
Freezing traveling and rotating waves in
second order evolution equations

Wolf-Jürgen Beyn, Denny Otten,
Jens Rottmann-Matthes

CRC Preprint 2016/36, November 2016

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



Freezing Traveling and Rotating Waves
in Second Order Evolution Equations

Wolf-Jürgen Beyn1,4

Denny Otten2,4

Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Jens Rottmann-Matthes3,5

Institut für Analysis
Karlsruhe Institute of Technology
76131 Karlsruhe
Germany

Date: November 28, 2016

Abstract. In this paper we investigate the implementation of the so-called freezing method for second
order wave equations in one and several space dimensions. The method converts the given PDE into
a partial differential algebraic equation which is then solved numerically. The reformulation aims at
separating the motion of a solution into a co-moving frame and a profile which varies as little as possible.
Numerical examples demonstrate the feasability of this approach for semilinear wave equations with
sufficient damping. We treat the case of a traveling wave in one space dimension and of a rotating wave
in two space dimensions. In addition, we investigate in arbitrary space dimensions the point spectrum
and the essential spectrum of operators obtained by linearizing about the profile, and we indicate the
consequences for the nonlinear stability of the wave.
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1. Introduction
The topic of this paper is the numerical computation and stability of waves occurring in second order
evolution equations with damping terms. More specifically, we transfer the so called freezing method
(see [7], [19], [4]) from first order to second order evolution equations, and we investigate its relation to
the stability of the waves. Generally speaking, the method tries to separate the solution of a Cauchy
problem into the motion of a co-moving frame and of a profile, where the latter is required to vary as
little as possible or even become stationary. This is achieved by transforming the original PDE into a
partial differential algebraic equation (PDAE). The PDAE involves extra unknowns specifying the frame,
and extra constraints (so called phase conditions) enforcing the freezing principle for the profile. This
methodology has been successfully applied to a wide range of PDEs which are of first order in time and
of hyperbolic, parabolic or of mixed type, cf. [21], [23], [22], [6], [16], [17], [18], [4]. One aim of the
theoretical underpinning is to prove that waves which are (asymptotically) stable with asymptotic phase
for the PDE, become stable in the classical Lyapunov sense for the PDAE. While this has been rigorously
proved for many systems in one space dimension and confirmed numerically in higher space dimensions,
the corresponding theory for the multi-dimensional case is still in its early stages, see [1], [3], [2], [14].
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In this paper we develop the freezing formulation and perform the spectral calculations in an informal
way, for the one-dimensional as well as the multi-dimensional case. Rigorous stability results for the
one-dimensional damped wave equation may be found in [10], [9], [5].
Here we consider a nonlinear wave equation of the form

(1.1) Mutt = Auxx + f(u, ux, ut), x ∈ R, t > 0,

where u(x, t) ∈ Rm, A,M ∈ Rm,m and f : R3m → Rm is sufficiently smooth. In addition, we assume the
matrixM to be nonsingular andM−1A to be positive diagonalizable, which will lead to local wellposedness
of the Cauchy problem associated with (1.1). Our interest is in traveling waves

u?(x, t) = v?(x− µ?t), x ∈ R, t > 0,

with constant limits at ±∞, i.e.

(1.2) lim
ξ→±∞

v?(ξ) = v± ∈ Rm, lim
ξ→±∞

v?,ξ(ξ) = 0, f(v±, 0, 0) = 0.

Transforming (1.1) into a co-moving frame via u(x, t) = v(ξ, t), ξ = x− µ?t leads to the system

(1.3) Mvtt = (A− µ2
?M)vξξ + 2µ?Mvξt + f(v, vξ, vt − µ?vξ), ξ ∈ R, t > 0.

This system has v? as a steady state,

(1.4) 0 = (A− µ2
?M)v?,ξξ + f(v?, v?,ξ,−µ?v?,ξ), ξ ∈ R.

In Section 2 we work out the details of the freezing PDAE based on the ansatz u(x, t) = v(x − γ(t), t),
x ∈ R, t ≥ 0 with the additional unknown function γ(t), t ≥ 0. Solving this PDAE numerically will then be
demonstated for a special semilinear case, for which damping occurs and for which the nonlinearity is of
quintic type with 5 zeros. We will also discuss in Section 2.2 the spectral properties of the linear operator
obtained by linearizing the right-hand side of (1.3) about the profile v?. First, there is the eigenvalue
zero due to shift equivariance, and then we analyze the dispersion curves which are part of the operator’s
essential spectrum. If there is sufficient damping in the system (depending on the derivative D3f), one
can expect the whole nonzero spectrum to lie strictly to the left of the imaginary axis. We refer to [5]
for a rigorous proof of nonlinear stability in such a situation, both stability of the wave with asymptotic
phase for equation (1.3) and Lyapunov stability of the wave and its speed for the freezing equation.
The subsequent section is devoted to study corresponding problems for multi-dimensional wave equations

(1.5) Mutt +But = A∆u+ f(u), x ∈ Rd, t > 0,

where the matrices A,M are as above, the damping matrix B ∈ Rm,m is given and f : Rm → Rm is again
sufficiently smooth. We look for rotating waves of the form

u?(x, t) = v?(e
−tS?(x− x?)), x ∈ Rd, t > 0,

where x? ∈ Rd denotes the center of rotation, S? ∈ Rd,d is a skew-symmetric matrix, and v? : Rd → Rm
describes the profile. Transforming (1.5) into a co-rotating frame via u(x, t) = v(e−tS?(x − x?), t) now
leads to the equation

(1.6) Mvtt +Bvt =A4v −Mvξξ(S?ξ)
2 + 2MvξtS?ξ −MvξS

2
?ξ +BvξS?ξ + f(v), ξ ∈ Rd, t > 0,

where our notation for derivatives uses multilinear calculus, e.g.

(vξξh1h2)i =

d∑
j=1

d∑
k=1

vi,ξjξk(h1)j(h2)k, (4v)i =

d∑
j=1

vi,ξjξj =

d∑
j=1

vi,ξξ(e
j)2.

The profile v? of the wave is then a steady state solution of (1.6), i.e.

(1.7) 0 = A4v? −Mv?,ξξ(S?ξ)
2 −Mv?,ξS

2
?ξ +Bv?,ξS?ξ + f(v?), ξ ∈ Rd.

As is known from first oder in time PDEs, there are several eigenvalues of the linearized operator on the
imaginary axis caused by the Euclidean symmmetry, see e.g. [11], [12], [8], [1], [13]. The computations
become more involved for the wave equation (1.6), but we will show that the eigenvalues on the imaginary
axis are the same as in the parabolic case. Further, determining the dispersion relation, and thus curves
in the essential spectrum, now amounts to solving a parameterized quadratic eigenvalue problem which in
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general can only be solved numerically. Finally, we present a numerical example of a rotating wave for the
cubic-quintic Ginzburg-Landau equation. The performance of the freezing method will be demonstrated,
and we investigate the numerical eigenvalues approximating the point spectrum on (and close to) the
imaginary axis as well as the essential spectrum in the left half-plane.

2. Traveling waves in one space dimension
2.1. Freezing traveling waves. Consider the Cauchy problem associated with (1.1)

Mutt = Auxx + f(u, ux, ut), x ∈ R, t > 0,(2.1a)
u(·, 0) = u0, ut(·, 0) = v0, x ∈ R, t = 0,(2.1b)

for some initial data u0, v0 : R→ Rm and some nonlinearity f ∈ C3(R3m,R). Introducing new unknowns
γ(t) ∈ R and v(ξ, t) ∈ Rm via the freezing ansatz for traveling waves

(2.2) u(x, t) = v(ξ, t), ξ := x− γ(t), x ∈ R, t > 0,

and inserting (2.2) into (2.1a) by taking

ut = −γtvξ + vt, utt = −γttvξ + γ2
t vξξ − 2γtvξt + vtt(2.3)

into account, we obtain the equation

(2.4) Mvtt = (A− γ2
tM)vξξ + 2γtMvξt + γttMvξ + f(v, vξ, vt − γtvξ), ξ ∈ R, t > 0.

Now it is convenient to introduce time-dependent functions µ1(t) ∈ R and µ2(t) ∈ R via

µ1(t) := γt(t), µ2(t) := µ1,t(t) = γtt(t)

which allows us to transfer (2.4) into a coupled PDE/ODE-system

Mvtt = (A− µ2
1M)vξξ + 2µ1Mvξt + µ2Mvξ + f(v, vξ, vt − µ1vξ), ξ ∈ R, t > 0,(2.5a)

µ1,t = µ2, t > 0,(2.5b)
γt = µ1, t > 0.(2.5c)

The quantity γ(t) denotes the position, µ1(t) the velocity and µ2(t) the acceleration of the profile v(ξ, t)
at time t. We next specify initial data for the system (2.5) as follows,

(2.6) v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0

Note that if we require γ(0) = 0 and µ1(0) = µ0
1, then the first equation in (2.6) follows from (2.2) and

(2.1b), while the second equation in (2.6) follows from (2.3), (2.1b) and (2.5c). Suitable values for µ0
1

depend on the choice of phase condition to be discussed next.
We compensate the extra variable µ2 in the system (2.5) by imposing an additional scalar algebraic
constraint, also known as a phase condition, of the general form

(2.7) ψ(v, vt, µ1, µ2) = 0, t > 0.

Two possible choices are the fixed phase condition ψfix and the orthogonal phase condition ψorth given by

ψfix(v) = 〈v − v̂, v̂ξ〉L2 , t > 0,(2.8)
ψorth(vt) = 〈vt, vξ〉L2 , t > 0.

These two types and their derivation are discussed in [5]. The function v̂ : R → Rm denotes a time-
independent and sufficiently smooth template (or reference) function, e.g. v̂ = u0. Suitable values for
µ1(0) = µ0

1 can be derived from requiring consistent initial values for the PDAE. For example, consider
(2.8) and take the time derivative at t = 0. Together with (2.6) this leads to 0 = 〈vt(·, 0), v̂ξ〉L2 =
〈v0, v̂ξ〉L2 + µ0

1〈u0,ξ, v̂ξ〉L2 . If 〈u0,ξ, v̂ξ〉L2 6= 0 this determines a unique value for µ0
1.

Let us summarize the set of equations obtained by the freezing method of the original Cauchy problem
(2.1). Combining the differential equations (2.5), the initial data (2.6) and the phase condition (2.7),
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we arrive at the following partial differential algebraic evolution equation (short: PDAE) to be solved
numerically:

Mvtt = (A− µ2
1M)vξξ + 2µ1Mvξ,t + µ2Mvξ + f(v, vξ, vt − µ1vξ),

µ1,t = µ2, γt = µ1,
t > 0,(2.9a)

0 = ψ(v, vt, µ1, µ2), t > 0,(2.9b)

v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.(2.9c)

The system (2.9) depends on the choice of phase condition ψ and is to be solved for (v, µ1, µ2, γ) with
given initial data (u0, v0, µ

0
1). It consists of a PDE for v that is coupled to two ODEs for µ1 and γ (2.9a)

and an algebraic constraint (2.9b) which closes the system. A consistent initial value µ0
1 for µ1 is computed

from the phase condition and the initial data. Further initialization of the algebraic variable µ2 is usually
not needed for a PDAE-solver but can be provided if necessary (see [5]).
The ODE for γ is called the reconstruction equation in [19]. It decouples from the other equations in (2.9)
and can be solved in a postprocessing step. The ODE for µ1 is the new feature of the PDAE for second
order systems when compared to the first order parabolic and hyperbolic equations in [7, 15, 4].
Finally, note that (v, µ1, µ2) = (v?, µ?, 0) satisfies

0 = (A− µ2
?M)v?,ξξ + µ?Mv?,ξ + f(v?, v?,ξ,−µ?v?,ξ), ξ ∈ R,

0 = µ2,

0 = ψ(v?, 0, µ?, 0),

and hence is a stationary solution of (2.9a),(2.9b). Here we assume that v?, µ? have been selected to satisfy
the phase condition. Obviously, in this case we have γ(t) = µ?t. For a stable traveling wave we expect
that solutions (v, µ1, µ2, γ) of (2.9) show the limiting behavior

v(t)→ v?, µ1(t)→ µ?, µ2(t)→ 0 as t→∞,
provided the initial data are close to their limiting values.

Example 2.1 (Freezing quintic Nagumo wave equation). Consider the quintic Nagumo wave equation,

(2.10) εutt = Auxx + f(u, ux, ut), x ∈ R, t > 0,

with u = u(x, t) ∈ R, ε > 0, 0 < α1 < α2 < α3 < 1, and the nonlinear term

(2.11) f : R3 → R, f(u, ux, ut) = −ut + u(1− u)

3∏
j=1

(u− αj).

For the parameter values

(2.12) M = ε =
1

2
, A = 1, α1 =

2

5
, α2 =

1

2
, α3 =

17

20
,

equation (2.10) admits a traveling front solution connecting the asymptotic states v− = 0 and v+ = 1.
Figure 2.1 shows a numerical simulation of the solution u of (2.10) on the spatial domain (−50, 50) with
homogeneous Neumann boundary conditions, with initial data

u0(x) = 1
2

(
1 + tanh

(
x
2

))
, v0(x) = 0(2.13)

and parameters taken from (2.12). For the space discretization we use continuous piecewise linear finite
elements with spatial stepsize 4x = 0.1. For the time discretization we use the BDF method of order 2
with absolute tolerance atol = 10−3, relative tolerance rtol = 10−2, temporal stepsize 4t = 0.2 and final
time T = 800. Computations are performed with the help of the software COMSOL 5.2.
Let us now consider the frozen quintic Nagumo wave equation resulting from (2.9)

εvtt + vt = (1− µ2
1ε)vξξ + 2µ1εvξ,t + (µ2ε+ µ1)vξ + f̃(v),

µ1,t = µ2, γt = µ1,
t > 0,(2.14a)

0 =
〈
vt(·, t), v̂ξ

〉
L2(R,R)

, t > 0,(2.14b)

v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.(2.14c)
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(a) (b)

Figure 2.1. Traveling front of quintic Nagumo wave equation (2.10) at different time
instances (a) and its time evolution (b) for parameters from (2.12).

(a) (b) (c)

Figure 2.2. Solution of the frozen quintic Nagumo wave equation (2.14): approximation
of profile v(x, 1000) (a) and time evolutions of velocity µ1 and acceleration µ2 (b) and of
the profile v (c) for parameters from (2.12).

Figure 2.2 shows the solution (v, µ1, µ2, γ) of (2.14) on the spatial domain (−50, 50) with homogeneous
Neumann boundary conditions, initial data u0, v0 from (2.13), and reference function v̂ = u0. For the
computation we used the fixed phase condition ψfix(v) from (2.8) with consistent intial data µ0

1 = 0, see
above. The spatial discretization data are taken as in the nonfrozen case. For the time discretization
we used the BDF method of order 2 with absolute tolerance atol = 10−3, relative tolerance rtol = 10−2,
temporal stepsize 4t = 0.6 and final time T = 3000. The diagrams show that after a very short transition
phase the profile becomes stationary, the acceleration µ2 converges to zero, and the speed µ1 approaches
an asymptotic value µnum

? ≈ 0.0709 which is close to the exact (not explicitly known) value µ?.

2.2. Spectra of traveling waves. Consider the linearized equation

(2.15) Mvtt − (A− µ2
?M)vξξ − 2µ?Mvξt − (D2f? − µ?D3f?)vξ −D3f?vt −D1f?v = 0

which is obtained from the co-moving frame (1.3) linearized at the profile v?. In (2.15) we use the short
form Djf? = Djf(v?, v?,ξ,−µ?v?,ξ). Looking for solutions of the form v(ξ, t) = eλtw(ξ) to (2.15) yields
the quadratic eigenvalue problem

(2.16) P(λ)w =
(
λ2P2 + λP1 + P0

)
w = 0, ξ ∈ R

with differential operators Pj defined by

P2 = M, P1 = −2µ?M∂ξ −D3f?, P0 = −(A− µ2
?M)∂2

ξ − (D2f? − µ?D3f?)∂ξ −D1f?.

We are interested in solutions (λ,w) of (2.16) which are candidates for eigenvalues λ ∈ C and eigenfunctions
w : R→ Cm in suitable function spaces. In fact, it is usually imposssible to determine the spectrum σ(P)
analytically, but one is able to analyze certain subsets. Let us first calculate the symmetry set σsym(P),
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which belongs to the point spectrum σpt(P) and is affected by the underlying group symmetries. Then,
we calculate the dispersion set σdisp(P), which belongs to the essential spectrum σess(P) and is affected
by the far-field behavior of the wave. Let us first derive the symmetry set of P. This is a simple task
for traveling waves but becomes more involved when analyzing the symmetry set for rotating waves (see
Section 3.2.1).

2.2.1. Point Spectrum and symmetry set. Applying ∂ξ to the traveling wave equation (1.4) yields
P0v?,ξ = 0 which proves the following result.

Proposition 2.2 (Point spectrum of traveling waves). Let f ∈ C1(R3m,Rm) and let v? ∈ C3(R,Rm) be
a nontrivial classical solution of (1.4) for some µ? ∈ R. Then, w = v?,ξ and λ = 0 is a classical solution of
the eigenvalue problem (2.16). In particular, the symmetry set

σsym(P) = {0}

belongs to the point spectrum σpt(P) of P.

Of course, a rigorous statement of this kind requires to specify the function spaces involved, e.g. L2(R,Rm)
or H1(R,Rm), see [10], [9], [5].

2.2.2. Essential Spectrum and dispersion set.
1. The far-field operator. It is a well known fact that the essential spectrum is affected by the limiting

equation obtained from (2.16) as ξ → ±∞. Therefore, we let formally ξ → ±∞ in (2.16) and obtain

(2.17)
(
λ2P2 + λP±1 + P±0

)
w = 0, ξ ∈ R.

with the constant coefficient operators

P2 = M, P±1 = −2µ?M∂ξ −D3f±, P±0 = −(A− µ2
?M)∂2

ξ − (D2f± − µ?D3f±)∂ξ −D1f±,

where v± are from (1.2) and Djf± = Djf(v±, 0, 0). We may then write equation (2.16) as(
λ2P2 + λ(P±1 +Q±1 (ξ)) + (P±0 +Q±2 (ξ)∂ξ +Q±3 (ξ))

)
w = 0, ξ ∈ R

with the perturbation operators defined by

Q±1 (ξ) = D3f± −D3f?, Q±2 (ξ) = D2f± −D2f? + µ?(D3f? −D3f±), Q±3 (ξ) = D1f± −D1f?,

Note that v?(ξ)→ v± implies Q±j (ξ)→ 0 as ξ → ±∞ for j = 1, 2, 3.
2. Spatial Fourier transform. For ω ∈ R, z ∈ Cm, |z| = 1 we apply the spatial Fourier transform

w(ξ) = eiωξz to equation (2.17) which leads to the m-dimensional quadratic eigenvalue problem

(2.18)
(
λ2A2 + λA±1 (ω) +A±0 (ω)

)
z = 0

with matrices A2 ∈ Rm,m and A±1 , A
±
0 ∈ Cm,m given by

(2.19) A2 = M, A±1 (ω) = −2iωµ?M −D3f±, A
±
0 (ω) = ω2(A− µ2

?M)− iω(D2f± − µ?D3f±)−D1f±.

3. Dispersion relation and dispersion set. The dispersion relation for traveling waves of second order
evolution equations states the following: Every λ ∈ C satisfying

(2.20) det
(
λ2A2 + λA±1 (ω) +A±0 (ω)

)
= 0

for some ω ∈ R belongs to the essential spectrum of P, i.e. λ ∈ σess(P). Solving (2.20) is equivalent
to finding all zeros of a polynomial of degree 2m. Note that the limiting case M = 0 in (2.20) leads
to the dispersion relation for traveling waves of first order evolution equations, which is well-known in
the literature, see [20].

Proposition 2.3 (Essential spectrum of traveling waves). Let f ∈ C1(R3m,Rm) with f(v±, 0, 0) = 0
for some v± ∈ Rm. Let v? ∈ C2(R,Rm), µ? ∈ R be a nontrivial classical solution of (1.4) satisfying
v?(ξ)→ v± as ξ → ±∞. Then, the dispersion set

σdisp(P) = {λ ∈ C : λ satisfies (2.20) for some ω ∈ R, and + or −}

belongs to the essential spectrum σess(P) of P.
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Example 2.4 (Spectrum of quintic Nagumo wave equation). As shown in Example 2.1 the quintic Nagumo
wave equation (2.10) with coefficients and parameters (2.12) has a traveling front solution u?(x, t) =
v?(x− µ?t) with velocity µ? ≈ 0.0709, whose profile v? connects the asymptotic states v− = 0 and v+ = 1
according to (1.2).
We solve numerically the eigenvalue problem for the quintic Nagumo wave equation(

λ2ε+ λ (−2µ?ε∂ξ −D3f?) +
(
−(1− µ2

?ε)∂
2
ξ − (D2f? − µ?D3f?)∂ξ −D1f?

))
w = 0.(2.21)

Both approximations of the profile v? and the velocity µ? in (2.21) are chosen from the solution of (2.14)
at time t = 3000 in Example 2.1. Due to Proposition 2.2 we expect λ = 0 to be an isolated eigenvalue
belonging to the point spectrum. Let us next discuss the dispersion set from Proposition 2.3. The quintic
Nagumo nonlinearity (2.11) satisfies

f± = 0, D3f± = −1, D2f± = 0, D1f− = −α1α2α3, D1f+ = −
3∏
j=1

(1− αj).

The matrices A2, A±1 (ω), A±0 (ω) from (2.19) of the quadratic problem (2.18) are given by

A2 = ε, A±1 (ω) = −2iωµ?ε+ 1, A±0 (ω) = ω2(1− µ2
?ε)− iωµ? −D1f±.

The dispersion relation (2.20) for the quintic Nagumo front states that every λ ∈ C satisfying

(2.22) λ2ε+ λ(−2iωµ?ε+ 1) + (ω2(1− µ2
?ε)− iωµ? −D1f±) = 0

for some ω ∈ R, and for + or −, belongs to σess(P). We introduce a new unknown λ̃ ∈ C via λ = λ̃+ iωµ?
and solve the transformed equation

λ̃2 +
1

ε
λ̃+

1

ε
(ω2 −D1f±) = 0.

obtained from (2.22). Thus, the quadratic eigenvalue problem (2.22) has the solutions

λ = − 1

2ε
+ iωµ? ±

1

2ε

√
1− 4ε(ω2 −D1f±), ω ∈ R.

These solutions lie on the line Re = − 1
2ε and on two ellipses if −4D1f±ε < 1 (cf. Figure 2.3(a)).

(a) (b) (c)

Figure 2.3. Spectrum of the quintic Nagumo wave equation for parameters (2.12) (a)
and the numerical spectrum on the spatial domain [−R,R] for R = 50 (b) and R = 400
(c) both for spatial stepsize 4x = 0.1.
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(a) (b) (c)

Figure 2.4. Eigenfunctions of the quintic Nagumo wave equation for parameters (2.12)
belonging to the isolated eigenvalues λ1 ≈ 0 (a), λ2 ≈ −0.011274 (b), and a zoom into
the spectrum from Fig.2.3(c) in (c).

Figure 2.3(a) shows the part of the spectrum of the quintic Nagumo wave which is guaranteed by Propo-
sition 2.2 and 2.3. It is subdivided into the symmetry set σsym(P) (blue circle), which is determined by
Proposition 2.2 and belongs to the point spectrum σpt(P), and the dispersion set σdisp(P) (red lines),
which is determined by Proposition 2.3 and belongs to the essential spectrum σess(P). In general, there
may be further essential spectrum in σess(P)\σdisp(P) and further isolated eigenvalues in σpt(P)\σsym(P).
In fact, for the quintic Nagumo wave equation we find an extra eigenvalue with negative real part, cf. Fig-
ure 2.4(c). The numerical spectrum of the quintic Nagumo wave equation on the spatial domain [−R,R]
equipped with periodic boundary conditions is shown in Figure 2.3(b) for R = 50 and in Figure 2.3(c) for
R = 400. Each of them consists of the approximations of the point spectrum subdivided into the symmetry
set (blue circle) and an additional isolated eigenvalue (blue plus sign), and of the essential spectrum (red
dots). The missing line inside the ellipse in Figure 2.3(b) gradually appears numerically when enlarging
the spatial domain, see Figure 2.3(c). The second ellipse only develops on even larger domains.

3. Rotating waves in several space dimensions
3.1. Freezing rotating waves. Consider the Cauchy problem associated with (1.5)

Mutt +But = A4u+ f(u) , x ∈ Rd, t > 0,(3.1a)

u(·, 0) = u0, ut(·, 0) = v0 , x ∈ Rd, t = 0,(3.1b)

for some initial data u0, v0 : Rd → Rm, where u0 denotes the initial displacement and v0 the initial velocity.
The damped wave equation (3.1) has a more special nonlinearity than in the one-dimensional case, see
(1.5). This will simplify some of the computations below.
In the following, let SE(d) = SO(d) n Rd denote the special Euclidean group and SO(d) the special
orthogonal group. Let us introduce new unknowns (Q(t), τ(t)) ∈ SE(d) and v(ξ, t) ∈ Rm via the
rotating wave ansatz

(3.2) u(x, t) = v(ξ, t), ξ := Q(t)>(x− τ(t)), x ∈ Rd, t > 0.

Inserting (3.2) into (3.1a) and suppressing arguments of u and v leads to

4xu =4ξv, f(u) = f(v), ut = vξ
(
Q>t (x− τ)−Q>τt

)
+ vt,(3.3)

utt =vξξ
(
Q>t (x− τ)−Q>τt

)2
+ vξ

(
Q>tt(x− τ)− 2Q>t τt −Q>τtt

)
+2vξt

(
Q>t (x− τ)−Q>τt

)
+ vtt.

Hence equation (3.1a) turns into

(3.4)
Mvtt +Bvt = A4v −Mvξξ

(
Q>t Qξ −Q>τt

)2 − 2Mvξt
(
Q>t Qξ −Q>τt

)
−Mvξ

(
Q>ttQξ − 2Q>t τt −Q>τtt

)
−Bvξ

(
Q>t Qξ −Q>τt

)
+ f(v).
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It is convenient to introduce time-dependent functions S1(t), S2(t) ∈ Rd,d, µ1(t), µ2(t) ∈ Rd via

S1 := Q>Qt, S2 := S1,t, µ1 := Q>τt, µ2 := µ1,t.

Obviously, S1 and S2 satisfy S>1 = −S1 and S>2 = −S2, which follows from Q>Q = Id by differentiation.
Moreover, we obtain

Q>t Q = −S1, Q>τt = µ1, Q>t τt +Q>τtt = µ2,

Q>ttQ = −S1,t − S>1 S1 = −S2 + S2
1 , −Q>t τt = −Q>t QQ>τt = S1µ1,

which transforms (3.4) into the system

Mvtt +Bvt = A4v −Mvξξ (S1ξ + µ1)
2

+ 2Mvξt (S1ξ + µ1)(3.5a)

+Mvξ
(
(S2 − S2

1)ξ − S1µ1 + µ2

)
+Bvξ (S1ξ + µ1) + f(v),(

S1

µ1

)
t

=

(
S2

µ2

)
,(3.5b) (

Q
τ

)
t

=

(
QS1

Qµ1

)
.(3.5c)

The quantity (Q(t), τ(t)) describes the position by its spatial shift τ(t) and the rotation Q(t). Moreover,
S1(t) denotes the rotational velocities, µ1(t) the translational velocities, S2(t) the angular acceleration and
µ2(t) the translational acceleration of the rotating wave v at time t. Note that in contrast to the traveling
waves the leading part A4−M∂2

ξ (S1ξ + µ1)2 not only depends on the velocities S1 and µ1, but also on
the spatial variable ξ, which means that the leading part has unbounded (linearly growing) coefficients.
We next specify initial data for the system (3.5) as follows,

(3.6)
v(·, 0) = u0, vt(·, 0) = v0 + u0,ξ(S

0
1ξ + µ0

1),

S1(0) = S0
1 , µ1(0) = µ0

1, Q(0) = Id, τ(0) = 0.

Note that, requiring Q(0) = Id, τ(0) = 0, S1(0) = S0
1 and µ1(0) = µ0

1 for some S0
1 ∈ Rd,d with (S0

1)> = −S0
1

and µ0
1 ∈ Rd, the first equation in (3.6) follows from (3.2) and (3.1b), while the second condition in (3.6)

can be deduced from (3.3), (3.1b), (3.5c) and the first condition in (3.6).
The system (3.5) comprises evolution equations for the unknowns v, S and µ1. In order to specify the
remaining variables S2 and µ2 we impose dim SE(d) = d(d+1)

2 additional scalar algebraic constraints, also
known as phase conditions

ψ(v, vt, (S1, µ1), (S2, µ2)) = 0 ∈ R
d(d+1)

2 , t > 0.(3.7)

Two possible choices of such a phase condition are

ψfix(v) :=

(
〈v − v̂, Dlv̂〉L2

〈v − v̂, D(i,j)v̂〉L2

)
= 0, t > 0,(3.8)

ψorth(vt) :=

(
〈vt, Dlv〉L2

〈vt, D(i,j)v〉L2

)
= 0, t > 0,(3.9)

for l = 1, . . . , d, i = 1, . . . , d− 1 and j = i+ 1, . . . , d with Dl := ∂ξl and D(i,j) := ξj∂ξi − ξi∂ξj . Condition
(3.8) is obtained from the requirement that the distance

ρ(Q, τ) :=
∥∥v(·, t)− v̂(Q>(· − τ))

∥∥2

L2

attains a local minimum at (Q, τ) = (Id, 0). Since Dl, D
(i,j) are the generators of the Euclidean group

action, condition (3.9) requires the time derivative of v to be orthogonal to the group orbit of v at any
time instance.
Combining the differential equations (3.5), the initial data (3.6) and the phase condition (3.7), we obtain
the following partial differential algebraic evolution equation (PDAE)

Mvtt +Bvt = A4v −Mvξξ (S1ξ + µ1)
2

+ 2Mvξt (S1ξ + µ1)(3.10a)

+Mvξ
(
(S2 − S2

1)ξ − S1µ1 + µ2

)
+Bvξ (S1ξ + µ1) + f(v), ξ ∈ Rd, t > 0,
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v(·, 0) = u0, vt(·, 0) = v0 + u0,ξ(S
0
1ξ + µ0

1), ξ ∈ Rd, t = 0,(3.10b)
0 = ψ(v, vt, (S1, µ1), (S2, µ2)), t > 0,(3.10c) (
S1

µ1

)
t

=

(
S2

µ2

)
,

(
S1(0)
µ1(0)

)
=

(
S0

1

µ0
1

)
, t > 0,(3.10d) (

Q
τ

)
t

=

(
QS1

Qµ1

)
,

(
Q(0)
τ(0)

)
=

(
Id
0

)
, t > 0.(3.10e)

The system (3.10) depends on the choice of phase condition and must be solved for (v, S1, µ1, S2, µ2, Q, τ)
for given (u0, v0, S

0
1 , µ

0
1). It consists of a PDE for v in (3.10a)–(3.10b), two systems of ODEs for (S1, µ1) in

(3.10d) and for (Q, τ) in (3.10e) and d(d+1)
2 algebraic constraints for (S2, µ2) in (3.10c). The ODE (3.10e)

for (Q, τ) is the reconstruction equation (see [19]), it decouples from the other equations in (3.10) and can
be solved in a postprocessing step. Note that in the frozen equation for first order evolution equations,
the ODE for (S1, µ1) does not appear, see [13, (10.26)]. The additional ODE is a new component of the
PDAE and is caused by the second order time derivative.
Finally, note that (v, S1, µ1, S2, µ2) = (v?, S?, µ?, 0, 0) satisfies

0 = A4v −Mv?,ξξ (S?ξ + µ?)
2 −Mv?,ξS? (S?ξ + µ?) +Bv?,ξ (S?ξ + µ?) + f(v?), ξ ∈ Rd,

0 =

(
S2

µ2

)
.

If, in addition, it has been arranged that v?, S?, µ? satisfy the phase condition ψ(v?, 0, S?, µ?, 0, 0) = 0
then (v?, S?, µ?, 0, 0) is a stationary solution of the system (3.10a),(3.10c),(3.10d). For a stable rotating
wave we expect that solutions (v, S1, µ1, S2, µ2) of (3.10a)–(3.10d) satisfy

v(t)→ v?, (S1(t), µ1(t))→ (S?, µ?), (S2(t), µ2(t))→ (0, 0), as t→∞,
provided the initial data are close to their limiting values.

Example 3.1 (Cubic-quintic complex Ginzburg-Landau wave equation). Consider the cubic-quintic com-
plex Ginzburg-Landau wave equation

(3.11) εutt + ρut = α4u+ u(δ + β|u|2 + γ|u|4), x ∈ Rd, t > 0

with u = u(x, t) ∈ C, d ∈ {2, 3}, ε, ρ, α, β, γ, δ ∈ C and Reα > 0. For the parameter values

ε = 10−4, ρ = 1, α =
3

5
, γ = −1− 1

10
i, β =

5

2
+ i, δ = −0.73.(3.12)

equation (3.11) admits a spinning soliton solution.

(a) (b)

Figure 3.1. Solution of cubic-quintic complex Ginzburg-Landau wave equation (3.11):
Spinning soliton u(x, t) at time t = 50 (a) and its time evolution along x2 = 0 (b) for
parameters from (3.12).

Figure 3.1 shows a numerical simulation of the solution u of (3.11) on the ball BR(0) with radius R = 20,
homogeneous Neumann boundary conditions parameters from (3.12). The initial data u0 and v0 come
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from a simulation. To generate the initial data we consider the case ε = 0 and ρ = 1, solve the frozen
QCGL for parameters

α =
1

2
+

1

2
i, γ = −1− 1

10
i, β =

5

2
+ i, δ = −1

2
.

as in [13]. Since this value of α leads to an ill-posed wave equation, we gradually change the value of δ
and α to arrive at the parameter setting (3.12). For the space discretization we use continuous piecewise
linear finite elements with spatial stepsize 4x = 0.8. For the time discretization we use the BDF method
of order 2 with absolute tolerance atol = 10−4, relative tolerance rtol = 10−3, temporal stepsize 4t = 0.1
and final time T = 50. Computations are performed with the help of the software COMSOL 5.2.
Let us now consider the frozen cubic-quintic complex Ginzburg-Landau wave equation resulting from (3.10)

εvtt + ρvt = α4v − εvξξ (S1ξ + µ1)
2

+ 2εvξt (S1ξ + µ1)(3.13a)

+ εvξ
(
(S2 − S2

1)ξ − S1µ1 + µ2

)
+ ρvξ (S1ξ + µ1) + f(v), ξ ∈ Rd, t > 0,

v(·, 0) = u0, vt(·, 0) = v0 + u0,ξ(S
0
1ξ + µ0

1), ξ ∈ Rd, t = 0,(3.13b)

0 = ψfix(v) :=

(
〈v − v̂, Dlv̂〉L2

〈v − v̂, D(i,j)v̂〉L2

)
, t > 0,(3.13c) (

S1

µ1

)
t

=

(
S2

µ2

)
,

(
S1(0)
µ1(0)

)
=

(
S0

1

µ0
1

)
, t > 0,(3.13d) (

Q
τ

)
t

=

(
QS1

Qµ1

)
,

(
Q(0)
τ(0)

)
=

(
Id
0

)
, t > 0.(3.13e)

(a) (b)

(c) (d)

Figure 3.2. Solution of the frozen cubic-quintic complex Ginzburg-Landau wave equa-
tion (3.13): profile v(x, t) at time t = 2000 (a), its time evolution along x2 = 0 (b),
velocities µ1(t) (c), and accelerations µ2(t) (d) for parameters from (3.12).



12

Figure 3.2 shows the solution (v, S1, µ1, S2, µ2, Q, τ) of (3.13) on the ball BR(0) with radius R = 20,
homogeneous Neumann boundary conditions, initial data u0, v0 as in the nonfrozen case, and reference
function v̂ = u0. For the computation we used the fixed phase condition ψfix(v) from (3.8). The spatial
discretization data are taken as in the nonfrozen case. For the time discretization we used the BDF method
of order 2 with absolute tolerance atol = 10−3, relative tolerance rtol = 10−2, maximal temporal stepsize
4t = 0.5, initial step 10−4, and final time T = 2000. Due to the choice of initial data, the profile becomes
immediately stationary, the acceleration µ2 converges to zero, while the speed µ1 and the nontrivial entry
S12 of S approach asymptotic values

µ
(1)
1 = −0.2819, µ

(2)
1 = −0.1999, S12 = 1.3658.

Note that we have a clockwise rotation if S12 > 0, and a counter clockwise rotation, if S12 < 0. Thus,
the spinning soliton rotates clockwise. The center of rotation x? and the temporal period T 2D, that the
spinning soliton in R2 needs for exactly one rotation, are given by, see [13, Exa.10.8],

x? =
1

S12

(
µ

(2)
1

−µ(1)
1

)
=

(
−0.1464
0.2064

)
, T 2D =

2π

|S12|
= 4.6004.

3.2. Spectra of rotating waves. Consider the linearized equation

(3.14) Mvtt +Bvt −A4v +Mvξξ(S?ξ)
2 − 2MvξtS?ξ +MvξS

2
?ξ −BvξS?ξ −Df(v?)v = 0

where we set S = S?. Equation (3.14) is obtained from the co-rotating frame equation (1.6) when
linearizing at the profile v?. Moreover, we assume µ? = 0, that is the wave that rotates about the origin.
Shifting the center of rotation does not influence the stability properties, see the discussion in [3]. Looking
for solutions of the form v(ξ, t) = eλtw(ξ) to (3.14) yields the quadratic eigenvalue problem

(3.15) P(λ)w :=
(
λ2P2 + λP1 + P0

)
w = 0, ξ ∈ Rd

with differential operators Pj defined by

(3.16)

P2 =M, P1 = B − 2M (∂ξ ·)S?ξ = B − 2M

d∑
j=1

(S?ξ)j∂ξj ,

P0 =−A4 ·+M
(
∂2
ξ ·
)

(S?ξ)
2 +M (∂ξ ·)S2

?ξ −B (∂ξ ·)S?ξ −Df(v?) ·

=−A
d∑
j=1

∂2
ξj +M

d∑
j=1

d∑
ν=1

(S?ξ)j(S?ξ)ν∂ξj∂ξν +M

d∑
j=1

(S2
?ξ)j∂ξj −B

d∑
j=1

(S?ξ)j∂ξj −Df(v?).

As in the one-dimensional case we cannot solve equation (3.15) in general. Rather, our aim is to determine
the dispersion set σdisp(P) as a subset of the essential spectrum σess(P), and the symmetry set σsym(P)
as a subset of the point spectrum σpt(P). The essential spectrum depends on the far-field behavior of the
wave while the point spectrum is affected by the underlying group symmetries.
In a first step let us transform the skew-symmetric matrix S? into quasi-diagonal real form. Let±iσ1, . . . ,±iσk
be the nonzero eigenvalues of S? so that 0 is a semisimple eigenvalue of multiplicity d − 2k. There is an
orthogonal matrix P ∈ Rd,d such that

S? = PΛP>, Λ = diag (Λ1, . . . ,Λk,0) , Λj =

(
0 σj
−σj 0

)
, 0 ∈ Rd−2k,d−2k.

The transformation w̃(y) = w(Py), ṽ?(y) = v?(Py) transfers (3.15),(3.16) into the form

(3.17) (λ2P̃2 + λP̃1 + P̃0)w̃ = 0.

With the abbreviations

(3.18) Dj = ∂yj , D(i,j) = yjDi − yiDj , K =

k∑
l=1

σlD
(2l−1,2l)
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the operators P̃j are given by

(3.19)

P̃2 =M, P̃1 = B − 2M

d∑
j=1

(Λy)jDj = B − 2MK,

P̃0 =−A4+M

d∑
j=1

d∑
ν=1

(Λy)j(Λy)νDjDν +M

d∑
j=1

(Λ2y)jDj −B
d∑
j=1

(Λy)jDj −Df(ṽ?)

=−A4+MK2 −BK −Df(ṽ?).

In the following we present the recipe for computing the subsets σdisp(P) ⊆ σess(P) and σsym(P) ⊆ σpt(P).

3.2.1. Essential spectrum and dispersion set.
1. The far-field operator. Assume that v? has an asymptotic state v∞ ∈ Rm, i.e. f(v∞) = 0 and

v?(ξ) → v∞ ∈ Rm as |ξ| → ∞. In the limit |y| → ∞ the eigenvalue problem (3.17) turns into the
far-field problem

(3.20)
(
λ2P̃2 + λP̃1 + P̃∞

)
w̃ = 0, y ∈ Rd, P̃∞ = −A4+MK2 −BK −Df(v∞).

2. Transformation into several planar polar coordinates: Since we have k angular derivatives in k
different planes it is advisable to transform into several planar polar coordinates via(

y2l−1

y2l

)
= T (rl, φl) :=

(
rl cosφl
rl sinφl

)
, φl ∈ [−π, π), rl ∈ (0,∞), l = 1, . . . , k.

All further coordinates, i.e. y2k+1, . . . , yd, remain fixed. The transformation ŵ(ψ) := w̃(T2(ψ)) with
T2(ψ) = (T (r1, φ1), . . . , T (rk, φk), y2k+1, . . . , yd) for ψ = (r1, φ1, . . . , rk, φk, y2k+1, . . . , yd) in the domain
Ω = ((0,∞)× [−π, π))k × Rd−2k transfers (3.20) into

(3.21)
(
λ2P̂2 + λP̂1 + P̂∞

)
ŵ = 0, ψ ∈ Ω

with

P̂2 = M, P̂1 = B + 2M

k∑
l=1

σl∂φl ,

P̂∞ = −A
[ k∑
l=1

(
∂2
rl

+
1

rl
∂φl +

1

r2
l

∂2
φl

)
+

d∑
l=2k+1

∂2
yl

]
+M

k∑
l,n=1

σlσn∂φl∂φn +B

k∑
l=1

σl∂φl −Df(v∞).

3. Simplified far-field operator: The far-field operator (3.21) can be further simplified by letting
rl →∞ for any 1 6 l 6 k which turns (3.21) into

(3.22)
(
λ2P̂2 + λP̂1 + P sim

∞

)
ŵ = 0, ψ ∈ Ω

with

(3.23) P sim
∞ = −A

[
k∑
l=1

∂2
rl

+

d∑
l=2k+1

∂2
yl

]
+M

k∑
l,n=1

σlσn∂φl∂φn +B

k∑
l=1

σl∂φl −Df(v∞).

4. Angular Fourier transform: Finally, we solve for eigenvalues and eigenfunctions of (3.23) by sep-
aration of variables and an angular resp. radial Fourier ansatz with ω ∈ Rk, ρ, y ∈ Rd−2k, n ∈ Zk,
z ∈ Cm, |z| = 1, r ∈ (0,∞)k, φ ∈ (−π, π]k:

ŵ(ψ) = exp

(
i

k∑
l=1

ωlrl

)
exp

(
i

k∑
l=1

nlφl

)
exp

(
i

d∑
l=2k+1

ρlyl

)
z = exp (i〈ω, r〉+ i〈n, φ〉+ i〈ρ, y〉) z.

Inserting this in (3.22) leads to the m-dimensional quadratic eigenvalue problem

(3.24)
(
λ2A2 + λA1(n) +A∞(ω, n, ρ)

)
z = 0
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with matrices A2 ∈ Rm,m and A1(n), A∞(ω, n, ρ) ∈ Cm,m given by

(3.25)
A2 =M, A1(n) = B + 2i〈σ, n〉M,

A∞(ω, n, ρ) =
(
|ω|2 + |ρ|2

)
A− 〈σ, n〉2M + i〈σ, n〉B −Df(v∞).

The Fourier ansatz is a well-known tool for investigating essential spectra, see e.g. [8].
5. Dispersion relation and dispersion set: As in Section 2.2.2 we consider the dispersion set consisting

of all values λ ∈ C satisfying the dispersion relation

(3.26) det
(
λ2A2 + λA1(n) +A∞(ω, n, ρ)

)
= 0

for some ω ∈ Rk, ρ ∈ Rd−2k and n ∈ Zk. Of course, one can replace |ω|2 + |ρ|2 by any nonnegative real
number. Solving (3.26) is equivalent to finding all zeros of a parameterized polynomial of degree 2m.
Note that the limiting case M = 0 and B = Im in (3.26) leads to the dispersion relation for rotating
waves of first order evolution equations, see [1] for d = 2, and [13, Sec. 7.4 and 9.4], [2] for general
d > 2.

Using standard cut-off arguments as in [1],[13],[2], the following result can be shown for suitable function
spaces (e.g. L2(Rd,Rm)):

Proposition 3.2 (Essential spectrum of rotating waves). Let f ∈ C1(Rm,Rm) with f(v∞) = 0 for some
v∞ ∈ Rm. Let v? ∈ C2(Rd,Rm) with skew-symmetric S? ∈ Rm,m be a classical solution of (1.7) satisfying
v?(ξ)→ v∞ as |ξ| → ∞. Then, the dispersion set

σdisp(P) = {λ ∈ C | λ satisfies (3.26) for some ω ∈ Rk, ρ ∈ Rd−2k, n ∈ Zk}

belongs to the essential spectrum σess(P) of the operator polynomial P from (3.15).

3.2.2. Point Spectrum and symmetry set. Recall the SE(d)-group action

[a(R, τ)u](x) = u(R−1(x− τ)), x ∈ Rd, (R, τ) ∈ SE(d).

whose generators are Dl, l = 1, . . . , d and D(a,b), a = 1, . . . , d − 1, b = a + 1, . . . , d from (3.18). As
with the eigenvalue problem (3.15) we transform the steady state equation (1.7) into y-coordinates via
ṽ?(y) = v?(Py) to obtain

(3.27) 0 = Lṽ? + f(ṽ?), L = A4−MK2 +BK.

We apply the generators (3.18) to this equation and find

(3.28)
0 =DlLṽ? +Df(ṽ?)Dlṽ?, l = 1, . . . , d,

0 =D(a,b)Lṽ? +Df(ṽ?)D
(a,b)ṽ?, a = 1, . . . , d− 1, b = a+ 1, . . . , d.

Moreover, we can write the eigenvalue problem (3.17), (3.19) as follows

(3.29) (L+Df(ṽ?))w̃ = (λ2M + λ(B − 2MK))w̃.

1. Linear combination of generators: In view of (3.28),(3.29) it is natural to seek eigenfunctions as
a linear combination of generators applied to the profile

(3.30) w̃ =

d−1∑
a=1

d∑
b=a+1

αrot
ab D

(a,b)ṽ? +

d∑
c=1

αtra
c Dcṽ?, αrot

ab , α
tra
c ∈ C

This is to be plugged into (3.29) and reduced to an eigenvalue problem for αrot, αtra by using the equations
(3.28).
2. Commutator relations and eigenvalues of S?: From (3.18) it is straightforward to establish the
commutator relations

(3.31)
DcDj = DjDc, DcD

(i,j) = D(i,j)Dc + δcjDi − δciDj

D(a,b)D(i,j) = D(i,j)D(a,b) + δajD
(i,b) + δaiD

(b,j) + δbiD
(j,a) + δbjD

(a,i).
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From this we find the commutators with K and 4 to be

(3.32)
DcK = KDc (c = 2k + 1, . . . , d), D(2ν−1,2ν)4 = 4D(2ν−1,2ν), D(2ν−1,2ν)K = KD(2ν−1,2ν),

D2ν−1K = KD2ν−1 − σνD2ν , D2νK = KD2ν + σνD2ν−1 (ν = 1, . . . , k).

First, all operators Dc, c = 2k+1, . . . , d commute with L. Hence, by (3.28) the operator L+Df(ṽ?) has the
eigenvalue 0 with geometric multiplicity at least d−2k with eigenfunctions given by Dcṽ?, c = 2k+1, . . . d.
Furthermore, we obtain from (3.32) for ν = 1, . . . , k

(3.33)

D2ν−1K
2 = K2D2ν−1 − 2σνKD2ν − σ2

νD2ν−1, D2νK
2 = K2D2ν + 2σνKD2ν−1 − σ2

νD2ν ,

D2ν−1L = LD2ν−1 − σν(B − 2MK)D2ν + σ2
νMD2ν−1,

D2νL =LD2ν + σν(B − 2MK)D2ν−1 + σ2
νMD2ν .

Combining the last two rows with (3.28) finally yields

(3.34) (L+Df(ṽ?))(D2ν + iD2ν−1)ṽ? =
[
(iσν)(B − 2MK) + (iσν)2M

]
(iD2ν−1 +D2ν)ṽ?,

and similarly for the complex conjugate. Therefore, the quadratic problem (3.29) has eigenvalues ±iσν
with eigenfunctions ±iD2ν−1ṽ? +D2ν ṽ?, ν = 1, . . . k.
3. Commutator relations and sums of eigenvalues of S?: Now we use the relation (3.28) for indices
a = 2µ − 1, 2µ and b = 2ν − 1, 2ν with 1 ≤ µ < ν ≤ k. The following commutator relations follow from
(3.31)

(3.35) D[µ,ν]K = (KI4 + Σ)D[µ,ν], D[µ,ν] =


D(2µ−1,2ν−1)

D(2µ−1,2ν)

D(2µ,2ν−1)

D(2µ,2ν)

 , Σ =


0 −σν −σµ 0
σν 0 0 −σµ
σµ 0 0 −σν
0 σµ σν 0

 .

Note that Σ is skew-symmetric with eigenvalues ±i(σν ± σµ). We look for eigenfunctions of the special
form

(3.36) w̃ = Lαṽ?, Lα =
∑

a=2µ−1,2µ

∑
b=2ν−1,2ν

αa,bD
(a,b) = α>D[µ,ν].

Let λ ∈ C be an eigenvalue of Σ with eigenvector α ∈ C4, so that α>Σ = −λα> by skew-symmetry. Then
we obtain from (3.35)

(3.37) LαK = α>D[µ,ν]K = α>(KI4 + Σ)D[µ,ν] = (K − λ)Lα, LαK
2 = (K2 − 2λK + λ2)Lα.

Using (3.27), (3.32) and the fact that scalar differential operators commute with matrices, yields

LαL =Lα(4A−K2M +KB) = 4LαA− (K2 − 2λK + λ2)LαM + (K − λ)LαB

=LLα − (λ2M + λ(B − 2MK))Lα.

Finally, we note that LαLṽ? = −Df(ṽ?)Lαṽ? follows from (3.28), which then gives

(L+Df(ṽ?))Lαṽ? = (LLα − LαL)ṽ? = (λ2M + λ(B − 2MK))Lαṽ?.

Hence w̃ = Lαṽ? solves the quadratic eigenvalue problem (3.29). All 4 eigenfunctions can now be read off
from the columns of the unitary matrix

V =
1

4


1 1 1 1
−i −i i i
−i i −i i
−1 1 1 −1

 , ΣV = V diag(i(σν + σµ), i(σν − σµ), i(σµ − σν),−i(σν + σµ)).

The computations for the remaining eigenfunctions are similar. Take µ = 1, . . . , k, c = 2k + 1, . . . , d and
replace (3.35) by the relation

D[µ,c]K = (KI4 + Σ)D[µ,c], D[µ,ν] =

D(2µ−1,2µ)

D(2µ−1,c)

D(2µ,c)

 , Σ =

0 0 0
0 0 −σµ
0 σµ 0

 .
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For the zero row and column in Σ compare (3.32). Then by the same computations as above one finds that
eigenvalues λ of Σ are also eigenvalues of (3.29). The corresponding eigenfunctions are w̃ = α>D[µ,c]〉ṽ?
where Σα = λα. Therefore, we have further eigenfunctions D(2µ−1,2µ)ṽ? for the eigenvalue 0 and
D(2µ−1,c)ṽ? ± iD(2µ,c)ṽ? for the eigenvalue ±iσµ, µ = 1, . . . , k. Finally, note that for any two indices
2k < b < c ≤ d the operator D(b,c) commutes with K and 4, and thus produces another eigenfunction
w̃ = D(b,c)ṽ? which belongs to the eigenvalue 0.
Collecting all computations we have found a total of d+4k(k−1)

2 +2k(d−2k)+k+ (d−2k)(d−2k−1)
2 = 1

2d(d+1)
eigenfunctions corresponding to eigenvalues of S? and to sums of different eigenvalues of S?. In a generic
sense we expect these eigenfunctions to be linearly independent, but, of course, one cannot prove this in
general. Let us summarize the result in a proposition.

Proposition 3.3 (Point spectrum of rotating waves). Let f ∈ C2(Rm,Rm) and let v? ∈ C3(Rd,Rm) be a
classical solution of (1.7) with skew-symmetric S? ∈ Rm,m. Further, let λj , j = 1, . . . , d be the eigenvalues
of S? repeated according to their multiplicity. Then the symmetry set

σsym(P) = {λ ∈ C : λ = λj or λ = λi + λj for some 1 ≤ i < j ≤ d}

belongs to the point spectrum σpt(P) of the quadratic operator polynomial P(λ) in (3.15), (3.16) obtained
by linearizing at the wave. The eigenvalues and eigenfunctions of the transformed problem (3.17) are
displayed in the following table (setting r = d− 2k):

eigenvalue eigenfunction index number
0 Dcṽ? 2k < c ≤ d r
±iσν (D2ν ± iD2ν−1)ṽ? 1 ≤ ν ≤ k 2k

±i(σν + σµ) (D(2µ−1,2ν−1) ∓ iD(2µ−1,2ν) ∓ iD(2µ,2ν−1) −D(2µ,2ν))ṽ? 1 ≤ µ < ν ≤ k k(k − 1)

±i(σν − σµ) (D(2µ−1,2ν−1) ± iD(2µ−1,2ν) ∓ iD(2µ,2ν−1) +D(2µ,2ν))ṽ? 1 ≤ µ < ν ≤ k k(k − 1)

±iσν (D(2ν−1,c) ± iD(2ν,c))ṽ? 1 ≤ ν ≤ k, 2k < c ≤ d 2kr

0 D(2ν−1,ν)ṽ? 1 ≤ ν ≤ k k

0 D(b,c)ṽ? 2k < b < c ≤ d r
2 (r − 1)

Table 1: Eigenfunctions and eigenvalues (with multiplicities) on the imaginary axis for the linearized
quadratic eigenvalue problem (3.17).

Note that we did not assume any limit behavior of v?(ξ) for ξ → ∞ as in Proposition 3.2. Therefore,
Proposition 3.3 also applies to rotating waves that are not localized, e.g. spiral waves. This has been
confirmed in numerical experiments.
Figure 3.3 shows the eigenvalues λ ∈ σsym(P) from Proposition 3.3 and their corresponding multiplicities
for different space dimensions d = 2, 3, 4, 5. The eigenvalues λ ∈ σ(S?) are indicated by blue circles, the
eigenvalues λ ∈ {λi + λj | λi, λj ∈ σ(S?), 1 6 i < j 6 d} by green crosses. The imaginary values to the
right of the symbols denote eigenvalues and the numbers to the left their corresponding multiplicities. As
expected, there are d(d+1)

2 eigenvalues on the imaginary axis in case of space dimension d. Lower bounds
for the geometric multiplicities can be derived from our table as follows

mult(0) ≥ k +
1

2
(d− 2k)(d− 2k + 1), mult(±iσν) ≥ d− 2k + 1, ν = 1, . . . , k.

It is a remarkable feature that the eigenvalues coincide with those for first order evolution equations, see
[2], [13].

Example 3.4 (Cubic-quintic Ginzburg-Landau wave equation). As shown in Example 3.1 the cubic-
quintic Ginzburg-Landau wave equation (3.11) with coefficients and parameters (3.12) has a spinning
soliton solution u?(x, t) = v?(e

−tS?(x− x?)) with rotational velocity µ(3)
1 = 1.3658.

We next solve numerically the eigenvalue problem for the cubic-quintic Ginzburg-Landau wave equation.
For this purpose we consider the real valued version of (3.11)

(3.38) MUtt +BUt = A4U + F (U), x ∈ Rd, t > 0
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Imλ

Reλ

iσ11

01

−iσ11

(a) d = 2

dimSE(2) = 3

Imλ

Reλ

iσ12

02

−iσ12

(b) d = 3

dimSE(3) = 6

Imλ

Reλ

i(σ1 + σ2)1

iσ11

i(σ1 − σ2)1

iσ21

02

−iσ21

−i(σ1 − σ2)1

−iσ11

−i(σ1 + σ2)1

(c) d = 4

dimSE(4) = 10

Imλ

Reλ

i(σ1 + σ2)1

iσ12

i(σ1 − σ2)1

iσ22

03

−iσ22

−i(σ1 − σ2)1

−iσ12

−i(σ1 + σ2)1

(d) d = 5

dimSE(5) = 15

Figure 3.3. Point spectrum of the linearization P on the imaginary axis iR for space
dimension d = 2, 3, 4, 5 given by Proposition 3.3.

with

M =

(
ε1 −ε2

ε2 ε1

)
, B =

(
ρ1 −ρ2

ρ2 ρ1

)
, A =

(
α1 −α2

α2 α1

)
, U =

(
u1

u2

)
,

F (U) =

(
(U1δ1 − U2δ2) + (U1β1 − U2β2)(U2

1 + U2
2 ) + (U1γ1 − U2γ2)(U2

1 + U2
2 )2

(U1δ2 + U2δ1) + (U1β2 + U2β1)(U2
1 + U2

2 ) + (U1γ2 + U2γ1)(U2
1 + U2

2 )2

)
,

(3.39)

where u = u1 + iu2, ε = ε1 + iε2, ρ = ρ1 + iρ2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2, δ = δ1 + iδ2 and
εj , ρj , αj , βj , γj , δj ∈ R.
Now, the eigenvalue problem for the cubic-quintic Ginzburg-Landau wave equation is, cf. (3.15), (3.16),

(
λ2M ·+λ [B · −2M(∂ξ·)Sξ] +

[
−A4 ·+M(∂2

ξ ·)(Sξ)2 +M(∂ξ·)S2ξ −B(∂ξ·)Sξ −DF (v?)·
])
w = 0.

(3.40)

Both approximations of the profile v? and the velocity matrix S = S? in (3.40) are chosen from the
solution of (3.13) at time t = 2000 in Example 3.1. By Proposition 3.3 the problem (3.40) has eigenvalues
λ = 0,±iσ. These eigenvalues will be isolated and hence belong to the point spectrum, if the differential
operator is Fredholm of index 0 in suitable function spaces. For the parabolic case (M = 0) this has been
established in [2] and we expect it to hold in the general case as well. Let us next discuss the dispersion set
from Proposition 3.2. The cubic-quintic Ginzburg-Landau nonlinearity F : R2 → R2 from (3.39) satisfies

(3.41) DF (v∞) =

(
δ1 −δ2
δ2 δ1

)
for v∞ =

(
0
0

)
.

The matrices A2, A1(n), A∞(ω, n) from (3.25) of the quadratic problem (3.24) are given by

A2 = M, A1(n) = B + 2iσnM, A∞(ω, n) = ω2A− σ2n2M + iσnB −DF (v∞)

for M,B,A from (3.39), DF (v∞) from (3.41), ω ∈ R, n ∈ Z and σ = µ
(3)
1 . The dispersion relation (3.26)

for the spinning solitons of the Ginzburg-Landau wave equation in R2 states that every λ ∈ C satisfying

det
(
λ2M + λ(B + 2iσnM) + (ω2A− σ2n2M + iσnB −DF (v∞))

)
= 0

for some ω ∈ R and n ∈ Z, belongs to the essential spectrum σess(P) of P. We may rewrite this in complex
notation and find the dispersion set

σdisp(P) = {λ ∈ C : λ2ε+ λ(ρ+ 2iσnε) + (ω2α− σ2n2ε+ iσnρ− δ) = 0 for some ω ∈ R, n ∈ Z}(3.42)
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The elements of the dispersion set are

λ1,2 = − ρ

2ε
− iσn± 1

2ε

√
ρ2 − 4ε(ω2α− δ), n ∈ Z, ω ∈ R..

They lie on the vertical line Re = − ρ
2ε and on infinitely many horizontal lines given for n ∈ Z by

iσn+ 1
2ε [−ρ−

√
ρ2 + 4τδ, ρ+

√
ρ2 + 4τδ], see Figure 3.4 (a),(b).

(a) (b)

(c) (d)

Figure 3.4. Subsets σdisp(P) and σsym(P) of the spectrum for the cubic-quintic
Ginzburg-Landau wave equation for d = 2 with parameters (3.12) (a),(b) and two different
views of the numerical spectrum on a ball BR(0) with radius R = 20 (c),(d).

Figure 3.4(a) and (b) shows two different views for the part of the spectrum of the spinning solitons which
is guaranteed by Proposition 3.2 and 3.3. It is subdivided into the symmetry set σsym(P) (blue circle),
which is determined by Proposition 3.3 and belongs to the point spectrum σpt(P), and the dispersion
set σdisp(P) (red lines), which is determined by Proposition 3.2 and belongs to the essential spectrum
σess(P). In general, there may be further essential spectrum in σess(P) \ σdisp(P) and further isolated
eigenvalues in σpt(P) \ σsym(P). In fact, for the spinning solitons of the cubic-quintic Ginzburg-Landau
wave equation we find 18 extra eigenvalues with negative real parts (8 complex conjugate pairs and 2
purely real eigenvalues), cf. Figure 3.4(c),(d). These Figures show two different views for the numerical
spectrum of the cubic-quintic Ginzburg-Landau wave equation on the ball BR(0) with radius R = 20
equipped with homogeneous Neumann boundary conditions. They consist of the approximations of the
point spectrum subdivided into the symmetry set (blue circle) and additional isolated eigenvalues (blue
cross sign), and of the essential spectrum (red dots). Three of these isolated eigenvalues are very close
to the imaginary axis, see Figure 3.5(c). Therefore, the spinning solitons seem to be only weakly stable.
Finally, the approximated eigenfunctions belonging to the eigenvalues λ ≈ 0 and λ ≈ +iσ are shown in
Figure 3.5(a) and (b). In particular, Figure 3.5(a) is an approximation of the rotational term 〈Sx,∇v?(x)〉.
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(a) (b) (c)

Figure 3.5. Eigenfunctions of the cubic-quintic Ginzburg-Landau wave equation for pa-
rameters (3.12) belonging to the isolated eigenvalues λ1 ≈ 0 (a) and λ2 ≈ iσ (b) and a
zoom into the spectrum from Fig.3.4(c) in (c).
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