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Abstract. We analyze two-dimensional Schrödinger operators with the potential
|xy|p � �(x2 + y

2)p/(p+2) where p � 1 and � � 0, which exhibit an abrupt change
of its spectral properties at a critical value of the coupling constant �. We show that
in the supercritical case the spectrum covers the whole real axis. In contrast, for
� below the critical value the spectrum is purely discrete and we establish a Lieb-
Thirring-type bound on its moments. In the critical case the essential spectrum covers
the positive halfline while the negative spectrum can be only discrete, we demonstrate
numerically the existence of a ground state eigenvalue.
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1. Introduction

One of the problems which attracted attention recently concerns Schrödinger operators

with potentials dependent on a parameter which exhibit a sudden spectral transition

when the value of the parameter passes a critical value. The potential is typically

unbounded from below and has narrow channels through which the particle can ‘escape

to infinity’ in the supercritical situation. Possibly the best know example of this type

is the so-called Smilansky model [12, 13, 9, 4, 7] and its regular version [2]. Another

example, which will be the main subject of this paper, is a modification of the well-known

potential |xy|p in R2 obtained by adding a rotationally symmetric negative component

which becomes stronger with the growing radius, see (1.1) below. Recall that without

the negative component this potential and its modifications serves to demonstrate the

possibility of a purely discrete spectrum in the situation when the classically a! llowed

volume of the phase space is infinite [11, 6, 3].

The mechanism of the spectral transition comes from the balance between the

negative part of the potential and the positive contribution to the energy coming from

the transverse confinement to a channel narrowing towards infinity. This means that

the behavior of the two potential components at large distances from the origin must

be properly correlated. In our case this is achieved by considering the following class of

operators,

L
p

(�) : L
p

(�) = �� +
�

|xy|p � �(x2 + y2)p/(p+2)
�

 , p � 1 , (1.1)

on L2(R2), where (x, y) in R2 are the Cartesian coordinates (x, y) in R2 and the non-

negative parameter � in the second term of the potential will serve to control the

transition. Note that 2p
p+2 < 2, and consequently, the operator (1.1) is essentially self-

adjoint on C1
0 (R2) by Faris-Lavine theorem – cf. [10], Thms. X.28 and X.38; in the

following the symbol L
p

(�) will always mean its closure.

We have found already some properties of these operators in [5], our aim here is to

present a deeper spectral analysis. To describe what is know we need the (an)harmonic

oscillator Hamiltonian on line,

H
p

: H
p

u = �u00 + |t|pu (1.2)

on L2(R) with the standard domain, more exactly, its principal eigenvalue �
p

; since

the potential has a mirror symmetry and the ground state is even, we can equivalently

consider the ‘cut’ (an)harmonic oscillator on L2(R+) with Neumann condition at t = 0.

The eigenvalue is known exactly for p = 2 where it equals one as well as for p ! 1 where

the potential becomes an infinitely deep rectangular well of width two and �1 = 1
4⇡

2.

It is easy to see that the function p 7! �
p

is continuous and positive on the interval

[1,1); a numerical solution shows that it reaches the minimum value �
p

⇡ 0.998995 at

p ⇡ 1.788.

In the paper [5] we have shown that the spectral transition occurs at the value

�crit = �
p

: the spectrum of L
p

(�) is purely discrete and below bounded for � < �crit,
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remaining below bounded for � = �crit, while for � > �crit it becomes unbounded from

below. We have also derived there crude bounds on eigenvalue sums in the subcritical

case. In the present work we are going to establish first that for � > �crit the spectrum

of L
p

(�) covers the whole real line. Next we shall analyze in more detail the critical

case, � = �crit, showing that one has

�ess(Lp

(�crit)) = [0,1) .

The question of existence of a negative discrete spectrum is addressed numerically.

We show that there a range of values of p for which the critical operator L
p

(�
p

) has

a single negative eigenvalue. Finally, we return to the subcritical case and establish

Lieb-Thirring-type bounds to eigenvalue moments.

2. Supercritical case

As indicated, our first main result is the following.

Theorem 2.1. For any � > �
p

we have �(L
p

(�)) = R.

Proof. To demonstrate that any real number µ belongs to essential spectrum of operator

L
p

we are going to use Weyl’s criterion: we have to find a sequence { 
k

}1
k=1 ⇢ D(L

p

)

such that k 
k

k = 1 which contains no convergent subsequence and

kL
p

 
k

� µ 
k

k ! 0 as k ! 1 .

For the sake of clarity let us first show that 0 2 �ess(Lp

). We define

 
k

(x, y) :=
1

k1/(p+2)
h
p

�

xyp/(p+2)
�

ei�y
(2p+2)/(p+2)

�
⇣y

k

⌘

, (2.1)

where h
p

is the ground state eigenfunction of H
p

, � is a smooth function with

supp� ⇢ [1, 2] satisfying
R 2

1 �
2(z) dz = 1, and � > 0 will be chosen later. We note

that for a given k one can achieve that k 
k

k
L

2(R2) � 1
2p/(p+2) as the following estimates

show,
Z

R2

�

�

�

�

1

k1/(p+2)
h
p

(xyp/(p+2)) ei�y
(2p+2)/(p+2)

�
⇣y

k

⌘

�

�

�

�

2

dx dy

=
1

k2/(p+2)

Z 2k

k

Z

R

�

�

�

h
p

(xyp/(p+2))�
⇣y

k

⌘

�

�

�

2

dx dy

=
1

k2/(p+2)

Z 2k

k

Z

R

1

yp/(p+2)

�

�

�

h
p

(t)�
⇣y

k

⌘

�

�

�

2

dt dy

=
1

k2/(p+2)

Z

R
|h

p

(t)|2 dt
Z 2k

k

1

yp/(p+2)

�

�

�

�
⇣y

k

⌘

�

�

�

2

dy

=
1

k2/(p+2)

Z 2k

k

1

yp/(p+2)

�

�

�

�
⇣y

k

⌘

�

�

�

2

dy

� 1

2p/(p+2)

Z 2

1

|�(z)|2 dz =
1

2p/(p+2)
. (2.2)
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Our next aim is to show that for any positive " one can find k = k(") such that

kL
p

 
k

k2
L

2(R2) < " holds. By a straightforward calculation one gets

@2 
k

@x2
=

1

k1/(p+2)
y2p/(p+2) h00

p

(xyp/(p+2)) ei�y
(2p+2)/(p+2)

�
⇣y

k

⌘

and

@2 
k

@y2
=

1

k1/(p+2)
ei�y

(2p+2)/(p+2)

✓

� 2px

(p+ 2)2
y�(p+4)/(p+2) h0

p

(xyp/(p+2))�
⇣y

k

⌘

+
p2x2

(p+ 2)2
y�4/(p+2) h00

p

(xyp/(p+2))�
⇣y

k

⌘

+
ip(4p+ 4)�x

(p+ 2)2
y(p�2)/(p+2) h0

p

(xyp/(p+2))�
⇣y

k

⌘

+
2px

k(p+ 2)
y�2/(p+2) h0

p

(xyp/(p+2))�0
⇣y

k

⌘

+
i�(2p+ 2)p

(p+ 2)2
y�2/(p+2) h

p

(xyp/(p+2))�
⇣y

k

⌘

+
2i�(2p+ 2)

(p+ 2)k
yp/(p+2) h

p

(xyp/(p+2))�0
⇣y

k

⌘

+
1

k2
h
p

(xyp/(p+2))�00
⇣y

k

⌘

◆

� �2(2p+ 2)2

(p+ 2)2
y2p/(p+2) h

p

(xyp/(p+2))�
⇣y

k

⌘

. (2.3)

Our aim is to show that choosing k su�ciently large one can make most terms at the

right-hand side of (2.3) as small as we wish. Changing the integration variables, we get

for the first term the following estimate,
Z

R2

�

�

�

�

x

k1/(p+2) y(p+4)/(p+2)
h0
p

(xyp/(p+2)) ei�y
(2p+2)/(p+2)

�
⇣y

k

⌘

�

�

�

�

2

dx dy

=
1

k2/(p+2)

Z 2k

k

Z

R

�

�

�

�

x

y(p+4)/(p+2)
h0
p

(xyp/(p+2))�
⇣y

k

⌘

�

�

�

�

2

dx dy

=
1

k2/(p+2)

Z 2k

k

1

y(5p+8)/(p+2)

�

�

�

�
⇣y

k

⌘

�

�

�

2

dy

Z

R
t2 |h0

p

(t)|2 dt

 1

k4

Z 2

1

|�(z)|2dz
Z

R
t2 |h0

p

(t)|2 dt ,

where the right-hand side tends to zero as k ! 1. In the same way we establish that

for large enough k all the terms in (2.3) except the last one can be made small. The

last term is not small, what is important that it asymptotically compensates with the

negative part of the potential; using the same technique one can prove that for large k

the integral

1

k2/(p+2)

Z

R2

✓

(x2 + y2)p/(p+2) � y2p/(p+2)

◆2

h2
p

(xyp/(p+2))�2
⇣y

k

⌘

dx dy
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is small again as small as we wish. Consequently, for any fixed " > 0 one can choose k

large enough such that
Z

R2

|L
p

 
k

|2(x, y) dx dy

=

Z

R2

�

�

�

�

�@
2 

k

@x2
� @2 

k

@y2
+ |xy|p 

k

� �(x2 + y2)p/(p+2) 
k

�

�

�

�

2

dx dy

 1

k2/(p+2)

Z 2k

k

Z

R

�

�

�

�

y2p/(p+2) h00
p

(xyp/(p+2))�
⇣y

k

⌘

� �2(2p+ 2)2

(p+ 2)2
y2p/(p+2) h

p

(xyp/(p+2))�
⇣y

k

⌘

� |xy|p h
p

(xyp/(p+2))�
⇣y

k

⌘

+ �y2p/(p+2) h(xyp/(p+2))�
⇣y

k

⌘

�

�

�

�

2

dx dy + "

=
1

k2/(p+2)

Z 2k

k

Z

R

�

�

�

�

y2p/(p+2)

✓

h00
p

(xyp/(p+2))� |xyp/(p+2)|p h
p

(xyp/(p+2))

� �2(2p+ 2)2

(p+ 2)2
h
p

(xyp/(p+2)) + �h
p

(xyp/(p+2))

◆

�
⇣y

k

⌘

�

�

�

�

2

dx dy + " .

Combining this result with the fact that H
p

h
p

= �
p

h
p

and choosing

� =
(p+ 2)

2p+ 2

p

�� �
p

(2.4)

we get
Z

R2

|L
p

 
k

|2(x, y) dx dy  " . (2.5)

To complete this part of the proof we fix a sequence {"
j

}1
j=1 such that "

j

& 0 holds as

j ! 1 and to any j we construct a function  
k("j) such that the supports for di↵erent

j’s do not intersect each other; this can be achieved by choosing each next k("
j

) large

enough. The norms of L
p

 
k("j) satisfy the inequality (2.5) with "

j

on the right-hand

side, and by construction the sequence  
k("j) converges weakly to zero; this yields the

sought Weyl sequence for zero energy.

Passing now to an arbitrary nonzero real number µ we can use the same procedure

replacing the above functions  
k

by

 
k

(x, y) =
1

k1/(p+2)
h
p

(xyp/(p+2)) ei✏µ(y) �
⇣y

k

⌘

, (2.6)

where

✏
µ

(y) :=

Z

y

|µ|(p+2)/2p(p+2)(p+2)/p

(2p+2)(p+2)/p�(p+2)/p

s

(2p+ 2)2�2

(p+ 2)2
t2p/(p+2) + µ dt ,

and furthermore, the functions h
p

, � and the number � are the same way as above. The

second derivatives of those functions are

@2 
k

@x2
=

1

k1/(p+2)
y2p/(p+2) h00

p

(xyp/(p+2)) ei✏µ(y) �
⇣y

k

⌘
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and

@2 
k

@y2
=

1

k1/(p+2)
ei✏µ(y)

✓

�2px

(p+ 2)2
y�(p+4)/(p+2) h0

p

(xyp/(p+2))�
⇣y

k

⌘

+
p2x2

(p+ 2)2
y�4/(p+2) h00

p

(xyp/(p+2))�
⇣y

k

⌘

+
2px

k(p+ 2)
y�2/(p+2) h0

p

(xyp/(p+2))�0
⇣y

k

⌘

+ ip
(2p+ 2)2

(p+ 2)3
�2y(p�2)/(p+2)

✓

(2p+ 2)2�2

(p+ 2)2
y2p/(p+2) + µ

◆�1/2

h
p

(xyp/(p+2))�
⇣y

k

⌘

+
2ipx

(p+ 2)
y�2/(p+2)

✓

(2p+ 2)2�2

(p+ 2)2
y2p/(p+2) + µ

◆1/2

h0
p

(xyp/(p+2))�
⇣y

k

⌘

+
2i

k

✓

(2p+ 2)2�2

(p+ 2)2
y2p/(p+2) + µ

◆1/2

h
p

(xyp/(p+2))�0
⇣y

k

⌘

+
1

k2
h
p

(xyp/(p+2))�00
⇣y

k

⌘

�
✓

(2p+ 2)2�2

(p+ 2)2
y2p/(p+2) + µ

◆

h
p

(xyp/(p+2))�
⇣y

k

⌘

◆

.

It is not di�cult to check that for any positive " one choose a number k large enough

to ensure that the inequality
�

�

�

�

@2 
k

@y2
e�i✏µ(y) + µ 

k

e�i✏µ(y)

� e�i�y

(2p+2)/(p+2) @2

@y2

✓

 
k

e�i✏µ(y)+i�y

(2p+2)/(p+2)

◆

�

�

�

�

L

2(R2)

< "

holds. Using further the identity

@2 
k

@x2
e�i✏µ(y) = e�i�y

(2p+2)/(p+2) @2

@x2

�

 
k

e�i✏µ(y)+i�y

(2p+2)/(p+2)�

we arrive at the estimate

kL
p

 
k

� µ 
k

k
L

2(R2) =

�

�

�

�

(L
p

 
k

)e�i✏µ(y) � µ 
k

e�i✏µ(y)

�

�

�

�

L

2(R2)

<

�

�

�

�

ei�y
(2p+2)/(p+2)

L
p

✓

 
k

e�i✏µ(y)+i�y

(2p+2)/(p+2)

◆

�

�

�

�

L

2(R2)

+ " ;

now we can use the result of the first part of proof to establish the claim.

3. Critical case

Let us now pass to the case when the parameter value is critical, in other words, consider

the operator L
p

(�
p

) = �� + (|xy|p � �
p

(x2 + y2)p/(p+2)), p � 1, on L2(R2). We shall

consider the positive and negative spectrum separately.

3.1. The essential spectrum

First we are going to show that the discreteness is lost in the positive halfline once the

coupling constant reaches the critical value.
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Theorem 3.1. The essential spectrum of L
p

(�
p

) contains the interval [0,1).

Proof. The argument is similar to that used in the proof of Theorem2.1, hence we present

it briefly with emphasis on the di↵erences. As before we check first that 0 2 �ess(Lp

) by

constructing a Weyl sequence, which is now of the form

 
k

(x, y) :=
1

k1/(p+2)
h
p

�

xyp/(p+2)
�

�
⇣y

k

⌘

with h
p

and � the same as before. As this nothing but (2.1) with � = 0, not surprisingly

in view of (2.4) we can repeat the reasoning with the involved expressions appropriately

simplified.

Passing now to an arbitrary nonnegative number µ we replace (2.6) by

 
k

(x, y) =
1

k1/(p+2)
h
p

(xyp/(p+2)) ei⌘µ(y) �
⇣y

k

⌘

,

where the functions h
p

, � are again the same way as above and (⌘0
µ

(y))2 = µ. This can

be achieved for any µ � 0 t by choosing ⌘
µ

(y) =
p
µy, note that the classically allowed

region is now the whole halfline instead of the interval entering the definition of ✏
µ

(y)

above. The second derivatives of the functions  
k

obtained in this way are

@2 
k

@x2
=

1

k1/(p+2)
y2p/(p+2) h00

p

(xyp/(p+2)) ei
p
µy �

⇣y

k

⌘

and

@2 
k

@y2
=

1

k1/(p+2)
ei

p
µy

✓

�2px

(p+ 2)2
y�(p+4)/(p+2) h0

p

(xyp/(p+2))�
⇣y

k

⌘

+
p2x2

(p+ 2)2
y�4/(p+2) h00

p

(xyp/(p+2))�
⇣y

k

⌘

+
2px

k(p+ 2)
y�2/(p+2) h0

p

(xyp/(p+2))�0
⇣y

k

⌘

+
2i
p
µpx

(p+ 2)
y�2/(p+2)h0

p

(xyp/(p+2))�
⇣y

k

⌘

+
2i
p
µ

k
h
p

(xyp/(p+2))�0
⇣y

k

⌘

+
1

k2
h
p

(xyp/(p+2))�00
⇣y

k

⌘

� µh
p

(xyp/(p+2))�
⇣y

k

⌘

◆

.

One finds easily that for any positive " and k large enough we have
�

�

�

�

@2 
k

@y2
e�i

p
µy + µ 

k

e�i

p
µy � @2

@y2

✓

 
k

e�i

p
µy

◆

�

�

�

�

L

2(R2)

< "

and using further the trivial identity @

2
 k

@x

2 e�i

p
µy = @

2

@x

2

�

 
k

e�i

p
µy

�

we arrive at

kL
p

 
k

� µ 
k

k
L

2(R2) =
�

�

�

�

L
p

 
k

� µ 
k

�

e�i

p
µy

�

�

�

L

2(R2)
<
�

�

�

L
p

⇣

 
k

e�i

p
µy

�

�

�

�

L

2(R2)
+ "

and the result of the first part of proof allows us to establish the claim.
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G1

G2

G3

Q1 Q2Q3

x = ↵1 ↵2 ↵3 . . .

Figure 1. The Neumann bracketing scheme

3.2. Discreteness of the negative spectrum

Next we are going to show that the inclusion �ess(Lp

(�
p

)) � [0,1) established in

Theorem 3.1 is in fact an equality.

Theorem 3.2. The negative spectrum of L
p

(�
p

), p � 1, is discrete.

Proof. By the minimax principle it is su�cient to estimate L
p

from below by a self-

adjoint operator with a purely discrete negative spectrum. To construct such a lower

bound we employ a bracketing argument, imposing additional Neumann conditions at

the rectangles G
n

= {�↵
n+1 < x < ↵

n+1} ⇥ {↵
n

< y < ↵
n+1}, eGn

= {�↵
n+1 < x <

↵
n+1} ⇥ {�↵

n+1 < y < �↵
n

}, Q
n

= {↵
n

< x < ↵
n+1} ⇥ {�↵

n

< y < ↵
n

}, and
eQ
n

= {�↵
n+1 < x < �↵

n

} ⇥ {�↵
n

< y < ↵
n

}, n = 1, 2, . . ., together with central

square G0 = (�↵1,↵1)2 – cf. Fig. 1. Here {↵
n

}1
n=1 is a monotone sequence such that

↵
n

! 1 as n ! 1 which will be specified later. In this way we obtain a direct sum

of operators with Neumann boundary conditions at the rectangle boundaries which we

denote as

L(1)
n,p

= L
p

|
Gn , eL(1)

n,p

= L
p

| e
Gn

, L(2)
n,p

= L
p

|
Qn , eL(2)

n,p

= L
p

| e
Qn

and L0
p

= L
p

|
G0 . It is obvious that the spectra of L

(i)
n,p

, L̃
(i)
n,p

, i = 1, 2, and

L0
p

are purely discrete, hence one needs to check that lim
n!1 inf �

�

L
(i)
n,p

�

� 0 and

lim
n!1 inf

�

�(L̃(i)
n,p

�

� 0 holds for i = 1, 2, since then the spectra of all the direct sums
L1

n=1 L
(i)
n,p

and
L1

n=1 L̃
(i)
n,p

, i = 1, 2, below any fixed negative number contain a finite

number of eigenvalues, the multiplicity taken into account, which implies the sought

claim.
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Furthermore, the goal will be achieved if we estimate L
(i)
n,p

, L̃
(i)
n,p

, i = 1, 2, from

below by operators with separated variables and prove the analogous limiting relations

for them. We use the lower bounds

H(1)
n

 = �� + (↵p

n

|x|p � �
p

(x2 + ↵2
n+1)

p/(p+2)) (3.1)

on L2(�↵
n+1,↵n+1)⌦ L2(↵

n

,↵
n+1) with the boundary conditions

@ 

@x

�

�

�

�

x=�↵n+1

=
@ 

@x

�

�

�

�

x=↵n+1

= 0 ,

@ 

@y

�

�

�

�

y=↵n

=
@ 

@y

�

�

�

�

y=↵n+1

= 0 .

It is clear that the spectra of H(1)
n,p

, n = 1, 2, . . ., are purely discrete; we are going to

check that

lim
n!1 inf �

�

H(1)
n,p

�

� 0 . (3.2)

Since the lowest Neumann eigenvalue of � d2

dy2 on the interval is zero corresponding

to a constant eigenfunction, the problem reduces to analysis of the operator h
(1)
n,p

=

� d2

dx2 + ↵p

n

|x|p � �
p

(x2 + ↵2
n+1)

p/(p+2) on L2(�↵
n+1,↵n+1). Using a simple scaling

transformation, one can check that h(1)
n,p

is unitarily equivalent to

h(2)
n,p

= ↵2p/(p+2)
n

 

� d2

dx2
+ |x|p � �

p

↵
2p/(p+2)
n

✓

x2

↵
2p/(p+2)
n

+ ↵2
n+1

◆

p/(p+2)
!

(3.3)

on the interval
�

� ↵
n+1 ↵

p/(p+2)
n

,↵
n+1 ↵

p/(p+2)
n

⇤

with Neumann boundary conditions at

its endpoints. To proceed we need to specify the sequence {↵
n

}. Let us assume that

↵
2p/(p+2)
n+1 � ↵2p/(p+2)

n

! 0 as n ! 1 . (3.4)

Combining this assumption with the inequality

�
p

↵
2p/(p+2)
n

 

✓

x2

↵
2p/(p+2)
n

+ ↵2
n+1

◆

p/(p+2)

� ↵
2p/(p+2)
n+1

!

 �
p

↵
2p/(p+2)
n

✓

x2

↵
2p/(p+2)
n

◆

p/(p+2)

 �
p

↵
4p(p+1)/(p+2)2
n

(|x|p + 1) ,
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we infer that

h(2)
n,p

= ↵2p/(p+2)
n

✓

� d2

dx2
+ |x|p � �

p

↵
2p/(p+2)
n+1

↵
2p/(p+2)
n

� �
p

↵
2p/(p+2)
n

✓✓

x2

↵
2p/(p+2)
n

+ ↵2
n+1

◆

p/(p+2)

� ↵
2p/(p+2)
n+1

◆◆

� ↵2p/(p+2)
n

 

� d2

dx2
+

✓

1� �
p

↵
4p(p+1)/(p+2)2
n

◆

|x|p

� �
p

↵
4p(p+1)/(p+2)2
n

� �
p

↵
2p/(p+2)
n+1

↵
2p/(p+2)
n

!

� ↵2p/(p+2)
n

 

� d2

dx2
+

 

1� �
p

↵
4p(p+1)/(p+2)2
n

!

|x|p � �
p

� �
p

 

↵
2p/(p+2)
n+1 � ↵

2p/(p+2)
n

↵
2p/(p+2)
n

!!

+ o(1)

� ↵2p/(p+2)
n

✓

� d2

dx2
+

✓

1� �
p

↵
4p(p+1)/(p+2)2
n

◆

|x|p � �
p

◆

+ o(1)

� ↵2p/(p+2)
n

✓

1� �
p

↵
4p(p+1)/(p+2)2
n

◆✓

� d2

dx2
+ |x|p � �

p

◆

+ o(1) , (3.5)

where the corresponding Neumann (an)harmonic oscillator is restricted to the interval

(�↵
n+1 ↵

p/(p+2)
n

,↵
n+1 ↵

p/(p+2)
n

) .

Next we need to establish the following lemma.

Lemma 3.1. Let l
k,p

= � d2

dx2 + |x|p be the Neumann operator defined on the interval

[�k, k], k > 0. Then

inf � (l
k,p

) � �
p

+ o

✓

1

kp/2

◆

as k ! 1 . (3.6)

Proof. The relation (3.6) is certainly valid if inf � (l
k,p

) � �
p

holds for all k from some

number on. Assume thus that we have inf � (l
k,p

) < �
p

for infinitely many numbers k.

Let  
k,p

be the normalized ground-state eigenfunction of l
k,p

. We fix a positive � and

check that
Z �k+1

�k

�

| 0
k,p

|2 + |x|p| 
k,p

|2
�

dx < � ,

(3.7)
Z

k

k�1

�

| 0
k,p

|2 + |x|p| 
k,p

|2
�

dx < � .

Indeed, suppose that at least one of inequalities (3.7) does not hold, then

Z

k�1

�k+1

�

| 0
k,p

|2 + |x|p| 
k,p

|2
�

dx < �
p

� � . (3.8)
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Since  
k,p

is by assumption the ground-state eigenfunction of l
k,p

, we have

inf �(l
k,p

) =

Z

k

�k

�

| 0
k,p

|2 + |x|p| 
k,p

|2
�

dx 
Z 1

�1

�

|�0|2 + |x|p|�|2
�

dx

for all k � 1 and any normalized function � from the domain of the operator, in

particular, for any � from the class C1
0 (�1, 1) such that

R 1

�1 |�|2 dx = 1. Consequently,

for large enough k there must exist points x(1)
k,p

2 (�k+1,�k+2) and x
(2)
k,p

2 (k�2, k�1)

such that

 
k,p

⇣

x
(1)
k,p

⌘

= O
⇣ 1

kp/2

⌘

and  
k,p

⇣

x
(2)
k,p

⌘

= O
⇣ 1

kp/2

⌘

as k ! 1 .

Next we construct a function '
k,p

on semi-infinite intervals (�1, x
(1)
k,p

) and (x(2)
k,p

,1) in

such a way that

g
k,p

(x) :=  
k,p

(x)�
(x

(1)
k,p,x

(2)
k,p)

(x) + '
k,p

(x)�
(�1,x

(1)
k,p)[(x

(2)
k,p,1)

(x) 2 H1(R)

and

Z

x

(1)
k,p

�1

�

|'0
k,p

|2 + |x|p|'
k,p

|2
�

dx+

Z 1

x

(2)
k,p

�

|'0
k,p

|2 + |x|p|'
k,p

|2
�

dx = O
⇣ 1

kp/2

⌘

; (3.9)

this can be always achieved, one can take, e.g., the function decreasing linearly with

respect to |x � x
(j)
k,p

| from the values  
k,p

⇣

x
(j)
k,p

⌘

, j = 1, 2, to zero. By virtue of (3.8)

and (3.9) we then have

Z

R

�

|g
k,p

|2 + |x|p|g
k,p

|2
�

dx < �
p

� � +O
✓

1

kp/2

◆

< �
p

for large enough k, however, this is in contradiction with the fact that �
p

is the ground-

state eigenvalue of l
k,p

. This proves the validity of (3.7).

Having established the validity of inequalities (3.7) we infer from them that there

are points y(1)
k,p

2 (�k,�k + 1) and y
(2)
k,p

2 (k � 1, k) such that

 
k,p

(y(j)
k,p

) = O
⇣ �

kp/2

⌘

, j = 1, 2 .

Now we repeat the argument and construct a function '̃
k,p

on the semi-infinite intervals

(�1, y
(1)
k,p

) and (y(2)
k,p

,1) in such a way that

g̃
k,p

(x) :=  
k,p

(x)�
(y

(1)
k,p,y

(2)
k,p)

(x) + '̃(x)�
(�1,y

(1)
k,p)[(y

(2)
k,p,1)

(x) 2 H1(R)

and

Z

y

(1)
k,p

�1

�

|'̃0
k,p

|2 + |x|p|'̃
k,p

|2
�

dx+

Z 1

y

(2)
k,p

�

|'̃0
k,p

|2 + |x|p|'̃
k,p

|2
�

dx = O
⇣ �

kp/2

⌘

.
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Using the last relation one finds that
Z

R
|g̃0

k,p

|2 dx+

Z

R
|x|p|g̃

k,p

|2 dx < inf � (l
k,p

) +O
⇣ �

kp/2

⌘

.

However, �
p

is the ground-state eigenvalue,
Z

R
|g̃0

k,p

|2 dx+

Z

R
|x|p|g̃

k,p

|2 dx � �
p

,

which in combination with above inequality gives

inf � (l
k,p

) > �
p

�O
⇣ �

kp/2

⌘

,

proving the claim of the lemma.

It follows from Lemma 3.1 that the right-hand side of the estimate (3.5) behaves

asymptotically as

o

✓

1

↵
p(p+1)/(p+2)
n

◆

↵2p/(p+2)
n

+ o(1)

which can be made arbitrarily small by choosing n is large enough; this is what we

needed to conclude the proof of Theorem 3.2.

Remark 3.1. We know from [5, Thm. 2.1] that the critical operator L
p

(�
p

) is bounded

from below. Estimating separately the contributions to the respective quadratic form

coming from the regions {(x, y) : |y| � 1}, {(x, y) : |x| � 1 , |y|  1}, and the central

square (�1, 1)2, we can derive a lower bound to the threshold of the negative spectrum

in terms of spectral properties of the one-dimensional operators with the symbol

� d2

dt2
+ |t|p � �

p

✓

t2

z(4p+4)/(p+2)
+ 1

◆

p/(p+2)

with z � 1. As such a bound is not simple and does not provide any significant insight,

however, we are not going to present it here.

3.3. Existence of the negative spectrum: a numerical indication

Theorem 3.2 tells us that the spectrum in the negative halfline can be discrete only,

and as we have remarked above one can find a lower estimate to its threshold, however,

neither of these results implies anything about the negative spectrum existence. Now

we are going address this question numerically and provide an evidence of the discrete

spectrum nontriviality.

We considering first the operator L2(�2) — recall that �2 = 1 — and impose

a cuto↵ at a circle of radius R circled at the origin with Dirichlet and Neumann

boundary condition, and find the corresponding first and second eigenvalue using the

Finite Element Method. The result is shown on Fig. 2. We see, in particular, that

the lowest Dirichlet eigenvalue is for R & 7 practically independent of the cuto↵ radius
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Figure 2. The eigenvalues Ej , j = 1, 2, of the critical operator with p=2 as functions
of the cuto↵ radius R. The blue and red curves correspond to the Neumann and
Dirichlet boundary, respectively.

and negative which by an elementary bracketing argument indicates that L2(1) has a

negative eigenvalue. Furthermore, the di↵erence between the Dirichlet and Neumann

eigenvalue becomes negligible for large enough R which shows that true ground-state

eigenvalue in this case is E ⇡ �0.18365. For the second eigenvalue the DN gap also

squeezes, although much slower and the Neumann eigenvalue is positive which hints

that the discrete spectrum consists of a single point. The Finite Element Method allows

us also to compute the ground-state eigenfunction as shown on Fig. 3. The result is

practically independent of the boundary condition used which is understandable since

the function has an exponential fallo↵ and the influence of the boundary is negligible

for large enough R.

By continuity, the ground-state eigenvalue of L
p

(�) exists in the vicinity of the

point p = 2; one is naturally interested what one can say about a broader range of the

parameter. To this aim we plot in the left part of Fig. 4 the lowest eigenvalue of the

cut-o↵ operator as the function of p and the coupling constant. The right part shows

the zero-energy cut of the surface in which the shaded region indicates the part of the

(�, p) plane where the lowest eigenvalue of the cut-o↵ operator is positive, as compared

to �crit = �
p

. The two curves meet at p ⇡ 20.392 corresponding to �crit ⇡ 1.563. Up to

this value, it is thus reasonable to expect that a negative eigenvalue exists. For higher
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Figure 3. The ground-state eigenfunction for p = 2, view from the top.

Figure 4. Positivity of Lp(�) as a function of � and p.

values of p the numerical accuracy is a demanding problem, we nevertheless conjecture

that at least the Dirichlet region operator, p = 1, is positive. Fig. 4 also provides an
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idea of how the spectral threshold of L
p

(�) depends on the coupling constant.

4. Subcritical case, eigenvalue estimates

Let us finally pass to the subcritical case, � < �
p

. According to [5, Thm. 2.1] the

operator L
p

(�) has in this case a purely discrete spectrum. In the mentioned paper a

crude bound on eigenvalue sums was established for small values of the coupling constant

�. We are going derive now a substantially stronger result, an estimate on eigenvalue

moments valid for any � < �
p

. More specifically, let µ1 < µ2  µ3  · · · be the set of

ordered eigenvalues of (1.1); we are looking for bounds of the quantities
P1

j=1(⇤�µ
j

)�+
for fixed numbers ⇤ and �. This is the contents of the following theorem.

Theorem 4.1. Let � < �
p

, then for any ⇤ � 0 and � � 3/2 the following trace

inequality holds,

tr (⇤� L
p

(�))�+ (4.1)

 C
p,�

(⇤+ 1)�+(p+1)/p

(�
p

� �)�+(p+1)/p

✓

�

�

�

�

ln

✓

⇤+ 1

�
p

� �

◆

�

�

�

�

+ 1

◆

+ C
p,�

C2
�

⇣

⇤+ C
2p/(p+2)
�

⌘

�+1

,

where the constant C
p,�

depends on p and � only and

C
�

= max

⇢

1

(�
p

� �)(p+2)/(p(p+1))
,

1

(�
p

� �)(p+2)2/(4p(p+1))

�

.

Proof. By the minimax principle it is su�cient to estimate L
p

from below by a self-

adjoint operator with a purely discrete spectrum for which the moments in question

can be calculated. To construct such a lower bound we again employ a bracketing,

imposing additional Neumann conditions at the rectaglesG
n

, eG
n

, andQ
n

, eQ
n

introduced

in the proof of Theorem 3.2. The sequence {↵
n

}1
n=1 is monotonically increasing by

construction; we assume again that ↵
n

! 1 and that the rectangles get asymptotically

thinner according to (3.4), i.e.

↵
2p/(p+2)
n+1 � ↵2p/(p+2)

n

! 0 as n ! 1 .

Then, as before, we obtain a direct sum of operators L(1)
n,p

, eL
(1)
n,p

, L
(2)
n,p

, eL
(2)
n,p

and L0
p

. We

are going to find the eigenvalue momentum estimates for those.

Let us start from L
(1)
n,p

, n = 1, 2, . . .. We again find a lower bound using the

operator H(1)
n

given by (3.1), the spectrum of which is the sum of two one-dimensional

operators. Since the spectrum of one-dimensional Neumann operator � d2

dy2 on the

interval (↵
n

,↵
n+1) is discrete and simple with the eigenvalues

n

⇡

2
k

2

(↵n+1�↵n)2

o1

k=0
, the

problem reduces to analysis of the operator h(1)
n,p

= � d2

dx2 + ↵p

n

|x|p � �(x2 + ↵2
n+1)

p/(p+2)

on L2(�↵
n+1,↵n+1) which is unitarily equivalent to (3.3).

To proceed we put  := �p��
2(�p+�+2) and assume that the edge coordinates satisfy

↵1 �
✓

�



◆(p+2)2/(4p(p+1))

, (4.2)

↵
2p/(p+2)
n+1 � ↵2p/(p+2)

n

<


�
. (4.3)
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Using then the fact that (a+b)q  aq+bq holds for any positive numbers a, b and q < 1,

in combination with (4.2), we arrive at the inequalities

�

↵
2p/(p+2)
n

 

✓

x2

↵
2p/(p+2)
n

+ ↵2
n+1

◆

p/(p+2)

� ↵
2p/(p+2)
n+1

!

 �

↵
2p/(p+2)
n

✓

x2

↵
2p/(p+2)
n

◆

p/(p+2)

 (|x|p + 1) .

Next, by virtue of (4.3) and above estimate, we have

h(2)
n,p

(�) = ↵2p/(p+2)
n

✓

� d2

dx2
+ |x|p � �↵

2p/(p+2)
n+1

↵
2p/(p+2)
n

� �

↵
2p/(p+2)
n

✓✓

x2

↵
2p/(p+2)
n

+ ↵2
n+1

◆

p/(p+2)

� ↵
2p/(p+2)
n+1

◆◆

� ↵2p/(p+2)
n

 

� d2

dx2
+ (1� )|x|p � � �↵

2p/(p+2)
n+1

↵
2p/(p+2)
n

!

= ↵2p/(p+2)
n

0

@� d2

dx2
+ (1� )|x|p � �

�
⇣

↵
2p/(p+2)
n+1 � ↵

2p/(p+2)
n

⌘

↵
2p/(p+2)
n

� �

1

A

� (1� )↵2p/(p+2)
n

✓

� d2

dx2
+ |x|p � �0 � 0

◆

�  , (4.4)

where 0 := 

1� , �
0 := �

1� , and the corresponding Neumann (an)harmonic oscillator is

defined on the interval

(�↵
n+1 ↵

p/(p+2)
n

,↵
n+1 ↵

p/(p+2)
n

) . (4.5)

It follows from Lemma 3.1 that if the interval (4.5) is large enough, which can be achieved

by choosing

↵2↵
p/(p+2)
1 > ↵

2(p+1)/(p+2)
1 > K0,p (4.6)

with a large enough K0,p, we have the estimate

h(2)
n,p

� (1� )↵2p/(p+2)
n

 

�
p

� 1

↵
p/2
n+1↵

p

2
/(2(p+2))

n

� �0 � 0

!

�  . (4.7)

Our aim is now to show that by choosing a suitable sequence {↵
n

}1
n=1 we can achieve

that for any n � 1 the following estimate holds,

inf �
�

h(2)
n,p

�

� (1� )↵2p/(p+2)
n

(�
p

� �)

2
�  . (4.8)

This is ensured, for instance, if

↵1 �
✓

2(1� )

�
p

� �� (�
p

+ �+ 2)

◆(p+2)/(p(p+1))

. (4.9)
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Combining (4.2), (4.6) and (4.9) we thus choose

↵1 = 1 (4.10)

+

"

max

(

K
(p+2)/(2(p+1))
0,p ,

✓

2(1� )

�
p

� �� (�
p

+ �+ 2)

◆(p+2)/(p(p+1))

,

✓

�



◆(p+2)2/(4p(p+1))
)#

,

where [·] means the entire part. Let us now return to the eigenvalue momentum

estimates. One has

tr
�

⇤� h(2)
n,p

�

�

+
= inf �

�

h(2)
n,p

� ⇤
�

�

� + tr0
�

h(2)
n,p

� ⇤
�

�

� , (4.11)

where tr0 the summation which yields the corresponding eigenvalue moment in which

the ground state is not taken into account. Using next inequalities (4.4), (4.8), in

combination with version of Lieb-Thiring inequality suitable for our purpose [8]), we

infer from (4.11) that for any positive ⇤, � � 3/2 and n � 1 one has

tr
�

⇤� h(2)
n,p

�

�

+
 (⇤+ )�

+ (1� )� ↵2p�/(p+2)
n

Lcl
�,1

Z

↵n+1↵
2p/(p+2)
n

�↵n+1↵
2p/(p+2)
n

 

⇤+ 

(1� )↵2p/(p+2)
n

� |x|p + �0 + 0

!

�+1/2

+

dx

 (⇤+ )� + (1� )� ↵2p�/(p+2)
n

Lcl
�,1

Z

R

 

⇤+ 

(1� )↵2p/(p+2)
n

� |x|p + �0 + 0

!

�+1/2

+

dx

 (⇤+ )� + 2↵2p�/(p+2)
n

Lcl
�,1

 

⇤+ 

(1� )↵2p/(p+2)
n

+ �0 + 0

!

�+(p+2)/(2p)

. (4.12)

We further restrict the choice of the sequence {↵
n

}1
n=1 demanding

↵
n+1 � ↵

n

< ⇡
�

⇤� inf �(h(2)
n,p

)(�)
��1/2

+
; (4.13)

this allows us to write the following estimate

tr

 

⇤�
1
M

n=1

L(1)
n,p

!

�

+

 tr

 

⇤�
1
M

n=1

H(1)
n

!

�

+

(4.14)


1
X

n=1

1
X

k=0

tr

✓

⇤� ⇡2k2

(↵
n+1 � ↵

n

)2
� h(2)

n,p

◆

�

+


1
X

n=1

tr
�

⇤� h(2)
n,p

�

�

+
.

Using next the fact that inf �
⇣

L
(1)
n,p

⌘

� inf �
⇣

h
(2)
n,p

⌘

in combination with estimates (4.8),
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(4.12), and (4.14) one gets

tr

 

⇤�
1
M

n=1

L(1)
n,p

!

�

+


X

(�p��)↵2p/(p+2)
n <

2(⇤+)
1�

(⇤+ )� (4.15)

+ 2Lcl
�,1

X

(�p��)↵2p/(p+2)
n <

2(⇤+)
1�

↵2p�/(p+2)
n

✓

⇤+ 

(1� )↵2p/(p+2)
n

+ �0 + 0
◆

�+(p+2)/(2p)


X

(�p��)↵2p/(p+2)
n <

2(⇤+)
1�

(⇤+ )�

+
2Lcl

�,1

(1� )�+(p+2)/(2p)

X

(�p��)↵2p/(p+2)
n <

2(⇤+)
1�

↵2p�/(p+2)
n

✓

⇤+ 

↵
2p/(p+2)
n

+ �+ 

◆

�+(p+2)/(2p)

 (⇤+ )�#

(

↵
n

<

✓

2(⇤+ )

(1� )(�
p

� �)

◆(p+2)/(2p)
)

+
2Lcl

�,1 (�+ 1 + )�+(p+2)/(2p)

(1� )�+(p+2)/(2p)
(⇤+ )�+(p+2)/(2p)

X

↵n<(⇤+)(p+2)/(2p)

1

↵
n

+
2Lcl

�,1 (�+ 1 + )�+(p+2)/(2p)

(1� )�+(p+2)/(2p)

X

(⇤+)(p+2)/(2p)
<↵n<

1

(�p��)(p+2)/(2p) (
2(⇤+)
1� )

(p+2)/(2p)

↵2p�/(p+2)
n

,

where #{·} means the cardinality of the corresponding set.

Using the same technique one obtains estimates for operators eL(1)
n,p

, L
(2)
n,p

, eL
(2)
n,p

analogous to (4.15). Finally, the operator L0
p

can be estimated from below by

H0,p = � @2

@x2
� @2

@y2
� 2p/(p+2)�↵

2p/(p+2)
1 on G0

with Neumann conditions at the boundary @G0. The spectrum of H0,p is

⇢

⇡2k2

4↵2
1

+
⇡2m2

4↵2
1

� 2p/(p+2)�↵
2p/(p+2)
1

�1

k,m=0

,

and therefore

tr (⇤�H0,p)
�

+ 
1
X

k,m=0

✓

⇤+ 2p/(p+2)�↵
2p/(p+2)
1 � ⇡2k2

4↵2
1

� ⇡2m2

4↵2
1

◆

�

+


⇣

⇤+ 2p/(p+2)�↵
2p/(p+2)
1

⌘

�

⇥
2↵1

q
⇤+2p/(p+2)

�↵

2p/(p+2)
1 /⇡

X

k=0

✓

2↵1

⇡

✓

⇤+ 2p/(p+2)�↵
2p/(p+2)
1 � ⇡2k2

4↵2
1

◆1/2

+ 1

◆


✓

2↵1

⇡

⇣

⇤+ 2p/(p+2)�↵
2p/(p+2)
1

⌘1/2

+ 1

◆2
⇣

⇤+ 2p/(p+2)�↵
2p/(p+2)
1

⌘

�

. (4.16)
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Consider now ↵1 is defined in (4.10) and to any ⌫ = ↵1,↵1+1,↵1+2, . . . define a finite

sequence of numbers by �
k

(⌫) = ⌫ + k

[⌫p/(p+2) ln ⌫]
, k = 0, 1, . . . ,

⇥

⌫p/(p+2) ln ⌫
⇤

� 1. This

allows us to construct a sequence {↵
n

}1
n=1 of the rectangle edge coordinates using the

following prescription: the first term is given by (4.10) and the further ones are ↵2 =

�1(↵1), . . . ,↵h
↵

p/(p+2)
1 ln↵1

i = �h
↵

p/(p+2)
1 (↵1) ln↵1

i
�1
, ↵h

↵

p/(p+2)
1 ln↵1

i
+1

= �0(↵1+1), . . . , etc.,

where [·] as usual denotes the entire part. With this choice of {↵
n

}1
n=1, one can check

that the right-hand side of (4.15) is not larger than

C
p,�

✓

(⇤+ )�

(�
p

� �)�
max

⇢

0,
(⇤+ )(p+1)/p

(�
p

� �)(p+1)/p
ln

✓

2(⇤+ )

(1� )(�
p

� �)

◆�

+(⇤+ )�+1/2+1/p max
n

0, (⇤+ )1/2 ln (⇤+ )
o

◆

(4.17)

with a constant depending on p and � only. On the other hand, the right-hand side of

(4.16) is not larger than

C̃
p,�

↵2
1

⇣

⇤+ ↵
2p/(p+2)
1

⌘

�+1

with another constant C̃
p,�

. In this way the theorem is established.
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the Czech Science Foundation (GAČR) within the project 14-06818S. D.B. acknowledges

the support of the University of Ostrava and the project “Support of Research in the

Moravian-Silesian Region 2013”. The research of A.K. is supported by the German

Research Foundation through CRC 1173 “Wave phenomena: analysis and numerics”.

References

[1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations.
Princeton University Press, Princeton 1982.

[2] D. Barseghyan, P. Exner, A regular version of Smilansky model, J. Math. Phys. 55 (2014), 042194
(13pp)

[3] B. Camus, N. Rautenberg, Higher dimensional nonclassical eigenvalue asymptotics, J. Math. Phys.

56 (2015), 021506 (14 pp).
[4] W.D. Evans. M. Solomyak, Smilansky’s model of irreversible quantum graphs: I. The absolutely

continuous spectrum, II. The point spectrum, J. Phys. A: Math. Gen. 38 (2005), 4611–4627,
7661–7675.

[5] P. Exner, D. Barseghyan, Spectral estimates for a class of Schrödinger operators with infinite phase
space and potential unbounded from below, J. Phys. A: Math. Theor. 45 (2012), 075204 (14pp).

[6] L. Geisinger, T. Weidl, Sharp spectral estimates in domains of infinite volume, Rev. Math. Phys.

23 (2011), 615–641.
[7] I. Guarneri, Irreversible behaviour and collapse of wave packets in a quantum system with point

interactions, J. Phys. A: Math. Theor. 44 (2011), 485304
[8] O. Mickelin, Lieb-Thirring inequalities for generalized magnetic fields, Bull. Math. Sci. (2015), to

appear; doi: 10.1007/s13373-015-0067-9.



Schrödinger operators exhibiting a spectral transition 21

[9] S. Naboko, M. Solomyak, On the absolutely continuous spectrum in a model of an irreversible
quantum graph Proc. Lond. Math. Soc. 92 (2006), 251–272.

[10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis. Self-

Adjointness, Academic Press, New York 1975
[11] B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum,

Ann. Phys. 146 (1983), 209–220.
[12] U. Smilansky, Irreversible quantum graphs, Waves Random Media 14 (2004), 143–153.
[13] M. Solomyak, On a di↵erential operator appearing in the theory of irreversible quantum graphs,

Waves Random Media 14 (2004), 173–185.


