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An error analysis of symmetric trigonometric integrators applied to highly oscillatory linear second-order
differential equations is given. Second-order convergence is shown uniformly in the high frequencies
under a finite-energy condition on the exact solution. The main novelty is the concept to prove these
error bounds, which is based on the interpretation of trigonometric integrators as splitting methods for
averaged differential equations. This allows one to combine techniques for splitting methods with those
for trigonometric integrators. For the bound of the global error, cancellations in the error accumulation
have to be studied carefully.
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1. Introduction

Many ordinary differential equations in science can be written as

u′ = F1(u)+F2(u) (1.1)

with linear or nonlinear vector fields F1 and F2, and with the property that solving the two sub-problems

v′ = F1(v) and w′ = F2(w)

exactly or approximately is numerically much more efficient than solving (1.1) directly. Typical ex-
amples include many-body problems and other Hamiltonian systems with a certain structure, but also
semi-discretizations of time-dependent partial differential equations such as, e.g., linear or nonlinear
Schrödinger equations, linear or nonlinear wave equations, or Maxwell’s equations. In such a situa-
tion, splitting methods are easy to implement and very efficient, because these integrators compute a
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numerical approximation of the full problem by a composition of the flows of the two sub-problems.
In many cases the numerical solution inherits certain geometric properties of the exact solution, such
as norm conservation or symplecticity of the flow. The order conditions and the accuracy of splitting
methods have been analyzed in many papers such as, e.g., Strang (1968), Jahnke & Lubich (2000), Lu-
bich (2008), Hansen & Ostermann (2009), Thalhammer et al. (2009), Koch & Lubich (2011), Holden
et al. (2013), Einkemmer & Ostermann (2014), Einkemmer & Ostermann (2015), Faou et al. (2015),
Hochbruck et al. (2015) and references therein. Overviews have been given, e.g., in McLachlan &
Quispel (2002), Hairer et al. (2006), Hundsdorfer & Verwer (2007), Holden et al. (2010), and Blanes
& Casas (2016). The classical procedure is to estimate the local error by proving bounds for certain
iterated commutators between the two vector fields. The error bound for the global error then follows
by standard arguments like Gronwall inequalities or Lady Windermere’s fan.

Unfortunately, the accuracy typically suffers when splitting methods are applied to problems with
highly oscillatory solutions. In order to obtain a reasonable approximation, the step-size must be con-
siderably smaller than the inverse of the highest frequency, which reduces the efficiency considerably.
We remark, however, that certain invariants of the exact flow are often conserved over long times even
in the presence of oscillations, see, e.g., Hairer et al. (2006), Faou (2012), Cohen et al. (2015).

A particular class of problems with highly oscillatory solutions takes the semilinear form

q′′(t) =−Ω
2q(t)+g(q(t)), t > 0, q(0) = q0, q′(0) = q′0, (1.2)

where Ω is a symmetric positive semi-definite matrix of arbitrary large norm, and where g is smooth and
bounded. For such problems, trigonometric integrators have been constructed and analyzed in Garcı́a-
Archilla et al. (1999), Hochbruck & Lubich (1999), Hairer et al. (2006), Grimm & Hochbruck (2006)
under a finite-energy condition. These methods involve filter functions which are chosen in such a way
that oscillatory parts of the local error do not sum up in the global error. To prove this in the error
analysis is a delicate matter and usually excludes to apply the technique of Lady Windermere’s fan in a
standard way. An exception are semilinear wave equations with polynomial or analytic nonlinearities,
see Gauckler (2015).

Hence, it seems that splitting methods and trigonometric integrators are two different approaches,
based on different ideas, having different properties, and requiring different techniques for their analysis.
Nevertheless, there is a bridge between these two worlds: it is long known that symmetric trigonometric
integrators applied to (1.2) can be interpreted as a Strang splitting method applied to an averaged version
of the first-order formulation of (1.2). This interesting link raises a number of questions: Is it possible to
gain a better understanding by considering trigonometric integrators as splitting methods for averaged
equations? Does this relation allow to apply the techniques developed for one class of methods to
the other one? And, most importantly, is it then possible to construct and analyze efficient numerical
integrators for fully nonlinear problems?

These questions are our motivation for the analysis below. In this paper, we will restrict ourselves
to the linear variant of (1.2), i.e., g(q) = Gq with a matrix G with a moderate norm ‖G‖ � ‖Ω‖. Here
and in the following, ‖ · ‖ denotes the Euclidean vector norm or its induced matrix norm, respectively.
The analysis in Lubich (2008) shows that for splitting methods the calculus of Lie derivatives allows,
at least to some extent, to carry over techniques developed for linear differential equations to nonlinear
ones. After reformulation as a first-order problem, we will derive the corresponding averaged equation
and prove a bound for the difference between the solution of both equations; cf. Theorem 4.1. Then, we
present an error analysis for the classical Strang splitting applied to the averaged equation, which yields
a result very similar but not equivalent to the one obtained in Grimm & Hochbruck (2006).

We stress that the novelty of our analysis is not the error bound itself, but the fact that it is proven
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by techniques which, to the best of our knowledge, have so far not been considered in the context of
trigonometric integrators.

2. Problem setting, assumptions and notation

The situation we have in mind is that the ordinary differential equation

q′′(t) =−Ω
2q(t)+Gq(t), 06 t 6 tend, q(0) = q0, q′(0) = q′0, (2.1)

stems from a spatial discretization of a linear wave equation with finite elements, finite differences, or
spectral methods on a family of finer and finer meshes. In this situation, the matrix −Ω 2 stems from
a spatial discretization of the Laplacian or a more general differential operator, and Ω is a symmetric,
positive definite matrix (possibly after shifting Ω →

√
Ω 2 + I and G→ G+ I). Then ‖Ω‖ becomes

arbitrarily large if the spatial mesh width tends to zero, but ‖Ω−1‖ remains uniformly bounded inde-
pendently of the discretization. This motivates the following assumption.

ASSUMPTION 2.1 Let Ω ∈F , where F is a family of symmetric, positive definite matrices such that
there is a constant Cinv with

‖Ω−1‖6Cinv for all Ω ∈F . (2.2)

For the matrix G we assume that its norm is bounded independently of Ω .

Our aim is to prove error estimates which are uniform for all matrices in the family F , which means
that they are independent of ‖Ω‖ (i.e., independent of the spatial discretization). On the other hand, the
constant Cinv only depends on the coercivity constant of the corresponding differential operator.

For the solution we rely on the following assumption.

ASSUMPTION 2.2 Let the solution q : [0, tend]→ Rd of (2.1) fulfill the finite-energy condition

‖Ωq(t)‖2 +
∥∥q′(t)

∥∥2
6 K2, 06 t 6 tend, (2.3)

with a constant K > 0 on a finite time interval of length tend.

In fact, it can be shown that (2.3) is true on bounded time intervals if the initial data satisfy the bound
‖Ωq(0)‖2 +‖q′(0)‖2 6 K2

0 with a sufficiently small K0 6 K; cf. Lemma 4.1 below.
In order to apply a splitting scheme we formulate (2.1) as a first-order problem. We define the new

variable

u =

[
q

Ω−1q′

]
, u0 =

[
q0

Ω−1q′0

]
which solves the differential equation

u′ = Au+Bu, u(0) = u0, (2.4)

with matrices

A =

[
0 Ω

−Ω 0

]
, B =

[
0 0

Ω−1G 0

]
.

Since A is skew symmetric, the exponential

exp(tA) =
[

cos(tΩ) sin(tΩ)
−sin(tΩ) cos(tΩ)

]
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is unitary, and thus ∥∥etA∥∥= 1, t ∈ R. (2.5)

The finite-energy condition (2.3) is equivalent to

‖Au(t)‖6 K, 06 t 6 tend. (2.6)

The solution of (2.4) could, in principle, be approximated with the classical Strang splitting, but in our
setting this method only yields an acceptable accuracy if τ�‖Ω‖−1. Such a severe step-size restriction
is not acceptable in practice. We will show that much better approximations are obtained if the Strang
splitting is applied to an averaged version of (2.4).

The methods considered below involve analytic (mostly trigonometric) matrix functions of τΩ . We
assume that products of such matrix functions with a given vector can be computed efficiently, e.g., via
fast Fourier transforms or (rational) Krylov subspace methods (see, e.g., Grimm & Hochbruck (2008)).

3. Trigonometric integrators as splitting methods

Symmetric one-step trigonometric integrators (Hairer et al., 2006, Section XIII.2.2) and Grimm &
Hochbruck (2006) written in terms of the variables un = [qn,Ω

−1q′n] ≈ u(tn) = [q(tn),Ω−1q′(tn)] at
tn = nτ are given by

un+1 = eτAun +
τ

2

[
sin(τΩ)Ω−1G̃qn

cos(τΩ)Ω−1G̃qn +Ω−1G̃qn+1

]
. (3.1)

Here, τ > 0 denotes the step-size, and the matrix G̃ is defined as

G̃ =ΨSGΦ , Φ = φ(τΩ), ΨS = ψS(τΩ), (3.2)

with appropriate scalar filter functions φ and ψS. Note that ψS was denoted by ψ1 in Hairer et al.
(2006) and Grimm & Hochbruck (2006). In these references it was shown that under the assumptions
of Section 2 and certain (sufficient) conditions on the filter functions φ and ψS, these methods yield a
global accuracy of O(τ2) in the positions qn and O(τ) in the velocities q′n. The constants in the error
bounds are independent of ‖Ω‖, in spite of the oscillatory nature of the solution.

It is well known that symmetric trigonometric integrators can be interpreted as splitting schemes.
With

B̃ =

[
0 0

Ω−1G̃ 0

]
, (3.3)

the method (3.1) can be written as (
I− τ

2 B̃
)
un+1 = eτA(I + τ

2 B̃
)
un. (3.4)

Now we use that
eθ B̃ = I +θ B̃ for all θ ∈ R (3.5)

due to the particular structure of B̃. Substituting (3.5) into (3.4) gives

un+1 = Sun, S = e
τ
2 B̃eτAe

τ
2 B̃. (3.6)
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Hence, the trigonometric integrator (3.1) is equivalent to the exponential Strang splitting method applied
to the averaged equation

ũ′ = Aũ+ B̃ũ, ũ(0) = ũ0 = u0 (3.7)

with B̃ defined in (3.3) and (3.2). This means that applying the Strang splitting to the averaged equation
yields very good approximations for step-sizes where the Strang splitting applied to the original problem
(2.4) fails if the norm of Ω is large.

We point out that not only the numerical solution un depends on the step-size τ , but also the exact
solution ũ of the averaged equation via the filter functions Φ = φ(τΩ) and ΨS = ψS(τΩ). Note that
for semilinear problems (1.2) the trigonometric integrators can still be interpreted as a Strang splitting
applied to a (semilinear) averaged equation.

Our aim is to prove error bounds for the trigonometric integrator (3.1) on the basis of this interpre-
tation as a splitting method (3.6), using a carefully adapted Lady Windermere’s fan argument familiar
from splitting integrators. In order to analyze the error of the splitting scheme we first study properties
of the solution of the averaged problem (3.7). This allows us to bound the error which results from solv-
ing the averaged equation instead of (2.4) (Section 4). To analyze the error of the splitting scheme for
the averaged problem we first give a new representation of the local error. Unfortunately, this local error
still contains a term which is not uniformly of third order in τ and requires a more careful investigation
(Section 5).

The error analysis given below relies on the following assumption on the filter functions.

ASSUMPTION 3.1 The filter functions χ = φ or χ = ψS are even analytic functions with the properties

χ(0) = 1, (3.8a)
|χ(x)|6M1, (3.8b)
|xχ(x)|6M2, (3.8c)∣∣∣cot

( x
2

)
xχ(x)

∣∣∣6M3 (3.8d)

for certain constants M j uniformly for all x ∈ R.

Even functions χ guarantee that the scheme is symmetric. A popular example used in trigonometric
integrators is χ(x) = sinc(x). Note that (3.8a) and the condition that χ is even analytic imply∣∣x−2(1−χ(x))

∣∣6M4. (3.8e)

In the following C denotes a generic constant which may have different values at different occurrences.
Our main result is stated in the following theorem.

THEOREM 3.2 (Main result) Let Assumptions 2.1, 2.2, and 3.1 be fulfilled. Then the global error of
(3.6) applied to (2.4) is bounded by

‖un−u(tn)‖6Cτ
2, 06 tn = nτ 6 tend,

with a constant C that only depends on Cinv, ‖G‖, K, M j, j = 1, . . . ,4, and tend but not on ‖Ω‖.

Proof. We combine the results from Theorem 4.1 and Theorem 5.1 below to obtain

‖un−u(tn)‖6 ‖un− ũ(tn)‖+‖ũ(tn)−u(tn)‖6Cτ
2, 06 tn = nτ 6 tend,

where the constant C only depends on Cinv, ‖G‖, K, M j, j = 1, . . . ,4, and tend. �
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4. Properties of the averaged equation

In this section we prove that the solutions of the original problem (2.4) and the averaged equation (3.7)
differ only by O(τ2).

THEOREM 4.1 Let the assumptions (3.8a) and (3.8b) and the finite-energy condition (2.3) be fulfilled.
Let u be the solution of (2.4) and ũ be the solution of the averaged system (3.7). Then it holds

‖u(t)− ũ(t)‖6Cavτ
2, 06 t 6 tend,

where Cav only depends on Cinv, ‖G‖, K, M1, M4, and tend.

Proof. The variation-of-constants formula yields

u(t) = etAu0 +
∫ t

0
e(t−s)ABu(s)ds, (4.1a)

ũ(t) = etAu0 +
∫ t

0
e(t−s)AB̃ũ(s)ds. (4.1b)

We define the block diagonal matrices

Ψ̂ =

[
ΨS 0
0 ΨS

]
, Φ̂ =

[
Φ 0
0 Φ

]
. (4.2)

Obviously, they satisfy
[
Ψ̂ ,A

]
=
[
Φ̂ ,A

]
= 0 and we have B̃ = Ψ̂BΦ̂ so that

u(t)− ũ(t) =
∫ t

0
e(t−s)A

(
(I−Ψ̂)Bu(s)+Ψ̂B(I− Φ̂)u(s)+Ψ̂BΦ̂

(
u(s)− ũ(s)

))
ds

= I1(t)+ I2(t)+
∫ t

0
e(t−s)AB̃

(
u(s)− ũ(s)

)
ds

with

I1(t) =
∫ t

0
e(t−s)A(I−Ψ̂)Bu(s)ds, I2(t) =

∫ t

0
e(t−s)A

Ψ̂B(I− Φ̂)u(s)ds.

For the first term integration by parts yields

I1(t) =−τ
2e(t−s)A(τA)−2(I−Ψ̂)ABu(s)

∣∣∣t
0
+ τ

2
∫ t

0
e(t−s)A(τA)−2(I−Ψ̂)ABu′(s)ds.

With (2.2) and (2.6) it follows that

‖u‖=
∥∥A−1Au

∥∥6CinvK, (4.3a)∥∥u′
∥∥6 ‖Au‖+‖Bu‖6 K +C2

inv ‖G‖K. (4.3b)

Using in addition (2.5), (3.8e), and
‖AB‖= ‖G‖ , (4.4)

this yields the estimate ‖I1(t)‖6Cτ2 with a constant C depending only on Cinv, ‖G‖, K, M4, and tend.
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For the second term we insert the variation of constants formula once more and obtain

I2(t) =
∫ t

0
e(t−s)A

Ψ̂B(I− Φ̂)u(s)ds

=
∫ t

0
e(t−s)A

Ψ̂B(I− Φ̂)esAu0 ds+
∫ t

0

∫ s

0
e(t−s)A

Ψ̂B(I− Φ̂)e(s−σ)ABu(σ)dσ ds.

Integration by parts yields

I2(t) = e(t−s)A
Ψ̂B(I− Φ̂)A−1esAu0

∣∣∣t
0
+
∫ t

0
e(t−s)AAΨ̂B(I− Φ̂)A−1esAu0 ds

−
∫ t

0
e(t−s)A

Ψ̂B(I− Φ̂)A−1e(s−σ)ABu(σ)
∣∣∣s
0

ds

+
∫ t

0

∫ s

0
e(t−s)A

Ψ̂B(I− Φ̂)A−1e(s−σ)ABu′(σ)dσ ds

= τ
2e(t−s)A

Ψ̂B(I− Φ̂)(τA)−2esAAu0

∣∣∣t
0
+ τ

2
∫ t

0
e(t−s)A

Ψ̂AB(I− Φ̂)(τA)−2esAAu0 ds

− τ
2
∫ t

0
e(t−s)A

Ψ̂B(I− Φ̂)(τA)−2e(s−σ)AABu(σ)
∣∣∣s
0

ds

+ τ
2
∫ t

0

∫ s

0
e(t−s)A

Ψ̂B(I− Φ̂)(τA)−2e(s−σ)AABu′(σ)dσ ds.

By (2.2), (2.5), (3.8), (4.4), and (4.3) we obtain ‖I2(t)‖ 6Cτ2, where C depends on Cinv, ‖G‖, K, M1,
M4, and tend. Hence, we have

‖u(t)− ũ(t)‖=
∥∥∥∥I1(t)+ I2(t)+

∫ t

0
e(t−s)AB̃(u− ũ)ds

∥∥∥∥6Cτ
2 +

∫ t

0
β ‖u(s)− ũ(s)‖ ds

with

β =Cinv ‖G‖M2
1 >

∥∥∥B̃
∥∥∥ . (4.5)

An application of Gronwall’s Lemma proves the desired result. �
We finally show that the solution of the averaged problem (3.7) inherits the finite-energy condition

(2.3) of the original problem.

LEMMA 4.1 Let the assumption (3.8b) and the finite-energy condition (2.3) be fulfilled. Then the
solution ũ of the averaged system (3.7) satisfies the finite-energy condition

‖Aũ(t)‖6 K̃ , 06 t 6 tend, (4.6)

where K̃ depends only on Cinv, ‖G‖, K, M1, and tend.

Proof. Using (2.5) and the variation of constants formula (4.1b) yields

‖Aũ(t)‖6 ‖Au0‖+
∫ t

0
‖AB̃‖‖A−1‖ ‖Aũ(s)‖ ds.

By definition (3.3) and (3.8b) it holds

‖AB̃‖= ‖G̃‖6M2
1‖G‖, (4.7)

and the statement thus follows from (2.2) and Gronwall’s Lemma. �
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5. Finite-time error analysis of the splitting scheme

In this section we finally study the error of the splitting scheme. We use the notation

S = e
τ
2 B̃eτAe

τ
2 B̃

defined in (3.6) for the numerical flow over a time step τ and

T = eτ(A+B̃)

for the exact flow of the averaged equation (3.7). By (3.3) and (3.5) we have

max
{
‖eθ B̃‖,‖Aeθ B̃A−1‖

}
6 1+θβ 6 eθβ (5.1)

for θ > 0 with β from (4.5). Together with (2.5), this provides the stability estimate

‖Sn‖6 (1+ τ

2 β )2n 6 eβ tend , 06 tn 6 tend. (5.2)

We next consider the local error.

LEMMA 5.1 (Local error) Assume that the filter functions are bounded as stated in (3.8b) and (3.8c). If
the finite-energy condition (4.6) holds true, then the local error at time tn = nτ , 06 tn 6 tend− τ , of the
splitting method (3.6) as an approximation to the averaged system (3.7) is given by

δn = (S−T )ũ(tn) = δ̂n +Dn,

where

δ̂n =
1
2

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)ALe(σ+τ−ξ )Aũ(tn)dσ dθ dξ , L = A2B̃+ B̃A2, (5.3)

and ‖Dn‖6Cτ3. The constant C depends on Cinv, ‖G‖, K̃, M1, M2, and tend.

Proof. We start with the following representation of the local error

δn =
∫

τ

0

d
dξ

(
e

ξ

2 B̃eξ Ae
ξ

2 B̃e(τ−ξ )(A+B̃)
)

ũ(tn)dξ (5.4)

=
1
2

∫
τ

0
e

ξ

2 B̃
([

B̃,eξ A
]

e
ξ

2 B̃ +2eξ A
[
A,e

ξ

2 B̃
])

e(τ−ξ )(A+B̃)ũ(tn)dξ ,

where [A1,A2] = A1A2−A2A1 denotes the commutator of two matrices A1 and A2. The commutators in
δn are written as integrals[

B̃,eξ A
]
=
∫

ξ

0

d
dθ

(
e(ξ−θ)AB̃eθA

)
dθ =−

∫
ξ

0
e(ξ−θ)A

[
A, B̃

]
eθA dθ

and [
A,e

ξ

2 B̃
]
=
∫

ξ

0

d
dθ

(
e

ξ−θ

2 B̃Ae
θ
2 B̃
)

dθ =
1
2

∫
ξ

0
e

ξ−θ

2 B̃
[
A, B̃

]
e

θ
2 B̃ dθ .
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This yields

δn =
1
2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0

(
− e(ξ−θ)A

[
A, B̃

]
eθAe

ξ

2 B̃ + eξ Ae
ξ−θ

2 B̃
[
A, B̃

]
e

θ
2 B̃
)

e(τ−ξ )(A+B̃)ũ(tn)dθ dξ .

We add and subtract the term eξ A[A, B̃]e
ξ

2 B̃ inside the brackets, and the local error can be split into
δn = δ

(1)
n +D(1)

n where

δ
(1)
n =

1
2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0

(
eξ A
[
A, B̃

]
− e(ξ−θ)A

[
A, B̃

]
eθA
)

e
ξ

2 B̃e(τ−ξ )(A+B̃)ũ(tn)dθ dξ , (5.5a)

D(1)
n =

1
2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0
eξ A
(

e
ξ−θ

2 B̃
[
A, B̃

]
e

θ
2 B̃−

[
A, B̃

]
e

ξ

2 B̃
)

e(τ−ξ )(A+B̃)ũ(tn)dθ dξ . (5.5b)

The term in brackets in (5.5a) can be written as

eξ A
[
A, B̃

]
− e(ξ−θ)A

[
A, B̃

]
eθA =−

∫
θ

0

d
dσ

(
e(ξ−σ)A

[
A, B̃

]
eσA
)

dσ

=
∫

θ

0
e(ξ−σ)A

[
A,
[
A, B̃

]]
eσA dσ .

For the double commutator we have[
A,
[
A, B̃

]]
= L−R, L = A2B̃+ B̃A2, R = 2AB̃A,

and we split δ
(1)
n accordingly into δ

(1)
n = δ

(2)
n +D(2)

n with

δ
(2)
n =

1
2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0

∫
θ

0
e(ξ−σ)ALeσAe

ξ

2 B̃e(τ−ξ )(A+B̃)ũ(tn)dσ dθ dξ ,

D(2)
n =−1

2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0

∫
θ

0
e(ξ−σ)AReσA e

ξ

2 B̃e(τ−ξ )(A+B̃)ũ(tn)dσ dθ dξ .

To extract the term δ̂n defined in (5.3) from δ
(2)
n we use (3.5) and once more the variation-of-constants

formula to obtain

δ
(2)
n = δ̂n +D(3)

n +D(4)
n +D(5)

n ,

where

D(3)
n =

1
2

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)ALeσA

∫
τ−ξ

0
e(τ−ξ−ν)AB̃eν(A+B̃) ũ(tn)dν dσ dθ dξ ,

D(4)
n =

1
4

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)ALeσA

ξ B̃e(τ−ξ )(A+B̃)ũ(tn)dσ dθ dξ ,

D(5)
n =

1
4

∫
τ

0
ξ B̃
∫

ξ

0

∫
θ

0
e(ξ−σ)ALeσAe

ξ

2 B̃e(τ−ξ )(A+B̃)ũ(tn)dσ dθ dξ .

In this way, we end up with the decomposition

δn = δ̂n +Dn, Dn = D(1)
n +D(2)

n +D(3)
n +D(4)

n +D(5)
n
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of the local error.
To prove the statement of the lemma, we have to estimate the terms D(i)

n , i = 1, . . . ,5. The properties
(2.2), (3.8b), (3.8c), (4.4), and (4.7) imply that

‖RA−1‖= 2‖AB̃‖6 2M2
1‖G‖, (5.6a)∥∥τLA−1∥∥= ∥∥∥τAAB̃A−1 + τB̃A

∥∥∥= ∥∥∥(τAΨ̂
)(

AB
)
Φ̂A−1 +Ψ̂B

(
Φ̂τA

)∥∥∥6 2CinvM1M2‖G‖, (5.6b)

where we use the notation (4.2). Writing

D(2)
n =−1

2

∫
τ

0
e

ξ

2 B̃
∫

ξ

0

∫
θ

0
e(ξ−σ)A(RA−1)eσA(Ae

ξ

2 B̃A−1)Aũ(tn + τ−ξ )dσ dθ dξ ,

D(3)
n =

1
2τ

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)A(

τLA−1)eσA
∫

τ−ξ

0
e(τ−ξ−ν)A(AB̃

)
A−1Aũ(tn +ν)dν dσ dθ dξ ,

D(4)
n =

1
4τ

∫
τ

0
ξ

∫
ξ

0

∫
θ

0
e(ξ−σ)A(

τLA−1)eσA(AB̃
)
A−1Aũ(tn + τ−ξ )dσ dθ dξ ,

D(5)
n =

1
4τ

∫
τ

0
ξ B̃
∫

ξ

0

∫
θ

0
e(ξ−σ)A(

τLA−1)eσA(Ae
ξ

2 B̃A−1)Aũ(tn + τ−ξ )dσ dθ dξ ,

the above estimates (5.6) and the bounds (2.2), (2.5), (4.5), (4.6), (4.7), and (5.1) yield∥∥D(2)
n
∥∥6 1

6 eτβ ‖G‖M2
1 K̃ τ

3,
∥∥D(3)

n
∥∥6 1

24C2
invM3

1 M2 ‖G‖2 K̃ τ
3,∥∥D(4)

n
∥∥6 1

16C2
invM3

1 M2 ‖G‖2 K̃ τ
3,

∥∥D(5)
n
∥∥6 1

16 βeτβCinvM1M2 ‖G‖ K̃ τ
3.

It remains to bound the integral D(1)
n defined in (5.5b). Using the representation

e
ξ−θ

2 B̃
[
A, B̃

]
e

θ
2 B̃−

[
A, B̃

]
e

ξ

2 B̃ =
∫

ξ

θ

d
dν

(
e

ν−θ
2 B̃
[
A, B̃

]
e

θ−ν
2 B̃
)

e
ξ

2 B̃ dν

=
1
2

∫
ξ

θ

e
ν−θ

2 B̃
[
B̃,
[
A, B̃

]]
e

ξ+θ−ν

2 B̃ dν ,

we can write

D(1)
n =

1
4

∫
τ

0
e

ξ

2 B̃
∫

ξ

0
eξ A

∫
ξ

θ

e
ν−θ

2 B̃
[
B̃,
[
A, B̃

]]
A−1

(
Ae

ξ+θ−ν

2 B̃ A−1
)

Aũ(tn + τ−ξ )dν dθ dξ .

For the double commutator we get from (2.2) and (4.7)∥∥∥[B̃,[A, B̃]]A−1
∥∥∥= ∥∥2B̃AB̃A−1− B̃2−AB̃2A−1∥∥6 4C2

invM4
1‖G‖2,

which yields with (2.5) and (5.1)∥∥∥D(1)
n

∥∥∥6 1
24 eτβ K̃

∥∥∥[B̃,[A, B̃]]A−1
∥∥∥ τ

3 6 1
6 eτβC2

invM4
1 ‖G‖

2 K̃τ
3.

The assertion now follows from Dn = D(1)
n +D(2)

n +D(3)
n +D(4)

n +D(5)
n . �

We now investigate the local error further.
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LEMMA 5.2 The dominating part δ̂n of the local error δn defined in (5.3) satisfies

δ̂n = δ̂
(1)
n + δ̂

(2)
n , δ̂

(1)
n = AΨ̂Z1ũ(tn), δ̂

(2)
n = Z2Φ̂A2ũ(tn),

where
‖Z1‖6 1

12 M1 ‖G‖τ
3, ‖Z2‖6 1

12CinvM1 ‖G‖τ
3, ‖AZ2‖6 1

12 M1 ‖G‖τ
3.

Proof. The matrix L can be written as

L = (AΨ̂)ABΦ̂ +Ψ̂BΦ̂A2,

since B̃ = Ψ̂BΦ̂ with the notation (4.2). Since the filter functions ΨS and Φ are independent of the
integration variables, we have by (5.3)

δ̂n = AΨ̂Z1ũ(tn)+Z2Φ̂A2ũ(tn),

where

Z1 =
1
2

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)AABΦ̂e(σ+τ−ξ )A dσ dθ dξ ,

Z2 =
1
2

∫
τ

0

∫
ξ

0

∫
θ

0
e(ξ−σ)A

Ψ̂Be(σ+τ−ξ )A dσ dθ dξ .

The desired bounds now follow immediately from (2.2), (2.5), (3.8a), and (4.4). �
Although the matrices Z1, Z2, and AZ2 contain a factor of τ3 this is not sufficient to use a standard

Lady Windermere’s fan argument to prove that the global error is of second order. The reason are the
additional factors of A in δ̂

(1)
n and δ̂

(2)
n which would yield a constant depending on ‖Ω‖. The proof of

the following result treats the two terms defined in Lemma 5.2 separately in an appropriate way by using
summation by parts.

THEOREM 5.1 (Global error of the averaged problem) Let the assumptions (3.8) and the finite-energy
condition (4.6) be fulfilled. Then the global error of the splitting scheme (3.6) as an approximation to
the solution of the averaged system (2.4) is bounded by

‖un− ũ(tn)‖6Cτ
2, 06 tn = nτ 6 tend, (5.7)

where C only depends on Cinv, ‖G‖, K̃, M j, j = 1,2,3, and tend.

Proof. By a telescopic identity, the global error can be written as

ẽn = un− ũ(tn) = (Sn−T n)u0 =
n−1

∑
j=0

Sn− j−1(S−T )T ju0 =
n−1

∑
j=0

Sn− j−1
δ j

with the local errors δ j of Lemma 5.1. Lemmas 5.1 and 5.2 motivate to split the error into

ẽn = ẽ(1)n + ẽ(2)n + ẽ(3)n , (5.8)

where

ẽ(1)n =
n−1

∑
j=0

Sn− j−1
δ̂
(1)
j , ẽ(2)n =

n−1

∑
j=0

Sn− j−1
δ̂
(2)
j , ẽ(3)n =

n−1

∑
j=0

Sn− j−1D j.
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From the stability bound (5.2) and ‖D j‖6Cτ3 by Lemma 5.1 we thus obtain∥∥∥ẽ(3)n

∥∥∥= ∥∥∥∥∥n−1

∑
j=0

Sn− j−1D j

∥∥∥∥∥6Cτ
2(nτ)eβ tend 6Cτ

2.

To bound ẽ(1)n and ẽ(2)n we write τAχ̂ for χ̂ = Φ̂ and χ̂ = Ψ̂ (see (4.2)) as

τAχ̂ = τ χ̂A = (eτA− I)Θ̂χ = Θ̂χ(eτA− I) (5.9)

with

Θ̂χ = θ̂χ(τΩ), θ̂χ(x) =
1
2

[
cot( x

2 ) −1
1 cot( x

2 )

][
xχ(x) 0

0 xχ(x)

]
.

This representation follows from the identities

sin(x) = cot( x
2 )
(
1− cos(x)

)
and cos(x)+1 = cot( x

2 )sin(x).

Note that by assumptions (3.8c) and (3.8d) on the filter functions χ we have∥∥∥Θ̂χ

∥∥∥6C. (5.10)

Next we use summation by parts. With

E j =
j−1

∑
k=0

Sk, Fj =
j−1

∑
k=0

T k,

it holds

ẽ(1)n = Enδ̂
(1)
0 +

n−2

∑
j=0

En− j−1
(
δ̂
(1)
j+1− δ̂

(1)
j

)
.

Using Lemma 5.2 and (5.9) to replace δ̂
(1)
j by (eτA− I)Θ̂ψ

1
τ

Z1T ju0, this implies

ẽ(1)n = En(eτA− I)Θ̂ψ
1
τ

Z1u0 +
n−2

∑
j=0

En− j−1(eτA− I)Θ̂ψ Z1
1
τ
(T − I)T ju0. (5.11)

Now we estimate the matrices in this expression. The matrices Θ̂ψ and Z1 can be estimated with (5.10)
and Lemma 5.2, respectively. To bound En− j−1(eτA− I) in (5.11), we start from

E j(eτA− I) = E j(eτA−S)+E j(S− I) = E j(eτA−S)+S j− I,

and we use the stability bound (5.2) and ‖eτA−S‖6Cτ by (2.5), (3.5), and (5.1) to show that∥∥E j(eτA− I)
∥∥6C.

To bound 1
τ
(T − I)T ju0 in (5.11), we start from

1
τ
(T − I)T ju0 =

1
τ
(eτA− I)T ju0 +

1
τ
(T − eτA)T ju0

= (eτA− I)(τA)−1Aũ(t j)+
1
τ

∫
τ

0
e(τ−ξ )AB̃A−1Aũ(t j +ξ )dξ
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by the variation-of-constants formula (4.1b), and we use (2.2), the finite-energy condition (4.6) and
‖(eτA− I)(τA)−1‖= ‖

∫ 1
0 eστAdσ‖6 1 by (2.5) to show that∥∥ 1

τ
(T − I)T ju0

∥∥6C.

This yields the estimate ‖ẽ(1)n ‖6Cτ2 for (5.11) since ‖Z1‖6Cτ3 by Lemma 5.2.
Analogously, we have by Lemma 5.2 and (5.9)

ẽ(2)n = 1
τ

Z2Θ̂φ A(eτA− I)Fnu0 +
n−2

∑
j=0

S j 1
τ
(S− I)Z2Θ̂φ A(eτA− I)Fn− j−1u0.

Using the variation-of-constants formula (4.1b) yields

A(eτA− I)Fju0 = A(eτA−T )Fju0 +A(T j− I)u0

=−
∫

τ

0
e(τ−ξ )AAB̃eξ (A+B̃)Fju0 dξ +A(ũ(t j)−u0).

The finite-energy condition (4.6) shows∥∥∥τeξ (A+B̃)Fju0

∥∥∥= ∥∥∥∥∥τ

j−1

∑
k=0

ũ(tk +ξ )

∥∥∥∥∥6 tendCinvK̃.

By (4.7) we thus obtain ∥∥A(eτA− I)Fju0
∥∥6C.

Moreover, by Lemma 5.2 we have∥∥ 1
τ
(S− I)Z2

∥∥6 ∥∥ 1
τ
(S− eτA)Z2

∥∥+∥∥(eτA− I)(τA)−1AZ2
∥∥6Cτ

3

since ‖S− eτA‖ 6 Cτ and ‖(eτA− I)(τA)−1‖ 6 1. Together with the stability estimate (5.2) and the
bound (5.10), this proves ‖ẽ(2)n ‖6Cτ2 and thus (5.7) by (5.8). �

REMARK. It is also possible to prove Theorem 5.1 if (5.3) in Lemma 5.1 is replaced by the represen-
tation of the local error which has been derived in (Jahnke & Lubich, 2000, Theorem 2.1). While they
used quadrature errors to bound the local error, we used the fundamental theorem of calculus as in (5.4).
An advantage of the new representation is that ‖G‖ appears only quadratically in the bounds, while it
appears cubically in Jahnke & Lubich (2000). We also believe, that the representation (5.3) is more
suitable for a future extension of our approach to nonlinear problems.

6. Discussion and comparison

Error bounds for trigonometric integrators applied to second-order oscillatory differential equations have
been previously derived in Grimm & Hochbruck (2006) and, for the case of a single high frequency, in
Theorems XIII.4.1 and XIII.4.2 of Hairer et al. (2006). They differ from the error bounds of the present
paper (Theorem 3.2) in their statement, in the required assumptions on the filter functions and, most
notably, in the technique of proof.

The difference in the statement concerns the error bound for the velocities. While the error bounds
of Grimm & Hochbruck (2006) and Hairer et al. (2006) for the velocities q′ are of first order in τ , the



14 of 15 S. BUCHHOLZ ET AL. (VERSION: SEPTEMBER 23, 2016)

error bound of Theorem 3.2 (in the linear case) is of second order in the rescaled velocities Ω−1q′. For
small time step-sizes τ ‖Ω‖= O(1), the latter bound implies the former.

Besides this difference in the statement, there are differences in the assumptions on the filter func-
tions. The splitting method (3.6) with filter functions φ and ψS coincides with the trigonometric inte-
grator in Grimm & Hochbruck (2006) and Hairer et al. (2006) if the filter functions φ , ψ , ψ1, and ψ0 in
Grimm & Hochbruck (2006) and Hairer et al. (2006) are chosen in the following way:

φ = φ , ψ1 = ψS, ψ = sinc(·)ψS, ψ0 = cos(·)ψS.

Now, we can compare the conditions (11)− (16) in Grimm & Hochbruck (2006) and the conditions
(XIII.4.1) and (XIII.4.8) in Hairer et al. (2006) to our conditions (3.8). Our condition (3.8b) on the
boundedness of the filter functions coincides identically with (11) of Grimm & Hochbruck (2006).
The conditions (13)− (16) of Grimm & Hochbruck (2006) imply that χ = φ and χ = ψS are zero
whenever sin( ·2 ) is zero, meaning for x = 2kπ , k ∈ Z. This behaviour can also be found in our condition
(3.8d). Still, an analogon to our condition (3.8c) is missing in Grimm & Hochbruck (2006) since this
condition requires that χ decreases at least like x−1 for x→ ∞. In comparison to Hairer et al. (2006),
our conditions (3.8b)–(3.8d) are implied by the conditions (XIII.4.1) and (XIII.4.8) used there, which
require in particular that |χ(x)| and |xsin( 1

2 x)−1χ(x)| are bounded. Note that all sets of conditions are
proven to be sufficient but not necessary.

But the main difference in comparison to Grimm & Hochbruck (2006) and Hairer et al. (2006) is the
technique of proof. It will be interesting to see whether the technique developed in the present paper,
namely a Lady Windermere’s fan that takes cancellations in the error accumulation into account, can
help to gain further insight into the error behaviour of trigonometric integrators and splitting methods,
in particular for nonlinear problems.
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