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EXISTENCE OF CYLINDRICALLY SYMMETRIC GROUND STATES TO A
NONLINEAR CURL-CURL EQUATION WITH NON-CONSTANT COEFFICIENTS

ANDREAS HIRSCH AND WOLFGANG REICHEL

ABsTRACT. We consider the nonlinear curl-curl problem VXV x U + V(x)U = f(x,|U I*)U in R? related
to the nonlinear Maxwell equations with Kerr-type nonlinear material laws. We prove the existence of
a symmetric ground-state type solution for a bounded, cylindrically symmetric coefficient V and sub-
critical cylindrically symmetric nonlinearity f. The new existence result extends the class of problems
for which ground-state type solutions are known. It is based on compactness properties of symmet-
ric functions [11, 12], new rearrangement type inequalities from [6] and the recent extension of the
Nehari-manifold technique from [18].

1. INTRODUCTION

We consider the system
(1.1) VxVxU+ VXU = f(x,|U*U in R?

where V € L*(R?) and f : R? x [0, 00) — [0, c0) is a non-negative Carathéodory function growing at
infinity with a power at most pT_l for p € (1,5). The particular feature of (1.1) is the curl-curl opera-
tor. It arises in specific models for standing waves in Maxwell’s equations with Kerr-type nonlinear
material laws where f(x, |U|>)U = I'(x)|U]*U. For a detailed physical motivation of (1.1) see [2].

We look for R3-valued weak solutions U in a cone Ky, of functions with suitable symmetries
and U € L*(R%) N LP*'(R?), V x U € L*(R?). The condition that 0O lies below the spectrum of
curl curl +V(x) allows us to find ground-state type critical points of a functional J(u) = %Ilull2 —1(u),
cf. (1.4), restricted to the so-called Nehari-manifold. The basic idea of applying symmetrizations to
minimizing sequences on the Nehari-manifold goes back to Stuart [17] in the context of the stationary
nonlinear Schrédinger equation. Compared to [17] the assumptions on the nonlinearity f can be
substantially weakened beyond the classical Ambrosetti-Rabinowitz condition. This is based on three
important ingredients:

e the recent extension of the Nehari-manifold method due to Szulkin and Weth [18],

e the weak sequential continuity of functionals /(u) and I’(u#)[u] on K4, due to compactness
properties of symmetric functions by Lions [11, 12],

e new rearrangement inequalities for general nonlinearities due to Brock [6].

Using the combination of these ingredients our main result of Theorem 1 substantially extends the
know results on the existence of ground-state type solutions for (1.1).

Benci, Fortunato [5] and Azzollini, Benci, D’Aprile, Fortunato in [1] were among the first to
consider the constant coefficient case of (1.1) with V = 0. Their method was based on cylindri-
cal symmetries of the vector-fields U, cf. [8] for a different class of symmetries. The case where
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f(x,|U U = I'(x)|UP ' U with periodic coefficients V and I" has been treated in [2]. In [14] Meder-
ski considered (1.1) where f(x, |U|*)U is replaced by, e.g.,['(x)g(U) with T" > 0 periodic and bounded,
V<0,V e LF®R)NLAR?Y) and g(U) ~ [uP~'U if |U| > 1 and g(U) ~ U if |U] < 1 for
1 < p <5 < ¢q. A remarkable feature of Mederski’s work is that (1.1) can be treated without assum-
ing special symmetries of the field U. The nonlinear curl-curl problem on bounded domains with the
boundary condition v X U = 0 has been elaborated in [3, 4].

An important feature of [1] is the use of cylindrically symmetric ansatz functions for U. Here we
make a slightly different ansatz of the form

(1.2) U(x) = u(r,z)| xi ) where r = /X2 + X3, 2= x3.
0

Moreover, we assume cylindrically symmetric coefficients V(x) = V(r,2), f(x,|U*) = f(r,z,|U).
For U of the form (1.2) we see that div U = 0, and hence (1.1) reduces to the scalar equation

10(;0 i
(13) —=—(PE) -V u= fr.z P for (7)€ Q= (0,00) X R.
rPor\ or] 072
It turns out that a suitable space to consider (1.3) is given by
ov Ov
Hclyl(r3drdz) = {v: (0,00) xR—>R:v, o 72 € Lgyl(r3drdz)} ,

Lgyl(r3drdz) = {v: (0,00) xR >R : fv(r, z)2r3d(r, 7) < oo} ,
Q

cf. Section 2 for more details on these spaces. Weak solutions of (1.3) arise as critical points of the
functional
1 1
(14 Jw =3 f (IV,u + V(r, ) Pd(r,2) - f —F(r,z.r’u*)r’d(r,2), u e Hy,(rdrdz),
Q Q

2r2

where F(r,z,t) = ' (r,z,s)dsand V,, = 4 9) A ground state u of (1.3) is defined as a weak
0 > or’ 0z
solution of (1.3) in the Nehari-manifold

M= {veHc‘y1<r3drdz>\{0}: f (1V,0 + V(. 2v?) rd(r.2) = f f(r.z, r2v2>v2r3d<r,z>}
Q Q

such that
J(u) = 32}5 J(v),

see the classical papers [15], [16]. We find ground states of (1.3) under additional assumptions on
V and f. To state these assumptions we need the notion of Steiner-symmetrization, cf. Chapter 3 in
[10]. The Steiner-symmetrization (also called symmetric-deacreasing rearrangement) of a cylindrical
function g = g(r, z) with respect to z is denoted by g*. We say that g is Steiner-symmetric if g coincides
with its Steiner-symmetrization with respect to z, keeping the r-variable fixed. A function h € L*(Q)
is reversed Steiner-symmetric if (ess suph — h)* = ess sup h — h holds true.

Now we can state our assumptions on f.
(1) f:Qx[0,00) — R is a Carathéodory function with 0 < f(r,z, s) < c(1 + sp%) for some ¢ > 0
and p € (1,5),
(1) f(r,z,s) = o(l) as s = O uniformly in r, z € [0, 00) X R,
(ii1) f(r,z, s) strictly increasing in s € [0, c0),
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(iv) @ — oo as § — oo uniformly in r, z € [0, ) X R,
(v) forall r € [0, ), s > 0 and o > 0 the function

0r(r,2,8) = f(r,z, (s + ) (s + 0) = f(r,2,57)s°
is symmetrically nonincreasing in z.

Conditions (ii)—(iv) are inspired by the work of Szulkin and Weth [18]. Namely, if we translate (ii)—
(iv) into conditions for f(r,z, s) := f(r, z, r*s*)s then they become identical to (ii)-(iv) of Theorem 20
from [18]. Condition (v) is used to prove the rearrangement inequality of Lemma 9 and it is due to
Brock [6].

Next we state our main result.

Theorem 1. Let V € L*(Q) be reversed Steiner-symmetric such that the map

1

(1.5) Il - Hy(Pdrdz) — Ryu - ( f (19, + V(r, 20?) P, z))
Q

is an equivalent norm to ||-||; (Pdrdz)- Additionally, let f satsify the assumptions (i)-(v). Then (1.3)
cy! g

has a ground state u € H' .(r*drdz) which is symmetric about {z = 0}.
8 cyl

Remarks: (1) The assumption of norm-equivalence is for instance satisfied if V > 0 and infp; V > 0
for some R > 0, where B, := {(r,z) € Q : r*+z* > R*}. For the reader’s convenience the proof based on
Poincaré’s inequality is given in the Appendix. Since Poincaré’s inequality is applicable for domains
bounded in one direction we can weaken infge V > 0 to infgc V > 0 for strips § = [0, o) X [0, p] with
p>0o0rS =[rg,r] x[0,00) withO < ry < r; < 00,

(2) The conditions on f are satisfied if for instance f(r,z,s) = I'(r, z)lslpTds where I' € L*(Q)
is Steiner-symmetric, ess infoI' > 0 and p € (1,5). This choice of f corresponds to the equation
VxVxU-+V(r,z2)U =T(r,2) U U in R*. Another possible choice is f(r, z, 5) = I'(r, ) log(1 + s)
where again I' € L*(Q) is Steiner-symmetric and ess info I" > 0. This nonlinearity appeared for
instance in [13] and it does not satisfy the classical Ambrosetti-Rabinowitz condition.

The paper is structured as follows: In Section 2 we give details on the variational formulation of
problem (1.3) and prove pointwise decay estimates of Steiner-symmetric functions in Hclyl(r3drdz). In
Section 3 we give the proof of Theorem 1, and in the Appendix we show an example for the potential
V satisfying the equivalent-norm-assumption of Theorem 1.

2. VARIATIONAL FORMULATION, DECAY ESTIMATES, REARRANGEMENTS

Let us consider some properties of the space H Clyl(r3drdz). First, for U of the form (1.2) we have
that U € H'(R?) if and only if u € Hclyl(r3drdz). A norm on Hclyl(r3drdz) is given by

1
2
. 2 2\.3
el 3aray = ( f (IVocttP + u )rd(r,z)) .
Q

Notice that the space Hclyl(r3drdz) behaves like a Sobolev-space in dimension 5. Next we show a
useful embedding property. For this we need the following Sobolev and Lebesgue spaces in dimension
3 together with their canonical norms:

W o

Hclyl(rdrdz) = {v: (0,00) xR >R :v, o Bz oyl

(rdrdz)} ,
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Lgyl(rdrdz) = {v: (0,0) xR > R: f v(r, 2D)|9rd(r, z) < oo} for g € [1, o).
Q

Lemma 2. For u € H(r*drdz) Hardy’s inequality holds

u’ o\  (ou\
2.1 Lr_2r3d(r’Z)SCHL((E) +(6_z) )r3d(r,z).

Moreover, if u € Hclyl(r3drdz) then ru € Hclyl(rdrdz) and there is a constant C > 0 such that for
2<g<6

(2.2) ||ru||Hgyl(rdrdz) , ||ru”LZyl(rdrdz) <C ||u||Hgyl(r3drdz)

Proof. Hardy’s inequality (2.1) is given in Lemma 9 (i) in [2]. Foru € Hclyl(r3drdz) we have ru, % (ru),

r% € Lgyl(rdrdz) and by (2.1) also u € Lgyl(rdrdz). Since % (ru) = r‘;—’j + u we conclude altogether

ru € Hclyl(rdrdz). By the Sobolev embedding in three dimensions this implies ru € Li(rdrdz) for
q €[2,6] and (2.1) yields

2 _ 2 2.2
s s = fg (IV,Gw)P + r2u?) rd(r, 2)

2-3) u\ [ ou\’
<2 L ((ra—z) + (rg) +u? + r2u2) rd(r,z) < C Hu”?fgyl(ﬁdrdz)'

O

Next we show that the functional J from the introduction as well as the functional in the defintion
of the Nehari-manifold are well-defined.

Lemma 3. There is a constant C > 0 such that

1 I
2.4) fg Fro o P wer drds, fg SF.z, r2u2)r3d(r,z)SC(Ilullilcly](r3drdz)+||u||’l';zy| (r3drdz))

for allu € Hcly] (rdrdz).

Proof. Clearly assumption (i) and (ii) show that for every € > 0 there is C. > 0 such that

0< f(rz,s) < e+C.s'T
Hence
@) 0 < £z Pu s’ < (eu? + Crul”™)r,
1 s
(2.6) 0< FF(F, ) < (er2u2 + C5|ru|p“) r.
.
Due to (2.2) this implies the claim. -

In order to find critical points of J we need uniform decay estimates of Steiner-symmetric func-
tions in Hclyl(r3drdz). These estimates are given in [12] in much more generality but for the sake of
completeness we give them here together with the simple proof. We start with a well-known fact
concerning radially symmetric functions and afterwards extend the result to cylindrically symmetric
functions. Let

H. (R = {u € H'(R") : u is radially symmetric}.
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Lemma 4. (see [12]) Let n > 2. Then there is a constant C > 0 such that

lu(x)| < C ||Vu||‘L§§Rn) ||u||‘L§§Rn) X"V for almost all x € R" and all u € H.,

R").
Proof. By density it is sufficient to prove the estimate for u € H' (R") N C*®(R"). Let r := |x|. Then
y y p rad c

d 9
() = = Dl 4 2 > =2l 22

Integrating from r to co and expanding the domain of integration to all of R” yields

-1 2
O T u(o)l” < Cf lul [Vuldy < ClIVull 2y lluall 2y -
Rn

Now we give an extension of Lemma 4 to cylindrically symmetric functions which are Steiner-
symmetric in the non-radial component. We make use of the following notation: Let # € N, and
s € N such that n = ¢ + 5. We write points in R” as (x,y) with x € R and y = (y,...,Yy;) € R®.
Furthermore, let

u(x,-) 1is Steiner-symmetric w.r.t. y;,,i = 1,...,s, forevery x € R’

K, = {u e H'(R") s t. {

u(-,y) 1is aradially symmetric function for every y € R® and }

In particular, if u € K, then necessarily u > 0. In this setting we have the following extension of
Lemma 4.

Lemma 5. (see [12]) There is a constant C > 0 such that

0 < u(x,y) < CIUVtll i el g 1672 Ay 372 for almost all (x,y) € R" and all u € K.

Proof. Letu € K,y and fixy e R°. Wl.o.g. lety; >0foralli =1,...,s. We define

V1 s
v(x) = f . f u(x, z)dz for x € R'.
0 0

By Holder’s inequality we obtain v?(x) < y; - - -y, foyl e foy’Y u*(x,z)dz,ie.,

12
(2.7) IVllz2ry < 01+ y) % lull 2oy -
In the same manner we receive

12
(2.8) IVVll 2@y < O -0 IVl 2 -

Since v: R’ — R is radially symmetric we can apply Lemma 4 and get from (2.7) and (2.8)

1/2 1/2 —(t—-1)/2 1/2 1/2 1/2 —(t—-1)/2
29) 0= v(0) < CNVVI S IVl P72 < C ey ) IV sttt el g 1772

Due to the monotonicity-property in y-direction we also have v(x) > y;---y,u(x,y) and thus (2.9)
gives the desired inequality. 0

We prove three additional lemmas which are used in the next section.
Lemma 6. The set K, ; is a weakly closed cone in H'(R").

Proof. Take a sequence (u)iay C K such that yy — u € H '(R") as k — oo. By the Sobolev
embedding on bounded domains we deduce that a subsequence of u; converges pointwise almost
everywhere on R” to u. Since every u; enjoys the radial symmetry in the first component and the
non-increasing property in the second variable, the pointwise convergence implies that also u enjoys
these properties, i.e.,u € K; ;. |
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Lemma 7. The functionals

Iv) = f LF(r, Z r2v2)r3 d(r,z2), I'[v] = ff(r, Z r2\/2)\/2r3 d(r,z)
Q Q

2r2

are weakly sequentially continuous on the set K4 C Hclyl(r3drdz).

Remark: In the proof we use twice the following principle: if § ¢ R” is a set of finite measure and
wr © § — R a sequence of measurable functions such that ||w|[;rs) < C and w; — w pointwise a.e.
as k — oo then ||wy — W||es) = 0 as k = oo for 1 < g < r. The proof is as follows: Egorov’s theorem
allows to choose X C § such that wy, — w uniformly on X and |S \ Z| < € arbitrary small. By Holder’s

inequality the remaining integral is estimated by IS\z we — wl?dx < €7 |lwe — wllz,(s).

Proof. Let us take a weakly convergent sequence (Vi )en in K41 such that vy — v in Hclyl(r3drdz) and

vy — v pointwise a.e. in Q. By Lemma 6 one gets v € K;; and using Lemma 5 there exists a constant
C > 0 such that

(2.10) 0 < vi(r,2),v(r,z) < Cr 2|z for all k € N and almost all (, z) € Q.
Our goal is now to show at least for a subsequence

(2.11) fg :—ZF(r, Z, rvOrd(r,z) — fg :—ZF(r, 2, rv)rd(r,z) as k — oo
and

(2.12) Lf(r, Z rzvi)v%r3d(r, 7) & fo(r, Z, r2v2)v2r3d(r, z)as k — oo.

By (2.6) we find

1
= |F(r, 7 rv;) = F(r, 2, r2v2)| P < er*(vi +vir + C, (lrvklpJrl + |rv|p+1) r

and hence

(2.13) (IF(r, 2, 1) = F(r, 2, 1V — er*(vi + vz))Jr r<C, (Irvk|erl + |rv|”+1)r.
Inspired by [11] and [12] the idea is to show

(2.14) rve — rvin LP* Y (rdrdz) as k — co.

Once (2.14) is established we obtain a majorant |rvy|, |rv| < w € LP*'(r drdz) (cf. Lemma A.1 in [19]).
Together with (2.13) this majorant allows to apply Lebesgue’s dominated convergence theorem and
yields

+
(2.15) lim (1IF(r.2. 7)) = F(r.z. V)| = e’} + V7)) rdrdz = 26|20,
- Jo

If we set
a = f |F(r,z, rzv,%) — F(r,z, r’)|rdrdz
Q

and
. 202 2 2 2
bk = E”r (vk +v )“Ll(rdrdz) = E(||vk||L2(r3drdz) + ||v||L2(r3drdz)) <Ce
then

lim sup a; < limsup by + lim sup(a; — by)*
keN keN keN

+
< Ce + limsup (f (IF(r, Z ,»2\;]%) — F(r,z,r’v?)| - Erz(v% + vz)) rdrdz)
keN Q
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< Ce+lim supf (lF(r, zZ, rzv,%) — F(r,z,r*V?)| - erz(vi + vz))+ rdrdz
keN Q

< €(C + 2|Vl 722 4y0) BY (2:15).

Since € > 0 was arbitrary this shows that lim;_,., @¢; = 0 and therefore (2.11) holds. The proof of
+

(2.12) is similar since ( froz, rvrtvi — f(r,z, A rv? — er*(vi + vz)) r satisfies an estimate just

like (2.13) if we use (2.5) instead of (2.6).

It remains to prove (2.14). For this, we split our domain € into four parts Q, ..., Q4 and show
(2.14) on each of these parts separately. The definitions of Q, ..., Q4 are as follows: For R > 0 let
Q) ={(r,0) e Q:r<R,|zl <R}, Qy={(r,2)eQ:r>R,|zl >R},
Qs ={(r,2) e Q:r<R, |zl >R}, Q4 ={(r,2)eQ:r>R,|z| <R}.

Convergence on ,: Follows from rv, — rvin LY(K; r drdz) for every compact subset K C [0, co) X
R and every g € [1, 6). This step works independently of the choice of R > 0.

Convergence on Q,: Let € > 0. With the help of (2.10) we calculate

f rve — rP* rd(r, z) < 20! f PP (el ) rd(r, 2)
Q

Q)

p-1 p—1
< or+ier! f F T T (P + (. 2)F) Pd(r 2)
Q)

<ci F IV s | R < R

2
%
[Vl |Hcly](r3drdz) HY, (3 drdz)

which is less or equal ¢ if we choose R > 0 large enough.

Convergence on Q3: Due to symmetry in z-direction it is enough to focus on Q3 := {(r,2) € Q : r <
R,z > R}. Let @ > 0O be arbitrary. Again by (2.10) we obtain

{(r2) € Qs :vi(r,2) > @) C{(n2) € Qs i 125 < Cyu) = S,

where C, = (C/a)*? and C is the constant from (2.10). The set S , has finite measure since

00 aZ’1/3 X Ci 00 L 3 P
1Sol < ’”d”dZ:T Z3dZ:ZCaR3<°°-
R 0 R

By the convergence principle from the remark above and since by (2.3) [[rvillzsgaraz) < [IVillg (Pdrds)
cy
is bounded we obtain fs rP e =P r3d(r, z) — 0 as k — oo for 1 < p < 5. It remains to prove the

convergence on Q5 \ S,. For allmost all (r,z) € Q3 \ S, we have that v(r,z) = lim_e vi(r,2) < .
Hence,

f rP v =P P d(r,z) < RV ) f Vi = v*rid(r,z) < Ca?™.
Q3\S, Q

In summary, since @ > 0 is arbitrary this shows (2.14) on Q3.

Convergence on : Again it is enough to focus on Q, ={(r,z) € Q:r>R,0<z<R)}. Fix
z € (0,R). Let us first show that

(2.16) f P i(r, 2) = v(r, 2P P dr — 0 as k — oo,
{r>R}
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Since vi(r, -) is nonincreasing in its last component we deduce

(2.17) f Vi, 2rdr < — f f rivi(r,Ordrd¢ < ! f rvi(r, Ord(r, §) < 9

for all g € [2,6] by (2.3). Thus for g € [2, 6] the sequence Il V(s Dl 9(0.00).rdr) 18 umformly bounded
in k € N. Moreover, (2.10) implies v (r, z) < C(z)r~ 2 uniformly in k € N. Hence for R > R

f P i, 2) = v(n, P P dr < 2C () f T r,2) = v PP dr
R

=3

N|.
0

< (2C()P 'R = by (2.17).

The last term can be made arbitrarily small provided R is chosen big enough. To finish the proof

of (2.16) it remains to prove fRR P i(r,z) — v(r, 2)IP*'r*dr — 0 as k — oo. Since for almost all

z € (0, R) we have v(-,z7) — (-, z) pointwise almost everywhere on (R, R) as well as the boundedness
of || - vi(+, 2l 16((0.00).rary BY (2.17) we can apply the convergence principle from the remark above and
deduce

R
f P i(r, 2) — v(r, )P P dr — 0 as k — oo,
R

Hence (2.16) is accomplished for almost all z € (0, R).
Defining ¢i(z) = f{r>R} P Ni(r, 2) — v(r, 2P 'r3dr we have ¢ — 0 as k — oo pointwise almost
everywhere in [0, R). The sequence (@), is bounded in L'([0, R), dz) since by (2.2)

R
f f P i, 2) = v(r, 2P P drdz < C f PP (el ) P < €
0 Ju=Rr) Q

Moreover, for p € (1, 3], the sequence (¢;),oy is bounded in W'1([0, R), dz) since

2
Ha‘”" (f f (p+ D' v =P % _o r3drdz)
L'([0.R].dz) 0z
2
(f(p + Dr? e = vl % - @ 3d(i’,z))
0z
<C f P2 = v rd(r, 2) f %—@ rd(r, z)
v |,

= Cllr(v - V)||L2,,(,d,dz)f Far rd(r,z) < C.

Hence, by the compact embedding W"!([0, R), dz) — L'([0, R), dz) we conclude that at least a sub-
sequence of (¢ ey is converging in L'([0, R), dz) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to 0 on [0, R). This shows (2.14) on €, for p € (1, 3].
For p € (3,5) we make use of Holder’s interpolation, namely,

p+l
L2 (Qq rdrdz)

-0

[rve — rv||6(1_9) < Cllrve — rv||

- ||I’Vk - Y‘V“ LSyI(Q4,rdrdz)

llrvie = rvl|

L4 ((Q4.rdrdz) | L4 |(Qu.rdrdz)

as k — oo, where 6 € (0, 1) is chosen such that p + 1 =46+ 6(1 — 6),i.e.,6 = 5%”.
The combination of convergences on €, ..., Q4 finally proves (2.14). m|

For our last lemma we need the notion of cylindrical C.”-functions which we introduce now.
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Definition 8. A function u = u(r, z) belongs to C°([0, c0) XR) if and only if u € C*([0, ) XR), supp u
is compact in [0, c0) X R and %(0, z) = 0 for all odd integers j € 2N — 1.
Remark: Since u € C°([0, o0) X R) is equivalent to it € C;"’(RS) with @(x) = u(|(x1, ..., x4)|, x5) we
see that C=([0, o) X R) is dense in HC‘yl(r3drdz).
Lemma 9. For u € Hcly](r3drdz) we have ||[u*|| < ||lull where % denotes Steiner-symmetrization with
respect to z and || - || is the equivalent norm from Theorem 1. Moreover

Iw) <I(w*) and I'@Wlu] <I'(w*)[u*].
Proof. We begin by recalling several classical rearrangement inequalities from [9], [10]. Recall first
the Pdlya-Szegd inequality

(2.18) f IV fe12dx < f IV flPdx
R~ R~

for f € H'(R") and ® denoting Schwarz-symmetrization (also called symmetrically decreasing re-
arrangement). Furthermore we have for 0 < f, g € L*(R") the classical rearrangement inequality

(2.19) ffgdngf®g®dx
R R

and the nonexpansivity of rearrangement

(2.20) f f® - g%dx < f f - gP dx.
R2 R

From (2.18) we immediately receive for u € Hclyl(r3drdz) that

(2.21) f \V.u*Pdz < f |V, ul*dz.
R R
Next we want to establish a similar inequality for V,u. We do this first for u € C°([0, o0) X R). With

the help of (2.20) we find that
u*(r+1,7)— u*(r,2)| f u(r +1,2) — u(r, 2)°
dz <
R

fR t t

for almost all r, z € [0, 00). Sending t — 0 and using Fatou’s lemma on the left side of the inequality
yields

(2.22) f IV, u*Pdz < f \V,ul’dz
R R

for u € C([0, 00) x R) and almost all r € [0, o). Since Steiner Symmetrization is continuous in H'
(see Theorem 1 in [7]) we obtain by approximation that (2.22) is indeed valid for all u € HC‘yl(r3drdz).

Together with (2.21) we obtain fR IV, .u*lPdz < fR |V, .ul*dz for almost all r > 0 and integration leads
to

(2.23) f f \V,.u**ridrdz < f f IV,..ul*r*drdz.
R JO R JO

Fixing r € [0, o) and applying (2.19) to f(-) = ess sup V — V(r, ) and g(-) = u*(r, -) gives
f(ess sup V — V(r, ) u*(r, )dz < f(ess sup V — V(r, )" (u?)*(r, )dz
R R

dz

= f(ess supV = V(r,")) (u*)2 (r,)dz.
R
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Using |lu(r, )l ;2) = lu* (7, )l 2, this results in

(2.24) f f V(r,z) (u*) Pdrdz < f f V(r, 2)u’rdrdz.
R JO R JO

The combination of (2.23) and (2.24) yields the claimed inequality [[u*||* < |jull>.
Assumption (v) on f allows to apply Theorem 5.1 in [6] and to deduce
@29 1w = [ feardnirde < [ ezt = 1)
Q Q

Moroever, using (v) with s = 0 shows that for all € [0, %), o > 0 the function z — f(r,z,0?) is
symmetrically nonincreasing in z and hence

r2(s+0')2
Do (r,z,5) := F(r,z,r’(s + o)) = F(r,2,r°s%) = f f(roz,0)dt

r2s?

is symmetrically nonincreasing in z. Applying once more Theorem 5.1 in [6] yields

1 1
() = f —F(r,z, Pu®)r’d(r,z) < f —F(r,z, Pu*rd(r, 2) = I(u®)
2 2 [e) 21’2

This finishes the proof of the lemma. O

3. ProOF oF THEOREM 1

Proof. Recall from Lemma 7 the definition I(u) := fQ s5F(r, z, ru®)r’d(r,2) for u € H! 1(r3drdz)
We show that the assumptions (i)-(iii) of Theorem 12 in [18] are satisfied. Let € > 0. The growth
assumptions (i) and (ii) on f imply that for every € > 0 there exists C. > 0 such that the global
estimate 0 < f(r,z,s) < e+ C |s|% holds. Together with (2.2) we obtain

|7’ (u)[v] ff(r z, PP uvrd(r, z)'

< sf |rul|rv|rd(r, z) + C. f |rul?|rvird(r, z)
Q Q

<eC ||u”Hcl,y1(’3drdZ) ”v”Hcl,yz(’Sd’dZ) +Ce ||u||i1;),l(r3drdz) ||V||Hc!yl(r3drdz)
Taking the supremum over all v € HC‘yl(r3drdz) with [Vl (3araz = 1 we see that
(3.1 I'(u) = o(||ul]) as u — 0.
Moreover, due to assumption (iii) on f the map

I'(su)[u . . . .
32 s FGswlul _ ff(r, z, S22 uPr3d(r, 2) is strictly increasing for all u # 0 and s > 0.
S Q

Next we claim that
I(su)

3.3) — oo as § — oo uniformly for # on weakly compact subsets W of Hclyl(r3drdz) \ {0}.

I(quk)

Suppose not. Then there are (u;)reny € W and s, — oo as k — oo such that is bounded as k — oo.

But along a subsequence we have u;, — u # 0 and u(x) — u(x) p01ntw1se almost everywhere. Let
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QF := {(r,2) € Q : u(r,z) # 0}. Then |QF > 0 and on QF we have |suu;(r, 7)] — oo as k — co. Fatou’s
lemma and assumption (iv) on F imply

I(s.u F(r,z, s2r*u?) F(r,z, s°r*u?)
( k2 K = f 2k2 k r3d(r, 7) > —kzku%rﬁd(r, Z7) D> oask — oo,
si 0 2sir of

2s3r2u;
a contradiction. In summary, (3.1), (3.2), (3.3) imply that (i)-(iii) of Theorem 12 in [18] are satisfied.

Now we take a sequence (u)renw C M such that J(u;) — infy J as k — oo. Since ||V, |ulll;2 =
IV, uill;2 we can assume that u;, > O for all kK € N. Then Theorem 12 in [18] guarantees that for every
k there is a unique #; > O such that v := #u; € M. We show next that #; < 1 for all k € N. Assume
ty > 1. Then

f [z, rPuur*rid(r,z) < f frz, riuHu*r’d(r,z) by assumption (iii)
Q Q

= luf||* since tiuy € M

< ||uk||2 by Lemma 9
= f fr,z, rPu)u;r’d(r,z)  since u, € M.
Q

This contradicts the inequality 1" (u;)[u] < I'(u)[u;] from Lemma 9 and thus # < 1 for all k € N.
Next notice that for fixed (r, z, 5) € [0, 00) X R X [0, o) and 7 € (0, 1] one has

% (tzf(r, Z, sz)s2 —F(r,z, tzsz)) = 2ts° (f(r, Z, sz) - f(r,z, t2s2)) >0

since f is strictly increasing in its last variable by assumption (iii). This shows that the map ¢ +—
£ f(r,z, s%)s* — F(r, z, t*s?) is strictly increasing for ¢ € [0, 1]. From this monotonicity and the inequal-
ity I(txuy) < I(truy) from Lemma 9 we conclude

1
2J(v) = f (tiwmu,jﬂ + V(r, )tus” - ﬁF(r, z, r%iu,jz)) rd(r, 2)
Q
1
< f (t,fIV,,Zuk|2 + V(r, z)t,fu,% - r—zF(r, Z, rzt,fu,% )r3d(r, 2)
Q

1
(3.4 = fQ = (f(r, Z, rzu,%)t,%rzui —F(r,z rzt,%ui ) r3d(r, 2)

1
< f 2 (f(", Z, rzu,%)rzu,% - F(r,z, rzui)) rd(r, z)
Q
= 2J(Ltk)
So (Vikew € M 1is also a minimizing sequence for J which belongs to K ;. The boundedness of
(Vi)ken is established in Proposition 14 in [18]. Hence, we find v, € Hc‘y](r3drdz) such that vy — ve

in Hcly] (r*drdz) along a subsequence as k — oo. In addition, v, € K4 due to Lemma 6 and v, # 0 by
Proposition 14 in [18] where instead of the weak sequential continuity of 7 on all of Hclyl(r3drdz) we
use it only on K4 ; as stated in Lemma 7.

Let us show that v, € M. Since v,, # 0 we can choose 7., > 0 such that 7,,v,, € M. In the same
manner as before for the sequence 7, we can show that #,, < 1. Assume 7, < 1. Then as in (3.4) and
using the weak sequential continuity on K, ; as shown in Lemma 7 we find

1
2J(toVeo) < f - (f(r, Z, rzvgo)rzvzo - F(r,z, rzvgo)) r3d(r, 2)
ol
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i 1
= ]}1_210 . p) (f(r, Z, rzv%)rzv% - F(r,z, rzv,%)) rd(r, z)

= 2inf J < 2J(twVeo)
M

which is a contradiction. So 7., = 1 and thus v,, € M. Then by the weak lower semi-continuity of ||-||
and once again the weak sequential continuity of / we conclude

J(ve) £ liin inf J(v) = iﬁf] < J(Veo).

Hence, v, € K4 1s a minimizer of J on M, i.e., a ground state of (1.3) which is Steiner symmetric in
z with respect to {z = 0}. a

APPENDIX
Here we prove that the condition V > 0 and infp: V > 0 for some R > 0 implies that on H, c‘y] (r*drdz)

the expression ( fg (lVr,Zul2 + V(r, z)uz) rd(r, z))7 is an equivalent norm. Suppose not. Then there is

a sequence ()i such that [|ug|lz2¢34r4- = 1 and fQ (IV,,Zuk|2 + V(r, z)ui) rd(r,z) = 0as k — oo. In
particular,

3.5) f |Vr,zuk|2r3d(r, z) = 0 and f u,%r3d(r, z) > 0ask — oo.
Q B
Let y denote a smooth cut-off function such that y(r,z) = 1 for 0 < Vr? + z2 < R and x(r, z) = 0 for
V2 + 72> R+ 1. Then v := yu € Hé,cyl(BR‘H’ r3drdz) and
|Vr,zvk|2 :levr,zuk|2 + |Vrz)(|2ui + zuk)(vr,zuk - Vrz)(
Hence, by (3.5)

(3.6) f IV, v rd(r,2) < 2 f IV Prd(r, z) + 2 f W2\, xIPrd(r, 2)
Q Q Q

<2 f IV, > rd(r, 2) + 2|V, x| f wrd(r,z) — 0 as k — oo
Q B

r+1\Br

In particular, fBR 1 |Vr,zvk|2r3d(r, z) — 0as k — oo. By Poincaré’s inequality, |[ull;2(34r4;) = 1 and (3.5)
we see

Cpf IVr,ka|2r3d(r, 7) > f v%r3d(r, z) > f u,%r3d(r, z)=1-o0(1),
Bgri1 Bpry1 Bg

contradicting (3.6). O
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