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OSCILLATING SOLUTIONS FOR NONLINEAR HELMHOLTZ

EQUATIONS

RAINER MANDEL1, EUGENIO MONTEFUSCO2, BENEDETTA PELLACCI3

Abstract. Existence results for radially symmetric oscillating solu-
tions for a class of nonlinear autonomous Helmholtz equations are given
and their exact asymptotic behavior at infinity is established. Some gen-
eralizations to nonautonomous radial equations as well as existence re-
sults for nonradial solutions are found. Our theorems prove the existence
of standing waves solutions of nonlinear Klein-Gordon or Schrödinger
equations with large frequencies.

1. Introduction

The main aim of this paper is to give existence results for the following
class of nonlinear equations

(1.1) −∆u = g(u) in R
N

with N ≥ 1 and assuming that the nonlinearity g is such that

g ∈ C1,σ(R) for some σ ∈ (0, 1),(1.2)

g is odd,(1.3)

g′(0) > 0,(1.4)

∃α0 ∈ (0,+∞] : g is positive on (0,α0) and negative on (α0,∞).(1.5)

There is a huge literature concerning (1.1) and nonautonomous variants of
it under the assumption g′(0) < 0. Two seminal papers in this context are
the contributions by Berestycki-Lions and Strauss [BL83,Str77] who proved
the existence of smooth radially symmetric and exponentially decaying so-
lutions for a large class of nonlinearities with this property. We refer to the
monographs [AM07,Wil96] for more results in this context. One of the main
interests in finding solutions of (1.1) is motivated by the fact that a solution
u ∈ H1(RN ) of (1.1) gives rise to a standing wave, i.e. a solution of the form
ψ(x, t) = eiλtu(x), of the nonlinear time-dependent Klein-Gordon equation

∂2ψ

∂t2
−∆ψ + V0ψ = f(ψ) (t, x) ∈ R× R

N
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with f(z) = g(|z|) z
|z| . Therefore, the assumption (1.4) amounts to look

for standing waves having low frequencies ω < V0 and numerous existence
results for H1(RN )-solutions under this assumption can be found in the ref-
erences mentioned above. In this paper we deal with nonlinearities satisfying
g′(0) > 0, which gives rise to standing waves with large frequencies ω > V0.
Looking at the form of the linearized operator −∆− g′(0), one realizes that
u0 = 0 lies in its essential spectrum and we are actually dealing with a class
of nonlinear Helmholtz equations. Furthermore, as explained in subsection
2.2 in [BL83], the hypothesis (1.4) has the striking consequence that radially
symmetric H1(RN ) solutions of (1.1) can not exist, and usual variational
methods fail. On the other hand, (1.4) is naturally linked to (1.5); in partic-
ular, if g(z)/z decreases in (0,+∞), then (1.4) turns out to be necessary in
order to have H1(RN ) solutions. Actually, the relevant solutions naturally
lie outside this functional space. This fact can also be illustrated by an
examining the behaviour of the minimal energy solutions on a sequence of
large bounded domains. Namely, in Theorem 4.4 we will show that if one
takes a sequence of bounded domains Ωn invading RN , then (1.4) guaran-
tees the existence of a sequence (un) of global minimizers of the associated
action functional over H1

0 (Ωn) for sufficiently large n. But, it results that
(un) converges in C2

loc(R
N ) to the constant solution u ≡ α0.

Therefore, under the assumption (1.4), one has to look for solutions in
a broader class of functions. Our focus will be on oscillating and localized
ones which we define as follows.

Definition 1.1. A distributional solution u ∈ C1,α(RN ) of (1.1) is called
oscillating if it has an unbounded sequence of zeros. It is called localized
when it converges to zero at infinity.

Let us notice that, the Strong Maximum Principle implies that oscillating
solutions of (1.1) change sign at each of their zeros; so that we are going to
find solutions that change sign infinitely many times.

In our study, we will pay particular attention to the following model cases

g1(z) = −λz +
z

s+ z2
where s > 0, λ <

1

s
.(1.6)

g2(z) = k2z − |z|p−2z, g3(z) = k2z + |z|p−2z for k ̸= 0.(1.7)

Our interest in these examples has various motivations. The nonlinearity g1
is related to the study of the propagation of lights beams in a photorefrac-
tive crystals (see [CCMS97, Yan04]) when a saturation effect is taken into
account. Differently from the more frequently studied model

g̃(z) := −λz +
z3

1 + sz2
,

see e.g. [CBWM04], g1 describes a transition from the linear propagation
and the saturated one. This difference has important consequences, for
instance for g = g̃ there are H1(RN ) solutions of (1.1) (e.g. see Theorem
3.6 in [SZ99]), whereas, as we have already observed, this is not the case if
g = g1 due to g′1(0) > 0. Notice that, as λ < 1/s, equation (1.1) for g = g1
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can be rewritten in the following form

(1.8) −∆u− k2u = −
u3

s(s+ u2)
in R

N with k2 =
1

s
− λ

which allows to settle the problem in H1(RN ) in every dimension N and that
shows that also this saturable model is included in the class of the nonlinear
Helmholtz equations. The principal difference between (1.7) and (1.6) is
that the formers are superlinear and homogeneous nonlinearities, while the
latter is not homogeneous and it is asymptotically linear. However, all of
them satisfy our general assumptions, with α0 ∈ (0,+∞) for g1 and g2, and
α0 = +∞ for g3.

Up to now nonlinear Helmholtz equations (1.1) have been mainly inves-
tigated for the model nonlinearity g3 or more general superlinear nonlinear-
ities, even not autonomous. In a series of papers [EW14,EW15,Eve15,EW]
Evéquoz and Weth proved the existence of radial and nonradial real, local-
ized solutions of this equation under various different assumptions on the
nonlinearity. Let us mention that some of the tools used in [EW15] had
already appeared in a paper by Gutiérrez [Gut04] where the existence of
complex-valued solutions was proved for space dimensions N = 3, 4. Let
us first focus our attention on radially symmetric solutions and state our
first result, which provides a complete description of the radially symmetric
solutions of (1.1).

Theorem 1.2. Assume (1.2),(1.3),(1.4),(1.5). Then there is a continuum
C = {uα ∈ C2(RN ) : |α| < α0} in C2(RN ) consisting of radially symmetric
oscillating solutions of (1.1) having the following properties for all |α| < α0:

(i) uα(0) = α,

(ii) ∥uα∥L∞(RN ) = |α|, ∥u′α∥L∞(RN ) ≤
√

2G(α).

Moreover, for N = 1 all these solutions are periodic; whereas, for N ≥ 2
they are localized and satisfy the following asymptotic behavior:

(iii) There are positive numbers cα, Cα > 0 such that

cαr
(1−N)/2 ≤ |uα(r)|+ |u′α(r)|+ |u′′α(r)| ≤ Cαr

(1−N)/2 for all r ≥ 1.

Here a continuum in C2(RN ) is a connected subset of C2(RN ) with re-
spect to the uniform convergence of the zeroth, first and second derivatives.
The continuum C found in Theorem 1.2 is even maximal in the sense that
there are no further radially symmetric localized solutions as we will see in
section 2. Moreover, conclusion (iii) states that the property uα ∈ Ls(RN )
is equivalent to uα ∈ W 2,s(RN ), and this happens if and only if s > 2N

N−1 .

Notice that this implies that uα /∈ L2(RN ), showing again that the solutions,
as expected, live outside the commonly used energy space.

Furthermore, let us stress that the behaviour of the nonlinearity beyond
α0 is completely irrelevant, in particular, the negativity of g on (α0,∞) is
actually not needed. This is the reason why we do not need to assume any
subcritical growth condition on the exponent p in the model nonlinearities
g2, g3. Let us recall that, in the autonomous setting, Theorem 4 in [EW14]
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yields nontrivial radially symmetric solutions of (1.1) for superlinear non-
linearities, so that their results hold for the nonlinearity g3, but not for
g1, g2.

Theorem 1.2 admits generalizations to some nonautonomous radially sym-
metric nonlinearities. In particular we can prove a nonautonomous version
of this result that applies to the nonlinearities

g1(r, z) = −λ(r)z +
z

s(r) + z2
,(1.9)

g2(r, z) = k(r)2z ±Q(r)|z|p−2z,(1.10)

under suitable assumptions on the coefficients λ(r), s(r), k(r), Q(r), see
Theorem 2.10 and the Corollaries 2.11 and 2.13. Our results in this context
extend Theorem 4 in [EW14] in several directions (see Remark 2.12).

The existence of non-radially symmetric solutions is clearly a more diffi-
cult topic and here we can give a partial positive answer in this direction,
by exploiting the argument developed in [EW14,EW15,Eve15,EW], where
the authors study the equation

(1.11) −∆u− k2u = f(x, u) in R
N ,

where f(x, u) is a super-linear nonlinearity satisfying suitable hypotheses,
that include, for example, a non-autonomous generalization of our model
nonlinearity g3, i.e.

f(x, u) = Q(x)|u|p−2u, with Q(x) > 0.

Among other results, in [EW15] (Theorem 1.1 and Theorem 1.2) it is shown
that if Q is ZN -periodic or vanishing at infinity then there exist nontrivial
solutions of (1.11) for p satisfying 2(N+1)

N−1 < p < 2N
N−2 when N ≥ 3.

Our contribution to this issue is that the positivity assumption on Q may
be replaced by a negativity assumption in order to make the dual variational
approach work, so that, using Fourier transform we show that the main ideas
from [EW15] may be modified in such a way that their main results remain
true for negative Q. Our results read as follows.

Theorem 1.3. Let N ≥ 3, 2(N+1)
N−1 < p < 2N

N−2 and let Q ∈ L∞(RN ) be
periodic and negative almost everywhere. Then the equation (1.11) has a
nontrivial localized oscillating strong solution in W 2,q(RN ) ∩ C1,α(RN ) for
all q ∈ [p,∞),α ∈ (0, 1).

Theorem 1.4. Let N ≥ 3, 2(N+1)
N−1 < p < 2N

N−2 and let Q ∈ L∞(RN ) be
negative almost everywhere with Q(x) → 0 as |x| → ∞. Then the equation
(1.11) has a sequence of pairs ±um of nontrivial localized oscillating strong
solutions in W 2,q(RN ) ∩C1,α(RN ) for all q ∈ [p,∞),α ∈ (0, 1) such that

∥um∥Lp(RN ) → ∞ as m → ∞.

Since the above results together with those from [EW15] provide some
existence results for the Nonlinear Helmholtz equation associated with the
nonlinearity g2 from (1.10), one is lead to wonder whether similar results hold
true for asymptotically linear nonlinearities like g1 in (1.9). Here, the dual
variational framework does not seem to be convenient since even the choice
of the appropriate function spaces is not clear. A thorough discussion of
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such nonlinear Helmholtz equations leading to existence results for nonradial
solutions still remains to be done.

Let us observe that there is a gap in the admissible range of exponent be-
tween Theorem 1.2 and Theorem 1.3. Reading Theorem 1.2 one is naturally
lead to the conjecture that nontrivial nonradial solutions in Lp(RN ) may be
found regardless of any sign condition on Q and for all exponents p > 2N

N−1 .

On the contrary, Theorem 1.3 only holds for exponents p > 2(N+1)
N−1 , so that

it is still an open question whether or not nonradial Lp-solutions exist for

p ∈ ( 2N
N−1 ,

2(N+1)
N−1 ].

The paper is organized as follows: In section 2 we present the proof of
Theorem 1.2 as well as a generalization to the radial nonautonomous case
(see Theorem 2.10 and Corollaries 2.11, 2.13). In section 3 we present the
proofs of Theorem 1.3 and Theorem 1.4. In section 4 we will discuss in
detail the attempt to obtain a solution by approximating RN by bounded
domains.

2. Radial solutions

2.1. The autonomous case. Throughout this section we will suppose that
(1.2), (1.3), (1.4), (1.5) hold true. We will prove Theorem 1.2 by providing
a complete understanding of the initial value problem

(2.1) − u′′ −
N − 1

r
u′ = g(u) in (0,∞), u(0) = α, u′(0) = 0

for α ∈ R and N ∈ N. Notice that our assumptions on g require that there
exists a δ > 0 such that

g(z)z > 0 ∀ z ∈ (−δ, δ).

Such a positivity region is in fact almost necessary as the following result
shows.

Proposition 2.1. Assume that g ∈ C(R) satisfies g(z)z < 0 for all z ∈
R. Then there is no nontrivial localized solution and there is no nontrivial
oscillating solution u ∈ C2(RN ) of (1.1).

Proof. Assume that u ∈ C2(RN ) is a nontrivial localized or oscillating solu-
tion. Then it attains a positive local maximum or a negative local minimum
in some point x0 ∈ RN . Hence we obtain

−∆u(x0)u(x0) = u(x0)g(u(x0)) < 0,

a contradiction. !

Remark 2.2. In view of elliptic regularity theory the above result is also true
for weak solutions u ∈ H1(RN ) since these solutions coincide almost every-
where with classical solutions and decay to zero at infinity by Theorem C.3
in [Sim82]. Notice that in case N ≥ 3 we can deduce the non-existence of
H1(RN ) solutions from the fact that g(z)z < 0 in R violates the necessary
condition (1.3) in [BL83], see section 2.2 in that paper. In the case N = 2
the same follows from Remarque 1 in [BGK83].
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First we briefly address the one-dimensional initial value problem

(2.2) − u′′ = g(u) in (0,∞), u(0) = α, u′(0) = 0.

In view of the oddness of g it suffices to discuss the inital value problem for
α ≥ 0. The uniquely determined solution of the initial value problem will be
denoted by uα with maximal existence interval (−Tα, Tα) for Tα ∈ (0,∞].

Proposition 2.3. Let N = 1. Then the following holds:

(i) If α = α0 ∈ R then uα ≡ α0 and if α = 0 then uα ≡ 0.

(ii) If α > α0 then uα strictly increases to +∞ on (0, Tα).

(iii) If 0 < α < α0 then uα is periodic and oscillating with ∥uα∥∞ = α.

Proof. Conclusion (i) immediately follows from (1.5). Then we only have
to prove (ii) and (iii). For notational convenience we write u, T instead of
uα, Tα. In the situation of (ii) we set ξ := sup{s ∈ [0, T ) : u′′(s) > 0}. From
u(0) = α > α0 and (2.2) we get u′′(0) = −g(u(0)) = −g(α) > 0 and thus
ξ ∈ (0, T ]. We even have ξ = T , because otherwise

u(ξ) = α+

∫ ξ

0

∫ t

0
u′′(s) ds dt > α > α0

and thus u′′(ξ) > 0 in view of assumption (1.5) and (2.2). This, however,
would contradict that ξ is the supremum, hence ξ = T . As a consequence,
u is strictly convex on (0, Tα) which implies (ii).

In order to show (iii) we notice that (1.3) implies that solutions are sym-
metric about critical points and antisymmetric about zeros. Therefore, it
suffices to show that u decreases until it attains a zero. By the choice of
α ∈ (0,α0) we have u′′(0) < 0 so that u decreases on a right neighbourhood
of 0. Exploiting (1.5) and (2.2) we deduce that u′′(s) is negative whenever
0 < u(s) < u(0) < α0. As a consequence, we obtain that u decreases as long
as it remains positive. Moreover, it cannot be positive on [0,∞) since this
would imply, thanks 0 ≤ u(r) ≤ α < α0 and the assumptions (1.4),(1.5),

u′′(r) + c(r)u(r) = 0, with c(r) :=
g(u(r))

u(r)
≥ c0 > 0.

Hence, Sturm’s comparison theorem (p.2 in [Swa68]) ensures that u vanishes
somewhere, so that it cannot be positive in [0,+∞), a contradiction. Hence,
u attains a zero and the proof is finished. !

Next, we consider the initial value problem (2.1) in the higher dimensional
case N ≥ 2. Again, we may restrict our attention to the case α ≥ 0 and we
will denote with G(z) the primitive of the function g(s), such that G(0) =
0. The following result furnishes the study of the solution set which are
needed in the proof of Again, the uniquely determined solution of the initial
value problem (2.1) will be denoted by uα with maximal existence interval
(−Tα, Tα).

Remark 2.4. There are many contributions concerning (1.1) in dimension
N = 1, mainly related to some resonance phenomena. In this context, some
“Landesman-Lazer” type conditions, joint with suitable hypotheses on the
nonlinearity g, are assumed in oder to obtain existence of bounded, peri-
odic or oscillating solution, eventually with arbitrarily large L∞ norm, by
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taking advantage of the presence on a forcing term in the equation (see
[SV14,Ver03] and the references therein). Here the situation is different, as
we do not need any monotonicity assumption on g, nor the knowledge of the
asymptotic behavior at infinity of g is important, as it is in [SV14,Ver03].
Moreover, our solutions satisfy a uniform L∞ bound, so that the phenome-
non we are dealing with is actually different from the resonant one.

Lemma 2.5. Let N ≥ 2. Then the following holds:

(i) If α = α0 ∈ R then uα ≡ α0 and if α = 0 then uα ≡ 0.

(ii) If α > α0 then uα strictly increases to +∞ on [0, Tα).

(iii) If 0 < α < α0 then uα is oscillating, localized and satisfies

(2.3) ∥uα∥L∞(R) = |α| and ∥u′α∥L∞(R) ≤
√

2G(α)

as well as

(2.4) cαr
(1−N)/2 ≤ |uα(r)|+ |u′α(r)|+ |u′′α(r)| ≤ Cαr

(1−N)/2 for r ≥ 1

for some cα, Cα > 0 depending on the solution but not on r.

Proof. The existence and uniqueness of a twice continuously differentiable
solution uα : (−Tα, Tα) → R can be deduced from Theorem 1 and Theorem 2
in [RW97]. We write again u, T in place of uα, Tα. The proof of (i) is direct
and assertion (ii) follows similar to the one-dimensional case. Indeed, note
that u′′(0) > 0 because of

Nu′′(0) = lim
r→0+

u′′(r) + N−1
r u′(r) = −g(u(0)) = −g(α) > 0.

Then, letting ξ := sup{s ∈ (0, T ) : u′(s) > 0}, it results ξ ∈ (0, T ]. Assuming
by contradiction that ξ < T and using that α > α0, from (1.5) we obtain

ξN−1u′(ξ) = −

∫ ξ

0
tN−1g(u(t)) dt > 0

which is impossible, i.e. ξ = T . Then, (2.1),(1.5) and the maximality of T
yield (ii). The proof of (iii) is lengthy so that it will be subdivided into four
steps.

Step 1: u decreases to a first zero. For all r > 0 such that 0 < u < α0

on [0, r] we have

rN−1u′(r) = −

∫ r

0
tN−1g(u(t)) dt < 0,

showing that u decreases as long as it remains positive, as in the one-
dimensional case. Moreover, the function u can not remain positive on
[0,∞) because otherwise v(r) := r(N−1)/2u(r) would be a positive solution
of

(2.5) v′′ + c(r)v = 0 where c(r) =
g(u(r))

u(r)
−

(N − 1)(N − 3)

4r2
.

As in the proof of Proposition 2.3 we observe c(r) ≥ c0 > 0 for sufficiently
large r so that Sturm’s comparison theorem tells us that v vanishes some-
where. This is a contradiction to the positivity of u and thus u attains a
first zero.
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Step 2: u oscillates and satisfies (2.3). Let us first show that there are
0 = r0 < r1 < r2 < r3 < . . . such that all r4j are local maximizers, all r4j+2

are local minimizers and all r2j+1 are zeros of u. Moreover, we will find that
all zeros or critical points of u are elements of this sequence and

2G(u(r0)) > u′(r1)
2 > 2G(u(r2)) > u′(r3)

2 > 2G(u(r4)) > . . .(2.6)

In order to prove this we consider the function

(2.7) Z(r) := u′(r)2 + 2G(u(r)).

and we observe that Z decreases as

Z ′(r) = 2u′(r)(u′′(r) + g(u(r))) = −
2(N − 1)

r
u′(r)2 < 0.(2.8)

The existence of a first zero r1 > 0 = r0 of u has been shown in Step 1
and the strict monotonicity of Z implies Z(r1) < Z(r0). Concerning the
behaviour of u on [r1,∞) there are now three alternatives:

(a) u decreases until it attains −u(r0)

(b) u decreases on [r1,∞) to some value u∞ ∈ [−u(r0), 0)

(c) u decreases until it attains a critical point at some r2 > r1 with
−u(r0) < u(r2) < 0.

Let us show that the cases (a) and (b) do not occur. Indeed, if there exists
r > r0 such that u(r) = −u(r0), then, by (2.7) we deduce that

Z(r) ≥ 2G(u(r)) = 2G(u(r0)) = Z(r0)

which is forbidden by (2.8). Then, in particular (2.3) holds. Hence, the case
(a) is impossible. Let us now suppose that (b) holds. Then u∞ has to be a
stationary solution of (2.1) and thus u∞ = −α0 = −u(r0). But then

Z(r) ≥ 2G(u(r)) → 2G(u∞) = 2G(−u(r0)) = Z(r0) as r → ∞

which again contradicts (2.8). So the case (c) occurs and there must be a
critical point r2 with

2G(u(r2)) = Z(r2) < Z(r1) = u′(r1)
2 < Z(r0) = 2G(u(r0)),

so that (2.1), (1.5) and (1.3) yield

0 > u(r2) > −u(r0) and u′(r2) = 0, u′′(r2) > 0.

Hence, r2 is a local minimizer. Using that Z is decreasing we can now
repeat the argument to get a zero r3 > r2, a local maximizer r4 > r3, a zero
r5 > r4 and so on. By the strict monotonicity of Z one obtains (2.6) and
thus (2.3). Notice that this reasoning also shows that there are no further
zeros or critical points.

Step 3: u is localized. First we show u(r) → 0 as r → ∞. Our proof
is similar to the one of Lemma 4.1 in [GZ08] and it will be presented for
the convenience of the reader. Take the sequence of maximizers {r4j} and
assume by contradiction that u(r4j) → z ∈ (0,α0). Then (2.1) and Ascoli-
Arzelà Theorem imply that u(· + r4j) converges locally uniformly to the
unique solution w of (2.2) with w(0) = z, w′(0) = 0. Proposition 2.3, (iii)
implies that this solution w is T -periodic with two zeroes at T/4, 3T/4. As a
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consequence, there exists δ > 0 such that |w′|2 ≥ 2δ on [T/4− 2δ, T/4+2δ].
Hence, for sufficiently large j0 ∈ N we have for j ≥ j0

u′(r4j + r)2 ≥ δ for r ∈ [T/4− δ, T/4 + δ] and r4(j+1) − r4j ≥ T − δ.

From this we deduce for j ≥ j0

u′(r)2 ≥ δ, for r ∈ [r4j + T/4 − δ, r4j + T/4 + δ],(2.9)

r4j ≥ r4j0 + (j − j0)(T − δ) for j ≥ j0.(2.10)

Then, for k ≥ j0 and r > r4k + T/4 + δ we may exploit (2.8) and (2.9) to
obtain

Z(r) = Z(0)− 2(N − 1)

∫ r

0

u′(t)2

t
dt

≤ Z(0)− 2(N − 1)
k
∑

j=j0

∫ r4j+T/4+δ

r4j+T/4−δ

u′(t)2

t
dt

≤ Z(0)− 2(N − 1)δ2
k
∑

j=j0

∫ r4j+T/4+δ

r4j+T/4−δ

1

t
dt

= Z(0)− 2(N − 1)δ2
k
∑

j=j0

ln

(

r4j +
T
4 + δ

r4j +
T
4 − δ

)

.

Let us fix c(δ) > 0 such that ln(1+x) ≥ c(δ)x for 0 ≤ x ≤ 2δ/(r4j0 +
T
4 − δ).

Then (2.10) implies

Z(r) ≤ Z(0)− 2(N − 1)δ2c(δ)
k
∑

j=j0

2δ

r4j +
T
4 − δ

≤ Z(0)− 2(N − 1)δ2c(δ)
k
∑

j=j0

2δ

r4j0 + (j − j0)(T − δ) + T
4 − δ

.

Choosing now k, r sufficiently large we obtain that Z(r) → −∞ because
the harmonic series diverges, but (2.3)implies that Z(r) ≥ 2G(u(r)) ≥ 0,
yielding a contradiciton. As a consequence, u(r4j) converges to zero as
j → ∞ and analogously we deduce that also u(r4j+2) → 0. In the end, we
obtain u(r) → 0 as r → +∞.
Since Z is decreasing and nonnegative it follows that Z(r) → Z∞ ∈ [0, Z(0))
as r → ∞. Hence, by (2.7), also |u′| has a limit at infinity which must be
zero because u converges to 0. Finally, from the differential equation we
deduce that u′′(r) → 0 as r → ∞, i.e.

(2.11) u(r), u′(r), u′′(r) → 0 (r → ∞).

As in Lemma 4.2 in [GZ08] we get that for any ε > 0 there exists Cε > 0
such that

(2.12) |u(r)|, |u′(r)|, |u′′(r)| ≤ Cεr
1−N

2
+ε (r ≥ 1).

Step 4: Proof of (2.4). Slightly generalizing the approach from the proof
of Theorem 4 in [EW14] we study the function

(2.13) ψ(r) := v′(r)2 + 2rN−1G(u(r)), where v(r) = r(N−1)/2u.
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Using the function c from (2.5) and taking into account (2.1), we obtain
that ψ satisfies the following differential equation

ψ′(r) = 2v′(r) [−c(r)v(r)] + 2r(N−1)/2g(u(r))

[

v′(r)−
N − 1

2
r(N−3)/2u(r)

]

+ 2(N − 1)rN−2G(u(r))

= (N − 1)rN−2 (2G(u(r)) − u(r)g(u(r))) +
(N − 1)(N − 3)

2r2
v(r)v′(r).

Taking into account (2.11) and using (1.4) and (1.5) we obtain that there
exist C, r0 ∈ (0,+∞) such that

(2.14)
u(r)2

G(u(r))
≤ C ∀ r ≥ r0.

Then, exploiting (1.2) and (2.12), we find positive numbers C ′, C ′′, r∗ such
that, for all r ≥ r∗, it results

∣

∣(N − 1)rN−2 (2G(u(r)) − u(r)g(u(r)))
∣

∣

≤
(N − 1)C

2r

|2G(u(r)) − u(r)g(u(r))|

u(r)2
· 2rN−1G(u(r))

≤
C ′

r
|u(r)|σψ(r)

≤ C ′′r−1+( 1−N
2

+ε)σψ(r).

Moreover, using (2.13) and (2.14), we get
∣

∣

∣

(N − 1)(N − 3)

2r2
v(r)v′(r)

∣

∣

∣
≤

|(N − 1)(N − 3)|

r2
· (v(r)2 + v′(r)2)

≤
|(N − 1)(N − 3)

r2
· (CrN−1G(u(r)) + v′(r)2)

≤
|(N − 1)(N − 3)|(C + 1)

r2
· ψ(r).

This yields |ψ′(r)| ≤ a(r)ψ(r) for r ≥ r∗ and some positive integrable func-
tion a. Dividing this inequality by the positive function ψ(r) and integrating
the resulting inequality over [r∗,∞) shows that ψ is bounded from below
and from above by a positive number. From this we obtain the lower and
upper bounds (2.4) and the proof is finished. !

We are now ready to give the proof of Theorem 1.2.
Proof of Theorem 1.2 Let us define the set

C = {uα(| · |) ∈ C2(RN ) : |α| < α0}

where uα denotes the unique solution of the initial value problem (2.1). The
set C is a subset of C2(RN ), and it is a continuum thanks to the Ascoli-
Arzelà Theorem. From Lemma 2.5 we obtain that all elements of C are
oscillating localized solutions satisfying (2.3) and (2.4). !

Remark 2.6. Let us mention that an analogous result to Theorem 1.2 in
Theorem 1 [GLZ09] and it is applied to a more restrictive class of nonlin-
earities. Moreover, the above theorem is related to Theorem 4 in [EW14]
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but we do not need their assumption (g2). Actually, this hypothesis is not
satisfied in our model cases g = g1 or g = g2.

Remark 2.7. The arguments from the proof of Theorem 1.2 also show the
existence of oscillating localized solutions to initial value problems which are
not of nonlinear Helmholtz type. For instance, one can treat concave-convex
problems such as

(2.15) −∆u = λ|u|q−2u+ µ|u|p−2u in R
N ,

for 1 < q < 2 < p < ∞ with λ > 0, µ ∈ R, see for instance [ABC94]
or [BEP95] for corresponding results on a bounded domain with homoge-
neous Dirichlet boundary conditions. The existence of solutions is provided
by Theorem 1 in [RW97] so that the steps 1,2,3 are proven in the same
way as above and we obtain infinitely many radially symmetric, oscillating,
localized, solutions of (2.15).

Remark 2.8. Using nonlinear oscillation theorems instead of Sturm’s com-
parison theorem we can even extend the above observation towards superlin-
ear nonlinearities g satisfying λ|z|q ≤ g(z)z ≤ Λ|z|q for

2 < q ≤
2(N + 1)

N − 1
, N ∈ {1, 2, 3} or 2 < q ≤

2(N − 1)

N − 2
, N ≥ 4.

Indeed, in the first case the function c from (2.5) satisfies the estimate c(r) ≥
r(1−N)(q−2)/2|v(r)|q−2 so that Atkinson’s oscillation criterion applies, see the
first line and third column of the table on p.153 in [Swa79]. In the second
case Noussair’s oscillation criterion result can be used in order finish step 1,
see the third line and third column of the table on p.153 in [Swa79].

Remark 2.9. If z .→ g(z)/z is decreasing, then one can show that the first
zero of uα is smaller than the first zero of uα̃ whenever 0 < α < α̃ < α0.
Indeed, we set u := uα, v := uα̃. Then the interval

I := {t > 0 : u(s) > v(s) > 0 for all s ∈ (0, t)}

is open, connected and nonempty and thus I = (0, r∗) for some r∗ > 0. On
its right boundary we either have u(r∗) = v(r∗) ≥ 0 or u(r∗) > v(r∗) = 0; so
it remains to exclude the first possibility. Using u > v > 0 on I and (2.1)
we have

(2.16)
(

rN−1(u′v − v′u)
)′

= rN−1uv
(g(v)

v
−

g(u)

u

)

> 0 on I.

Integrating (2.16) from 0 to r∗ the assumption u(r∗) = v(r∗) > 0 leads to

0 < (u′v − v′u)(r∗) = u(r∗)(u− v)′(r∗), hence (u− v)′(r∗) > 0.

On the other hand u − v > 0 on I = (0, r∗) and (u − v)(r∗) = 0 implies
(u − v)′(r∗) ≤ 0, a contradiction. Thus u(r∗) > v(r∗) = 0 so that the first
zero of v comes before the first zero of u.

2.2. The nonautonomous case. In this section we generalize Theorem 1.2
to a nonautonomous setting. Our aim is to identify mild assumptions on a
nonautonomous nonlinearity g that ensure the existence of a continuum of
oscillating localized solutions of the initial value problems

(2.17) − u′′ −
N − 1

r
u = g(r, u), u(0) = α, u′(0) = 0
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that behave like r(1−N)/2 at infinity in the sense of (2.4). Before formulating
such assumptions and stating the corresponding existence result let us men-
tion that our result applies to the nonlinearities (1.9),(1.10) under suitable
conditions on the coefficient functions. This will be seen in Corollary 2.11
and Corollary 2.13 at the end of this section. Our existence results for (2.17)
will be proven assuming that

(2.18) g ∈ C([0,+∞)× R,R) is continuously differentiable w.r.t. r.

Moreover, we suppose that there exist positive numbers α∗,α∗,λ,Λ and a
locally Lipschitz continuous function g∞ : R → R such that

lim
r→∞

g(r, ·) = g∞(·) uniformly on [−α∗,α
∗](2.19)

gr(r, z)z ≤ 0 on [0,+∞)× [−α∗,α
∗],(2.20)

λz2 ≤ g∞(z)z ≤ g(r, z)z ≤ Λz2 on [0,+∞)× [−α∗,α
∗].(2.21)

These assumptions will allow us to prove the mere existence of an oscillating
localized solution. In order to show the desired asymptotic behaviour we
need some extra condition ”at infinity” where r is large and the solution itself
is small: We will assume that there exist ε,σ, C > 0 and some integrable
function k such that

|2G(r, z) − zg(r, z)| ≤ Cz2| ln(z)|−1−σ , |z| ≤ ε, r ≥ ε−1(2.22)

gr(r, z)z ≥ −k(r)z2, |z| ≤ ε, r ≥ ε−1.(2.23)

These assumptions are rather technical but can be verified easily in concrete
situations as we show in the proof of Corollary 2.11. Let us remark that our
assumptions (1.2),(1.3),(1.4)(1.5) from the autonomous case (for any choice
α∗ = α∗ ∈ (|α|,α0)) are more restrictive than the assumptions used above.
In particular, the following theorem generalizes our autonomous result.

Theorem 2.10. Let N ≥ 2. Moreover assume (2.19),(2.20),(2.21) as well
as

(2.24) G(0,α) ≤ min{G∞(−α∗), G∞(α∗)} for α ∈ [−α∗,α
∗].

Then there is an oscillating, localized solution u of (2.17) that satisfies
u(0) = α as well as

(2.25) ∥u∥L∞(R) ≤ max{−α∗,α
∗} and ∥u′∥L∞(R) ≤

√

2G(0,α).

Moreover, if (2.22) and (2.23) hold, then we can find c, C > 0 such that

(2.26) cr(1−N)/2 ≤ |u(r)|+ |u′(r)|+ |u′′(r)| ≤ Cr(1−N)/2 for r ≥ 1.

Proof. The proof of our result follows the same argument of the proof of
Theorem 1.2, so we only mention the main differences. For simplicity we
only treat the case α > 0 with (2.24). The existence of a maximally extended
solution of (2.17) follows from a Peano type existence theorem for singular
initial value problems, see Theorem 1 in [RW97].

Step 1 is proven as in the autonomous case where the function c from (2.5)
has to be replaced by c(r) = g(r, u(r))/u(r)− (N −1)(N −3)/4r2. Assump-
tion (2.21) ensures that c is bounded from below by a positive constant as
long as 0 ≤ u(r) < α so that u has to attain a first zero. In step 2 one shows
that Z(r) := u′(r)2 + 2G(r, u(r)) is nondecreasing due to Gr(r, u(r)) ≤ 0
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for −α∗ ≤ u(r) ≤ α∗, see (2.20). Arguing as in the autonomous case we
find that u decreases until it attains a local minimum at some r2 > r1 with
−α∗ < u(r2) < 0. More precisely one finds a sequence (rj) such that all r2j
are critical points and all r2j+1 are zeros of u with the additional property
(the counterpart to (2.6))

2G(r0, u(r0)) > u′(r1)
2 > 2G(r2, u(r2)) > u′(r3)

2 > 2G(r4, u(r4)) > . . . .

This and G(r0, u(r0)) = G(0,α) yields the L∞-bounds for u′ whereas the
L∞-bounds follow from −α∗ < u(r2j) < α∗ for all j ∈ N. Hence, (2.25)
is proved so that step 2 is finished. Step 3 is the same as in the proof of
Theorem 1.2. Since the reasoning of Lemma 4.2 in [GZ08] may be adapted
to our nonautonomous (but asymptotically autonomous) problem we also
find (2.12), i.e.

(2.27) |u(r)|, |u′(r)|, |u′′(r)| ≤ Cεr
1−N

2
+ε (r ≥ 1)

In step 4 we use (2.22),(2.23) in order to study the asymptotics of the func-
tion

ψ(r) := v′(r)2 + 2rN−1G(r, u(r))

where v(r) := r(N−1)/2u(r). One shows

ψ′(r) = 2rN−1G(r, u(r))
(N − 1

r

2G(r, u(r)) − u(r)g(r, u(r))

2G(r, u(r))
+

Gr(r, u(r))

G(r, u(r))

)

+
(N − 1)(N − 3)

2r2
v(r)v′(r).

For sufficiently large r ≥ r∗ we get estimates |Gr(r, u(r))| ≤ k(r)G(r, u(r)).
Moreover, with an analogous inequality as in (2.14) as well as (2.22),(2.27)
we get

2G(r, u(r)) − u(r)g(r, u(r))

2G(r, u(r))
≤

2G(r, u(r)) − u(r)g(r, u(r))

λu(r)2

≤ C| ln(u(r))|−1−σ

≤ C ′ ln(r)−1−σ

(2.28)

so that we may find as in the autonomous case a positive integrable function
a such that |ψ′(r)| ≤ a(r)ψ(r). This shows that ψ is bounded from below
and from above by a positive number. From this and

(2.29) λz2 ≤ 2G∞(z) ≤ 2G(r, z) ≤ Λz2 on [0,+∞)× [−α∗,α
∗],

which is a consequence of (2.21), we obtain the lower and upper bounds
(2.26) and the proof is finished. !

Finally let us apply Theorem 2.10 to the special nonlinearities g1, g2 given
in (1.9),(1.10). We obtain the following results.

Corollary 2.11. Let N ≥ 2, p > 2 and suppose that k,Q ∈ C1([0,+∞),R)
are nonincreasing functions with limits k∞ > 0 and Q∞ ∈ R, respectively.
Then there is a nonempty open interval I containing 0 and a continuum
C = {uα ∈ C2(RN ) : α ∈ I} ⊆ C2(RN ) consisting of radially symmetric
oscillating classical solutions of the equation

−∆u− k(|x|)2u = Q(|x|)|u|p−2u in R
N
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having the properties (2.25),(2.26) stated in Theorem 2.10. In case Q∞ ≥ 0
we have I = R.

Proof. We set

g(r, z) = k(r)2z +Q(r)|z|p−2z, g∞(z) = k2∞z +Q∞|z|p−2z

and

G(r, z) =
k(r)2

2
z2 +

Q(r)

p
|z|p, G∞(z) =

k2∞
2

z2 +
Q∞

p
|z|p.

By the regularity assumptions on k,Q we have (2.18). Moreover, k′, Q′ ≤ 0
implies gr(r, z)z ≤ 0 for all z ∈ R and thus (2.20). We set

I := {α ∈ R : G(0,α) < sup
R

G∞}

=
{

α ∈ R : G(0,α) <
(1

2
−

1

p

)

k2∞

( k2∞
(Q∞)−

)
2

p−2
}

.
(2.30)

Here, (Q∞)− = max{−Q∞, 0}. For any given α ∈ I we can choose

0 < α∗ = α∗ <
( |V∞|

(Q∞)−

)
1

p−2
s.t. G∞(−α∗) = G∞(α∗) = G(0,α).

For this choice of α∗,α∗ assumption (2.21) holds. Finally, (2.22) follows
from 2G(r, z) − zg(r, z) = O(|z|p) as z → 0 uniformly with respect to r and
(2.23) holds because gr(r, z)z ≥ (2k(r)k′(r)+Q′(r))z2 for |z| ≤ 1. Hence, all
assumptions of Theorem 2.10 are satisfied and the existence of solutions of
(2.17) follows. Due to the unique solvability of these initial value problems
and the Theorem of Ascoli-Arzelà they form a continuum in C2(R) with
respect to the C2−convergence on compact sets. Finally we remark that
(2.30) implies I = R whenever Q∞ ≥ 0. !

Remark 2.12. Theorem 2.10 extends Theorem 4 in [EW14] in various
directions. First of all, it provides more qualitative information of the solu-
tions such as the W 1,∞-bounds, the oscillating behaviour of the solutions and
the lower bounds for their decay at infinity. Additionally, we do not assume
any global positivity assumption on f . Furthermore, our assumption (2.22)
is not covered by the hypotheses in [EW14].

The following result can be proved similarly and we state it for complete-
ness.

Corollary 2.13. Let N ≥ 2 and suppose that λ, s ∈ C1([0,+∞),R) are
nondecreasing functions with limits λ∞, s∞, respectively, such that s is pos-
itive and λ∞ < 1/s∞. Then there is a nonempty open interval I containing
0 and a continuum C = {uα ∈ C2(RN ) : α ∈ I} in C2(RN ) consisting of
radially symmetric oscillating classical solutions of the equation

−∆u+ λ(|x|)u =
u

s(|x|) + u2
in R

N

having the properties (2.25),(2.26) from Theorem 2.10. In the case λ∞ ≤ 0
we have I = R.
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3. Nonradial solutions

In this section we study equation (1.11) proving Theorem 1.3 and Theo-
rem 1.4. We will follow the argument introduced in [EW15] adapting their
methods to our context. First note that, up to rescaling, we may assume
k = 1 in the following. Let us introduce some notations in order to facil-
itate the reading. Let Ψ be the real part of the fundamental solution of
the Helmholtz equation −∆ − 1 on RN (see for example (11) in [EW15] ).
Performing the transformation v = |Q|1/p

′

|u|p−2u for 1
p+

1
p′ = 1 our problem

amounts to solving

(3.1) |v|p
′−2v = −|Q|1/p[Ψ ∗ (|Q|1/pv)] in R

N .

Notice that the right hand side comes with a negative sign in contrast to
[EW15]. This is because we assume Q to be negative so that Q = −|Q|. Let
us introduce the linear operators R, Kp : Lp′(RN ) → Lp(RN ) defined by

(3.2) R(v) = Ψ ∗ v, Kp(v) = |Q|1/pR(|Q|1/pv).

Both R and Kp are continuous and we have for all f, g ∈ Lp′(RN )

(3.3)

∫

RN

fR(g) =

∫

RN

f(Ψ ∗ g) = lim
ε→0

∫

RN

(|ξ|2 − 1)f̂ (ξ)ĝ(ξ)

(|ξ|2 − 1)2 + ε2
dξ,

where f̂ , ĝ are the Fourier transforms of f and g, respectively. In view of the
variational structure of (3.1) we define the functionals J, J̄ : Lp′(RN ) → R

via the formulas

J(v) :=
1

p′

∫

RN

|v|p
′

−
1

2

∫

RN

vKp(v)

J̄(v) :=
1

p′

∫

RN

|v|p
′

+
1

2

∫

RN

vKp(v)
(3.4)

so that the solutions of (3.1) are precisely the critical points of J̄ , see (49)
in [EW15]. Notice that the functional J is used when Q is positive. Our
main observation is that not only J but also J̄ has the mountain pass geom-
etry. This follows from the following Lemmas which are the counterparts of
Lemma 4.2 and Lemma 5.2 in [EW15]. In the following we will denote with
∥ · ∥q the standard norm in the Lebesgue space Lq(RN ).

Lemma 3.1. Under the assumptions of Theorem 1.3 there is a function
v0 ∈ Lp′(RN ) such that ∥v0∥p′ > 1, J̄(v0) < 0.

Proof. As in Lemma 4.2(ii) [EW15] it suffices to prove

(3.5)

∫

RN

zKpz < 0

for some z ∈ Lp′(RN ) because then one may take v0 := tz for sufficiently
large |t|. To this end let y ∈ S(RN ) be a nontrivial Schwartz function
satisfying supp(ŷ) ⊂ B1(0). For δ > 0 we set

zδ := y|Q|−1/p1{|Q|>δ}, µ :=

∫

supp(ŷ)

|ŷ(ξ)|2

|ξ|2 − 1
dξ < 0,
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where 1{|Q|>δ} is the indicator function of the set {x ∈ RN : |Q(x)| > δ}.

Then we have zδ ∈ Lp′(RN ) and thus Kpzδ ∈ Lp(RN ). Hence, by definition
of Kp, the function yδ := |Q|1/pzδ = y · 1{|Q|>δ} satisfies

∫

RN

zδ(Kpzδ) =

∫

RN

zδ |Q|1/pR(|Q|1/pzδ) =

∫

RN

yδR(yδ).

Since we have |Q| > 0 almost everywhere, we get yδ → y in Lp′(RN ) as
δ → 0+. Thus the continuity of R implies that we can choose δ > 0 so small
that the following holds:

∫

RN

zδ(Kpzδ) <

∫

RN

yR(y) +
|µ|

2
.

From this and (3.3) we infer
∫

RN

zδ(Kpzδ) < lim
ε→0

∫

RN

(|ξ|2 − 1)|ŷ(ξ)|2

(|ξ|2 − 1)2 + ε2
dξ +

|µ|

2
= µ+

|µ|

2
< 0

which is all we had to show. !

Lemma 3.2. Let the assumptions of Theorem 1.4 hold. Then for every
m ∈ N there is an m-dimensional subspace W ⊂ Lp′(RN ) with the following
properties:

(i)

∫

RN

vKpv < 0 for all v ∈ W \ {0}.

(ii) There exists R = R(W) > 0 such that J̄(v) ≤ 0 for every v ∈ W
with ∥v∥p′ ≥ R.

Proof. Let y1, . . . , ym ∈ S(RN ) be nontrivial Schwartz functions such that

(3.6)
m
⋃

j=1

supp(ŷj) ⊂ B1(0), supp(ŷj) ∩ supp(ŷi) = ∅ (i ̸= j).

For sufficiently small δ > 0 we then define

W := span{z1δ , . . . , z
m
δ } where zjδ := yj|Q|−1/p1{|Q|>δ}.

Then (3.6) implies that W is m-dimensional and similar calculations as
above show (i) and (ii). !

With the aid of the above Lemmas the proofs of our theorems are essen-
tially the same as in [EW14]. We indicate the main steps for the convenience
of the reader.

Proof of Theorem 1.3: Under the given assumptions J̄ has the Mountain
Pass geometry. Indeed, as in the parts (i),(iii) of Lemma 4.2 in [EW15] one
proves that 0 is a strict local minimum and the boundedness of Palais-Smale
sequences of J̄ . In Lemma 3.1 we proved that there is a v0 ∈ Lp′(RN ) such
that ∥v0∥p′ > 1, J̄(v0) < 0. Hence, as in Lemma 6.1 [EW15] the Deformation
Lemma implies the existence of a bounded Palais-Smale sequence (vm) for
J̄ at its Mountain-Pass level c̄ > 0. Similar to the proof of Theorem 6.2
in [EW15] one has

lim
m→∞

∫

RN

|Q|1/pR(|Q|1/pvm) =
2p′

2− p′
lim

m→∞

[

− J̄(vm) +
1

p′
J̄ ′(vm)[vm]

]
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= −
2p′

2− p′
c̄ < 0.

Then, Theorem 3.1 in [EW15] implies that there are R, ζ > 0 and points
xm ∈ RN and a subsequence, still denoted with (vm), such that

∫

BR(xm)
|vm|p

′

≥ ζ > 0.

From this point on the reasoning is the same as in [EW15] and we obtain that
(vm) converges weakly to a nontrivial solution v of (1.11) and the solution
u of the original equation may be found via u = R(|Q|1/pv) ∈ Lp(RN ). In
particular u satisfies (1.11) and

lim
|x|→∞

∫

|x−y|≤1
|u(y)|p dy = 0

so that replacing 2 by p in the proof of Theorem C.3.1 in [Sim82] one proves
u(x) → 0 as |x| → ∞, namely that u is localized. This implies

∆u+ (k2 + o(1))u = 0, as |x| → ∞

so that the PDE version of Sturm’s comparison principle (for instance The-
orem 5.1 in [Swa68]) and the Strong Maximum Principle show that u is
oscillating. !

Proof of Theorem 1.4: Lemma 3.2 yields all the required geometrical fea-
tures of the symmetric Mountain Pass Theorem (see Theorem 6.5 in [Str08]).
Moreover, Lemma 5.2 in [EW15] implies that the Palais-Smale condition
holds for J̄ , giving the existence of pairs of non-trivial localized solutions.
The oscillation property follows again from Theorem 5.1 in [Swa68].

!

4. On the approximation by bounded domains

In this section we briefly address the question whether localized solutions
of (1.1) can be approximated by solutions of the corresponding homogeneous
Dirichlet problem on a large bounded domain. We are going to show that
this method does not work in general. More precisely, we will prove that the
positive minimizers of the Euler functionals associated with the problem on
bounded domains diverge in H1(RN ) as the domains approach RN. Even
though the divergence will only be proved for the sequence of minimizers we
believe that the analogous phenomenon occurs for broader classes of finite
energy solutions, e.g. constrained minimizers, or solutions with a given
upper bound on their nodal domains or on their Morse index. Throughout
this section we will assume that the nonlinearity g satisfies the hypotheses
(1.2),(1.3),(1.4) as well as (1.5) with α0 ∈ (0,+∞), in order to avoid some
sub-critical growth conditions (see Remark 4.3).

Let Ω ⊂ RN be a bounded domain, and consider the variational problem

(4.1) cΩ := inf
H1

0 (Ω)
IΩ where IΩ(u) =

1

2

∫

Ω
|∇u|2 −

∫

Ω
G(u)

where G(z) denotes the primitive of g such that G(0) = 0. Notice that
(1.2),(1.4),(1.5) implies G(z) ≤ C|z|2 for some C > 0 and for all z ∈ R, so
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that IΩ : H1
0 (Ω) .→ R ∪ {+∞} is well-defined. Bounded critical points of IΩ

are classical solutions of the boundary value problem

(4.2)

{

−∆w = g(w) in Ω,

w ∈ H1
0 (Ω).

In the following proposition we show that IΩ admits a positive minimizer
provided g′(0) > λ1(Ω) holds. More precisely, we have the following result.

Proposition 4.1. Let Ω ⊂ RN be a bounded domain and in addition to
(1.2),(1.3),(1.4),(1.5) assume g′(0) > λ1(Ω). Then, there exists a global
minimizer uΩ of IΩ in H1

0 (Ω) which is a solution of (4.2) satisfying 0 <
uΩ < α0 in Ω.

Proof. Hypotheses (1.3) and (1.5) imply that G(z) ≤ G(α0) holds for every
z ∈ R. Hence, for all u ∈ H1

0 (Ω) we have

IΩ(u) ≥
1

2

∫

Ω
|∇u|2 −

∫

Ω
G(α0) =

1

2

∫

Ω
|∇u|2 − |Ω|G(α0),

which shows that IΩ is coercive and bounded from below. Moreover, if φ1
denotes the eigenfunction associated to λ1(Ω), then

lim
t→0

IΩ(tφ1)

t2
=

1

2

∫

Ω
|∇φ1|

2 −G′′(0)φ21 =
1

2

(

λ1(Ω)− g′(0)
)

∫

Ω
φ21 < 0,

so that cΩ < 0 = IΩ(0). Additionally, IΩ is weakly sequentially lower
semicontinuous so that there exists a minimizer uΩ, which must be nontrivial
because of cΩ < 0. We may assume 0 ≤ uΩ ≤ α0 because min{|uΩ|,α0} ∈
H1

0 (Ω) is another minimizer of IΩ. From the strong maximum principle we
deduce that uΩ satisfies 0 < uΩ < α0 in Ω as it is nontrivial. !

Remarks 4.2. (a) If z .→ g(z)/z is decreasing, then the condition g′(0) >
λ1(Ω) is even necessary for the existence of a positive solution u ∈
H1

0 (Ω). Indeed, testing (4.2) with u gives

λ1(Ω)

∫

Ω
u2 ≤

∫

Ω
|∇u|2 =

∫

Ω
g(u)u < g′(0)

∫

Ω
u2.

In particular, note that our model nonlinearities g1, g2 given in (1.6)
and (1.7) satisfy this monotonicity property.

(b) If Ω is smooth then Theorem 1 in [BO86] shows that the the positive
solution of (4.2) is unique provided z .→ g(z)/z is decreasing.

Remark 4.3. In this section we do not consider the case α0 = +∞ in
(1.5) because, without imposing additional growth conditions, the functional
IΩ may not be well-defined in this case and, even if it were, it need not be
bounded from below.

Next we study the convergence of the minimizers obtained in Proposi-
tion 4.1. To this end, we consider a sequence (Ωn) of bounded domains
satisfying Ωn ⊂ Ωn+1 ⊂ RN and

⋃

n∈NΩn = RN . Since every compact sub-
set of RN is covered by finitely many of those bounded domains we observe
that λ1(Ωn) → 0 as n → ∞ so that, by the above proposition, the exis-
tence of positive minimizers is guaranteed for large n provided that (1.4)
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holds. We show that the minimizers converge to the constant solution α0

and therefore do not give any new finite energy solution.

Theorem 4.4. Assume (1.2),(1.3),(1.4),(1.5) and let (Ωn) be a sequence
of bounded domains such that Ωn ⊆ Ωn+1 and ∪nΩn = RN . Then, for all
sufficiently large n, there exists a nontrivial minimizer un of IΩn on H1

0 (Ωn)
having the following properties:

(a) 0 < un < α0 in Ωn,

(b) IΩn(un) → −∞,

(c) un → α0 in C∞
loc(R

N ) and ∥un∥Lq(Ωn) → ∞ for all q ∈ [1,∞).

Proof. Since λ1(Ωn) → 0, taking into account (1.4) we find n0 such that, for
every n ≥ n0, λ1(Ωn) < g′(0). As a consequence, we can apply Proposition
4.1 to deduce that there exists a sequence (un)n≥n0

of positive minimizers
of IΩn satisfying conclusion (a). In order to prove conclusion (b) let φ ∈
C∞
0 (Rn) be given with ∥φ∥2 = ∥φ∥∞ = 1. For every k ∈ N we set

φk(x) =
1

kN/2
φ(xk + ke1),

so that ∥φk∥2 = 1, ∥φk∥∞ ≤ 1, ∥∇φk∥2 → 0. Without loss of generality, we
may assume σ ∈ (0, 1) from hypothesis (1.2) to be so small that 2 + σ ∈
[2, 2N

N−2 ] holds provided N > 2. Exploiting (1.2) and (1.5) we obtain positive
constants A, C such that

g′(0)z2 − 2G(z) ≤ A|z|2+σ for |z| ≤ 1, ∥φk∥2+σ ≤ C.

Then, for a fixed positive t ≤ min{(g′(0)/(4AC))1/σ , 1} and sufficiently large
k ≥ k0 we have ∥tφk∥∞ ≤ 1 so that the following estimate holds

2I(tφk) =t2
∫

RN

|∇φk|
2 − g′(0)φ2k +

∫

RN

(

g′(0)(tφk)
2 − 2G(tφk)

)

≤−
g′(0)

2
t2 +A

∫

RN

|tφk|
2+σ ≤

t2

2

(

−g′(0) + 2tσAC
)

=: −E,

where E > 0 by the choice of t. Since the supports of (φk) go off to infinity
we find some k1 ∈ N such that for all k ≥ k1 it results

2I(tφk0 + tφk) ≤
E

2
+ 2I(tφk0) + 2I(tφk) ≤ −

3

2
E.

Inductively, we find k2 < k3 < . . . such that for all k ≥ km we have

2I(tφk0 + tφk1 + . . .+ tφk) ≤
E

2
+ 2I(tφk0 + tφk1 + . . .+ tφkm−1

) + 2I(tφk)

≤ −(1 +m/2)E.

Since for any given m ∈ N supp(tφk0 + tφk1 + . . .+ tφk) ⊂ Ωn for sufficiently
large n, the same estimate holds true for IΩn , yielding conclusion (b).

In order to show (c), note that the sequence (un) is made of minimizers
of IΩn so that

(4.3)

∫

Ωn

g′(un)φ
2 ≤

∫

Ωn

|∇φ|2 for all φ ∈ C1
c (Ωn).

By the Ascoli-Arzelà Theorem and interior Schauder estimates we find that
(un) converges in C2

loc(R
N ) to some limit function u ∈ C2(RN ) satisfying



20 RAINER MANDEL, EUGENIO MONTEFUSCO AND BENEDETTA PELLACCI

0 ≤ u(x) ≤ α0 for all x ∈ RN as well as (1.1). The Dominated Convergence
Theorem allows to pass to the limit in (4.3) and we obtain

∫

RN

g′(u)φ2 ≤

∫

RN

|∇φ|2 for all φ ∈ C1
c (R

N ),

There are now three possibilities: either u ≡ 0 or u is non-constant or
u ≡ α0. As a consequence, it is left to show that the first two possibilities
do not occur.

First, assume by contraction that u ≡ 0, so that for any given compact K
we have un → u uniformly on K. Thanks to (1.4) we can find a sufficiently
large n such that g(un)/un ≥ δ2 := g′(0)/2. We may choose K so large such
that the fundamental solution ψ of

∆ψ + δ2ψ = 0

changes sign within K. Then the PDE version of Sturm’s comparison the-
orem (Theorem 5.1 in [Swa68]) shows that un has a zero within K contra-
dicting the positivity of un.
Assume now that u is non-constant. Arguing as in the proof of Theorem
1.3 in [Far15] and applying Proposition 1.4 in [Far15] one shows that u > 0
and ∥u∥∞ < α0. As a consequence, the constant

c0 := min
0≤s≤∥u∥∞

g(s)

s

turns out to be positive and, for any compact set K we can find n such that
g(un)/un ≥ c0/2. Choosing again K sufficiently large we get a contradiction
as above.

Hence, it turns out that u ≡ α0 and in particular we get ∥un∥Lq(Ωn) → ∞
for all q ∈ [1,∞). !

References
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