively large gaps. The opposite picture (i.e., large bands versus small gaps) occurs under
“small” perturbations of straight waveguides (see [4, 14, 25, 27, 28]) — either by a periodic nucleation
of small holes or by a gentle periodic bending of the boundary. The waveguide ⌦" constructed in the
current paper falls into an intermediate case – the length of the first band is comparable with the length
of the first gap. Moreover, in contrast to [12], both edges of this gap depends on geometric properties
of the waveguide in a very simple fashion.

Thin periodic waveguides of constant width were treated in [35]. It was proved that the Dirichlet
Laplacian on such a waveguide always has at least one gap provided the signed curvature of the
boundary curve is smooth and non-constant and the waveguide is thin enough. The opening of spectral
gaps for the Dirichlet Laplacian on the waveguide of the form

n

(x1, x2) 2 R2 : 0 < x2 < "h(x1)
o

, where
h(x) is a positive periodic function, was established in [17] under a suitable assumptions on h. The
waveguide consisting of two parallel strips coupled through a period family of thin windows was
studied in [7]. Finally, we mention the papers [8, 13, 19, 24, 26] where the same type problems were
addressed for more general elliptic selfadjoint operators, and [6], where the Steklov spectral problem
was considered.

The paper is organized as follows. In Section 2 we set up the problem and formulate the main
results. We prove resolvent convergence of ��⌦" in Sections 3 (q < 1) and 4 (q = 1). In Section 5
we prove Hausdor↵ convergence of the spectrum. Finally, in Section 6 we show that ��⌦" has at most
one gap on finite intervals provided " is small enough.

2. Setting of the problem and main results

Let " > 0 be a small parameter, and d", h" be positive numbers depending on " and satisfying

lim
"!0

d"

"
= 0, (2.1)

lim
"!0

h" = 0, (2.2)

lim
"!0
"2 ln d" = 0. (2.3)
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Condition (2.3) is rather technical, one needs it to have a better control on the behaviour of functions
from H1(⌦") near the bottom and the top of the passages (see Lemma 3.1 below).

Hereinafter by x = (x1, x2) we denote the points in R2, by x we denote the points in R. Further,
we introduce the following sets (below j 2 Z):

• ⇧" =
n

x 2 R2 : �" < x2 < 0
o

,

• T "j =
(

x 2 R2 : |x1 � x"j | <
d"

2
, 0  x2  h"

)

, where x"j = "( j + 1/2),

• B"j =
n

x 2 R2 : x �e

x

"
j 2 "B

o

, where e

x

"
j = (x"j , h

") 2 R2, B ⇢ R2 is an open bounded domain
with Lipschitz boundary such that

B ⇢
(

x 2 R2 : |x1| <
1
2
, x2 > 0

)

, (2.4)

9R 2
 

0,
1
2

!

:
n

x 2 R2 : |x1| < R, x2 = 0
o

⇢ @B. (2.5)

By virtue of the condition (2.4) the neighbouring “rooms” B"j are pairwise disjoint. Condition (2.5)
together with (2.1) imply the correct gluing of the j-th “room” and the j-th “passage”, namely the
upper face of T "j is contained in @B"j .

Finally, we define the waveguide ⌦" as a union of the straight strip ⇧" and "-periodically attached
“room-and-passage” protuberances B"j [ T "j (see Figure 1):

⌦" = ⇧" [
0

B

B

B

B

B

B

B

@

[

j2Z
B"j [ T "j

1

C

C

C

C

C

C

C

A

.

We denote byH" the Neumann Laplacian in L2(⌦") – the self-adjoint and positive operator asso-
ciated with the sesquilinear form h",

h"[u, v] =
Z

⌦"

ru(x) · rv(x)dx, dom(h") = H1(⌦")

(i.e., (H"u, v)L2(⌦") = h
"[u, v], 8u 2 dom(H"), 8v 2 dom(h")).

Our first goal is to describe the behaviour of the resolvent (H" + µI)�1, µ > 0 as " ! 0 under the
assumption that the following limit q, either finite or infinite, exists:

lim
"!0

d"

h""2|B| = q 2 [0,1]. (2.6)

Note, that if q < 1 then (2.1) follows automatically from (2.2), (2.6).
Before to formulate the result we need to introduce auxiliary operators.
We define the operator J"1 : L2(⇧")! L2(R) by the formula

(J"1u)(x) =
1p
"

Z 0

�"
u(x)dx2, where x = (x, x2). (2.7)
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Also we introduce the operator J"2 : L2(
S

j2Z
B"j)! L2(R) by

(J"2u)(x) =
X

j2Z

0

B

B

B

B

B

B

B

B

B

B

B

@

1
q

"|B"j |

Z

B"j

u(x)dx

1

C

C

C

C

C

C

C

C

C

C

C

A

� j(x), (2.8)

where � j(x) is the indicator function of the interval
⇣

x"j � "2 , x"j + "2
⌘

.
Using the Cauchy-Schwarz inequality we get

8 f 2 L2(⌦") : kJ"1 f kL2(R)  k f kL2(⇧"), kJ"2 f kL2(R)  k f kL2(
S

j2Z
B"j ). (2.9)

Moreover, it is easy to show that J"1u 2 H1(R) provided u 2 H1(⌦") and the following Poincaré-type
estimates are valid:

kuk2L2(⇧")  kJ"1uk2L2(R) +C"2kruk2L2(⇧"), (2.10)

kuk2L2(
S

j
B"j )
 kJ"2uk2L2(R) +C"2kruk2L2(

S

j
B"j )
. (2.11)

Hereinafter by C,C1,C2, . . . we denote generic constants which do not depend on ". Inequalities
(2.9)-(2.11) mean that J"1 , J

"
2 are “almost” isometries (as " ⌧ 1).

We are now in position to formulate the first result; it deals with the most interesting case q < 1.
Below, as usual, * denotes the weak convergence (in an appropriate space).

Theorem 2.1. Let q < 1. Let { f "}" be a family of functions from L2(⌦") satisfying

k f "kL2(⌦")  C, J"1 f " * f1 in L2(R), J"2 f " * f2 in L2(R) as "! 0, (2.12)

where f1, f2 2 L2(R). We set u" = (H" + µI)�1 f ", µ > 0.
Then

J"1u" * u1 in H1(R) as "! 0,

where the function u1 belongs to H2(R) and is a solution of the problem

�u001 + µ
 

1 +
q|B|

q + µ

!

u1 = f1 +
q|B|1/2
q + µ

f2. (2.13)

Moreover

J"2u" * u2 =
q|B|1/2
q + µ

u1 +
1

q + µ
f2 in L2(R).

Remark 2.1. The typical example of a family { f "}" satisfying (2.12) is as follows. Let F = ( f1, f2) 2
[L2(R)]2 be an arbitrary function. We introduce the function f " by

f "(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1p
"

f1(x1), x 2 ⇧",

0, x 2 T "j ,

1
q

"|B"j |

"/2+x"j
Z

�"/2+x"j

f2(x)dx, x 2 B"j .

(2.14)

It is easy to show that f " satisfies (2.12).
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Theorem 2.1 can be rewritten by assigning to the problem (2.13) some self-adjoint and positive
operator. Namely, we introduce the operatorH acting in [L2(R)]2 by

HU =
0

B

B

B

B

@

�d2/dx2 + q|B| �q|B|1/2
�q|B|1/2 q

1

C

C

C

C

A

0

B

B

B

B

@

u1

u2

1

C

C

C

C

A

, U = (u1, u2), dom(H) = H2(R) ⇥ L2(R). (2.15)

It is straightforward to show that u1 solves (2.13) and u2 =
q|B|1/2

q+µ u1 +
1

q+µ f2 i↵

HU + µU = F, where U = (u1, u2), F = ( f1, f2).

Thus Theorem 2.1 claims

J"(H" + µI)�1 f " * (H + µI)�1F as "! 0 provided J" f " * F in [L2(R)]2,

where J" = (J"1 , J
"
2) : H1(⌦") ⇥ L2(⌦")! H1(R) ⇥ L2(R).

In the case q = 1 one has the following result.

Theorem 2.2. Let q = 1. Let { f "}" be a family of functions from 2 L2(⌦") satisfying (2.12). We set
u" = (H" + µI)�1 f ", µ > 0. Then

J"1u" * u1 in H1(R), J"2u" * u2 in L2(R) as "! 0,

where u1 2 H2(R), u2 = |B|1/2u1 and

�u001 + µ (1 + |B|) u1 = f1 + |B|1/2 f2. (2.16)

In what follows we consider the case q > 0 only. Our next goal is be to describe the behaviour of
�(H") as "! 0.

Theorem 2.3. Let L > 0 be an arbitrary number. Then

distH
�

�(H") \ [0, L], �(H) \ [0, L]
�! 0 as "! 0, (2.17)

where distH(·, ·) stays for the Hausdor↵ distance between two sets. 2

Remark 2.2. The claim of Theorem 2.3 is equivalent to the fulfilment of the following conditions:

(i) Let the family {�" 2 �(H")}" have a convergent subsequence, i.e. �" ! � as " = "k ! 0. Then
� 2 �(H).

(ii) Let � 2 �(H). Then there exists a family {�" 2 �(H")}" such that lim
"!0
�" = �.

2For two compact sets X,Y ⇢ R one has: distH(X,Y) = max
(

sup
x2X

inf
y2Y
|x � y|; sup

y2Y
inf
x2X
|y � x|

)

.
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It is easy to see that the spectrum ofH has the following form:

�(H) = [0,1) \ (q, q + q|B|) . (2.18)

Indeed, for � , q the resolvent equationHU � �U = F is equivalent to

�u001 � ⇢(�)u1 = f1 +
q|B|1/2
q � � f2, u2 =

q|B|1/2
q � � u1 +

1
q � � f1, where ⇢(�) = �

 

1 +
q|B|

q � �

!

,

whence, evidently, � 2 �(H) \ {q} i↵ ⇢(�) 2 �(� d2

dx2 |L2(R)) = [0,1). But ⇢(�) 2 [0,1) i↵ � 2
[0,1) \ [q, q + q|B|). Finally, q 2 �(H) since �(H) is a closed set.

Remark 2.3. Theorems 2.1-2.3 (after a natural reformulation) remain valid if ⌦ is a bounded strip:
⌦ = (0, l) ⇥ (�", 0), l > 0. In this case �(H") is purely discrete. The limit problems (2.13) and (2.16)
are now considered on (0, l) with Neumann conditions at the endpoints. If q < 1 the spectrum of the
corresponding limit operatorH has the form

�(H) =
n

��k , k = 1, 2, 3 . . .
o

[
n

�+k , k = 1, 2, 3 . . .
o

[ {q},

where the point �±k belong to the discrete spectrum, q is the only point of the essential spectrum and

��1 = 0, �+1 = q + q|B|, ��k % q, �+k % 1 as k ! 1.

The proofs repeat word-by-word the proofs for the unbounded case.

From Theorem 2.3 and (2.18) we conclude that �(H") has at least one gap provided " is small
enough. Moreover, there is a gap converging to the interval (q, q + q|B|) as " ! 0. Unfortunately,
Hausdor↵ convergence provides no information on the upper bound for the number of gaps, even
within finite intervals: for example, the set �" := [0, L] \

✓

S

k2N

h

"k, "(k + 1
2 )

i

◆

converges to [0, L] in

the Hausdor↵ sense, but the number of gaps in �" tends to infinity as " ! 0. Nevertheless, for our
problem one can say more, namely, the following lemma take place.

Lemma 2.1. Within an arbitrary compact interval [0, L] the spectrum of H" has at most one gap
provided " is small enough.

Combining Theorem 2.3 and Lemma 2.1, we arrive at the main result of this work.

Theorem 2.4. Let L > 0 be an arbitrary number. Then the spectrum of the operatorH" in [0, L] has
the following structure for " small enough:

�(H") \ [0, L] = [0, L] \ (↵", �"),

where the endpoints of the interval (a", �") satisfy

lim
"!0
↵" = q, lim

"!0
�" = q + q|B|. (2.19)

Theorems 2.1-2.3 as well as Lemma 2.1 will be proven in the next sections.

At the end of this section we introduce several notations, which further will be frequently used:
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• Y"j =
n

x 2 ⇧" : |x1 � x"j | < "2
o

,

• S "j =
n

x 2 @T "j : x2 = 0
o

,

• C"j =
n

x 2 @T "j : x2 = h"
o

.

The notation huiD stays for the mean value of the function u(x) in the domain D, i.e.

huiD =
1
|D|

Z

D

u(x)dx.

Also we keep the same notation if D is a segment (e.g., S "j). In this case we integrate with respect to
the natural coordinate on this segment, |D| is its length.

3. Proof of Theorem 2.1

Let { f "}" be a family of functions from L2(⌦") satisfying (2.12), u" = (H" + µI)�1 f ", µ > 0. One
has the following standard estimates:

ku"kL2(⌦") 
1
µ
k f "kL2(⌦"), kru"k2L2(⌦")  k f "kL2(⌦")ku"kL2(⌦"),

whence, taking into account that k f "kL2(⌦")  C, we obtain

ku"k2H1(⌦")  C1. (3.1)

Recall that the operators J"j , j = 1, 2 satisfy (2.9), moreover, changing the order of integration
with respect to x2 and di↵erentiation with respect to x1, one can easily prove that for u 2 H1(⌦")

k(J"1u")0k2L2(R)  k@x1u"k2L2(⇧")  kru"k2L2(⌦"). (3.2)

Then it follows from (2.9) (applied for u"), (3.2) that the families
n

J"1u"
o

"
and

n

J"2u"
o

"
are uniformly

bounded in H1(R) and L2(R), respectively, and therefore there are a subsequence (for convenience,
still indexed by ") and u1 2 H1(R), u2 2 L2(R) such that

J"1u" * u1 in H1(R), J"2u" * u2 in L2(R) as "! 0. (3.3)

Now, let us write the variational formulation of the resolvent equation (1.1):
Z

⌦"

✓

ru" · rw + µu"w
◆

dx =

Z

⌦"

f "wdx, 8w 2 H1(⌦"). (3.4)

Our strategy will be to plug into (3.4) a specially chosen test-function w = w" and then pass to the
limit as " ! 0 hoping to arrive at the equality HU + µU = F written in a weak form, where H is
defined by (2.15), U = (u1, u2) and F = ( f1, f2).
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We choose this test-function as follows (below, as usual, x = (x1, x2)):

w = w"(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1p
"

0

B

B

B

B

B

B

B

@

w1(x1) +
X

j2Z
(w1(x"j) � w1(x1))'"j(x)

1

C

C

C

C

C

C

C

A

, x 2 ⇧",

1
h"
p
"

⇣

w2(x"j) � w1(x"j)
⌘

x2 +
w1(x"j)p
"
, x 2 T "j ,

1p
"

w2(x"j), x 2 B"j .

(3.5)

Here w1,w2 2 C1
0(R) are arbitrary functions, '"j(x) = '

✓ |x1�x"j |
d"

◆

, where ' : R ! R is a smooth

functions satisfying '(t) = 1 as t  1 and '(t) = 0 as t � 2. Obviously w" 2 H1(⌦") provided d"  "4
(this holds for " small enough, see (2.1)).

We denote:
J" =

n

j 2 Z : x"j 2 supp(w1) [ supp(w2)
o

.

It is clear that
X

j2J"
1  C"�1. (3.6)

Let us plug w = w"(x) into (3.4). Since supp('"j) ⇢ Y"j and w" = const. in B"j we obtain from (3.4):

"�
1
2

Z

⇧"

✓

ru"(x) · rw1(x1) + µu"(x)w1(x1)
◆

dx

|                                                     {z                                                     }

I1

+ "�
1
2
X

j2Z

Z

Y"j

⇣

ru"(x) · r
⇣

(w1(x"j) � w1(x1))'"j(x)
⌘⌘

+ µu"
�

w1(x"j) � w1(x1)
�

'"j(x)
◆

dx

|                                                                                                        {z                                                                                                        }

I2

+

+
X

j2Z

Z

T "j

ru"(x) · rw"(x)dx

|                           {z                           }

I3

+ µ
X

j2Z

Z

T "j

u"(x)w"(x)dx

|                      {z                      }

I4

+ "�
1
2µ

X

j2Z
w2(x"j)

Z

B"j

u"(x)dx

|                             {z                             }

I5

=

= "�
1
2

Z

⇧"

f "(x)w1(x1)dx

|                      {z                      }

I6

+ "�
1
2
X

j2Z

Z

Y"j

f "(x)
�

w1(x"j) � w1(x1)
�

'"j(x)dx

|                                                  {z                                                  }

I7

+
X

j2Z

Z

T "j

f "(x)w"(x)dx

|                    {z                    }

I8

+ "�
1
2
X

j2Z
w2(x"j)

Z

B"j

f "(x)dx

|                            {z                            }

I9

. (3.7)

Let us analyse step-by-step the terms I j, j = 1, . . . , 9.
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(I1) Using (3.3) and the definition of the operator J"1 we obtain:

I1 = "
� 1

2

1
Z

�1

0
Z

�"

 

@u"

@x1
(x1, x2)

dw1

dx1
(x1) + µu"w1

!

dx2 dx1

=

Z

R

�

(J"1u")0w01 + µ(J"1u")w1
�

dx !
"!0

Z

R

�

u01w01 + µu1w1
�

dx. (3.8)

(I2) One has the following properties (below '"j is regarded as a function of x 2 R):

supp
⇣⇣

w1(x"j) � w1
⌘

'"j
⌘

⇢
n

x 2 R : |x � x"j | < 2d"
o

,
�

�

�

�

⇣⇣

w1(x"j) � w1
⌘

'"j
⌘0��
�

�

+
�

�

�

�

⇣

w1(x"j) � w1
⌘

'"j

�

�

�

�

 C.

Using them, (2.1), (3.1) and (3.6) we obtain easily:

|I2|  C"�
1
2 ku"kH1(⇧")

s

X

j2J"
"d"  C1

r

d"

"
!
"!0

0. (3.9)

(I3) Integrating by parts and taking into account that �w" = 0 in T "j , we obtain:

I3 =
X

j2Z

x"j+
d"
2

Z

x"j�
d"
2

 

u"(x1, h")
@w"

@x2
(x1, h") � u"(x1, 0)

@w"

@x2
(x1, 0)

!

dx1

=
d"

h"
p
"

X

j2Z

⇣

hu"iS "j � hu
"iC"j

⌘

�

w1(x"j) � w2(x"j)
�

. (3.10)

Let us introduce the operator Q" : C1
0(R)! L2(R) by

(Q"w)(x) =
X

j2Z
w(x"j)�

"
j(x)

(recall that � j(x) is the indicator function of the interval
⇣

x"j � "2 , x"j + "2
⌘

). It is easy to show that

8w 2 C1(R) : Q"w !
"!0

w in L2(R). (3.11)

With this operator one can rewrite (3.10) as

I3 =
d"

h"
p
"

X

j2Z

⇣

hu"iY"j � hu
"iB"j

⌘

�

w1(x"j) � w2(x"j)
�

+ �(")

=
d"

h""2

Z

R

⇣

J"1u" � |B|�1/2J2u"
⌘

�

Q"w1 � Q"w2
�

dx + �("), (3.12)

where �(") =
X

j2J"

d"

h"
p
"

⇣

hu"iS "j � hu
"iY"j � hu

"iC"j + hu
"iB"j

⌘ ⇣

w1(x"j) � w2(x"j)
⌘

. The last equality in

(3.12) follows simply from the definitions of the operators J"1, J"2, Q".
To estimate the reminder �(") we need an additional lemma.
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Lemma 3.1. One has:

8u 2 H1(Y"j ) :
�

�

�

�

huiS "j � huiY"j
�

�

�

�

 C
p

| ln d"|krukL2(Y"j ), (3.13)

8u 2 H1(B"j) :
�

�

�

�

huiC"j � huiB"j
�

�

�

�

 C
p

| ln d"|krukL2(B"j ). (3.14)

Proof. For an arbitrary u 2 H1(Y"j ) one has the following estimate (see [11, Lemma 3.1]):
�

�

�

�

huiS "j � hui�"j
�

�

�

�

 C1
p

| ln d"|krukL2(Y"j ), (3.15)

where �"j =
n

x 2 @Y"j : x2 = 0
o

. Moreover, using the trace and Poincaré inequalities we obtain

�

�

�

�

hui�"j � huiY"j
�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

"�1

x"j+
"
2

Z

x"j�
"
2

⇣

u(x1, 0) � huiY"j
⌘

dx1

�

�

�

�

�

�

�

�

�

�

 "�1/2

v

u

u

u

u

u

u

u

t

x"j+
"
2

Z

x"j�
"
2

�

�

�

�

u(x1, 0) � huiY"j
�

�

�

�

2
dx1

 C"�1/2

s

"kruk2L2(Y"j ) + "
�1

�

�

�

�

u � huiY"j
�

�

�

�

2

L2(Y"j )
 C1krukL2(Y"j ). (3.16)

Then (3.13) follow from (3.15)-(3.16). The proof of estimate (3.14) is similar (instead of �"j one
should use the set

n

x 2 R2 : x2 = h", |x1 � x"j | < R"
o

, R is defined in (2.5)). ⇤

Remark 3.1. Using similar arguments (cf. [11, Lemma 3.1]) one can also prove the estimate

8u 2 H1(Y"j ) : kuk2L2(S "j )
 d""�2kuk2L2(Y"j ) +Cd"| ln d"|kruk2L2(Y"j ). (3.17)

We will use it later in the proof of Theorem 2.3.

Using Lemma 3.1 and taking into account (2.3), (2.6), (3.1) and (3.6) we get:

|�(")|  d"

h"
p
"

s

X

j2J"

✓

�

�

�

�

hu"iS "j � hu"iY"j
�

�

�

�

2
+

�

�

�

�

hu"iB"j � hu"iC"j
�

�

�

�

2◆

⇥
s

X

j2J"

✓

max
x2R
|w1(x)|2 +max

x2R
|w2(x)|2

◆

 C
p

"2| ln d"| d"

h""2 kru"kL2(⌦") !
"!0

0. (3.18)

Combining (3.12) and (3.18) and taking into account (2.6), (3.3), (3.11), we obtain:

I3 !
"!0

q|B|
Z

R

⇣

u1 � |B|�1/2u2
⌘

(w1 � w2) dx. (3.19)

(I4) Taking into account that max
x2T "j
|w"(x)|  C"�1/2 and using (2.2), (2.6) and (3.6) we estimate:

|I4|  CkukL2([ jT "j )

s

X

j2J"
|T "j |"�1  C1h"

r

d"

h""2 !"!0
0. (3.20)
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(I5) Using (3.3), (3.11) we arrive at

I5 = µ|B|1/2
Z

R

(J"2u")(Q"w2)dx !
"!0
µ|B|1/2

Z

R

u2w2 dx. (3.21)

Here the first equality follows simply from the definitions for the operators J"2 and Q".

(I6)-(I9) By virtue of arguments similar to those ones in (I1), (I2), (I4), (I5) and taking into account
(2.12) we obtain the following asymptotic behavior for the terms in the right-hand-side of (3.7):

I"6 !"!0

Z

R

f1w1 dx, I"7 !"!0
0, I"8 !"!0

0, I9 !
"!0
µ|B|1/2

Z

R

f2w2 dx. (3.22)

Finally, combining (3.7)-(3.9), (3.19)-(3.22), we arrive at the equality

Z

R

u01w01 dx + q|B|
Z

R

⇣

u1 � |B|�1/2u2
⌘

(w1 � w2) dx + µ
Z

R

⇣

u1w1 + |B|1/2u2w2
⌘

dx

=

Z

R

⇣

f1w1 + |B|1/2 f2w2
⌘

dx, (3.23)

which is valid for an arbitrary w1,w2 2 C1
0(R) (and therefore, by the density arguments, for an arbitrary

w1 2 H1(R) and w2 2 L2(R)).
Taking w1 ⌘ 0 in (3.23) we get

R

R

⇣

�q|B|u1 + q|B|1/2u2 + µ|B|1/2u2 � |B|1/2 f2
⌘

w2 dx, 8w2 2 L2(R),

whence

u2 =
q|B|1/2
q + µ

u1 +
1

q + µ
f2. (3.24)

Then, taking w2 ⌘ 0 in (3.23) and using (3.24), we arrive at
Z

R

u01w01 dx + µ
Z

R

 

1 +
q|B|

q + µ

!

u1w1 dx =
Z

R

 

f1 +
q|B|1/2
q + µ

f2
!

w1 dx, 8w1 2 H1(R),

whence, u1 belongs to H2(R) and is a solution to the problem (2.13).
Finally, since the problem (2.13) has the unique solution and u2 is uniquely determined by u1 via

(3.24), then (3.3) hold for the whole sequence u". Theorem 2.1 is proved.

4. Proof of Theorem 2.2

Via the same arguments as in the proof of Theorem 2.1 we conclude that there is a subsequence
(for convenience, still indexed by ") and u1 2 H1(R), u2 2 L2(R) such that (3.3) holds.

For an arbitrary w 2 H1(⌦") one has the equality (3.4). We plug into this equality the function
w = w"(x) defined by (3.5), but with w1(x) = w2(x). In this case the terms I3 and I8 (see (3.7)) are
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equal to zero, while the behaviour of the rest terms is independent of whether q is finite or not. Thus,
passing to the limit in (3.4) we arrive at the equality

Z

R

u01w01 dx + µ
Z

R

⇣

u1 + |B|1/2u2
⌘

w1 dx =
Z

R

⇣

f1 + |B|1/2 f2
⌘

w1 dx, (4.1)

which is valid for an arbitrary w1 2 H1(R).
It remains to show that u2 = |B|1/2u1 (then, evidently, (4.1) will imply u1 2 H2(R) and (2.16)).

One has, using the definitions of the operators J"1 and J"2:

�

�

�J"2u" � |B|1/2J"1u"
�

�

�

2
L2(R) =

X

j2Z

x"j+"/2
Z

x"j�"/2

�

�

�

�

�

�

�

�

�

|B|1/2"1/2hu"iB"j � |B|
1/2"�1/2

0
Z

�"

u"(x1, x2)dx2

�

�

�

�

�

�

�

�

�

2

dx1

= "�1|B|
X

j2Z

x"j+"/2
Z

x"j�"/2

�

�

�

�

�

�

�

�

�

0
Z

�"

⇣

hu"iB"j � u"(x1, x2)
⌘

dx2

�

�

�

�

�

�

�

�

�

2

dx1  |B|
X

j2Z

�

�

�

�

hu"iB"j � u"
�

�

�

�

2

L2(Y"j )

 4|B|
X

j2Z

 

�

�

�

�

hu"iY"j � u"
�

�

�

�

2

L2(Y"j )
+ "2

✓

�

�

�

�

hu"iS "j � hu
"iY"j

�

�

�

�

2
+

�

�

�

�

hu"iC"j � hu
"iS "j

�

�

�

�

2
+

�

�

�

�

hu"iB"j � hu
"iC"j

�

�

�

�

2◆
!

.

(4.2)

The following simple estimate holds (cf. [11, Lemma 3.2]):

8u 2 H1(T "j ) :
�

�

�

�

huiC"j � huiS "j
�

�

�

�

2
 Ch"(d")�1kruk2L2(T "j ). (4.3)

Then, using (3.13), (3.14), (4.3) and the Poincaré inequality, we obtain from (4.2):

�

�

�J"2u" � |B|1/2J"1u"
�

�

�

2
L2(R)  C1"

2kru"k2L2(
S

j2Z
Y"j )

+C2"
2| ln d"|

0

B

B

B

B

@

kru"k2L2(
S

j2Z
(B"j[Y"j ))

1

C

C

C

C

A

+C3"
2h"(d")�1kru"k2L2(

S

j2Z
T "j ) ! 0 as "! 0 (4.4)

(here the the right-hand-side tends to zero due to (2.3) and (2.6) (recall, that q = 1)). Finally, in view
the Rellich embedding theorem, the weak convergence of J"1u" to u1 in H1(R) implies

8L > 0 : kJ"1u" � u1kL2(�L,L) ! 0 as "! 0. (4.5)

From (4.2) and (4.5) we deduce u2 = |B|1/2u1.
Since the problem (2.16) has the unique solution and u2 is uniquely determined by u1, then (3.3)

hold for the whole sequence u". Theorem 2.2 is proved.

5. Proof of Theorem 2.3

Recall, that we have to check the fulfilment of the properties (i)-(ii) (see Remark 2.2).
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5.1. Proof of the property (i)
Let �" 2 �(H") and �" ! � as " = "k ! 0. We have to show that � 2 �(H).
In what follows we will use the notation " taking in mind "k. To simplify the presentation we sup-

pose that " takes values in the discrete set
n

" : "�1 2 N
o

. The general case needs slight modifications.
We denote

• N" = {1, 2, . . . , "�1},

• e⇧" =
n

x 2 R2 : 0 < x1 < 1, �" < x2 < 0
o

,

• e⌦" = e⇧" [
0

B

B

B

B

B

B

B

@

[

j2N"

⇣

T "j [ B"j
⌘

1

C

C

C

C

C

C

C

A

,

It is clear that the set e⌦" is a period cell for ⌦", namely

⌦" =
[

k2Z
(e⌦" + k), (e⌦" + k) \ (e⌦" + l) = ? for k, l 2 Z, k , l.

Let ' 2 R\(2⇡Z). In the space L2(e⌦") we introduce the sesquilinear form h'," by

h',"[u, v] =
Z

e⌦"

ru · rvdx, dom(h',") =
n

u 2 H1(e⌦") : u(1, x2) = exp(i')u(0, x2) for x2 2 (�", 0)
o

.

We denote by H'," the operator associated with this form. One has H',"u = ��u in the generalized
sense; the function u 2 dom(H',") satisfies (in a sense of traces)

u(1, x2) = exp(i')u(0, x2),
@u
@x1

(1, x2) = exp(i')
@u
@x1

(0, x2) for x2 2 (�", 0).

The spectrum of H'," is purely discrete. We denote by
n

�',"k

o

k2N the sequence of eigenvalues of

H'," arranged in the ascending order and repeated according to their multiplicity. By
n

u',"k

o

k2N we
denote the corresponding sequence of eigenfunctions such that (u',"k , u

',"
l )L2(e⌦") = �kl.

Using Floquet-Bloch theory (see, e.g., [15, 20, 30]) we deduce the following relationship between
the spectra ofH" andH',":

�(H") =
[

k2N

n

�',"k : ' 2 R\(2⇡Z)
o

. (5.1)

For fixed k 2 N the set
n

�',"k : ' 2 R\(2⇡Z)
o

is a compact interval.

Since �" 2 �(H") then in view of (5.1) there is '" 2 R\(2⇡Z), k" 2 N such that �" = �',"k" . By
u" = u'

","
k" we denote the corresponding eigenfunction. One has:

ku"kL2(e⌦") = 1 (and, consequently, kru"k2
L2(e⌦")

= �"). (5.2)

One can extract a convergent subsequence (for convenience, still indexed by ")

'" ! ' 2 R\(2⇡Z). (5.3)
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We define the operators eJ"1 : H1(e⇧") ! H1(0, 1) and eJ"2 : L2(
S

j2N"
B"j) ! L2(0, 1) by (2.7)-(2.8)

withN" instead of Z. Via the same arguments as in the proof of Theorem 2.1, we conclude from (5.2)
that the families

n

J"1u"
o

"
and

n

J"2u"
o

"
are uniformly bounded in H1(0, 1) and L2(0, 1), respectively, and

therefore there exists a subsequence (again indexed by ") and u1 2 H1(0, 1), u2 2 L2(0, 1) such that

eJ"1u" * u1 in H1(0, 1), (5.4)
eJ"2u" * u2 in L2(0, 1). (5.5)

Moreover, using the trace theorem, we obtain

(eJ"1u")(0)! u1(0), (eJ"1u")(1)! u1(1). (5.6)

It is clear that (eJ"1u")(1) = exp(i'")(eJ"1u")(0), whence, in view of (5.3) and (5.6),

u1(1) = exp(i')u1(0). (5.7)

We start from the case
u1 , 0.

We need the following analogue of Theorem 2.1.

Lemma 5.1. Let the family
n

f " 2 L2(e⌦")
o

"
satisfy

k f "kL2(e⌦")  C, eJ"1 f " * f1 in L2(0, 1), eJ"2 f " * f2 in L2(0, 1) as "! 0. (5.8)

We set v"f " = (H'"," + µ)�1 f ", where µ > 0. Then

eJ"1v"f " * v1 in H1(0, 1) as "! 0,

where v1 2 H2(0, 1) satisfies v1(1) = exp(i')v1(0), v01(1) = exp(i')v01(0) and solves the problem
(2.13) on the interval (0, 1). Moreover

eJ"2u" * v2 =
q|B|1/2
q + µ

v1 +
1

q + µ
f2 in L2(0, 1).

Proof. The proof is similar to the proof of Theorem 2.1. The only essential di↵erence is that the
test-function w = w"(x) defined by (3.5) have to be modified in order to meet '"-periodic boundary
conditions. Namely, let w1 2 C1(0, 1) satisfy w1(1) = exp(i')w1(0). We introduce w"1 2 C1(0, 1) by

w"1(x) = w1(x)
�

(exp(i'" � i') � 1)x + 1
�

. (5.9)

Clearly w"1(x) satisfies w"1(1) = exp(i'")w"1(0) and

w"1 ! w1 in C1(0, 1) as "! 0. (5.10)

Finally, we define the function w by formula (3.5) with w"1(x) instead of w1(x). In view of (5.9)
w" 2 dom(h'","). Then we plug the function w" into the equality

Z

e⌦"

✓

rv"f " · rw" + µv"f "w
"
◆

dx =

Z

e⌦"

f "w"dx

and pass to the limit as "! 0. Using the same arguments as in the proof of Theorem 2.1 (with account
of (5.10)) we arrive at the statement of the lemma. ⇤
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We choose f " = (� + µ)u". It is clear that in this case v"f " = u". Due to (5.4)-(5.5) conditions (5.8)
hold true. Then by Lemma 5.1 u1 belongs to H2(0, 1) and satisfies (additionally to (5.7))

u01(1) = exp(i')u01(0) (5.11)

�u001 + µ
 

1 +
q|B|

q + µ

!

u1 = (� + µ)u1 +
q|B|1/2
q + µ

(� + µ)u2, u2 =
q|B|1/2
q + µ

u1 +
1

q + µ
(� + µ)u2, (5.12)

From (5.12), via simple calculations, we obtain the following equation for u1:

�u001 = ⇢(�)u1, where ⇢(�) = �
 

1 +
q|B|

q � �

!

. (5.13)

Since u1 , 0 (5.7), (5.11), (5.13) imply that ⇢(�) 2 �(� d2

dx2 |L2(R)) = [0,1) or, equivalently,
� 2 [0,1) \ (q, q + q|B|). Then due to (2.18) � 2 �(H).

Now, we inspect the case
u1 = 0.

We show that in this case � = q and hence (see (2.18)) � 2 �(H).
Recall that �" = �'

","
k" , u" = u'

","
k" . We express the eigenfunction u" in the form

u" = v" � w" + �",

where

v"(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0, x 2 e⇧",

hu"iB"j (h
")�1x2, x 2 T "j ,

hu"iB"j , x 2 B"j ,
w"(x) =

k"�1
X

k=1

(v", u'
","

k )L2(e⌦")u
'","
k (x)

and �" is a remainder term. It is clear that

v",w" 2 dom(h'
",") and v" � w" 2

⇣

span
n

u'
","

1 , . . . , u'
","

k"�1

o⌘?
. (5.14)

Lemma 5.2. One has for each u 2 H1(T "j [ Y"j ):

kuk2L2(T "j )  C
✓

(h")2kuk2L2(Y"j ) + d"| ln d"|h"kruk2L2(Y"j ) + (h")2kruk2L2(T "j )

◆

. (5.15)

Proof. By the density arguments it is enough to prove the lemma only for smooth functions. Let u be
an arbitrary function from C1(T "j [ Y"j ). Let x = (x1, x2) 2 T "j , y = (x1, 0) 2 S "j . One has

u(x) = u(y) +
x2

Z

0

@u(⇠(⌧))
@⌧

d⌧, where ⇠(⌧) = (x1, ⌧),

whence, using (3.17), we obtain:

ku"k2L2(T "j ) =

h"
Z

0

x"j+d"/2
Z

x"j�d"/2

|u(x1, x2)|2 dx1 dx2  2h"
x"j+d"/2
Z

x"j�d"/2

|u(x1, 0)|2 dx1+2(h")2
h"

Z

0

x"j+d"/2
Z

x"j�d"/2

|@x2u(x1, x2)|2 dx1 dx2

 Ch"
✓

d""�2kuk2L2(Y"j ) + d"| ln d"|kruk2L2(Y"j )

◆

+ 2(h")2kru"k2L2(T "j ). (5.16)

From (5.16), taking into account that d""�2 = O(h") (see (2.6) for q < 1), we arrive at (5.15). ⇤
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Estimate (5.15) yields

ku"kL2
⇣

[ j2N"T "j
⌘ ! 0 as "! 0. (5.17)

Also, one has the following Poincaré inequality:
X

j2N"
ku" � hu"iB"j k

2
L2(B"j )

 C"2kru"k2L2(B"j )
! 0 as "! 0. (5.18)

Since u1 = 0, then, using (2.10) (evidently, it holds with e⇧" and (0, 1) instead of ⇧" and R), we get

ku"k2
L2(e⇧")

 kJ"1u"k2L2(0,1) +C"2kru"k2
L2(e⇧")

! 0 as "! 0. (5.19)

Since ku"kL2(e⌦") = 1 then

1 = ku"k2
L2(e⇧")

+
X

j2N"
ku"k2L2(T "j ) +

X

j2N"
|B"j |

�

�

�

�

hu"iB"j
�

�

�

�

2
+

X

j2N"
ku" � hu"iB"j k

2
L2(B"j )

,

and hence, in view of (5.17)-(5.19), we obtain
X

j2N"
|B"j |

�

�

�

�

hu"iB"j
�

�

�

�

2
= 1 + o(1) as "! 0. (5.20)

From (5.20), taking into account (2.2), (2.6), we obtain the asymptotics for v":

krv"k2L2(⌦") =
X

j2N"
d"(h")�1

�

�

�

�

hu"iB"j
�

�

�

�

2
= q + o(1) as "! 0, (5.21)

X

j2N"
kv"k2L2(B"j )

=
X

j2N"
|B"j |

�

�

�

�

hu"iB"j
�

�

�

�

2
= 1 + o(1) as "! 0, (5.22)

X

j2N"
kv"k2L2(T "j ) =

1
3|B| (h

")2 d"

h""2

X

j2N"
|B"j |

�

�

�

�

hu"iB"j
�

�

�

�

2
= o(1) as "! 0. (5.23)

Asymptotics (5.22)-(5.23) together with v"|
e⇧" = 0 yield

kv"kL2(e⌦") = 1 + o(1) as "! 0. (5.24)

By virtue of (5.17)-(5.19) and (5.23)

ku" � v"k2
L2(e⌦")

=
X

j2N"

✓

ku" � hu"iB"j k
2
L2(B"j )

+ ku" � v"k2L2(T "j )

◆

+ ku"k2
L2(e⇧")

!
"!0

0. (5.25)

Since (u", u'
","

k )L2(e⌦") = 0 for k = 1, . . . , k" � 1, we get, using the Bessel inequality:

kw"k2
L2(e⌦")

=

k"�1
X

k=1

�

�

�

�

(v", u'
","

k )L2(e⌦")

�

�

�

�

2
=

k"�1
X

k=1

�

�

�

�

(v" � u", u'
","

k )L2(e⌦")

�

�

�

�

2
 kv" � u"k2L2(⌦"),

krw"k2
L2(e⌦")

=

k"�1
X

k=1

�'
","

k

�

�

�

�

(v", u'
","

k )L2(e⌦")

�

�

�

�

2
=

k"�1
X

k=1

�'
","

k

�

�

�

�

(v" � u", u'
","

k )L2(e⌦")

�

�

�

�

2
 �"kv" � u"k2

L2(e⌦")
,
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whence, in view of (5.25),

kw"k2
H1(e⌦")

! 0 as "! 0. (5.26)

Now, we are in position to estimate the remainder �". One has the following variational character-
ization for �" (see, e.g., [30]):

�" = inf

8

>

>

>

<

>

>

>

:

kruk2
L2(e⌦")

kuk2
L2(e⌦")

, 0 , u 2 dom(h'
",") \

⇣

span
n

u'
","

1 , . . . , u'
","

k"�1

o⌘?
9

>

>

>

=

>

>

>

;

. (5.27)

From (5.27) we get, taking into account (5.14):

�" = kru"k2
L2(e⌦")


krṽ"k2

L2(e⌦")

kṽ"k2
L2(e⌦")

, where ṽ" = v" � w". (5.28)

Inequality (5.28) is equivalent to

kr�"k2
L2(e⌦")

 krṽ"k2
L2(e⌦")

✓

kṽ"k�2
L2(e⌦")

� 1
◆

� 2(rṽ",r�")L2(e⌦"). (5.29)

Due to (5.21), (5.24), (5.26)

krṽ"k2
L2(e⌦")

✓

kṽ"k�2
L2(e⌦")

� 1
◆

! 0 as "! 0. (5.30)

Now, let us estimate the last term in the right-hand-side of (5.29). One has

(rṽ",r�")L2(e⌦") = (rv",r�")L2(e⌦") � (rw",r�")L2(e⌦")

= (rv",ru" � rv")L2(e⌦") + (rv",rw")L2(e⌦") � (rw",r�")L2(e⌦"). (5.31)

Integrating by parts and taking into account that �v"j = 0 in T "j we get

(rv",ru" � rv")L2(e⌦") =
X

j2N"

Z

T "j

rv" · r(u" � v")dx =
d"

h"
X

j2N"
hu"iB"j

⇣

�hu"iS "j + hu
"iC"j � hu

"iB"j
⌘

.

Using (2.3), (2.6), (3.13), (3.14), (5.19), (5.20) we obtain

�

�

�

�

(rv",ru" � rv")L2(e⌦")

�

�

�

�

2


 

d"

h"

!2

|B"j |�1

8

>

>

>

<

>

>

>

:

X

j2N"
|B"j |

�

�

�

�

hu"iB"j
�

�

�

�

2
9

>

>

>

=

>

>

>

;

8

>

>

>

<

>

>

>

:

X

j2N"

�

�

�

�

hu"iS "j + hu
"iC"j � hu

"iB"j
�

�

�

�

2
9

>

>

>

=

>

>

>

;

 C1

 

d"

h""2

!2

"2|B"j |�1
X

j2N"

✓

"2
�

�

�

�

hu"iY"j
�

�

�

�

2
+ "2

�

�

�

�

hu"iS "j � hu
"iY"j

�

�

�

�

2
+ "2

�

�

�

�

hu"iC"j � hu
"iB"j

�

�

�

�

2◆

 C2

0

B

B

B

B

B

@

ku"k2
L2(e⇧")

+ "2| ln d"|kru"k2L2(
S

j2N"
Y"j ) + "

2| ln d"|kru"k2L2(
S

j2N"
B"j )

1

C

C

C

C

C

A

! 0 as "! 0. (5.32)
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Also, by virtue of (5.21), (5.26),

(rv",rw")L2(e⌦") ! 0 as "! 0, (5.33)
�

�

�

�

(rw",r�")L2(e⌦")

�

�

�

�


�

�

�

�

(rw",ru")L2(e⌦")

�

�

�

�

+
�

�

�

�

(rw",rv")L2(e⌦")

�

�

�

�

+ krw"k2
L2(e⌦")

! 0 as "! 0. (5.34)

From (5.31)-(5.34) we get

lim
"!0

(rṽ",r�")L2(e⌦") = 0. (5.35)

Finally, combining (5.29), (5.30) and (5.35) we conclude that

lim
"!0
kr�"kL2(e⌦") = 0, (5.36)

whence, taking into account (5.21), (5.26),

�" = kru"k2
L2(e⌦")

⇠ krv"k2
L2(e⌦")

⇠ q as "! 0. Q.E.D.

Property (i) is completely proved.

5.2. Proof of the property (ii)
Let � 2 �(H); we have to show that there exists a family {�" 2 �(H")}" such that lim

"!0
�" = �.

Let us assume the opposite. Then there exist a subsequence "k, "k & 0 and � > 0 such that

(� � �, � + �) \ �(H") = ? as " = "k. (5.37)

Since � 2 �(H) there exists F = ( f1, f2) 2 [L2(R)]2, such that

F < range(H � �I). (5.38)

Due to (5.37) � is not in the spectrum of H" as " = "k and therefore for an arbitrary f " 2 L2(⌦")
there exists the unique solution u" of the problem

H"u" � �u" = f ", " = "k. (5.39)

Moreover the following estimates hold true:

ku"kL2(⌦") 
1
�
k f "kL2(⌦"), kru"k2L2(⌦") = �ku"k2L2(⌦") + ( f ", u")L2(⌦") 

 

�

�2
+

1
�

!

k f "k2L2(⌦"). (5.40)

Now, we choose f " in (5.39) by (2.14). The family { f "}" satisfies (2.12), whence, taking into
account (5.40), we conclude that there exist a subsequence (still indexed by "k) and u1 2 H1(R),
u2 2 L2(R) such that (3.3) hold (as " = "k ! 0).

Repeating word-by-word the proof of Theorem 2.1 we conclude that U = (u1, u2) solves (5.38).
We obtain a contradiction. Property (ii) is proved and this finishes the proof of Theorem 2.3.
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6. Proof of Lemma 2.1

In the proof we deal with domains B"0,T
"
0 ,Y

"
0 . For convenience hereinafter we omit the index “0”.

We denote
G" = Y" [ T ", D" = B" [G".

The set D" is the smallest period cell for the operatorsH". Let ' 2 R\(2⇡Z). In L2(D") we introduce
the sesquilinear form a'," by

a',"[u, v] =
Z

D"

ru · rvdx, dom(a',") =
n

u 2 H1(D") : u(", x2) = exp(i')u(0, x2) for x2 2 (�", 0)
o

. (6.1)

We denote by A'," the operator associated with this form, by
n

µ',"k

o

k2N we denote the sequence of its
eigenvalues arranged in the ascending order and repeated according to their multiplicity.

Again using Floquet-Bloch theory we get the representation

�(H") =
[

k2N

n

µ',"k : ' 2 R\(2⇡Z)
o

. (6.2)

The sets
n

µ',"k : ' 2 R\(2⇡Z)
o

are compact intervals. Our goal is to prove that

µ',"2 ! 1 as "! 0 provided ' , 0, (6.3)

then Lemma 2.1 follows from directly from (6.2)-(6.3).
To prove (6.3) we consider the following operator in L2(D") = L2(B") � L2(G"):

bA'," = (��B") �
⇣

��'G"
⌘

.

Here ��B" is the Neumann Laplacian on B", and ��'G" is the operator acting in L2(G") being associated
with the sesqulilinear form, which is defined by (6.1) with G" instead of D". We denote by

n

bµ',"k

o

k2N
the sequence of eigenvalues of bA',". It is easy to see that dom( bA',") � dom(A',") and bA'," = A',"
on dom(A',"). Then, by the min-max principle,

8k 2 N : bµ',"k  µ
',"
k . (6.4)

The first eigenvalue of ��B" is equal to zero, therefore bµ',"1 = 0. Let us prove that the first eigen-
value of ��'G" tends to infinity. For an arbitrary u 2 H1(Y") one has, using the Poincaré inequality:

kuk2L2(Y") = ku � huiY"k2L2(Y") + "
2|huiY" |2  C"2kruk2L2(Y") + "

2|huiY" |2. (6.5)

We denote:

Z"0 = {x 2 R2 : x1 = 0, x2 2 (�", 0)}, Z"1 = {x 2 R2 : x1 = ", x2 2 (�", 0)}.

Employing the trace and the Poincaré inequalities one has

k = 0, 1 :
�

�

�huiZ"k � huiY"
�

�

�

2
=

�

�

�

�

hu � huiY"iZ"k
�

�

�

�

2
 "�1 ku � huiY"k2L2(Z"k )

 C
⇣

"�2 ku � huiY"k2L2(Y") + kruk2L2(Y")

⌘

 C1 kruk2L2(Y") . (6.6)
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Now, suppose that u is not only in H1(G"), but also u(", x2) = exp(i')u(x2) for x2 2 (�", 0). Then
it follows from (6.6) that (recall: ' , 0, whence 1 � exp(i') , 0)

|huiY" |2 = |1 � exp(i')|�2
�

�

�huiY" � huiZ"1 + exp(i')huiZ"0 � exp(i')huiY"
�

�

�

2

 2|1 � exp(i')|�2
✓

�

�

�huiY" � huiZ"1
�

�

�

2
+

�

�

�huiZ"0 � huiY"
�

�

�

2
◆

 Ckruk2L2(Y"). (6.7)

Combining (6.5) and (6.7) we arrive at

kuk2L2(Y")  C"2kruk2L2(Y"). (6.8)

Then, using Lemma 5.2 and inequality (6.8), we obtain the estimate

kuk2L2(T ")  C
✓

(h"")2kruk2L2(Y") + d"| ln d"|h"kruk2L2(Y") + (h")2kruk2L2(T "j )

◆

. (6.9)

It follows from (6.8)-(6.9) that for each u 2
n

v 2 H1(G") : v(", x2) = exp(i')v(x2) for x2 2 (�", 0)
o

kuk2L2(G")  C⌘"kruk2L2(G"), where ⌘" ! 0 as "! 0. (6.10)

Inequality (6.10) implies that the first eigenvalue of the operator ��'L2(G") tends to infinity as " ! 0.
Evidently, the second eigenvalue of ��'B" also tends to infinity. Therefore

bµ',"2 ! 1 as "! 0 provided ' , 0,

whence, using (6.4), we infer (6.3). Lemma 2.1 is proved.
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