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EXISTENCE OF DISPERSION MANAGEMENT SOLITONS FOR

GENERAL NONLINEARITIES

MI-RAN CHOI, DIRK HUNDERTMARK, YOUNG-RAN LEE

Abstract. We give a proof of existence of solitary solutions of the dispersion management
equation for positive and zero average dispersion for a large class of nonlinearities. These
solutions are found as minimizers of nonlinear and nonlocal variational problems which are
invariant under a large non compact group. Our proof of existence of minimizers is rather
direct and avoids the use of Lions’ concentration compactness argument. The existence of
dispersion managed solitons is shown under very mild conditions on the dispersion profile
and the nonlinear polarization of optical active medium, which cover all physically relevant
cases for the dispersion profile and a large class of nonlinear polarizations.
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1. Introduction

1.1. The variational problems. We show the existence of minimizers for a family of
nonlocal and nonlinear variational problems

Edav
� := inf

�
H(f) : kfk2 = �

 
, (1.1)

where � > 0, the average dispersion dav � 0, kfk2 =
R
R |f |2 dx, the Hamiltonian takes the

form

H(f) :=
dav
2

kf 0k2 �N(f), (1.2)

and the nonlocal nonlinearity is given by

N(f) :=

ZZ

R2
V (|Trf(x)|)dx (r)dr. (1.3)
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2 M.-R. CHOI, D. HUNDERTMARK, Y.-R. LEE

Here V : [0,1) ! R is a suitable nonlinear potential and Tr = eir@
2
x is the solution

operator of the free Schrödinger equation in one dimension. The function  is the density
of a probability measure and is assumed to be in suitable Lp-spaces.

If dav > 0 then, strictly speaking, the infimum in (1.1) is taken over all f with additionally
f 2 H1(R), the usual Sobolev space of square integrable functions whose distributional
derivative f 0 is also square integrable. One can recover our formulation (1.1) by setting
kf 0k := 1 if f 2 L2 \H1.

Our interest in these variational problems stems from the fact that the minimizers of
(1.1) are the building blocks for (quasi-)periodic breather type solutions, the so-called
dispersion management solitons, of the dispersion managed nonlinear Schrödinger equation.
The dispersion management solitons have attracted a lot of interest in the development of
ultrafast longhaul optical data transmission fibers. So far, it has mainly been studied for
a Kerr-type nonlinearity, i.e., the special case where V (a) = a4. The purpose of this work
is to extend our previous existence results from [11] to a large class of nonlinearities V
and also to positive average dispersion. We address the connection of the above variational
problems with nonlinear optics later in Section 1.2.

The standard approach to show the existence of a minimizer of (1.1) is to identify it as
the strong limit of a suitable minimizing sequence, that is, a sequence (fn)n2N ⇢ L2(R)
with kfnk2 = � and Edav

� = limH(fn). The catch is that the above variational problem is
invariant under translations of L2(R) if dav > 0 and under translations and boosts, that
is, shifts in Fourier space, if dav = 0. This invariance under a large non-compact group
of transformations leads to a loss of compactness since minimizing sequences can easily
converge weakly to zero. The usual strategy to compensate for such a loss of compactness is
Lion’s concentration compactness method. In a previous paper, [11], we used an alternative
approach, which for the special nonlinearity V (a) = a4 and vanishing average dispersion
directly showed that modulo the natural symmetries of the problem, minimizing sequences
stay compact. The tools were very much tailored to the special type of Kerr nonlinearity.
This paper extends our approach from [11] to a much more general setting. This extension
is by no means straightforward, see Section 2 and Remark 1.3.

Our main assumptions on the nonlinear potential V : R+ ! R+ are

A1) V (a) = q(a)a for a � 0 with q : R+ ! R+ continuous on R+, di↵erentiable on (0,1),
and q(0) = 0. Moreover, there exist �1, �2 2 R with 2  �1  �2  6 such that

q0(a) . a�1�2 + a�2�2

for all a > 0.
A2) There exists �0 > 2 such that for all ⇢ � 1 and a > 0

V (⇢a) � ⇢�0V (a). (1.4)

A3) If dav > 0, there exist " > 0 and 2   < 6 such that

V (a) & a for all 0 < a  ". (1.5)

If dav = 0, there exists " > 0 such thatV (a) > 0 for all 0 < a < ".

Above, we use the convention f . g, if there exists a finite constant C > 0 such that
f  Cg. Our existence results are

Theorem 1.1 (Existence for positive average dispersion). Assume dav > 0, 2  �1  �2 
6, V obeys the assumptions A1) through A3), and  2 L

4
6��2 has compact support. Then

for any � > 0, there exists a minimizer for the variational problem (1.1). This minimizer
is also a weak solution of the dispersion management equation (1.13) for some Lagrange
multiplier !.
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We have a similar existence result in the case of dav = 0 where we need only slightly
stronger Lp assumptions on the density  .

Theorem 1.2 (Existence for zero average dispersion). Assume dav = 0, 2 < �1  �2 < 6,
V obeys the assumptions A1) through A3), and the density  has compact support and

 2 L
4

6��2
+�

for arbitrarily small � > 0. Then for any � > 0, there exists a minimizer
for the variational problem (1.1). This minimizer is also a weak solution of the dispersion
management equation (1.13) for some Lagrange multiplier !.

Remark 1.3. These two theorems extend our previous existence result in [11] to a large
class of nonlinearities. As we will see below in Section 1.2, in particular, Lemma 1.4, for the
application to dispersion management, it is quite natural to assume that  has a compact
support. Hence even in the case of a Kerr nonlinearity, where V (a) ⇠ a4, i.e., �1 = �2 = 4,
the above two theorems strongly improve our result in [11] in terms of scales of Lp spaces:
In [11], we needed that  2 L4, whereas now with �2 = 4, one sees that  2 L2 is enough
for positive average dispersion and for vanishing average dispersion we only need L2+� for
arbitrarily small � > 0.

For the Kerr nonlinearity, the smoothness and decay of the minimizers has been studied
in [3] and [10] for the simplest case of an alternating dispersion profile given by d0(t) =
1[0,1) � 1[1,2) and extended to more general dispersion profiles in [9]. In the more general
setting discussed in this paper the smoothness and decay of solitary solutions is an open
problem.

The strategy of the proofs of our Existence Theorems 1.1 and 1.2 is as follows: Due to
the bound (2.18) from Lemma 2.13, the main building blocks, for which one has to develop
suitable space-time bounds, turn out to be of the form given in Definition 2.4. We develop
the necessary estimates for this in Section 2.1 and their consequences for the nonlinear and
nonlocal potential in Section 2.2. Strict subadditivity of the energy is done in Section 3
and the necessary tightness bound, modulo the symmetries of the problem, together with
the proofs of Theorems 1.1 and 1.2, are established in Section 4. Our proofs for strictly
positive average dispersion rely on some very useful space-time bounds for coherent states,
see Lemma B.3, which are new and proven in Appendix B

1.2. The connection with nonlinear optics. Our main motivation for studying (1.1)
comes from the fact that the minimizer of the variational problem is related to breather-type
solutions of the dispersion managed nonlinear Schrödinger equation

i@tu = �d(t)@2xu� g(|u|)u, (1.6)

where the dispersion d(t) is parametrically modulated and P (u) = g(|u|)u is the nonlinear
interaction due to the polarizability of the glass fiber cable. In nonlinear optics (1.6)
describes the evolution of a pulse in a frame moving with the group velocity of the signal
through a glass fiber cable, see [20]. As a warning : with our choice of notation the variable
t denotes the position along the glass fiber cable and x the (retarded) time. Hence d(t) is
not varying in time but denotes indeed a dispersion varying along the optical cable. For
physical reasons it would not be a strong restriction to assume that d is piecewise constant,
but we will not make this assumption in this paper. By symmetry, one assumes that P
is odd and P (0) = 0 can always be enforced by adding a constant term. Most often one
makes a Taylor series expansion, keeping just the lowest order nontrivial term leads to
P (u) ' |u|2u, the Kerr nonlinearity, but we will not make this approximation.

The dispersion management idea, i.e., the possibility to periodically manage the disper-
sion by putting alternating sections with positive and negative dispersion together in an
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optical glass-fiber cable to compensate for dispersion of the signal was predicted by Lin,
Kogelnik, and Cohen already in 1980, see [15], and then implemented by Chraplyvy and
Tkach for which they received the Marconi prize in 2009. See the reviews [21, 22] and the
references cited in [11] for a discussion of the dispersion management technique.

The periodic modulation of the dispersion can be modeled by the ansatz

d(t) = "�1d0(t/") + dav. (1.7)

Here dav � 0 is the average component and d0 its mean zero part which we assume to have
period L. For small " the equation (1.7) describes a fast strongly varying dispersion which
corresponds to the regime of strong dispersion management.

A technical complication is the fact that (1.6) is a non-autonomous equation. We seek
to rewrite (1.6) into a more convenient form in order to find breather type solutions. Let
D(t) =

R t
0 d0(r) dr and note that as long as d0 is locally integrable and has period L with

mean zero, D is also periodic with period L. Furthermore, Tr = eir@
2
x is a unitary operator

and thus the unitary family t 7! TD(t/") is periodic with period "L. Making the ansatz
u(t, x) = (TD(t/")v(t, ·))(x) in (1.6), a short calculation shows

i@tv = �dav@
2
xv � T�1

D(t/")

⇥
P (TD(t/")v)

⇤
(1.8)

which is equivalent to (1.6) and still a non-autonomous equation.
For small ", that is, in the regime of strong dispersion management, TD(t/") is fast oscil-

lating in the variable t, hence the solution v is expected to evolve on two widely separated
time-scales, a slowly evolving part vslow and a fast, oscillating part with a small amplitude.
Analogously to Kapitza’s treatment of the unstable pendulum which is stabilized by fast
oscillations of the pivot, see [13], the e↵ective equation for the slow part vslow was derived
by Gabitov and Turitsyn [5, 6] for the special case of a Kerr nonlinearity. It is given by
integrating the fast oscillating term containing TD(t/") over one period in t,

i@tvslow = �dav@
2
xvslow � 1

"L

Z "L

0
T�1
D(r/")

⇥
P (TD(r/")v)

⇤
dr

= �dav@
2
xvslow � 1

L

Z L

0
T�1
D(r)

⇥
P (TD(r)v)

⇤
dr.

(1.9)

This averaging procedure leading to (1.9) was rigorously justified in [23] for suitable dis-
persion profiles d0 in the case of a Kerr nonlinearity. The averaged equation is autonomous
and stationary solutions of (1.9) can be found by making the ansatz

vslow(t, x) = e�i!tf(x). (1.10)

Before doing so, it turns out to be advantageous to rewrite the nonlocal nonlinear term
in (1.9): Define a measure µ(B) by setting µ(B) := 1

L

R L
0 1B(D(r)) dr for any Lebesgue

measurable set B ⇢ R. Since µ(B) � 0 and µ(R) = 1
L

R L
0 1R(D(r)) dr = 1

L

R L
0 dr = 1, one

sees that µ is a probability measure. Since µ is the image measure of normalized Lebesgue
measure on [0, L] under D, we can rewrite (1.9) as

i@tvslow = �dav@
2
xvslow �

Z

R
T�1
r

⇥
P (Trv)

⇤
µ(dr). (1.11)

The simplest case of dispersion management, L = 2, d0 = 1 on [0, 1) and d0 = �1 on [1, 2),
i.e., d0 = 1[0,1) � 1[1,2), which is the case most studied in the literature, corresponds to the
measure µ having density 1[0,1], the uniform distribution on [0, 1]. For the general case, we
gather some basic properties of the probability measure µ in the following Lemma. For its
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proof, which for some parts uses the co-area formula from geometric measure theory [1, 4],
see [11].

Lemma 1.4 (Lemma 1.4 in [11]). Assume that the dispersion profile d0 is locally integrable.
Then (i) the probability measure µ has compact support.
(ii) If the set {d0 = 0} has zero Lebesgue measure, then µ is absolutely continuous with

respect to Lebesgue measure.
(iii) If furthermore d0 changes sign finitely many times on [0, L] and is bounded away from
zero then µ has a bounded density  .
(iv) Moreover, if d0 changes sign finitely many times on [0, L] and for some p > 1

Z L

0
|d0(s)|1�p ds < 1,

then µ has a density  2 Lp. More precisely, we have the bound

k kLp .
⇣Z L

0
|d0(s)|1�p ds

⌘ 1
p

(1.12)

where the implicit constant depends only on the number of sign changes of d0 and the period
L.

As explained in [11], the bound (1.12) is quite natural and sharp. Plugging (1.10) into
(1.11), we see that f should solve

!f = �davf
00 �

Z

R
T�1
r

⇥
P (Trf)

⇤
µ(dr), (1.13)

which is a nonlocal nonlinear eigenvalue equation for f . Testing (1.13) with suitable test
functions g one gets the weak formulation

!hg, fi = davhg0, f 0i � hg,
Z

R
T�1
r

⇥
P (Trf)

⇤
µ(dr)i

where hh1, h2i is the scalar product on L2(R) given by
R
R h1(x)h2(x) dx. Exchanging inte-

grals, a formal calculation, using the unicity of Tr, yields

hg,
Z

R
T�1
r

⇥
P (Trf)

⇤
µ(dr)i =

Z

R
hTrg, P (Trf)iµ(dr)

and one arrives at the weak formulation of (1.13) in the form

!hg, fi = davhg0, f 0i �
Z

R
hTrg, P (Trf)iµ(dr), (1.14)

supposed to hold for any g in the Sobolev space H1(R).
Using the formula from Lemma 4.6 for the derivative of the nonlocal nonlinearity N(f)

from (1.3), one sees that (1.14) is the weak form of the Euler-Lagrange equation associated
to the energy H(f) given in (1.2), as long as V 0(|Trf |)sgn(Trf) = P (Trf). This is the case
if

V 0(a) = g(a)a = P (a) for all a > 0,

i.e., V is the antiderivative of the polarizability P ,

V (a) :=

Z a

0
P (s) ds.

In this case, any minimizer of the associated constrained minimization problem (1.1) will
be, up to some minor technicalities, a weak solution of (1.13) for some choice of Lagrange
multiplier !, as long as the variational problem (1.1) admits minimizers. In particular,
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combining Theorems 1.1 and 1.2 with Lemma 1.4 one sees that (1.13) has a non trivial weak
solution under the condition that the assumptions A1)–A3) hold for the antiderivative of
P and that the dispersion profile d0 changes signs finitely many times and obeys

d�1
0 2 L

4
6��2

�1
= L

�2�2
6��2 (1.15)

for positive average dispersion dav > 0 and

d�1
0 2 L

�2�2
6��2

+�
(1.16)

for arbitrarily small � > 0 in the singular limit case of zero average dispersion. This allows
for a large class of dispersion profiles d0, covering all physically relevant cases.

2. Nonlinear estimates

2.1. Fractional Bilinear Estimates. In this paper, the nonlocal nonlinearity is not a
pure power, thus the multilinear estimates from [11] cannot be used anymore. First, we
gather the estimates which will be used in the proof of fat–tail propositions, Propositions 4.1
and 4.2, which are crucial for the existence proof in this paper. The core of the argument
will be suitable splitting bounds on the nonlocal nonlinearity N(f) from (1.3) given in
Proposition 2.15. For this, inspired by the splitting Lemma 2.13 for V , one needs certain
fractional linear bounds on the building blocks from Definition 2.4.
Since Tr = eir@

2
x is the solution operator for the free Schrödinger equation in dimension one,

we can express Trf for any nice f , for example, in the Schwartz class, as follows:

Trf(x) =
1p
4⇡ir

Z

R
ei

|x�y|2
4r f(y)dy (2.1)

=
1p
2⇡

Z

R
eix⌘e�ir⌘2 f̂(⌘)d⌘, (2.2)

where f̂ is the Fourier transform of f given by

f̂(⌘) =
1p
2⇡

Z

R
e�ix⌘f(x)dx.

As a first step, we note that, for  in suitable Lp spaces, certain space time norms of
Trf are bounded.

Lemma 2.1. Let f 2 L2(R), 2  q  6 and  2 L
4

6�q (R). Then

kTrfkqLq(R2,dx dr) . k k
L

4
6�q (R)

kfkq. (2.3)

Proof. Interpolating between 2 and 6 using the Hölder inequality, we get
ZZ

R2
|Trf |qdx dr =

ZZ

R2

⇣
|Trf |

2(6�q)
4  

⌘⇣
|Trf |

6(q�2)
4

⌘
dxdr


✓ZZ

R2
|Trf |2 

4
6�q dxdr

◆ 6�q

4
✓ZZ

R2
|Trf |6 dxdr

◆ q�2
4

.

Since Tr is unitary on L2(R),
ZZ

R2
|Trf |2 

4
6�q dxdr = kfk2

Z

R
 

4
6�q dr

and the one-dimensional Strichartz inequality [8, 12, 19] gives
ZZ

R2
|Trf |6 dxdr  S6

1kfk6
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and so (2.3) follows.

To take advantage of the fact that an interaction term containing the product of two
terms of the form Trf1 and Trf2 is typically small if the functions f̂1 and f̂2 have separated
supports, we need

Lemma 2.2 (Fractional bilinear estimate). Let 2  p < 3 and f1, f2 2 L2(R) whose

Fourier transforms have separated supports, say s = dist(supp f̂1, supp f̂2) > 0. Then

kTrf1Trf2kLp(R2, dxdr) .
1

s(3�p)/p
kf1kkf2k. (2.4)

Remark 2.3. The bound (2.4) is a well-known bilinear estimate for p = 2, see [2]. For
readers’ convenience, we give a proof of (2.4) for any 2  p < 3. As the proof shows, (2.4)
holds also for p = 3, without any support condition on f̂1 and f̂2.

Proof. Using (2.2), we get

Trf1(x)Trf2(x) =
1

2⇡

ZZ

R2
eix(⌘1+⌘2)�ir(⌘21+⌘

2
2)f̂1(⌘1)f̂2(⌘2)d⌘1d⌘2.

Doing the change of variables a = ⌘1+⌘2, b = ⌘21+⌘
2
2, with Jacobian J = @(a,b)

@(⌘1,⌘2)
= 2(⌘2�⌘1)

and introducing

F (a, b) :=
1

|J | f̂1(⌘1(a, b))f̂2(⌘2(a, b))1[0,1)(b)

one sees

Trf1(x)Trf2(x) =
1

2⇡

ZZ

R2
eixa�irbF (a, b) dadb,

that is, up to sign in one of the variables, Trf1(x)Trf2(x) is the space-time Fourier trans-
form of F . Since p � 2, one can apply the Hausdor↵-Young inequality, which reduces to
Plancherel’s identity for p = 2, to get

kTrf1Trf2kLp(R⇥R,dxdr)  kFkLp

0 (R2,dadb)

with p0 the dual index to p. Undoing the above change of variables, one sees

kFkLp

0 (R2,dadb) = 2�1/p

✓ZZ

R2

1

|⌘2 � ⌘1|p0�1
|f̂1(⌘1)f̂2(⌘2)|p

0
d⌘1d⌘2

◆1/p0

. (2.5)

If p = p0 = 2, we use |⌘2 � ⌘1| � s on the support of the product f̂1f̂2 to get

kFkL2(R2,dadb) .
1p
s
kf̂1kkf̂1k

which concludes the proof for p = 2, since the Fourier transform is an isometry on L2.
Since 3/2 < p0 < 2, one can use the Hardy-Littlewood-Sobolev inequality to see

(2.5)  1

s2�3/p0

 ZZ

R2

|f̂1(⌘1)|p
0 |f̂2(⌘2)|p

0

|⌘2 � ⌘1|2�p0
d⌘1d⌘2

! 1
p

0

. 1

s(3�p)/p
kf̂1kkf̂2k

which yields (2.4) for 2 < p < 3.

The following will be the building blocks for our bounds on the nonlocal nonlinear po-
tential, see (2.18).
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Definition 2.4. For any � � 2, define

M�
 (f1, f2) :=

ZZ

R2
|Trf1||Trf2|(|Trf1|+ |Trf2|)��2 dx dr. (2.6)

Remark 2.5. At first M�
 (f1, f2) is defined only when f1, f2 are nice Schwartz functions.

We will shortly see that for  in certain Lp spaces, M�
 (f1, f2) can be extended to all

f1, f2 2 L2 by density of Schwartz functions in L2.

Proposition 2.6. Let 2  �  6 and  2 L
4

6�� . Then

M�
 (f1, f2) . kf1kkf2k(kf1k+ kf2k)��2 (2.7)

where the implicit constant depends only on the L
4

6�� norm of  .

Proof. Using Hölder’s inequality for 3 functions with exponents �, �, and �/(��2) one has

M�
 (f1, f2)  kTrf1kL�(R2,dx dr)kTrf2kL�(R2,dx dr)k|Trf1|+ |Trf2|k��2

L�(R2,dx dr)

Applying the triangle inequality and Lemma 2.1 completes the proof.

Proposition 2.7. Let s = dist(supp f̂1, supp f̂2) > 0.
If 2 < � < 6, ⌧ > 1 and  2 L�(�,⌧), then

M�
 (f1, f2) . s�↵(�,⌧)kf1kkf2k(kf1k+ kf2k)��2, (2.8)

where ↵(�, ⌧) := min{��2
6⌧ , 6��2⌧ } and �(�, ⌧) := 4

6���2↵(�,⌧) .

Remark 2.8. Note that �(�, ⌧) is only slightly bigger than 4
6�� since ↵(�, ⌧) > 0 tends to

zero as ⌧ ! 1 and that it is increasing in �. So we loose only an epsilon, by choosing ⌧
large enough, with respect to the bound from Proposition 2.6.

Proof. Let 0 < ↵ < 1 to be chosen later and write

M�
 (f1, f2) =

ZZ

R2

�
(|Trf1||Trf2|)1�2↵ 

 
{|Trf1||Trf2|}2↵

�
(|Trf1|+ |Trf2|)��2

 
dxdr.

Now use Hölder’s inequality for 3 functions with exponents p1,
1
↵ , and,

6
��2 , where

1

p1
= 1� ↵� � � 2

6
=

8� � � 6↵

6

to see that

M�
 (f1, f2) 

✓ZZ

R2
|Trf1Trf2|

6(1�2↵)
8���6↵ 

6
8���6↵ dxdr

◆ 8���6↵
6

kTrf1Trf2k2↵L2(R2,dxdr)k|Trf1|+ |Trf2|k��2
L6(R2,dxdr).

Up to a constant, the third factor is bounded by (kf1k + kf2k)��2, using the triangle and
Strichartz inequalities. Using Lemma 2.2, the second factor is bounded by

kTrf1Trf2k2↵L2(R2,dxdr) . s�↵kf1k2↵kf2k2↵.

For the first factor, we note that with the help of the Cauchy-Schwarz inequality one gets
ZZ

R2
|Trf1Trf2|

6(1�2↵)
8���6↵ 

6
8���6↵ dxdr


✓ZZ

R2
|Trf1|

12(1�2↵)
8���6↵  

6
8���6↵ dxdr

◆1/2✓ZZ

R2
|Trf2|

12(1�2↵)
8���6↵  

6
8���6↵ dxdr

◆1/2

.
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In order to use Lemma 2.1 for this, we need to have 2  q  6 with q = 12(1�2↵)
8���6↵ . This

is equivalent to 6↵ < 8� �, 6↵  � � 2 and 2↵  6� �.
Moreover, we need

 
6

8���6↵ 2 L
4

6�q = L
4(8���6↵)
6(6���2↵)

hence

 2 L
4

6���2↵ .

Now we come to the choice of ↵: In order to guarantee that 0 < ↵ < 1, 6↵ < 8 � �,
6↵  �� 2, and 2↵  6� �, we take any ⌧ > 1 and put ↵ := ↵(�, ⌧). Then one checks that
↵ obeys the above bounds and so this finishes the proof.

Lemma 2.9 (Duality). Define

e (s) := 1

(2|s|)
6��

2

 
�
� 1

4s

�
(2.9)

for s 6= 0. Then
M�
 (f1, f2) = M�

e 
(f̌1, f̌2) (2.10)

where f̌ is the inverse Fourier transform of f .

Remark 2.10. Of course, the definition of e depends on �, but we drop this dependence in
our notation, for simplicity. For 2  �  6, Proposition 2.6 yields a natural a priori bound

on M�
 (f1, f2) which depends on the L

4
6�� norm of  . It is an easy exercise to check that

k k
L

4
6��

= k e k
L

4
6��

, so Proposition 2.6 and the duality expressed in (2.10) are consistent.

Proof. Without loss of generality, assume that f1 and f2 are Schwartz functions for the
calculations below. Defining uj(r, x) := (Trfj)(x) and ǔj(r, x) := (Trf̌j)(x), j = 1, 2, using
the explicit form of the free time evolution (2.1) for uj(r, x), and expanding the square, one
sees

uj(r, x) =
1p
2ir

ei
x

2

4r ǔj

⇣�1

4r
,
�x

2r

⌘

which is often called pseudo-conformal invariance of the free Schrödinger evolution. Then

M�
 (f1, f2)

=

ZZ

R2

���ǔ1
⇣
�1
4r ,

�x
2r

⌘���
���ǔ2
⇣
�1
4r ,

�x
2r

⌘���
⇣���ǔ1

⇣
�1
4r ,

�x
2r

⌘���+
���ǔ2
⇣
�1
4r ,

�x
2r

⌘���
⌘��2

(2|r|)�/2
dx (r)dr. (2.11)

Doing first the change of variables x = �2ry, dx = 2|r|dy and then r = �1/(4s) with
dr = (2|s|)�2 ds, yields

(2.11) =

ZZ

R2

|ǔ1(s, y)| |ǔ2(s, y)| (|ǔ1(s, y)|+ |ǔ2(s, y)|)��2

(2|s|)
6��

2

dy (� 1

4s
)ds

which completes the proof.

This duality is a convenient tool in the proof of the analogue of Proposition 2.7 when
the functions f1 and f2 have separated supports.

Proposition 2.11. Let s = dist(supp f1, supp f2) > 0.
If 2 < � < 6, ⌧ > 1 and  2 L�(�,⌧)(|r|↵(�,⌧)�(�,⌧)dr), then

M�
 (f1, f2) . s�↵(�,⌧)kf1kkf2k(kf1k+ kf2k)��2. (2.12)



10 M.-R. CHOI, D. HUNDERTMARK, Y.-R. LEE

Proof. Given the duality expressed in Lemma 2.9 this is now simple: We have

M�
 (f1, f2) = M�

e 
(f̌1, f̌2)

and note that the assumption on the separation of the supports of f1 and f2 means, of course,
that f̌1 and f̌2 have separated Fourier support, so Proposition 2.7 applies to M�

e 
(f̌1, f̌2) as

long as e is in the correct Lp space. A short calculation shows

k e kpLp(dr) =

Z

R
(2|r|)

p(6��)
2 �2| (r)|p dr

and (2.12) follows by choosing p = �(�, ⌧).

To handle the cases with � = 2 or � = 6 for positive average dispersion, we need a
fractional bilinear estimate for M�

 in H1 as follows.

Proposition 2.12 (H1 bilinear estimate). Let 2  �  6 and  2 L
4

6�� (R) with compact
support. Then for any f1, f2 2 H1(R) with s = dist(supp f1, supp f2) > 0,

M�
 (f1, f2) . s�1kf1kH1kf2kH1(kf1k+ kf2k)��2, (2.13)

where the implicit constant depends only on the support and the L
4

6�� norm of  .

Proof. Using Hölder’s inequality, one has

M�
 (f1, f2)  kTrf1Trf2kL �

2 (R2,dx dr)
k|Trf1|+ |Trf2|k��2

L�(R2,dx dr) (2.14)

and with the triangle inequality and Lemma 2.1, we have

k|Trf1|+ |Trf2|kL�(R2,dx dr) . kf1k+ kf2k (2.15)

when  2 L
4

6�� .
To bound the first factor, we use the positive operators P

L and P>

L from Lemma B.3
for suitably chosen L > 0. Although they are not projection operators, we think of P

L as
‘projecting’ onto frequencies localized to . L and P>

L as ‘projecting’ onto large frequencies
& L. At the same time, the supports of P

L f1 and P>

L f2 will still be essentially separated.
See Lemma B.2 and B.3 in appendix B for the properties of P

L and P>

L which we will need.
Since P

L + P>

L = 1 on L2(R) by Lemma B.2, we can use the triangle inequality and the
linearity of Tr to split

kTrf1Trf2kL �

2 (R2, dx dr)

 kTrP
>

L f1Trf2kL �

2 (R2, dx dr)
+ kTrP


L f1TrP

>

L f2kL �

2 (R2, dx dr)

+ kTrP

L f1TrP


L f2kL �

2 (R2, dx dr)
.

(2.16)

The Cauchy–Schwarz inequality and Lemma 2.1 yield

kTrP
>

L f1Trf2kL �

2 (R2, dx dr)
 kTrP

>

L f1kL�(R2, dx dr)kTrf2kL�(R2, dx dr)

. kP>

L f1kkf2k . L�1kf1kH1kf2k,

where we use (B.14). Switching the roles of f1 and f2, using in addition that P
L  1, shows

kTrP

L f1TrP

>

L f2kL �

2 (R2, dx dr)
. L�1kf1kkf2kH1 .

To bound the last term of the right hand side in (2.16), we note that (B.16) shows

kTrP

L f1TrP


L f2kL �

2 (R2, dx dr)
 k k2/�

L1 sup
|r|T

kTrP

L f1TrP


L f2kL �

2 (R,dx)
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 k k2/�
L1 ARL

2 e2L
2/�B

�/2,Rs2 kf1kkf2k,

with R > 0 chosen such that supp  ⇢ [�R,R] and the constants AR and B�/2,R from
Lemma B.3. Therefore

kTrf1Trf2kL �

2 (R2, dx dr)
.
h
L2e2L

2/��B
�/2,Rs2 + L�1

i
kf1kH1kf2kH1

for any L � 0. Choosing 2L2 = B�/2,Rs
2, we get

kTrf1Trf2kL �

2 (R2, dx dr)
. s�1kf1kH1kf2kH1 ,

and using this with (2.15) in (2.14) proves Proposition 2.12.

2.2. Splitting the Nonlocal Nonlinear Potential. Recall the nonlinear potential V :
R+ ! R+ is given by V (a) = q(a)a for a � 0 with q : R+ ! R+ continuous on R+ and
di↵erentiable on (0,1) with q(0) = 0. Recall also that for 2  �1  �2  6,

q0(a) . a�1�2 + a�2�2

for all a > 0.

Lemma 2.13. With V as above,

V (a) . a�1 + a�2 (2.17)

for all a � 0 and

V (|z + w|)� V (|z|)� V (|w|) . |z||w|
�
(|z|+ |w|)�1�2 + (|z|+ |w|)�2�2

�
(2.18)

for all z, w 2 C.

Proof. Integrating the bound for q0 gives q(a) . a�1�1 + a�2�1 which implies (2.17). For
the second claim, note that by the triangle inequality

V (|z + w|)� V (|z|)� V (|w|) = q(|z + w|)|z + w|� q(|z|)|z|� q(|w|)|w|
 |z|

�
q(|z + w|)� q(|z|)

�
+ |w|

�
q(|z + w|)� q(|w|)

�
.

If |z + w| � |z|, using the assumption on q0 and the triangle inequality, one sees

q(|z + w|)� q(|z|) =
Z |z+w|

|z|
q0(s) ds .

⇥
|z + w|�1�2 + |z + w|�2�2

⇤
(|z + w|� |z|)


⇥
(|z|+ |w|)�1�2 + (|z|+ |w|)�2�2

⇤
|w|.

Similarly, if |z + w|  |z| then

q(|z + w|)� q(|z|) .
⇥
|z|�1�2 + |z|�2�2

⇤
(|z|� |z + w|)


⇥
(|z|+ |w|)�1�2 + (|z|+ |w|)�2�2

⇤
|w|.

Switching z and w, one also has

q(|z + w|)� q(|w|) .
⇥
(|z|+ |w|)�1�2 + (|z|+ |w|)�2�2

⇤
|z|

and therefore (2.18) follows.

Recall

N(f) :=

ZZ

R2
V (|Trf(x)|) dx dr (2.19)

and we get the following estimate of N immediately from (2.17) and Lemma 2.1.
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Proposition 2.14 (Boundedness). Let 2  �1  �2  6 and  2 L1 \ L
4

6��2 . Then for all
f 2 L2(R)

N(f) . kfk�1 + kfk�2 , (2.20)

where the implicit constant depends only on the L1 and L
4

6��2 norms of  .

Proposition 2.15 (Splitting). (i) Assume 2  �1  �2  6 and  2 L1 \ L
4

6��2 . Then

N(f1 + f2)�N(f1)�N(f2) . kf1kkf2k
�
1 + kf1k4 + kf2k4

�
. (2.21)

(ii) Assume 2 < �1  �2 < 6 and ⌧ > 1. Then

N(f1 + f2)�N(f1)�N(f2) . max{1, s}�min{↵(�1,⌧),↵(�2,⌧)}kf1kkf2k
�
1 + kf1k4 + kf2k4

�

(2.22)

if  2 L1 \L�(�2,⌧) and s = dist(supp f̂1, supp f̂2) > 0, or  2 L�(�2,⌧) has compact support
and s = dist(supp f1, supp f2) > 0.
(iii) Assume 2  �1  �2  6. Then

N(f1 + f2)�N(f1)�N(f2) . max{1, s}�1kf1kH1kf2kH1

�
1 + kf1k4 + kf2k4

�
(2.23)

if  2 L
4

6��2 has compact support and s = dist(supp f1, supp f2) > 0.

Proof. Because of Lemma 2.13, we have

N(f1 + f2)�N(f1)�N(f2)

=

ZZ

R2

h
V (|Trf1(x) + Trf2(x)|)� V (|Trf1(x)|)� V (|Trf2(x)|)

i
dx dr

. M�1
 (f1, f2) +M�2

 (f1, f2).

(2.24)

So (2.23) follows from Proposition 2.12, noting also that

(a+ b)�1�2 + (a+ b)�2�2 . 1 + a4 + b4,

for all a, b � 0, as long as  2 L
4

6��1 \ L
4

6��2 . Since  has compact support, this is the

same as requiring  2 L
4

6��2 . Similarly, (2.21) follows from Proposition 2.6 as long as

 2 L
4

6��1 \ L
4

6��2 . Since  2 L1 this condition reduces to  2 L1 \ L
4

6��2 .
For the proof of (2.22), we first assume s = dist(supp f̂1, supp f̂2) > 0. Clearly, Proposi-

tion 2.7 shows

M�
 (f1, f2) . s�↵(�,⌧)kf1kkf2k(kf1k+ kf2k)��2

for any 2 < � < 6 and ⌧ > 1, as long as  2 L�(�,⌧).
Thus (2.22) follows from (2.24) as long as  2 L�(�1,⌧) \ L�(�2,⌧). Noting

1 < �(�1, ⌧)  �(�2, ⌧) and L1 \ L�(�2,⌧) ⇢ L�(�1,⌧) \ L�(�2,⌧)

finishes the proof of (2.22) when f̂1 and f̂2 have separated supports.
If s = dist(supp f1, supp f2) > 0, we make the simple observation that for any compactly

supported  one has

 2 Lp )  2 Lp(|r|a dr) \ L1

for any weight |r|a with a � 0 and p � 1. With this observation, the above proofs carry over
to the case that the functions f1 and f2 have separated supports, using now Proposition
2.11 instead of Proposition 2.7.
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3. Strict subadditivity of the ground state energy

Recall that for dav � 0

H(f) =
dav
2

kf 0k2 �N(f)

and

Edav
� = inf

�
H(f) : kfk2 = �

 
.

Recall also that if f 2 L2 \H1 we set kf 0k = 1, so the infimum in the definition of Edav
� is

over all f 2 H1 with fixed L2 norm if dav > 0.
In this section, we will give an a-priori bound on the ground-state energy which will be

an essential ingredient in the construction of strongly convergent minimizing sequences.

Lemma 3.1. Let 2  �1  �2  6 and  2 L1 \ L
4

6��2 . Then, for every � � 0

Edav
� & �(��1/2 + ��2/2),

where the implicit constant depends only on the L1 and L
4

6��2 norms of  . In particular,
the variational problem is well-posed.

Moreover, if V (a) > 0 for every a > 0, then E0
� < 0 for any � > 0. If there exists " > 0

and 2   < 6 such that V (a) & a for all 0  a  " and  is away from zero on the

support of  , then Edav
� < 0 for any dav,� > 0.

Proof. The first part follows immediately from H(f) � �N(f) and Proposition 2.14. If
V (a) > 0 for all a > 0, then

0 = N(f) =

ZZ

R2
V (|Trf(x)|) dx dr

implies |Trf(x)| = 0 for almost all x and almost all r 2 supp . Thus for almost all
r 2 supp one has kfk = kTrfk = 0, so f vanishes. Thus if kfk2 = � > 0 then E0

� 
�N(f) < 0.

To show Edav
� < 0 for dav > 0, we fix � > 0 and find a suitable Gaussian function f

satisfying kfk2 = � and H(f) < 0. Recall that there exist " > 0 and 2   < 6 such that

V (a) & a for all 0 < a  ". (3.1)

If the Gaussian test function f is given by

f(x) = A0e
� x

2

�0 with �0 > 0,

then (Trf)(x) = A(r)e
� x

2

�(r) with �(r) = �0 + 4ir and A(r) = A0
p
�0/
p
�(r) as in (B.18).

Note that

|Trf(x)| = |A(r)| e�
�0x

2

|�(r)|2  |A(r)|  |A0|.
Choosing

|A0| =
✓
2�2

⇡�0

◆1/4

yields kfk2 = � and kf 0k2 = �/�0. To apply (3.1), we consider �0 large enough so that

|Trf(x)|  |A0| =
✓
2�2

⇡�0

◆1/4

< ✏.



14 M.-R. CHOI, D. HUNDERTMARK, Y.-R. LEE

Then

N(f) =

ZZ

R2
V (|Trf(x)|)dx dr &

ZZ

R2
|Trf(x)|dx dr

= |A0|�


2
0

Z

R

 (r)

|�(r)|


2

Z

R
e
� �0x

2

|�(r)|2 dxdr = |A0|�
�1
2

0

⇣⇡


⌘ 1
2

Z

R

 (r)

|�(r)|
�2
2

dr

=

✓
2�2

⇡

◆

4 ⇣⇡


⌘1/2
�
��2

4
0

Z

R

 (r)

[1 + (4r/�0)2]
�2
4

dr.

Thus, the energy of this Gaussian test function is bounded above by

H(f)  dav�

2�0

"
1� C

dav�1/2

✓
2�2

⇡

◆

4

�
6�

4
0

Z

R

 (r)

(1 + (4r/�0)2)
�2
4

dr

#

for some constant C. So, using a large enough �0, we get H(f) < 0 since 2   < 6 and
Z

R

 (r)

[1 + (4r/�0)2]
�2
4

dr ! k kL1

as �0 ! 1 by Lebesgue’s dominated convergence theorem.

Recall that there exists �0 > 2 such that for all ⇢ � 1 and a > 0

V (⇢a) � ⇢�0V (a). (3.2)

This will be the main input the following strict subadditivity of Edav
� , which in turn will be

crucial in the proof of Propositions 4.1 and 4.2.

Proposition 3.2 (Strict Subadditivity). Let � > 0, 0 < � < �/2, and �1, �2 � � with
�1 + �2  �. Then

Edav
�1

+ Edav
�2

�
"
1� (2

�0
2 � 2)

✓
�

�

◆ �0
2

#
Edav
� ,

for �0 > 2 as in (3.2).

Proof. First we show that for all � > 0 and 0 < µ  1

Edav
µ� � µ

�0
2 Edav

� . (3.3)

First, with e� = µ� and µ = ⇢�1, we see that inequality (3.3) is equivalent to

Edav
⇢�̃

 ⇢
�0
2 Edav

�̃
for all ⇢ � 1, �̃ > 0. (3.4)

Given f 2 H1(R), or f 2 L2(R) if dav = 0, with kfk2 = � and ⇢ � 1, we get

N(⇢1/2f) =

ZZ

R2
V (⇢1/2|Trf(x)|) dx dr � ⇢

�0
2 N(f)

from (3.2), k⇢1/2fk2 = ⇢�, and

H(⇢1/2f)  ⇢
dav
2

kf 0k2 � ⇢
�0
2 N(f)  ⇢

�0
2 H(f),

which proves inequality (3.4).
Let �1 = µ1� and �2 = µ2� with µ1 + µ2  1 and µ1, µ2 � �/�. From (3.3), we get

Edav
�1

+ Edav
�2

= Edav
µ1�

+ Edav
µ2�

� (µ
�0
2
1 + µ

�0
2
2 )Edav

� . (3.5)
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Without loss of generality, we may assume that µ1  µ2. Note that

1 � (µ1 + µ2)
�0
2 = µ

�0
2
1 + µ

�0
2
2 + (µ1 + µ2)

�0
2 � µ

�0
2
1 � µ

�0
2
2

= µ
�0
2
1 + µ

�0
2
2 + µ

�0
2
1

"✓
1 +

µ2

µ1

◆ �0
2

� 1�
✓
µ2

µ1

◆ �0
2

#

� µ
�0
2
1 + µ

�0
2
2 + µ

�0
2
1 (2

�0
2 � 2)

� µ
�0
2
1 + µ

�0
2
2 + (2

�0
2 � 2)

✓
�

�

◆ �0
2

,

where we have used that the function t 7! (1 + t)
�0
2 � 1 � t

�0
2 is increasing on [1,1).

Therefore, we get

µ
�0
2
1 + µ

�0
2
2  1� (2

�0
2 � 2)

✓
�

�

◆ �0
2

.

Therefore, multiplying this to Edav
� < 0 completes the proof due to (3.5).

4. The existence proof

The following propositions are the key propositions for the proof of the existence of a
minimizer here. First, we introduce notations. For s > 0 and 0 < ↵  1, define

G↵(s) :=
h
(s+ 1)

2↵
1+2↵ � 1

i�1/2
. (4.1)

Note that G↵ is a decreasing function on (0,1) which vanishes at infinity, which is impor-
tant for us, and

lim
s!0+

G↵(s) = 1 (4.2)

which is of less importance. Moreover, for x 2 R, let x+ := max{x, 0}.

Proposition 4.1 (Fat-tail for positive average dispersion). Assume dav > 0, 2  �1  �2 
6 and  2 L

4
6��2 has compact support. Let � > 0, f 2 H1 with kfk2 = �, and 0 < � < �/2,

and a, b 2 R with Z a

�1
|f(x)|2dx � � and

Z 1

b
|f(x)|2dx � � (4.3)

then

H(f) �
"
1� (2

�0
2 � 2)

✓
�

�

◆ �0
2

#
Edav
� � C(1 + �2)kfk2H1(R)G1 ((b� a� 1)+) , (4.4)

where the constant C depends only on the support and the L
4

6��2 norm of  .

We have a similar bound in the case of vanishing average dispersion.

Proposition 4.2 (Fat-tail for zero average dispersion). Assume dav = 0, 2 < �1  �2 < 6
and  2 L�(�2,⌧) has compact support. Let � > 0, f 2 L2 with kfk2 = �, and 0 < � < �/2,
and a, b 2 R with either

Z a

�1
|f(x)|2dx � � and

Z 1

b
|f(x)|2dx � � (4.5)

or Z a

�1
| bf(⌘)|2 d⌘ � � and

Z 1

b
| bf(⌘)|2 d⌘ � �, (4.6)
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then

H(f) �
"
1� (2

�0
2 � 2)

✓
�

�

◆ �0
2

#
E0
� � C�(1 + �2)Gmin{↵(�1,⌧),↵(�2,⌧)} ((b� a� 1)+) (4.7)

where the constant C depends only on the support and the L�(�2,⌧) norm of  .

Proof of Proposition 4.1. If b � a  1, (4.4) holds immediately since its right hand side
is �1 by (4.2). So now we assume that b � a > 1. Let a0 and b0 be arbitrary numbers
satisfying a  a0 < b0  b and b0�a0 � 1, which we will suitably choose later. The estimate
of kf 0k2 is based on a one-dimensional version of the well-known IMS localization formula

kf 0k2 =
X

j

h(⇠jf)0, (⇠jf)0i �
X

j

hf, |⇠0j |2fi (4.8)

for any collection of functions {⇠j} which are smooth, 0  ⇠j  1, and
P

j ⇠
2
j = 1. To

construct such a partition which suits our needs, consider smooth functions {�j} that
satisfy

i) 0  �j  1 for j = �1, 0, 1.

ii)
1X

j=�1

�2
j = 1.

iii) supp�0 ⇢ [�1
2 ,

1
2 ], �0 = 1 on [�1

4 ,
1
4 ],

supp��1 ⇢ (�1,�1
4 ], ��1 = 1 on (�1,�1

2 ],
supp�1 ⇢ [14 ,1), �1 = 1 on [12 ,1).

Let

⇠j(x) = �j

 
x� 1

2(a
0 + b0)

b0 � a0

!
for j = �1, 0, 1.

Since �0
j is bounded, we see that for some constant C1 > 0

1X

j=�1

|⇠0j |2 
C1

(b0 � a0)2
.

Plugging this into (4.8) yields

kf 0k2 � k(⇠�1f)
0k2 + k(⇠0f)0k2 + k(⇠1f)0k2 �

C1kfk2

(b0 � a0)2

� k(⇠�1f)
0k2 + k(⇠1f)0k2 �

C1kfk2

(b0 � a0)2
.

(4.9)

Now we set fj := ⇠jf for j = �1, 1 and f0 := f � f1� f�1 = (1� ⇠�1� ⇠1)f , where we note
that f0 is defined di↵erently from f�1 and f1!

Obviously, kfjk  kfk for j = �1, 1, and since the supports of ⇠�1 and ⇠1 are disjoint
also |f0|  |f |, hence kf0k  kfk.

Set h := f�1 + f1. Then f = f0 + h and the bound (2.21) from Proposition 2.15 shows

N(f)�N(f0)�N(h) . kf0kkhk
�
1 + kf0k4 + khk4

�

and using Proposition 2.14, we have

N(f0) . kf0k2 + kf0k6,
and combining the above two bounds we arrive at

N(f)�N(h) . kf0kkfk(1 + kfk4) (4.10)
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where we used kf0k, khk  kfk.
Since f�1 and f1 have supports separated by at least (b0 � a0)/2, (2.23) gives

N(h)�N(f�1)�N(f1) . (b0 � a0)�1kf�1kH1kf1kH1

�
1 + kf�1k4 + kf1k4

�

. (b0 � a0)�1kfk2H1

�
1 + kfk4

�
(4.11)

where we also used that, because of our assumption that b0 � a0 � 1, the bound kfjkH1 .
kfkH1 holds, where the implicit constant does not depend on a0 and b0.

Combining (4.10) and (4.11), we get

N(f)�N(f�1)�N(f1) .
✓
kf0kkfk+

kfk2H1

b0 � a0

◆�
1 + kfk4

�
(4.12)

so when combined with (4.9), this yields

H(f)�H(f�1)�H(f1) & �


kfk2

(b0 � a0)2
+

✓
kf0kkfk+

kfk2H1

b0 � a0

◆�
1 + kfk4

��
. (4.13)

To choose a0 and b0, we use a continuous version of the pigeon hole principle, as in our
previous work [11]: Let 1  l  b� a and note that

Z b�l

a

Z y+l

y
|f(x)|2dxdy 

Z b

a

Z x

x�l
|f(x)|2dydx  lkfk2. (4.14)

Moreover, by the mean value theorem, there exists y0 2 (a, b� l) such that

(b� a� l)

Z y0+l

y0
|f(x)|2dx =

Z b�l

a

Z y+l

y
|f(x)|2dxd⌘.

Thus, since f0 has support in [a0, b0] and |f0|  |f |, choosing a0 = y0 and b0 = y0 + l in the
previous identity together with (4.14) gives l = b0 � a0 and

kf0k2  kf1[a0,b0]k2 
l

b� a� l
kfk2.

Plugging this into (4.13) yields

H(f)�H(f�1)�H(f1) & �
"
kfk2

l2
+

 ✓
l

b� a� l

◆1/2

kfk2 +
kfk2H1

l

!
�
1 + kfk4

�
#

� �kfk2H1

�
1 + kfk4

�
"
1

l2
+

✓
l

b� a� l

◆1/2

+
1

l

#
.

Since kfk2 = �, kfjk � �, j = �1, 1 and kf�1k2 + kf1k2  �, by Proposition 3.2,

H(f)�
"
1� (2

�0
2 � 2)

✓
�

�

◆ �0
2

#
Edav
� & �kfk2H1

�
1 + �2

�
"
1

l2
+

✓
l

b� a� l

◆1/2

+
1

l

#

(4.15)

for any 0 < � < �/2 and all 1  l  b� a. Now we choose l = 3
p
b� a. Then 1  l  b� a

since b� a � 1, and

max

(
1

l2
,

✓
l

b� a� l

◆1/2

,
1

l

)
=

✓
l

b� a� l

◆1/2

=

✓
1

(b� a)2/3 � 1

◆1/2

= G1((b�a� 1)+)

which completes the proof.
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Proof of Proposition 4.2. Since its proof is very analogous to that of Proposition 4.1, let us
mention only the things which need to be changed: In the case of zero average dispersion,
the energy contains no kf 0k2 term, hence we do not need to use smooth cut-o↵s, that is,
we can use f = f�1+ f0+ f1 where we set f�1 = f1(�1,a0), f0 = f1[a0,b0] and f1 = f1(b0,1),

and similarly for f̂ .
We can then simply repeat the argument in the proof of (4.13), again using (2.21) but

now combined with (2.22) instead of (2.23), to see that

H(f)�H(f�1)�H(f1) & �
✓
kf0kkfk+

kfk2

(b0 � a0)min{↵(�1,⌧),↵(�2,⌧)}

◆�
1 + kfk4

�

� ��
�
1 + �2

�
"✓

l

b� a� l

◆1/2

+
1

lmin{↵(�1,⌧),↵(�2,⌧)}

#
(4.16)

with the only restriction that l = b0 � a0 � 1.
If 0 < b� a  1, we note that (4.7) trivially holds since the right hand side equals �1.

So let b � a > 1. We choose l := (b � a)
1

1+2min{↵(�1,⌧),↵(�2,⌧)} . Then 1 < l < b � a and
l1+2min{↵(�1,⌧),↵(�2,⌧)} = b� a > b� a� l > 0 hence

✓
l

b� a� l

◆1/2

� 1

lmin{↵(�1,⌧),↵(�2,⌧)}
.

This together with (4.16) and our choice of Gmin{↵(�1,⌧),↵(�2,⌧)}((b�a�1)+), which satisfies
0 < min{↵(�1, ⌧),↵(�2, ⌧)}  1, finishes the proof.

Since the function G↵ is decreasing on R+ and vanishes at infinity, similar results to
Proposition 2.4 in [11] follow from Propositions 4.1 and 4.2.

Proposition 4.3 (Tightness for Positive Average Dispersion). Let (fn)n ⇢ H1(R) be a
minimizing sequence for the variational problem (1.1) for dav > 0 with � = kfnk2 > 0.
Then there exists K < 1 such that, for any L > 0,

sup
n2N

Z

|⌘|>L
|f̂n(⌘)|2 d⌘  K

L2
(4.17)

i.e., the sequence is tight in Fourier space. Moreover, there exist shifts yn such that

lim
R!1

sup
n2N

Z

|x|>R
|fn(x� yn)|2dx = 0. (4.18)

Proposition 4.4 (Tightness for Zero Average Dispersion). Let (fn)n ⇢ L2(R) be a min-
imizing sequence for the variational problem (1.1) for dav = 0 with � = kfnk2 > 0. Then
there exist shifts yn and boosts ⇠n such that

lim
L!1

sup
n2N

Z

|⌘�⇠
n

|>L
| bfn(⌘)|2 d⌘ = 0. (4.19)

and

lim
R!1

sup
n2N

Z

|x�y
n

|>R
|fn(x)|2 dx = 0, (4.20)

Proof of Proposition 4.3. Let (fn)n be a minimizing sequence. Inequality (2.20) shows

kf 0
nk2 . H(fn) + ��1/2 + ��2/2

and since H(fn) ! E� < 0, we see that

K := sup
n2N

kf 0
nk2 < 1.
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Thus, for every n 2 N and L > 0, we obtain
Z

|⌘|>L
|f̂n(⌘)|2 d⌘ 

Z

|⌘|>L

|⌘|2

L2
|f̂n(⌘)|2 d⌘ 

Z

R

|⌘|2

L2
|f̂n(⌘)|2 d⌘  K

L2

and so (4.17).
To prove the second bound, we follow the argument of [11] closely. We give some details

for the readers’ convenience. Define an,� and bn,� by

an,� := inf

⇢
a 2 R :

Z a

�1
|fn(x)|2 dx � �

�

and

bn,� := sup

⇢
b 2 R :

Z 1

b
|fn(x)|2 dx � �

�
.

Note that the measure |fn(x)|2 dx is absolutely continuous with respect to Lebesgue measure
and hence Z a

n,�

�1
|fn(x)|2 dx = � and

Z 1

b
n,�

|fn(x)|2 dx = �.

Furthermore � 7! an,� and � 7! bn,� are monotone, more precisely, for 0 < �2 < �1 < �/2
one has an,�2  an,�1 and bn,�2 � bn,�1 . Let Rn,� := bn,� � an,� and note that the above
monotonicity yieldsRn,�2 � Rn,�1 for 0 < �2 < �1 < �/2. Lastly, for some fixed 0 < �0 < �/2
put

yn :=
bn,�0 + an,�0

2
2 [an,�0 , bn,�0 ].

In particular, an,�  an,�0  yn  bn,�0  bn,� for all 0 < �  �0. This implies

bn,� � yn  bn,� � an,� = Rn,� and yn � an,�  bn,� � an,� = Rn,� (4.21)

Now assume that
R� := sup

n2N
Rn,� < 1 (4.22)

for 0 < �  �0 and put R� := R�0 for �0 < � < �/2. Then (4.21) yields
Z

|x�y
n

|>R
�

|fn(x)|2 dx 
Z a

n,�

�1
|fn(x)|2 dx+

Z 1

b
n,�

|fn(x)|2 dx = 2�.

for all 0 < �  �0 but the same bound also holds when �0 < � < �/2 since in this case
Z

|x�y
n

|>R
�

|fn(x)|2 dx =

Z

|x�y
n

|>R
�0

|fn(x)|2 dx  2�0 < 2�.

It remains to show (4.22): Using b = bn,� and a = an,�, rearranging (4.4) from Proposition
4.1 yields

Edav
� � (2

�0
2 � 2)

✓
�

�

◆ �0
2

Edav
� �H(fn)  C(1 + �2)kfk2H1(R)G1 ((Rn,� � 1)+) .

Thus, since H(fn) ! E+
� < 0,

0 < �(2
�0
2 � 2)

✓
�

�

◆ �0
2

Edav
�  C(1 + �2)kfk2H1(R) lim inf

n!1
G1 ((Rn,� � 1)+) .

Since G1 is monotone decreasing, we get

G1((lim sup
n!1

Rn,� � 1)+) = lim inf
n!1

G1((Rn,� � 1)+) > 0
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and so
lim sup
n!1

Rn,� < 1. (4.23)

Hence (4.22) holds.

Proof of Proposition 4.4. Using the fact that the function G↵ is monotone decreasing, the
proof is virtually identical to the proof of (4.18) in Proposition 4.3 and Proposition 2.4 in
[11]

To prove Theorems 1.1 and 1.2, we need one more result for the continuity of the nonlinear
functional N(f).

Lemma 4.5. If 0   2 L1 \ L
4

6��2 then the functional N : L2(R) ! R given by

L2(R) 3 f 7! N(f) =

ZZ

R2
V (|Trf |)dx dr

is locally Lipshitz continuous.

Proof. Note that

V (|z|)� V (|w|) = |z|(q(|z|)� q(|w|)) + (|z|� |w|)q(|w|)
and so, using the assumption on q0, we get

|V (|z|)� V (|w|)|  |z| |q(|z|)� q(|w|)|+ ||z|� |w|||q(|w|)|

= |z|

�����

Z |z|

|w|
q0(s)ds

�����+ ||z|� |w|||q(|w|)|

. |z|||z|� |w||(|z|�1�2 + |z|�2�2 + |w|�1�2 + |w|�2�2) + ||z|� |w|| (|w|�1�1 + |w|�2�1)

. |z � w|(|z|�1�1 + |z|�2�1 + |w|�1�1 + |w|�2�1).

Thus, for any f, g 2 L2(R), using Hölder inequality with �j and �
j

�
j

�1 , we get

|N(f)�N(g)| .
2X

j=1

ZZ

R2
|Trf � Trg|(|Trf |�j�1 + |Trg|�j�1)dx dr


2X

j=1

kTr(f � g)kL�

j (R2,dx dr)k|Trf |�j�1 + |Trg|�j�1k
L

�

j

�

j

�1 (R2,dx dr)
.

(4.24)

Applying Lemma 2.1 for the first factor and the triangle inequality with Lemma 2.1 for the

second factor, which requires  2 L
4

6��

j , yields

(4.24) . kf � gk(kfk�1�1 + kgk�1�1 + kfk�2�1 + kgk�2�1).

Note that

L1 \ L
4

6��2 ⇢ L
4

6��1 \ L
4

6��2

which completes the proof.

Lemma 4.6. If 0   2 L1 \ L
4

6��2 then for any f 2 L2(R) the functional N as above is
di↵erentiable with derivative

L2(R) 3 h 7! DN(f)[h] =

Z

R
Re
⌦
Trh,

⇥
V 0(|Trf |)sgn(Trf)

⇤↵
 dr.
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Proof. Let f 2 L2(R) and ✏ 6= 0. Fix any h 2 L2(R) and the quotient of N is

N(f + ✏h)�N(f)

✏
=

1

✏

ZZ

R2
V (|Tr(f + ✏h)|)� V (|Trf |)dx dr

�

=
1

✏

ZZ

R2

Z 1

0

d

ds
V (|Tr(f + s✏h)|)dsdx dr. (4.25)

By straightforward calculations, we obtain

d

ds
V (|Tr(f + s✏h)|) = V 0(|Tr(f + s✏h)|)✏(TrfTrh+ TrhTrf + 2s✏|Trh|2)

2|Tr(f + s✏h)|
and thus

(4.25) =

ZZ

R2

Z 1

0
V 0(|Tr(f + s✏h)|)TrfTrh+ TrhTrf + 2s✏|Trh|2

2|Tr(f + s✏h)| dsdx dr.

By Lebesgue’s dominated convergence theorem, letting ✏! 0, we get

DN(f)[h] =

ZZ

R2

Z 1

0
V 0(|Trf |)

Re(TrfTrh)

|Trf |
dsdx dr =

ZZ

R2
V 0(|Trf |)

Re(TrfTrh)

|Trf |
dx dr

which completes the proof.

Now we are ready to prove the existence of a minimizer of (1.1).

Proof of Theorems 1.1 and 1.2. First, we give the proof for the existence of a minimizer of
(1.1) for dav > 0. Let (fn)n ⇢ H1(R) be a minimizing sequence of the variational problem
(1.1) for dav > 0. First, applying Proposition 4.3, there exist shifts yn such that for the
shifted sequence hn, hn(x) := fn(x� yn) for x 2 R, we have

lim
R!1

sup
n2N

Z

|x|>R
|hn(x)|2dx = 0. (4.26)

On the Fourier side, shifts correspond to modulations with eiyn⌘, so for the shifted sequence
Proposition 4.3 also yields that there exists K1 < 1 such that for any L > 0

sup
n2N

Z

|⌘|>L
|ĥn(⌘)|2 d⌘  K1

L2
. (4.27)

Thus, by translation invariance of the minimization problem, the shifted sequence is a
minimizing sequence with khnk2 = kfnk2 = � which implies the strong convergence of the
sequence (hn)n in L2(R), see, for example, [11]. Let

f := lim
n!1

hn (4.28)

in L2(R). By the strong convergence in L2(R), clearly we get kfk2 = � > 0. Let K2 :=
� +K1. Then kfnk2H1(R)  K2 for all n 2 N. We infer khnk2H1(R) = kfnk2H1(R)  K2 < 1
for all n 2 N, i.e., the sequence (hn)n is bounded in H1(R). Since H1 is a Hilbert space, this
shows that there is a subsequence, which, by a slight abuse of notation, we will continue
to denote by (hn)n, which converges weakly in H1(R). Since hn converges strongly to f in
L2(R), an easy argument shows that f 2 H1(R) and hn converges weakly to f in H1(R).
But then by standard properties of Hilbert spaces, we also have

kfkH1(R)  lim inf
n!1

khnkH1(R) (4.29)

and since kfk2H1(R) = kfk2 + kf 0k2 = �+ kf 0k2 and the same for khnk2H1(R), we have
Z

R
|f 0(x)|2 dx  lim inf

n!1

Z

R
|h0n(x)|2 dx. (4.30)
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Thus, by Lemma 4.5 the map f 7! N(f) is continuous in L2, we see that H is lower
semicontinuous when (hn)n converges strongly to f and (h0n)n converges weakly to f 0 in
L2(R). Hence

Edav
�  H(f)  lim infH(hn) = Edav

� , (4.31)

that is, f is a minimizer of (1.1).
Now, it remains to show that the existence of a minimizer of (1.1) for dav = 0. Once we

get the tightness the remaining proof is analogous to the existence proof in [11]. However,
for readers’ convenience, we give the proof here. The idea is to use Proposition 4.4 and
Lemma A.1 in order to massage an arbitrary minimizing sequence into a strongly convergent
sequence.

Let (fn)n ⇢ L2(R) be an arbitrary minimizing sequence of the variational problem (1.1).
Proposition 4.4 guarantees the existence of shifts yn 2 R and boosts ⇠n 2 R such that (4.19)
and (4.20) hold. Define the shifted and boosted sequence (hn)n = (f⇠

n

,y
n

,n)n by

hn(x) = f⇠
n

,y
n

,n(x) := ei⇠nxfn(x� yn) for x 2 R.

Note that khnk22 = kfnk22 = � since shifts and boost are unitary operations on L2(R) and
N(fn) = N(hn), see Appendix B. Hence (hn)n is also a minimizing sequence. Certainly
|hn(x)| = |fn(x� yn)| for all n 2 N. The Fourier transform of hn is given by

bhn(⌘) =
1p
2⇡

Z
e�ix⌘eix⇠nfn(x� yn) dx = e�iy

n

⌘ bfn(⌘ � ⇠n). (4.32)

Thus also |bhn(⌘)| = | bfn(⌘� ⇠n)|. In particular, (4.19) and (4.20) show that the minimizing
sequence (hn)n is tight in the sense of Lemma A.1.

Since (hn)n is bounded in L2(R), the weak compactness of the unit ball, guarantees the
existence of a weakly converging subsequence of (hn)n, denoted again by (hn)n. Obviously,
this subsequence is also tight in the sense of Lemma A.1 and hence converges even strongly
in L2(R). We set

f = lim
n!1

hn.

By strong convergence kfk2 = limn!1 khnk2 = �. To conclude that f is the sought after
minimizer we note that by Lemma 4.5 the map f 7! N(f) =

RR
R2 V (|Trf |2)dxµ(dt) is

continuous on L2(R). Hence

N(f) = lim
n!1

N(hn) = Edav
�

where the last equality follows since (hn)n is a minimizing sequence. Thus f is a minimizer
for the variational problem (1.1).

To prove that the above minimizer is a weak solution of the associated Euler-Lagrange
equation (1.14) is standard in the calculus of variations. For vanishing average dispersion
and a cubic nonlinearity it is done in [11] and the proof given there carries over to our more
general setting with the obvious changes in notation.

Appendix A. Strong convergence in L2
and tightness

A key step in our existence proof of minimizers of the variational problems (1.1) is the
following characterization of strong convergence in L2(R) which is given in [11].
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Lemma A.1. A sequence (fn)n ⇢ L2(R) is strongly converging to f in L2(R) if and only
if it is weakly convergent to f and

lim
L!1

lim sup
n!1

Z

|⌘|>L
| bfn(⌘)|2 d⌘ = 0, (A.1)

lim
R!1

lim sup
n!1

Z

|x|>R
|fn(x)|2 dx = 0, (A.2)

where bf is the Fourier transform of f .

Appendix B. Galilei transformations and space-time localization properties

of Gaussian coherent states

We will only discuss the one-dimensional case which is somewhat easier since we do not
have to deal with rotations in one dimension. The unitary operator implementing the shift
Sy : L2(R) ! L2(R), (Syf)(x) = f(x� y) is given by

Sy = e�iyP (B.1)

where P = �i@x is the momentum operator. Indeed, since e�iyP corresponds to multipli-
cation by e�iyk in Fourier space, we have

(e�iyP f)(x) =
1p
2⇡

Z

R
ei(x�y)k bf(k) dk = f(x� y).

Boosts, i.e., shifts in momentum space are given by eiv· : L2(R) ! L2(R), i.e., multiplication
by eivx, since

deiv·f(k) = 1p
2⇡

Z

R
e�ix(k�v)f(x) dx = bf(k � v). (B.2)

Finally, if G is a bounded (measurable) function then G(P ) is defined by

\G(P )f(k) = G(k) bf(k).

Of course, for any y 2 R, the operators G(P ) and e�iyP commute, G(P )e�iyP =
e�iyPG(P ). Moreover, for any v 2 R the commutation relation

G(P )eiv· = eiv·G(P + v) (B.3)

holds. Indeed, Computing the Fourier transform F yields

F
�
G(P )eiv·f

�
(k) = G(k)deiv·f(k) = G(k) bf(k � v)

= (G(·+ v) bf)(k � v) = F
�
G(P + v)f

�
(k � v)

= F
�
eiv·G(P + v)f

�
(k).

In particular, choosing G(P ) = e�irP 2
, we arrive at the commutation relation

e�irP 2
eiv·e�iyP = eiv·e�iyP e�ir(P+v)2 = eiv·e�iyP e�ir(P 2+2vP+v2)

= e�irv2eiv·e�i(y+2rv)P e�irP 2
.

(B.4)

Now let f 2 L2(R). Then u(r) = Trf = e�irP 2
f is the solution of the (one-dimensional)

Schrödinger equation �i@ru = P 2u = �@2xu with initial condition u(0) = f . Using (B.4),
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the solution of the free Schrödinger equation for the translated and boosted initial condition
fy,v = eiv·e�iyP f is given by

uy,v(r, x) := Trfy,v(x) =
�
e�irP 2

eiv·e�iyP f
�
(x)

=
�
e�irv2eiv·e�i(y+2rv)P e�irP 2

f
�
(x)

= e�irv2eivx
�
e�i(y+2rv)P e�irP 2

f
�
(x)

= e�irv2eivx
�
e�irP 2

f
�
(x� y � 2rv)

= e�irv2eivx(Trf)(x� y � 2rv),

(B.5)

that is, on the level of the solutions of the free time-dependent Schrödinger equation, trans-
lations and boosts of the initial condition are implemented by the Galilei transformations
Gy,v given by (Gy,vu)(r, x) := uy,v(r, x) = e�irv2eivxu(r, x � y � 2rv). Except for the time-

dependent phase factor e�irv2 , formula (B.5) is exactly what one would have guessed from
classical mechanics

A simple calculation now shows that any functional of the form

f 7! N(f) =

ZZ

R2
V (|Trf(x)|) dx dr

is invariant under translations and boosts of f in L2(R).
Now, we come to one of the major tools for our analysis, the so-called coherent states.

Definition B.1 (Coherent states). Let h 2 L2, khk = 1, y, v 2 R and hy,v := eiv·e�iyPh,
i.e.,

hy,v(x) = eivxh(x� y) (B.6)

for x 2 R and define the coherent rank-one projection Py,v := |hy,vihhy,v| in Dirac’s notation,
i.e., given by

f 7! Py,vf := hy,vhhy,v, fi. (B.7)

A well-known property of coherent states is their completeness expressed in

Lemma B.2 (Completeness of coherent states). Let h 2 L2(R) with khk = 1 and hy,v the
shifted and boosted h as above. Then, in a weak sense,

1

2⇡

ZZ

R2
dydvPy,v =

1

2⇡

ZZ

R2
dydv|hy,vihhy,v| = 1 (B.8)

on L2. Moreover,

1

2⇡

Z

R
dv h', Py,v'i =

Z
|h(x� y)|2|'(x)|2 dx, (B.9)

and

1

2⇡

Z

R
dy h', Py,v'i =

Z
|ĥ(⌘ � v)|2|'̂(⌘)|2 d⌘, (B.10)

Proof. The completeness expressed in (B.8) is well-known, see [7, 16, 17], the other two are
less known. We give a short proof for the convenience of the reader: In order to see that
the operator A given by its matrix elements

h'1, A'2i :=
1

2⇡

Z

R

Z

R
dydvh'1, hy,vihhy,v,'2i
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is the identity on L2 it is enough, by polarization, to take '1 = '2 = ' and to check
h', A'i = h','i for all ' 2 L2. Note

hhy,v,'i =
Z

R
e�ivxh(x� y)'(x) dx = (2⇡)1/2 \(hy,0')(v).

and thus by Plancherel,

1

2⇡

Z

R
dv h', Py,v'i =

1

2⇡

Z

R
dv|hhy,v,'i|2 =

Z

R
dx |hy,0(x)'(x)|2 =

Z

R
dx|h(x� y)'(x)|2,

so (B.9) follows and we also see

h', A'i = 1

2⇡

Z

R
dy

Z

R
dv|hhy,v,'i|2 =

Z

R
dy

Z

R
dx|h(x� y)'(x)|2 =

Z

R
|'(x)|2 dx

thus, in addition, (B.8) follows. For (B.10) we note that a short calculation reveals

dhy,v(⌘) = e�iy(⌘�v)ĥ(⌘ � v) = eiyvĥv,�y(⌘).

By Plancherel

hhy,v,'i = hdhy,v, b'i =
Z

R
eiy(⌘�v)ĥ(⌘ � v)b'(⌘) d⌘ = (2⇡)1/2e�iyvF�1

h
bhv,0 b'

i
(y).

where F�1 denotes the inverse Fourier transform. Again by Plancherel, we thus have

1

2⇡

Z

R
dy h', Py,v'i =

1

2⇡

Z

R
dy |hdhy,v, b'i|2 =

Z

R
d⌘
���bhv,0(⌘)b'(⌘)

���
2
=

Z

R
d⌘
���bh(⌘ � v)b'(⌘)

���
2

and (B.10) follows.

We use coherent states in order to localize a wave function simultaneously in real and
Fourier spaces and since Gaussians have nice localization properties simultaneously in real
and Fourier spaces, it is natural to use Gaussian coherent states for this.

Lemma B.3 (Space-time localization properties of Gaussian coherent states). Let g(x) =
⇡�1/4e�x2/2 be the standard L2 normalized Gaussian and

gy,v(x) := eivxg(x� y) (B.11)

its shifted and boosted version. Let

P
L :=

1

2⇡

Z

R
dy

Z

|v|L
dv|gy,vihgy,v| (B.12)

and

P>

L :=
1

2⇡

Z

R
dy

Z

|v|>L
dv|gy,vihgy,v|. (B.13)

Then P
L + P>

L = 1, 0  P
L  1, and 0  P>

L  1 as operators. Moreover P>

L localizes a
wave function in the region of large frequencies |⌘| & L in the sense that for any f 2 H↵

we have
kP>

L fk . L�↵kfkH↵ . (B.14)

where the implicit constant does not depend on f nor L.
Moreover, the time-evolution of the shifted and boosted Gaussian gy,v is given by

(Trgy,v)(x) =
1

⇡1/4
p
1 + 2ir

e�irv2eivxe
� (x�y�2rv)2

2(1+2ir) (B.15)

and for any f1, f2 2 L2 which have separated supports we have the bilinear estimate

sup
|r|R

kTrP

L f1TrP


L f2kLp

x

. ARL
2eL

2/p�B
p,R

s2kf1kkf2k, 1  p < 1, (B.16)
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where AR :=
p
1 + 4R2, Bp,R := 2�4(

p
p(1 + 4R2) + 1)�2, and s := dist(supp f1, supp f2).

Proof. The first assertions are clear, since by Lemma B.2 we have P
L +P>

L = 1 and certainly
P
L and P>

L � 0 in the sense of operators. So also P
L = 1� P>

L  1 and similarly P>

L  1.
To prove (B.14), we first note that because of 0  P>

L  1, one has

kP>

L fk
2 = hP>

L
1/2f, P>

LP
>

L
1/2fi  hf, P>

L fi.

Let Py,v := |gy,vihgy,v|, then

hf, P>

L fi =
1

2⇡

Z

R
dy

Z

|v|>L
dv hf, Py,vfi =

Z

|v|>L

Z

R
|ĝ(⌘ � v)|2|f̂(⌘)|2 d⌘dv

=
1p
⇡

Z

|v|>L

Z

R
e�(⌘�v)2 |f̂(⌘)|2 d⌘dv =

Z

R
HL(⌘)|f̂(⌘)|2 d⌘ (B.17)

due to (B.10) and ĝ = g where we set

HL(⌘) :=
1p
⇡

Z

|v|>L
e�(⌘�v)2 dv.

Note that HL is even, 0 < HL  1, increasing on [0,1), and lim⌘!1HL(⌘) = 1. A short
calculation reveals

HL(L) =
1

2
+

1p
⇡

Z 1

2L
e�v2 dv

so HL(L) is extremely close to 1/2 for large L. For |⌘|  L/2 and |v| � L, one has
|v � ⌘| � |v|� |⌘| � |v|� L/2 � L/2, hence

HL(⌘) 
2p
⇡

Z 1

L
e�

L

2 (v�
L

2 ) dv =
4p
⇡L

e�
L

2

4 for all |⌘|  L

2
.

So Z

R
HL(⌘)|f̂(⌘)|2 d⌘ =

Z

|⌘|L/2
HL(⌘)|f̂(⌘)|2 d⌘ +

Z

|⌘|>L/2
HL(⌘)|f̂(⌘)|2 d⌘

 4p
⇡L

e�
L

2

4 kfk2 +
Z

|⌘|>L/2
|f̂(⌘)|2 d⌘.

Using
Z

|⌘|>L/2
|f̂(⌘)|2 d⌘  (L/2)�2↵

Z

|⌘|>L/2
|⌘|2↵|f̂(⌘)|2 d⌘  (L/2)�2↵kfk2H↵

completes the proof of (B.14).
To prove formula (B.15) first note that for a centered Gaussian g(x) = A0e

�x2/�0 , Re�0 >
0, the time evolution Trg can be found by making the ansatz

(Trg)(x) = A(r)e�x2/�(r) =: u(r, x).

A short calculation, using that u(r, x) solves i@ru = �@2xu, reveals that a and � solve

iA0 =
2A

�
and �0 = 4i,

thus A(r) and �(r) are given by

A(r) = A0

p
�0p
�(r)

and �(r) = �0 + 4ir. (B.18)
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Taking �0 = 2 and A0 = ⇡�1/4 we get

(Trg0,0)(x) = ⇡�1/4 1p
1 + 2ir

e
� x

2

2(1+2ir) . (B.19)

Now we use the Galilei transformation formula (B.5) to arrive at

(Trgy,v)(x) = ⇡�1/4 e
�irv2eivxp
1 + 2ir

e
� (x�y�2rv)2

2(1+2ir)

which is (B.15).
To prove (B.16), fix |r|  R and note that

(TrP

L f)(x) =

1

2⇡

Z

R
dy

Z

|v|L
dv (Trgy,v)(x)hgy,v, fi.

Thus using (B.15) and the triangle inequality

|(TrP

L f)(x)| 

1

2⇡(⇡(1 + 4r2))1/4

Z

R
dy

Z

|v|L
dv e

� (x�y�2rv)2

2(1+4r2) |hgy,v, fi|

together with

A(r, L) :=

Z

R
dy

Z

|v|L
dv e

� (x�y�2rv)2

2(1+4r2) = 2L(2⇡(1 + 4r2))1/2,

which is independent of x, by translation invariance of Lebesgue measure we can thus bound

|(TrP

L f)(x)| 

A(r, L)

2⇡(⇡(1 + 4r2))1/4

Z

R

Z

R
⌫x(dy, dv)|hgy,v, fi|

with the probability measure ⌫x(dy, dv) := 1
A(r,L)e

� (x�y�2rv)2

2(1+4r2) 1|v|L dydv. Hence Jensen’s

inequality [14] for the convex function r ! |r|p, 1  p < 1, shows

��(TrP

L f)(x)

��p  A(r, L)p

(2⇡)p(⇡(1 + 4r2))p/4

Z

R

Z

R
⌫x(dy, dv)|hgy,v, fi|p

. Lp�1(1 + 4r2)
p�2
4

Z

R
dy

Z

|v|L
dv e

� (x�y�2rv)2

2(1+4r2) |hgy,v, fi|p.

Therefore,

k(TrP

L f1)(TrP


L f2)k

p
Lp

x

. L2(p�1)(1 + 4r2)
p�2
2

Z

R
dy1

Z

|v1|L
dv1

Z

R
dy2

Z

|v2|L
dv2

|hgy1,v1 , f1i|p|hgy2,v2 , f2i|p
Z

R
dx e

� (x�y1�2rv1)
2+(x�y2�2rv2)

2

2(1+4r2)

. L2(p�1)(1 + 4r2)
p�1
2

Z

R
dy1

Z

|v1|L
dv1

Z

R
dy2

Z

|v2|L
dv2 |hgy1,v1 , f1i|p|hgy2,v2 , f2i|p e

� [(y1�y2)+2r(v1�v2)]
2

4(1+4r2)

(B.20)

where we used
Z

R
dx e

� (x�y1�2rv1)
2+(x�y2�2rv2)

2

2(1+4r2) = (⇡(1 + 4r2))1/2e
� ((y1�y2)+2r(v1�v2))

2

4(1+4r2)

by a simple convolution of Gaussians. Since (a+ b)2 � 1
2a

2 � b2 for any a, b 2 R, the lower
bound

[(y1 � y2) + 2r(v1 � v2)]
2 � 1

2
(y1 � y2)

2 � 16r2L2
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holds for all y1, y2, and |v1|, |v2|  L. Moreover,

|hgy,v, fi| 
Z

R
|gy,v(x)||f(x)| dx = ⇡�1/4

Z

R
e�

1
2 (x�y)2 |f(x)| dx = (g0,0 ⇤ |f |)(y),

and thus (B.20) gives the upper bound

kTrP

L f1TrP


L f2k

p
Lp

x

. L2p eL
2
(1 + 4r2)

p�1
2

Z

R
dy1

Z

R
dy2 e

� (y1�y2)
2

8(1+4r2) [g0,0 ⇤ |f1|(y1)]p[g0,0 ⇤ |f2|(y2)]p.

(B.21)

Let Kj := supp fj , j = 1, 2 be the support of fj . Recall that we assume s :=
dist(K1,K2) > 0. Given 0 < s̃ < s/2, we will enlarge Kj a little bit,

eKj := {y 2 R| dist(y,Kj)  s̃}.

Note that dist( eK1, eK2) = s � 2es > 0 and we will split the integral in (B.21) according to
the splitting R ⇥ R = ( eKc

1 ⇥ R) [ ( eK1 ⇥ R) = ( eKc
1 ⇥ R) [ ( eK1 ⇥ eKc

2) [ ( eK1 ⇥ eK2). As a
further preparation, note that the Cauchy-Schwartz inequality implies

����
ZZ

R2
e�

1
c

(y1�y2)2h1(y1)h2(y2) dy1dy2

����


ZZ

R2
e�

1
c

(y1�y2)2 |h1(y1)|2dy1dy2
�1/2 ZZ

R2
e�

1
c

(y1�y2)2 |h2(y2)|2dy1dy2
�1/2

=
p
c⇡kh1kkh2k.

(B.22)

for any h1, h2 2 L2(R) and c > 0. Using this, we can bound

I1 :=

Z

fK1
c

dy1

Z

R
dy2 e

� (y1�y2)
2

8(1+4r2)
⇥
(g0,0 ⇤ |f1|)(y1)

⇤p⇥
(g0,0 ⇤ |f2|)(y2)

⇤p

. (1 + 4r2)1/2
Z

fK1
c

h
(g0,0 ⇤ |f1|)(y1)

i2p
dy1

�1/2 Z

R

h
(g0,0 ⇤ |f2|)(y2)

i2p
dy2

�1/2
.

(B.23)

Moreover, by Young’s inequality,
Z

R

h
(g0,0 ⇤ |f2|)(y2)

i2p
dy2 . kf2k2p (B.24)

and, on the other hand,
Z

fK1
c

h
(g0,0 ⇤ |f1|)(y)

i2p
dy =

1

(2⇡)p

Z

fK1
c

dy

Z

K1

e�
1
2 (y�z)2 |f1(z)| dz

�2p

. e�
p

2 [dist(K1,fK1
c

)]2ke�
1
4 |·|

2 ⇤ |f1|k2pL2p

. e�
p

2 [dist(K1,fK1
c

)]2kf1k2p, (B.25)

where again Young’s inequality, similar as for (B.24), has been used in the last inequality.
Plugging (B.24) and (B.25) into (B.23), we obtain

I1 . (1 + 4r2)1/2e�
p

4 [dist(K1,fK1
c

)]2kf1kpkf2kp. (B.26)

Furthermore, the bound

I2 :=

Z

fK1

dy1

Z

fK2
c

dy2 e
� (y1�y2)

2

8(1+4r2)

h
(g0,0 ⇤ |f1|)(y1)

iph
(g0,0 ⇤ |f2|)(y2)

ip

. (1 + 4r2)1/2e�
p

4 [dist(K2,fK2
c

)]2kf1kpkf2kp
(B.27)
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follows as the one for I1, by symmetry.
It remains to get a bound on

I3 :=

Z

fK1

dy1

Z

fK2

dy2 e
� (y1�y2)

2

8(1+4r2)

h
(g0,0 ⇤ |f1|)(y1)

iph
(g0,0 ⇤ |f2|)(y2)

ip
(B.28)

Since (y1 � y2)2 � (y1 � y2)2/2 + [dist( eK1, eK2)]2/2 in the integral in (B.28), we get

I3  e
� 1

16(1+4r2)
[dist(fK1,fK2)]2

Z

fK1

dy1

Z

fK2

dy2 e
� (y1�y2)

2

16(1+4r2)

h
(g0,0 ⇤ |f1|)(y1)

iph
(g0,0 ⇤ |f2|)(y2)

ip

. (1 + 4r2)1/2 e
� 1

16(1+4r2)
[dist(fK1,fK2)]2kg0,0 ⇤ |f1| kpL2pkg0,0 ⇤ |f2| kpL2p

. (1 + 4r2)1/2 e
� 1

16(1+4r2)
[dist(fK1,fK2)]2kf1kpkf2kp (B.29)

using again (B.24). Combining

kTrP

L f1TrP


L f2k

p
Lp

x

. L2p eL
2
(1 + 4r2)

p�1
2

⇣
I1 + I2 + I3

⌘

with(B.26), (B.27), (B.29), dist(Kj , eKc
j ) = s̃ for j = 1, 2, and dist( eK1, eK2) = s � 2s̃, we

obtain

kTrP

L f1TrP


L f2k

p
Lp

x

. L2p eL
2
(1 + 4r2)

p

2

h
e�

pes2
4 + e

� (s�2es)2

16(1+4r2)

i
kf1kpkf2kp

choosing s̃ = s/(2
p
p(1 + 4r2)+ 2), which makes ps̃2/4 = (s� 2s̃)2/(16(1+4r2)), gives the

upper bound

kTrP

L f1TrP


L f2kLp

x

. (1 + 4r2)1/2L2eL
2/pe

� s

2

16(
p

p(1+4r2)+1)2 kf1kkf2k

 (1 + 4R2)1/2L2eL
2/pe

� s

2

16(
p

p(1+4R2)+1)2 kf1kkf2k
for all |r|  R, which proves (B.16).
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des sciences/Éditions scientifiques et médicales 4 (2003), 145–161.

[23] V. Zharnitsky, E. Grenier, C. K. R. T. Jones, and S. K. Turitsyn, Stabilizing e↵ects of dispersion
management. Physica D. 152-153 (2001), 794–817.

Department of Mathematics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107,

Korea.

E-mail address: rani9030@sogang.ac.kr

Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology,

76128 Karlsruhe, Germany.

E-mail address: dirk.hundertmark@kit.edu

Department of Mathematics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107,

South Korea.

E-mail address: younglee@sogang.ac.kr


