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ERROR ANALYSIS OF A SECOND ORDER LOCALLY IMPLICIT
METHOD FOR LINEAR MAXWELL’S EQUATIONS⇤

MARLIS HOCHBRUCK, AND ANDREAS STURM†

Abstract.

In this paper we consider the full discretization of linear Maxwell’s equations on spatial grids
which are locally refined. For such problems, explicit time integration schemes become ine�cient
because the smallest mesh width results in a strict CFL condition. Recently locally implicit time in-
tegration methods have become popular in overcoming the problem of so called grid-induced sti↵ness.
Various such schemes have been proposed in the literature and have been shown to be very e�cient.
However, a rigorous analysis of such methods is still missing. In fact, the available literature focuses
on error bounds which are valid on a fixed spatial mesh only but deteriorate in the limit where the
smallest spatial mesh size tends to zero. Moreover, some important questions cannot be answered
without such an analysis. For example, it has not yet been studied which elements of the spatial
mesh enter the CFL condition.

In this paper we provide such a rigorous analysis for a locally implicit scheme proposed by Verwer
[15] based on a variational formulation and energy techniques.

Key words. Locally implicit methods, component splitting, time integration, discontinuous
Galerkin finite elements, error analysis, evolution equations, Maxwell’s equations, energy techniques.

AMS subject classifications. Primary: 65M12, 65M15. Secondary: 65M60, 65J10.

1. Introduction. An attractive feature of discontinuous Galerkin (dG) spatial
discretizations of Maxwell’s equations (cf. the textbooks [4, 9]) is their ability to
handle complex geometries by using unstructured, possibly locally-refined meshes.
Furthermore, they are well-adapted to handle composite media with varying material
coe�cients and thus varying speeds of light. In addition, dG methods lead to block
diagonal mass matrices which in combination with an explicit time integration method
allow for a fully explicit scheme. However, such explicit approaches su↵er from a severe
restriction of the time step size ⌧ due to stability, the well-known CFL condition,
because of the grid induced sti↵ness of the ode. For Maxwell’s equations, we have
⌧ . c�1

1 h
min

, where h
min

denotes the smallest diameter of the elements of the mesh
and c1 the maximum speed of light. In the case where only a few of the mesh
elements have a very small diameter or give rise to a huge speed of light but the
major part of the spatial domain contains rather coarse elements or materials with a
moderate speed of light this restriction makes the simulation ine�cient: One has to
do many tiny time steps which then lead to a temporal error which is considerably
smaller than the spatial error. A natural way to overcome this restriction is obtained
by using implicit time integrators but at the expense of having to solve a large linear
system each time step. Alternatively, one can combine an explicit and an implicit
scheme by treating only the tiny mesh elements implicitly while retaining an explicit
time integration for the remaining elements. This results in so called locally implicit
methods which have been considered in [2, 3, 5, 12, 14, 15]. An alternative is to use
local timestepping methods, cf. [1, 6, 7, 8], for instance.

In this paper we present a rigorous error analysis of the full discretization of
the linear Maxwell’s equations using dG discretizations in space and a second-order
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locally implicit scheme comprising the Crank–Nicolson and the Verlet method for the
time integration. This method was proposed and analyzed by Verwer [15] for the ode
resulting from spatial discretization. Related methods are considered in [2, 3, 14].
As a byproduct, our error analysis also provides error bounds for the original Crank–
Nicolson and the Verlet method, respectively.

For the locally implicit scheme we provide a construction of the splitting between
fine and coarse elements. This was not considered in the previous work [2, 3, 15], which
suggested a component splitting based on the matrices of the ode system. Using a
variational formulation of the evolution equation our analysis shows that it is not
su�cient to treat only the fine elements implicitly but also their direct neighbors.
Moreover, the split operators have to be chosen with care to inherit certain properties
of the continuous operators. We then prove that the method

(a) is stable under a CFL condition which only depends on the coarse elements
and

(b) it converges of order two in the time step and k in the space discretization
parameter for dG with central fluxes and polynomials of degree k.

The proof of stability uses a particular representation of the operators involved which
enables us to make use of properties of the discrete split operators. The techniques
used for the error analysis are based on our work [10] for fully implicit Runge–Kutta
discretizations of the linear Maxwell’s equations.

The paper is organized as follows. In Section 2 we present the analytic and discrete
setting of Maxwell’s equations and their dG spatial discretization. In particular we
construct the splitting of the discretized operators. The proofs of this section are
collected in the appendix. Section 3 deals with time integration. We recall the locally
implicit scheme by Verwer and generalize it to the variational formulation resulting
from the dG discretization. In Section 4 we prove the stability of the scheme and in
Section 5 we present our main result (Theorem 5.2). Section 6 contains numerical
experiments to illustrate the theoretical result. A careful study of the computational
e�ciency of such methods compared with other approaches is without the scope of this
paper but will be presented elsewhere. Finally, Section 7 contains some concluding
remarks.

2. Maxwell’s equations and their spatial discretization using dG meth-
ods. In this section we state the problem and the notation and review the dG dis-
cretization. Since the focus of this paper is on time integration and the results can
be proven with standard dG techniques, all proofs are postponed to the appendix.

2.1. Analytic setting. Let ⌦ be an open, bounded Lipschitz domain in Rd,
d = 1, 2, 3, and let T > 0 be a finite time. The linear Maxwell’s equations in a
composite medium with permeability µ : ⌦ ! R, permittivity " : ⌦ ! R and a
perfectly conduction boundary are given by

(2.1)

µ@tH = � curlE, (0, T )⇥ ⌦,

"@tE = curlH� J, (0, T )⇥ ⌦,

H(0) = H0, E(0) = E0, ⌦,

n⇥E = 0, (0, T )⇥ @⌦.

Here, H,E : (0, T ) ⇥ ⌦ ! Rd are the magnetic and electric field, respectively, and
J : (0, T ) ⇥ ⌦ ! Rd is the electric current density. Furthermore, n denotes the unit
outer normal vector of the domain ⌦. The system (2.1) is complemented with the so
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called divergence conditions

(2.2) div(µH) = 0, div("E) = ⇢, (0, T )⇥ ⌦,

and the boundary condition

(2.3) n · (µH) = 0, (0, T )⇥ @⌦.

Thereby, ⇢ : (0, T ) ⇥ ⌦ ! R is the electric charge density. We assume that it is
connected to the electric current density J via

(2.4) div J+ @t⇢ = 0,

since then it is well-known [11] that if the divergence conditions (2.2) are satisfied at
the initial time t = 0 they will be satisfied for every time t > 0. Since the same holds
true for the boundary condition (2.3) it is su�cient to ensure that the initial values
H0 and E0 satisfy conditions (2.2) and (2.3) and then only consider the system (2.1).

Further, we assume

(2.5) µ, " 2 L1(⌦), µ > µ
0

> 0, " > "
0

> 0.

We can write (2.1) as the Cauchy problem

@tH(t) = �CEE(t),(2.6a)

@tE(t) = CHH(t)� "�1J(t),(2.6b)

H(0) = H0, E(0) = E0,(2.6c)

or equivalently for u = (H,E) and j = (0,�"�1J)

(2.6d) @tu(t) = Cu(t) + j(t), u(0) = u0.

Here, the Maxwell operator

(2.7) C =

✓
0 �CE
CH 0

◆
=

✓
0 �µ�1 curl

"�1 curl 0

◆

is defined on its domain D(C) = D(CH)⇥D(CE) = H(curl,⌦)⇥H
0

(curl,⌦).

For a set K ⇢ ⌦ and vector fields U, bU,V, bV (in Rd) we denote the L2(K)-inner
product by

(2.8)
�
U, bU

�
K

=

Z

K

U · bU dx,

and for F ⇢ @K we write

(2.9)
�
U, bU

�
F
=

Z

F

U|F · bU|F d�.

Let u = (U,V) and bu = (bU, bV). Given uniformly positive weight functions ↵,� :
⌦ ! R>0

we write the weighted inner products as

(2.10)
�
U, bU

�
↵,K

=
�
↵U, bU

�
K
,

�
u, bu

�
↵⇥�,K =

�
U, bU

�
↵,K

+
�
V, bV

�
�,K

.
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By k·k↵ and k·k↵⇥� we denote the corresponding norms. We abbreviate
�
·, ·
�
=
�
·, ·
�
⌦

and k · k = k · k
⌦

and analogously for the weighted inner products and norms.
It is well-known that the Maxwell operator C is skew-adjoint w.r.t.

�
·, ·
�
µ⇥" which

can be expressed in terms of the curl-operators CH, CE as

(2.11)
�
CHH,E

�
"
=
�
H, CEE

�
µ
, H 2 D(CH), E 2 D(CE).

For vanishing source term J(t) the solution (H(t),E(t)) of (2.6) conserves the
electromagnetic energy

(2.12) E(H,E) =
1

2

⇣
kHk2µ + kEk2"

⌘
,

i.e., E
�
H(t),E(t)

�
= E

�
H0,E0

�
for t � 0.

Last, we point out that by Stone’s theorem [13, Theorem 1.10.8], for initial val-
ues u0 = (H0,E0) 2 D(C) and source term J satisfying J 2 C1(0, T ;L2(⌦)3) or
J 2 C(0, T ;D(CE)) [13, Corollaries 2.5, 2.6] there exists a unique solution u(t) =
(H(t),E(t)) 2 C1(0, T ;L2(⌦)6) \ C(0, T ;D(C)) of (2.6) which is bounded by

(2.13) ku(t)kµ⇥"  ku0kµ⇥" +
Z t

0

kJ(s)k ds.

2.2. Discrete setting. We discretize (2.6) in space by using a dG method, see
[4, 9]. For the sake of readability we restrict ourselves to simplicial meshes. However,
all results also hold for more general meshes which are shape and contact regular, cf.
[4, Section 1.4]. Moreover, we assume that ⌦ is approximated by a polyhedron in Rd

which we denote by ⌦ again, for simplicity.
We use the following notation: By Pk we denote the set of polynomials of degree

at most k. ⌦ is equipped with a mesh Th = {K} with elements K. The diam-
eter of an element K is denoted by hK and the maximal diameter is written as
h
max

= maxK2Th hK . Moreover, the faces Fh of Th are decomposed into interior and
boundary faces: Fh = F int

h [ Fbnd

h . The maximum number of mesh faces composing
the boundary of a mesh element is denoted by N@ ,

N@ = max
K2Th

card{F 2 Fh | F ⇢ @K}.

For simplicial meshes N@ is a constant (e.g., N@ = 3 for triangular meshes). For every
interior face F 2 F int

h we choose arbitrarily one of the outer unit normals of the two
mesh elements composing the face F . We fix this normal and denote it with nF .
We use the notation K and KF for two neighboring elements @K \ @KF = F 2 F int

h

whereby the unit normal nF points fromK toKF . For a boundary face the orientation
of nF is always outwards.

The dG space w.r.t. Th and piecewise polynomials of degree k is defined as

(2.14) Vh =
�
vh 2 L2(⌦) | vh|K 2 Pk(K) for all K 2 Th

 
3

.

In general, we have Vh ⇥ Vh 6⇢ D(C), thus the method is non-conforming. We denote
the broken Sobolev spaces by

(2.15) Hq(Th) =
�
v 2 L2(⌦) | v|K 2 Hq(K) for all K 2 Th

 
, q 2 N.
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Hq(Th) is a Hilbert space with seminorm and norm

(2.16) |v|2q =
X

K2Th

|v|2q,K =
X

K2Th

|v|2Hq
(K)

, kvk2q =
qX

j=0

|v|2j ,

respectively.
Assumption 2.1. We suppose that the coe�cients µ and " are piecewise constant

and that the mesh Th is matched to them such that µK = µ|K and "K = "|K are

constant for each K 2 Th.
The L2-orthogonal projection ⇡h : L2(⌦)3 ! Vh onto Vh is defined such that for

V 2 L2(⌦)3

(2.17)
�
V � ⇡hV,'h

�
= 0 for all 'h 2 Vh.

For piecewise constant coe�cients we then have

(2.18)
�
V � ⇡hV,'h

�
µ
=
�
V � ⇡hV,'h

�
"
= 0, for all 'h 2 Vh.

Given a piecewise constant weight function ↵, i.e., ↵|K = ↵K for all K 2 Th, the
weighted average of a function v over an interior face F 2 F int

h w.r.t. ↵ is defined as

(2.19) {{v}}↵F =
↵K(v|K)|F + ↵KF (v|KF )|F

↵K + ↵KF

,

and the jump of v over F as

(2.20) JvKF = (v|KF )|F � (v|K)|F .

For vector fields these operations act componentwise.

2.3. Discretization of the curl operators. We denote by c = (µ")�1/2 the
speed of light. Given Hh,Eh 2 Vh and �h, h 2 Vh we define the central fluxes dG
discretization of the curl operators CH, CE by

(2.21a)
�
CHHh, h

�
"
=
X

K2Th

�
curlHh, h

�
K
+

X

F2F int
h

�
nF ⇥ JHhKF , {{ h}}"cF

�
F
,

and

(2.21b)

�
CEEh,�h

�
µ
=
X

K2Th

�
curlEh,�h

�
K
+

X

F2F int
h

�
nF ⇥ JEhKF , {{�h}}µcF

�
F

�
X

F2Fbnd
h

�
nF ⇥Eh,�h

�
F
,

respectively. The dG discretization of the Maxwell operator then reads

(2.21c) C =

✓
0 �CE

CH 0

◆
.

By (2.21a) and (2.21b) CH and CE are also well-defined on D(CH) \ H1(Th)3 and
D(CE) \ H1(Th)3, respectively. Since functions in these spaces have vanishing tan-
gential jumps,

(2.22) nF ⇥ JUKF = 0, U 2 D(CU) \H1(Th)3, U 2 {H,E},
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the following consistency property holds true

(2.23)
CHH = ⇡hCHH, H 2 D(CH) \H1(Th)3,
CEE = ⇡hCEE, E 2 D(CE) \H1(Th)3.

The following lemma is essential for our paper. It states that the discrete curl-
operators preserve the adjointness property (2.11) of the continuous curl-operators.

Lemma 2.2. Given Hh,Eh 2 Vh there holds

(2.24)
�
CHHh,Eh

�
"
=
�
Hh,CEEh

�
µ
.

After space discretization we obtain the semidiscrete problem

(2.25)

@tHh(t) = �CEEh(t),

@tEh(t) = CHHh(t)� Jh(t),

Hh(0) = ⇡hH
0, Eh(0) = ⇡hE

0,

Jh(t) = ⇡h("
�1J).

2.4. Splitting of discretized operators. We are interested in the situation
where the mesh is split into a coarse and a fine part

(2.26) Th = Th,c [̇ Th,f ,

with the number of fine elements being small compared to the number of coarse ones:

0 < card(Th,f ) ⌧ card(Th,c).

In order to obtain a scheme with a CFL condition independent of the fine part Th,f it
is necessary to treat the fine elements and their neighbors implicitly. The remaining
elements can be treated explicitly. This motivates the following definition.

Definition 2.3 (Mesh partitioning). We partition the mesh into an implicitly

and an explicitly treated part defined by

(2.27a)
Th,i = {K 2 Th | 9Kf 2 Th,f : vold�1

(@K \ @Kf ) 6= 0},
Th,e = Th \ Th,i,

respectively. Furthermore, we denote the set of implicitly treated elements which share

a face with at least one explicitly treated element by

(2.27b) Th,ci = {Ki 2 Th,i | 9Ke 2 Th,e : vold�1

(@Ke \ @Ki) 6= 0}.

Note that the explicitly treated set only contains coarse elements. In contrast, the im-
plicitly treated set does not only contain fine elements but also their coarse neighbors.
Furthermore, all elements in Th,ci are coarse although they are treated implicitly:

Th,e ⇢ Th,c, Th,f ⇢ Th,i, Th,i \ Th,c 6= ;, Th,ci ⇢ Th,c \ Th,i.

Remark 2.4. Although we do not consider conforming finite elements in this

paper we point out that for this case the partitioning (2.27a) of the mesh Th has to
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be adapted. Indeed, since in conforming finite element methods the coupling of the

elements is done via the nodes (and not via the faces as in dG methods), one has to

use the splitting

T FE

h,i = {K 2 Th | 9Kf 2 Th,f : @K \ @Kf 6= ;},
T FE

h,e = Th \ Th,i.

Note that by this definition the implicit set for finite element methods is a proper

superset of the implicit set in dG methods, Th,i ( T FE

h,i .

Definition 2.5 (Face partitioning). The set of interior faces is partitioned into

(2.28) F int

h = F int

h,i [̇ F int

h,e [̇ F int

h,ci,

where F int

h,i contains the faces between implicitly treated elements, F int

h,e the faces be-

tween explicitly treated elements and F int

h,ci the faces bordering an explicitly and an

implicitly treated element. Furthermore, we write

(2.29) F int

h,c = F int

h,e [ F int

h,ci.

It is important to observe that the set F int

h,c only contains faces bordering two coarse

elements. We use the convention that for a face F 2 F int

h,ci the normal nF is directed
from the implicit element Ki towards the explicit element Ke.

As in [4, Definition 1.38] we require the following regularity of the mesh Th.
Assumption 2.6. We assume that the mesh Th is shape regular, which means

that there exist constants ⇢, ⇢c > 0 independent of h such that

hK

rK
 ⇢, K 2 Th,

hK

rK
 ⇢c, K 2 Th,c,

where rK denotes the radius of the largest ball inscribed in K.

Clearly, we have ⇢ � ⇢c and for locally refined meshes we might have ⇢ � ⇢c.
Assumption 2.6 implies

⇢�1 max(hK , hKF ) 
hK + hKF

2
 ⇢min(hK , hKF ), K,KF 2 Th,(2.30a)

⇢�1

c max(hK , hKF ) 
hK + hKF

2
 ⇢c min(hK , hKF ), K,KF 2 Th,c,(2.30b)

see, e.g., [4, Lemma 1.43]. Furthermore, the inverse inequality [4, Lemma 1.44] yields

k curlUhkK  C
inv

h�1

K kUhkK , K 2 Th,Uh 2 Vh,(2.31)

and the discrete trace inequality [4, Lemma 1.46] gives

kUhkF  C
tr

h
�1/2
K kUhkK , F 2 Fh,Uh 2 Vh.(2.32)

The same bounds hold for KF . The constants C
inv

and C
tr

depend on ⇢, the poly-
nomial degree k and the dimension d. On the coarse mesh Th,c these inequalities
hold true with dependency on ⇢c and k, d. We denote the corresponding constants by
C

inv,c and C
tr,c.

Let �i and �e denote the indicator functions on Th,i and Th,e, respectively.
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Definition 2.7. We define the split discrete curl-operators as

(2.33) Cb
H = CH � �b, Cb

E = �b � CE, b 2 {i, e}.

These are well-defined operators from Vh + (D(CH) \ H1(Th)3) and Vh + (D(CE) \
H1(Th)3) to Vh, respectively, which satisfy

(2.34a) CH = Ci
H + Ce

H, CE = Ci
E + Ce

E,

and

(2.34b) Ce
HCE = Ce

HCe
E.

It is easy to show that by (2.33) the split operators preserve the adjointness properties
(2.11) and (2.24) from the continuous and the discretized curl-operators, respectively,
i.e.,

�
Cb
HHh,Eh

�
"
=
�
Hh,Cb

EEh

�
µ
, Hh,Eh 2 Vh, b 2 {i, e}.(2.34c)

Let

c1,c = max
K2Th,c

cK , c1 = max
K2Th

cK

be the maximum speed of light in the coarse grid and in the whole grid, respectively.
A crucial observation is that the split curl-operators corresponding to the explicitly
treated elements are bounded independently of the fine mesh. More precisely, Ce

H can
be bounded w.r.t. the set Th,e ⇢ Th,c and Ce

E w.r.t. Th,e [ Th,ci ⇢ Th,c. However, the
di↵erence between these sets is negligible. Hence we omit it in the following and give
the bounds involving the whole set Th,c of coarse elements.

Theorem 2.8. For Hh,Eh 2 Vh there holds

(2.35a) kCe
HHhk"  C

bnd,cc1,c

0

@
X

K2Th,c

h�2

K kHhk2µ,K

1

A
1/2

,

and

(2.35b) kCe
EEhkµ  C

bnd,cc1,c

0

@
X

K2Th,c

h�2

K kEhk2",K

1

A
1/2

,

where

(2.35c) C
bnd,c = C

inv,c + 2C2

tr,cN@⇢c.

So far, the split operators inherited the properties of the full operators. By the
construction of the Cb

E operators this also holds true for the consistency property
(2.23), i.e.,

(2.36) Cb
EE = �b(⇡hCEE), E 2 D(CE) \H1(Th)3, b 2 {i, e}.

In particular, we have

(2.37) kCb
EEkµ  µ

�1/2
0

k curlEkTh,b , E 2 D(CE) \H1(Th)3, b 2 {i, e}.
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Unfortunately this is not true for the Cb
H operators. Thus we cannot obtain a uniform

bound like (2.37) but only one involving h
�1/2
K .

Lemma 2.9. For H 2 D(CH) \H1(Th)3 there holds

(2.38) kCe
HHk"  "

�1/2
0

k curlHkTh,e + C 0
bnd,c"

�1/2
0

0

@
X

F2F int
h,ci

h�1

Ke
kHk2

1,Ke

1

A
1/2

,

where Ke denotes the explicit element corresponding to the face F 2 F int

h,ci and C 0
bnd,c =

C
ctr,cCtr,cN

1/2
@ ⇢c. The constant C

ctr,c is given in (A.12).

3. Locally implicit time integration. Next, we consider the time integration
of (2.25).

3.1. Time integration methods. For the time integration of the semidiscrete
Maxwell’s equations (2.25), Verwer [15] proposed a blend of two well-known schemes,
namely the explicit Verlet (or leap-frog) method

(3.1)

Hn+1/2
h �Hn

h = �⌧
2
CEE

n
h,

En+1

h �En
h = ⌧CHHn+1/2

h � ⌧

2
(Jn+1

h + Jn
h),

Hn+1

h �Hn+1/2
h = �⌧

2
CEE

n+1

h ,

and the implicit Crank–Nicolson method which we write as

(3.2)

Hn+1/2
h �Hn

h = �⌧
2
CEE

n
h,

En+1

h �En
h =

⌧

2
CH(Hn+1

h +Hn
h)�

⌧

2
(Jn+1

h + Jn
h),

Hn+1

h �Hn+1/2
h = �⌧

2
CEE

n+1

h .

Here ⌧ > 0 denotes the time step size and Hn+1

h ⇡ Hh(tn+1

) ⇡ H(tn+1

), En+1

h ⇡
Eh(tn+1

) ⇡ E(tn+1

) denote the fully discrete approximations at time tn+1

= (n+1)⌧ .
It is well-known that both schemes are of classical order two. While the Crank–
Nicolson scheme is unconditionally stable, the Verlet method is stable under the CFL
condition [15, Sec. 2]

⌧ <
2p

kCHCEk"
.

By using Th,e = Th in Theorem 2.8 we conclude

(3.3a) kCHHhk"  C
bnd

c1

 
X

K2Th

h�2

K kHhk2µ,K

!
1/2

, Hh 2 Vh,

and

(3.3b) kCEEhkµ  C
bnd

c1

 
X

K2Th

h�2

K kEhk2",K

!
1/2

, Eh 2 Vh,
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where C
bnd

= C
inv

+ 2C2

tr

N@⇢. Hence, the CFL condition for the Verlet method is

(3.4) ⌧ <
2

C
bnd

c1
min
K2Th

hK .

The Crank–Nicolson method preserves the electromagnetic energy E(Hh,Eh) defined
in (2.12) whereas the Verlet scheme preserves the perturbed energy

(3.5) E(Hh,Eh)�
⌧2

8
kCEEhk2µ,

see [15, Sec. 2], for instance.
Verwer’s idea was to use the explicit scheme on the “coarse” part of the grid and

the implicit scheme on the “fine” part of the grid.
However, his splitting was solely based on the ode formulation and hence it was

not clear which elements have to be treated explicitly and which have to be treated
implicitly in order to guarantee stability and error bounds independent of the fine
part of the mesh. We adapt Verwer’s idea by using the split discrete curl-operators
defined in (2.33). This yields the following scheme:

Hn+1/2
h �Hn

h = �⌧
2
CEE

n
h,(3.6a)

En+1

h �En
h = ⌧Ce

HHn+1/2
h +

⌧

2
Ci
H(Hn+1

h +Hn
h)�

⌧

2
(Jn+1

h + Jn
h),(3.6b)

Hn+1

h �Hn+1/2
h = �⌧

2
CEE

n+1

h .(3.6c)

3.2. Analysis of the locally implicit method. We start our analysis by writ-
ing the locally implicit scheme (3.6) in a compact form.

Lemma 3.1. For un
h = (Hn

h,E
n
h) the recursion (3.6) can be written as

(3.7a) RLu
n+1

h = RRu
n
h + jnh, jnh = �⌧

2

✓
0

Jn+1

h + Jn
h

◆
,

with operators RL, RR defined by

(3.7b) RL =

✓ I ⌧
2

CE

� ⌧
2

CH I � ⌧2

4

Ce
HCe

E

◆
, RR =

✓ I � ⌧
2

CE
⌧
2

CH I � ⌧2

4

Ce
HCe

E

◆
.

Proof. The first component of (3.7a) is obtained by adding (3.6a) and (3.6c). For
the second component we subtract (3.6c) from (3.6a):

Hn+1/2
h =

1

2
(Hn+1

h +Hn
h) +

⌧

4
CE(E

n+1

h �En
h).

Inserting this into (3.6b) we infer

(3.8) En+1

h �En
h =

⌧

2
CH(Hn+1

h +Hn
h) +

⌧2

4
Ce
HCe

E(E
n+1

h �En
h)�

⌧

2
(Jn+1

h + Jn
h),

by using Ce
H + Ci

H = CH and Ce
HCE = Ce

HCe
E, see (2.34a) and (2.34b).

The next lemma gives two fundamental properties of the operators RL and RR.
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Lemma 3.2. For uh, buh 2 Vh ⇥ Vh it holds

(3.9)
�
RLuh, buh

�
µ⇥" =

�
uh,RRbuh

�
µ⇥".

Furthermore, for uh = (Hh,Eh) 2 Vh ⇥ Vh we have

(3.10)
�
RLuh,uh

�
µ⇥" = kuhk2µ⇥" �

⌧2

4
kCe

EEhk2µ.

Proof. These results emerge directly from the adjointness properties (2.24) and
(2.34c) of the discrete and the split discrete curl-operators, respectively.

4. Stability. Next we prove the well-posedness and the stability of the locally
implicit scheme (3.6) under a CFL condition that solely depends on the size of mesh
elements in the coarse mesh Th,c.

Let 0 < � < 1 be an arbitrary but fixed parameter. Then the CFL condition
reads

(4.1) ⌧  2
p
�

C
bnd,cc1,c

min
K2Th,c

hK ,

where C
bnd,c was defined in (2.35c). The next lemma states that if (4.1) is satisfied,

then the approximations obtained from (3.6) are well defined (independent of the fine
part of the spatial grid). Furthermore, it proves that

�
RL·, ·

�
µ⇥" defines a norm which

is equivalent to the weighted L2-norm k · kµ⇥". This will be crucial for the proof of
stability.

Lemma 4.1. Let uh 2 Vh ⇥ Vh and assume that the CFL condition (4.1) is

satisfied. Then, we have

(4.2) (1� �)kuhk2µ⇥" 
�
RLuh,uh

�
µ⇥"  kuhk2µ⇥".

In particular, RL is invertible with bound

(4.3) kR�1

L uhkµ⇥"  C
stb

kuhkµ⇥", C
stb

= (1� �)�1.

Proof. The upper bound in (4.2) follows immediatly from (3.10). For the lower
bound we show that the negative term in (3.10) is uniformly bounded away from zero.
In fact, we use Theorem 2.8 and the CFL condition (4.1) to infer

(4.4)
⌧2

4
kCe

EEhk2µ  ⌧2

4
C2

bnd,cc
2

1,c

X

K2Th,c

h�2

K kEhk2",K  �kEhk2",Th,c
 �kuhk2µ⇥".

Thus, we conclude

(4.5)
�
RLuh,uh

�
µ⇥" = kuhk2µ⇥" �

⌧2

4
kCe

EEhk2µ � (1� �)kuhk2µ⇥",

which is the desired lower bound in (4.2). Clearly, this implies that RL is an isomor-
phism on Vh ⇥ Vh satisfying (4.3).

As a consequence, if we assume that the CFL condition (4.1) is satisfied, we can
write (3.7a) as

(4.6) un+1

h = Run
h +R�1

L jnh, where R = R�1

L RR.
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Solving the recursion yields

(4.7) un+1

h = Rn+1u0

h +
nX

m=0

Rn�mR�1

L jmh .

The last step towards proving stability for (3.6) is to bound powers of the operator
R. Again, it is crucial to observe that this bound is independent of the fine part of
the spatial mesh.

Lemma 4.2. Let uh = (Hh,Eh) 2 Vh⇥Vh. Then, under the CFL condition (4.1)
the following bound is satisfied for all m 2 N

(4.8) kRmuhk2µ⇥"  C
stb

⇣
kuhk2µ⇥" �

⌧2

4
kCe

EEhk2µ
⌘
 C

stb

kuhk2µ⇥".

Proof. By (4.2) it is su�cient to consider
�
RLRmuh,Rmuh

�
. Using (3.9) we

infer
�
RLRmuh,Rmuh

�
µ⇥" =

�
RRRm�1uh,Rmuh

�
µ⇥"

=
�
Rm�1uh,RLRmuh

�
µ⇥"

=
�
Rm�1uh,RRRm�1uh

�
µ⇥"

=
�
RLRm�1uh,Rm�1uh

�
µ⇥"

= . . .

=
�
RLuh,uh

�
µ⇥".

(4.2) and (3.10) then show

(1� �)kRmuhk2µ⇥" 
�
RLRmuh,Rmuh

�
µ⇥" = kuhk2µ⇥" �

⌧2

4
kCe

EEhk2µ,

m = 1, 2, . . ., which completes the proof.
Lemma 4.3. For J ⌘ 0, the approximation (Hn

h,E
n
h) obtained from the scheme

(3.6) conserves the discrete energy

(4.9) Eh(Hh,Eh) = E(Hh,Eh)�
⌧2

8
kCe

EEhk2µ,

i.e., Eh(Hn
h,E

n
h) = Eh(H0

h,E
0

h), n = 1, 2, . . ..
Note that the energy which is conserved by the locally implicit method is equal

to the energy of the Verlet method (3.5) but the full operator CE is replaced by its
explicit part Ce

E.
Proof. For J ⌘ 0 we have un

h = Rnu0

h, see (4.7). Thus the proof of the previous
lemma shows that

(4.10)
�
RLu

n
h,u

n
h

�
µ⇥" =

�
RLu

0

h,u
0

h

�
µ⇥".

The statement then follows from (3.10).
Now, we have all ingredients to prove stability of the locally implicit method

(3.6). In fact, this can be seen as a discrete analogon of the bound (2.13) of the exact
solution.
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Theorem 4.4. Let 0 < � < 1 and assume that the CFL condition (4.1) is

satisfied. Then, the approximation un
h = (Hn

h,E
n
h) obtained from (3.6) is bounded by

(4.11) kun
hkµ⇥"  C

1/2
stb

ku0kµ⇥" + C
3/2
stb

⌧

n�1X

m=0

1

2
kJm+1 + Jmk

for step sizes ⌧ such that n⌧  T .
Proof. From (4.7) and the triangle inequality we have

kun
hkµ⇥" kRnu0

hkµ⇥" +
n�1X

m=0

kRn�mR�1

L jmh kµ⇥"

C
1/2
stb

ku0

hkµ⇥" + C
3/2
stb

n�1X

m=0

kjmh kµ⇥".

Here, the second inequality is obtained from (4.3) and (4.8). Inserting the definition
of u0

h and jmh and using the boundedness of the projection operator ⇡h yields the
result.

5. Error analysis. Let un = (Hn,En) = (H(tn),E(tn)) 2 C3

�
0, T ;L2(⌦)6

�

be the exact solution of (2.6) at time tn and denote by un
h = (Hn

h,E
n
h) ⇡ un the

approximation obtained by the dG discretization and the locally implicit scheme (3.6).
The full discretization error is given by

(5.1) en =

✓
enH
enE

◆
=

✓
Hn �Hn

h

En �En
h

◆
.

As usual, we split it into

(5.2) en = en⇡ � enh =

✓
Hn � ⇡hHn

En � ⇡hEn

◆
�
✓
Hn

h � ⇡hHn

En
h � ⇡hEn

◆
.

By Assumption 2.6 the mesh Th has optimal polynomial approximation properties
[4, Lemma 1.62] in the sense of [4, Definition 1.55]. Thus, for the projection error
en⇡ = (en⇡,H, en⇡,E) the following approximation results hold true [4, Lemmas 1.58,

1.59]: For K 2 Th, F 2 Fh, and H,E 2 Hk+1(K)3 there are constants C
app

, C 0
app

such that the projection errors satisfy

ke⇡,Hkµ,K  C
app

hk+1

K |H|k+1,K , ke⇡,Ek",K  C
app

hk+1

K |E|k+1,K ,(5.3a)

ke⇡,Hkµ,F  C 0
app

h
k+1/2
K |H|k+1,K , ke⇡,Ek",F  C 0

app

h
k+1/2
K |E|k+1,K ,(5.3b)

and

(5.3c) k curl e⇡,Hkµ,K  C
app

hk
K |H|k+1,K , k curl e⇡,Ek",K  C

app

hk
K |E|k+1,K .

The constants C
app

, C 0
app

depend on ⇢ but are independent of both the mesh element

K and its size hK . Let H 2 D(CH)\Hk+1(Th)3 and E 2 D(CE)\Hk+1(Th)3. Then,
it holds

kCe
He⇡,Hk" C⇡,c

0

@
X

K2Th,c

h2k
K |H|2k+1,K

1

A
1/2

,(5.4a)

kCe
Ee⇡,Ekµ C⇡,c

0

@
X

K2Th,c

h2k
K |E|2k+1,K

1

A
1/2

,(5.4b)
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and for u = (H,E) we have

(5.5) kCe⇡kµ⇥"  C⇡

 
X

K2Th

h2k
K |u|2k+1,K

!
1/2

,

where C⇡,c = (C
app

+ 2C 0
app

C
tr,cN@⇢c)c1,c and C⇡ = (C

app

+ 2C 0
app

C
tr

N@⇢)c1. The
bounds (5.4) can be shown with a similar proof as for Theorem 2.8 with the following
two changes: The inverse inequality in (A.2) is replaced by (5.3c) and the discrete
trace inequality in (A.4) is replaced by (5.3b). The result (5.5) is obtained by using
Th,e = Th.

5.1. Error recursion. In the next lemma we prove that the error enh satisfies a
perturbed version of the recursion (3.7a) of the approximation un

h.
Lemma 5.1. Let the exact solution satisfy u 2 C

�
0, T ;Hk+1(Th)6

�
. Under the

CFL condition (4.1) the error enh defined in (5.2) satisfies

(5.6) RLe
n+1

h = RRe
n
h + dn

with defect dn = dn
⇡ + dn

h given by

dn
⇡ =

⌧

2
C(en+1

⇡ + en⇡)�
⌧2

4

✓
0

Ce
HCe

E

�
en+1

⇡,E � en⇡,E
�
◆
,(5.7a)

dn
h = ⌧2⇡h�

n � ⌧2

4

✓
0

Ce
H⇡h�

n
H

◆
.(5.7b)

The projection defect dn
⇡ is bounded by

(5.8)

kdn
⇡kµ⇥" C⇡

⌧

2

 
X

K2Th

h2k
K |un+1 + un|2k+1,K

!
1/2

+ C⇡,c
⌧

2

0

@
X

K2Th,c

h2k
K |En+1 �En|2k+1,K

1

A
1/2

.

The quadrature defect �n = (�nH, �nE) is bounded by

(5.9) k�nkµ⇥" 
1

8

Z tn+1

tn

k@3t u(t)kµ⇥" dt,

and the quadrature defect �n
H is given by

(5.10) �n
H =

Z tn+1

tn

@2tH(t) dt.

Proof. The defects are obtained by inserting the projected exact solution into the
numerical scheme (3.6). For the H-component the scheme reads

(5.11) Hn+1

h �Hn
h = �⌧

2
CE

�
En+1

h +En
h

�
.
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The iteration for the E-component is taken from (3.8). For dn = (dn
H,dn

E) this yields

(5.12)

⇡h(H
n+1 �Hn) =� ⌧

2
CE⇡h(E

n+1 +En)� dn
H,

⇡h(E
n+1 �En) =

⌧

2
CH⇡h(H

n+1 +Hn) +
⌧2

4
Ce
HCe

E⇡h(E
n+1 �En)

� ⌧

2
(Jn+1

h + Jn
h)� dn

E.

The desired expressions for dn are obtained via Taylor expansion of (H(tn+1/2),E(tn+1/2))
around tn and tn+1

, respectively. This gives

(5.13)
Hn+1 �Hn =

⌧

2
(@tH

n+1 + @tH
n)� ⌧2�nH,

En+1 �En =
⌧

2
(@tE

n+1 + @tE
n)� ⌧2�nE,

with remainders

(5.14) �nU =

Z tn+1

tn

(t� tn)(tn+1

� t)

2⌧2
@3tU(t) dt, U 2 {H,E}.

Obviously, they satisfy (5.9). Projecting Maxwell’s equations (2.6a), (2.6b) onto Vh

and applying the consistency property (2.23) we obtain

(5.15) ⇡h(@tH) = �CEE, ⇡h(@tE) = CHH� Jh,

so that the defects become

(5.16)

dn
H =

⌧

2
CE(e

n+1

⇡,E + en⇡,E) + ⌧2⇡h�
n
H,

dn
E =� ⌧

2
CH(en+1

⇡,H + en⇡,H) + ⌧2⇡h�
n
E +

⌧2

4
Ce
HCe

E⇡h(E
n+1 �En).

The first term in the bound on the projection errors (5.8) follows with (5.5). For the
defect dn

E we use (2.23) to write

CE(E
n+1 �En) = ⇡hCE(En+1 �En) =

Z tn+1

tn

⇡hCE(@tE(t)) dt = �⇡h�n
H.

Here, the last equation follows with (2.6a). Applying Ce
H on both sides we end up

with

(5.17) Ce
HCe

E⇡h(E
n+1 �En) = �Ce

H⇡h�
n
H � Ce

HCe
E(e

n+1

⇡,E � en⇡,E)

since Ce
HCE = Ce

HCe
E, see (2.34b). The second term in the bound (5.8) is then obtained

by using Theorem 2.8, the CFL condition (4.1), and subsequently applying (5.4b).
Assume that the CFL condition (4.1) is satisfied. Then, we can solve the error

recursion (5.6) for en+1

h :

(5.18) en+1

h = Renh +R�1

L dn.

Since e0h = 0 we have

(5.19) en+1

h =
nX

m=0

Rn�mR�1

L dm.
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Because of Lemmas 4.1 and 4.2 it is su�cient to prove the bound kdmk  C⌧(hk
max

+

⌧2). By (5.8) and (5.9) this bound holds for all terms except for ⌧2

4

Ce
H⇡h�

n
H. Unfor-

tunately, a naive bound on this term based on Theorem 2.8 and the CFL condition
only yields a suboptimal bound of order C⌧(hk

max

+ ⌧). By (2.38) this bound can
be improved to C⌧(hk

max

+ ⌧3/2) if we assume more regularity for @2tH. However, to
obtain full order two in ⌧ , we have to investigate the defects dm more carefully.

From Ce
H = CH � �e we have

(5.20)

✓
0

�⌧Ce
HUh

◆
=

✓
0 ⌧CE

�⌧CH 0

◆✓
�eUh

0

◆
= (RL �RR)

✓
�eUh

0

◆

for all Uh 2 Vh. Thus, we can split the defect dn into

(5.21a) dn = ⌘n + (RL �RR)⇠
n,

where

(5.21b) ⌘n = dn
⇡ + ⌧2⇡h�

n, ⇠n =

✓
⇠nH
⇠nE

◆
=
⌧

4

✓
�e⇡h�n

H

0

◆
.

Employing this splitting in (5.19) we obtain

(5.22) en+1

h =⇠n �Rn+1⇠0 +
nX

m=0

Rn�mR�1

L ⌘m �
n�1X

m=0

Rn�m(⇠m+1 � ⇠m).

Note that

⇠m+1

H � ⇠mH =
⌧

4
�e⇡h

�
@tH

m+2 � 2@tH
m+1 + @tH

m
�
.

Taylor expansion of @tHm+1 at tm and tm+2

, respectively, yields

(5.23) ⇠m+1

H � ⇠mH =
⌧2

4

Z tm+2

tm

✓
1� |tm+1

� t|
⌧

◆
�e⇡h

�
@3tH(t)

�
dt.

It is easy to see that

(5.24) k⇠n+1 � ⇠nkµ⇥" 
⌧2

4

Z tm+2

tm

k@3tH(t)kµ,Th,c dt.

Now we have all ingredients to prove our main result.

Theorem 5.2. Let u 2 C
�
0, T ;D(C) \ Hk+1(Th)6

�
\ C3

�
0, T ;L2(⌦)6

�
be the

exact solution of (2.6). Furthermore, assume that the CFL condition (4.1) is satisfied
and that n⌧ < T . Then, the error of the dG discretization and the locally implicit

scheme (3.6) satisfies

(5.25) ku(tn)� un
hkµ⇥"  C

⇣
hk
max

+ ⌧2
⌘
.
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More precisely, we have

ku(tn)� un
hkµ⇥" C

app

 
X

K2Th

h2k+2

K |u(tn)|2k+1,K

!
1/2

+ C
3/2
stb

C⇡⌧

n�1X

m=0

1

2

 
X

K2Th

h2k
K |u(tm+1

) + u(tm)|2k+1,K

!
1/2

+ C
3/2
stb

C⇡,c⌧

n�1X

m=0

1

2

 
X

K2Th

h2k
K |E(tm+1

)�E(tm)|2k+1,K

!
1/2

+
⌧2

4

✓
max

t2[tn�1,tn]
k@2tH(t)kµ,Th,c + C

1/2
stb

max
t2[0,⌧ ]

k@2tH(t)kµ,Th,c

◆
(5.26)

+
1

8
C

3/2
stb

⌧2
Z tn

0

k@3t u(t)kµ⇥" dt

+
1

2
C

1/2
stb

⌧2
Z tn

0

k@3tH(t)kµ,Th,c dt.

Proof. From the error splitting (5.2) and the triangle inequality we obtain

(5.27) kenkµ⇥"  ken⇡kµ⇥" + kenhkµ⇥".

The projection error en⇡ can be bounded with (5.3a). Thus, it remains to bound enh.
This error satisfies the recursion (5.22) and thus by using the triangle inequality and
Lemmas 4.1, 4.2 we infer

kenhkµ⇥" k⇠n�1kµ⇥" + C
1/2
stb

k⇠0kµ⇥"

+ C
3/2
stb

n�1X

m=0

k⌘mkµ⇥" + C
1/2
stb

n�2X

m=0

k⇠m+1 � ⇠mkµ⇥".

Inserting the bounds (5.8), (5.9), and (5.24) into the last two terms and observing
that the first two terms can be bounded by

k⇠n�1kµ⇥" 
⌧2

4
max

t2[tn�1,tn]
k@2tH(t)kµ,Th,c , k⇠0kµ⇥" 

⌧2

4
max
t2[0,⌧ ]

k@2tH(t)kµ,Th,c ,

concludes the proof.

6. Numerical examples. In this section we verify our theoretical results by
numerical examples. As test problem we consider the transverse magnetic (TM)
polarization of Maxwell’s equations in a homogeneous medium with µ = " = 1 in a
square domain ⌦ = (�1, 1)2 ⇢ R2,

(6.1)

@tHx(t) = �@yEz(t),

@tHy(t) = @xEz(t),

@tEz(t) = �@yHx(t) + @xHy(t)� Jz(t),

Hx(0) = H0

x, Hy(0) = H0

y, Ez(0) = E0

z.

As reference example we use

(6.2a)

Hx(t) = �⇡ sin(⇡x) cos(⇡y)et,
Hy(t) = ⇡ cos(⇡x) sin(⇡y)et,

Ez(t) = sin(⇡x) sin(⇡y)et,



18 MARLIS HOCHBRUCK AND ANDREAS STURM

mesh level h
max

h
min

factor
1 0.239 0.0371 -
2 0.124 0.0294 0.79
3 0.0679 0.0272 0.93
4 0.0361 0.0236 0.87

(a) Mesh levels: Maximal and minimal di-

ameter of the elements in the coarse part

of the mesh.

inner level h
max

h
min

factor
I 0.025 0.0125 -
II 0.025 0.00625 0.5
III 0.025 0.003125 0.5
IV 0.025 0.0015625 0.5

(b) Inner levels: Maximal and minimal di-

ameter of the elements in the fine part of

the mesh.

Table 1: Mesh parameters.

mesh level max. stable ⌧ factor
1 0.0096 –
2 0.0078 0.81
3 0.0068 0.87
4 0.0059 0.87

(a) Locally implicit method, valid for all

inner levels.

inner level max. stable ⌧ factor
I 0.00276 -
II 0.00138 0.5
III 0.00069 0.5
IV 0.00035 0.5

(b) Verlet method, valid for all mesh levels.

Table 2: Maximal stable time steps.

which satisfy Maxwell’s equation (6.1) with source term

(6.2b) Jz(t) = �(1 + 2⇡2) sin(⇡x) sin(⇡y)et.

We use the following family of unstructured grids1: We start from the initial mesh
shown in Figure 1a. The fine part of the mesh consists of the elements in the green
marked square [�0.05, 0.05]2. We then refine the mesh in two di↵erent ways. The
first one is to refine the coarse part (outside of the green square), cf. Table 1a for the
mesh parameters of the mesh levels 1–4 and Figure 1b for a plot of the mesh level 4.
For the second one we refine the fine part of the mesh inside of the green square, cf.
Figure 1c and Table 1b (inner levels I–IV).

We start by validating the CFL condition. The dependence on the mesh sizes is
illustrated in Table 2a for the locally implicit scheme and in Table 2b for the Verlet
method. The results clearly confirm that the CFL condition of the locally implicit
method is independent of the inner levels but depends only on the refinement of the
coarse (explicitly treated) part. Since the Verlet method is fully explicit its CFL
condition depends on the inner levels.

Next, we show that spatial error is not a↵ected by the splitting of the curl opera-
tors. This is illustrated by using a time step small enough such that the spatial error
dominates. The results for ⌧ = 2�15 and at the final time T = 1 are shown Figure 2.

Last, we verify the temporal convergence. We use polynomial degree k = 5 so
that the time integration error dominates the spatial error. The final time is again
T = 1. The graph of errors is given in Figure 3.

1The mesh data is available at http://www.waves.kit.edu/downloads/TR 15-1 data.zip.

http://www.waves.kit.edu/downloads/TR_15-1_data.zip
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(a) Mesh level 1, inner level I.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b) Mesh level 4, inner level I.

(c) Refinement of inner levels: From left to right inner levels I–IV.

Fig. 1: Illustration of two types of mesh refinements.

1 2 3 4
10�8

10�4

100

mesh level

fu
ll
L
2

er
ro
r k = 1

k = 2
k = 3
k = 4
k = 5
order k

Fig. 2: Spatial errors with time step ⌧ = 2�15 and di↵erent polynomial degrees for
inner level I (solid) and inner level IV (dashed).

7. Concluding remarks. In this paper we have generalized a locally implicit
time integration method initially proposed by Verwer [15] (for the ode resulting from
spatial discretization) to the variational formulation of the central fluxes dG space
discretization of linear Maxwell’s equations. We showed how the operators emanating
from space discretization have to be split in order to result in a locally implicit time
integration scheme having a CFL condition which solely depends on the coarse part
of the mesh. Furthermore, under this CFL condition we presented a rigorous stability
and error analysis showing convergence of order two in time and k in space independent
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10�5 10�3 10�1

10�7

10�5

10�3

time step ⌧

fu
ll
L
2

er
ro
r

(a) Locally implicit

10�5 10�3 10�1

10�7

10�5

10�3

time step ⌧

(b) Crank–Nicolson

10�5 10�3 10�1

10�7

10�5

10�3

time step ⌧

(c) Verlet

Fig. 3: Temporal convergence with polynomial degree k = 5. Mesh levels 1 (blue),
2 (red), 3 (green), 4 (purple). Inner level I (solid), inner level IV (dashed). Black
dashed line slope ⌧2/10.

of the fine part of the mesh. In addition, we provided numerical examples confirming
the theoretical results.

Details on the e�cient implementation and run time comparisons with other
methods exploiting the local refinement in a small part of the mesh is ongoing work
and will be presented elsewhere.

Acknowledgment. We thank Jonas Köhler for his careful reading of this manu-
script.

Appendix A. Proofs postponed from Section 2.
Proof of Lemma 2.2. Integration by parts yields
�
CEEh,Hh

�
µ
=
X

K2Th

�
Eh, curlHh

�
K
+

X

F2F int
h

�
nF ⇥ JEhKF , {{Hh}}µcF

�
F

+
X

F2F int
h

⇣�
nF ⇥Eh|K ,Hh|K

�
F
�
�
nF ⇥Eh|KF ,Hh|KF

�
F

⌘
.

Using

µKcK
µKcK + µKF cKF

=
"KF cKF

"KcK + "KF cKF

,
µKF cKF

µKcK + µKF cKF

=
"KcK

"KcK + "KF cKF

we have
�
nF ⇥Eh|K ,Hh|K

�
F
�
�
nF ⇥Eh|KF ,Hh|KF

�
F

=
�
nF ⇥ JHhKF , {{Eh}}"cF

�
F
�
�
nF ⇥ JEhKF , {{Hh}}µcF

�
F
,

which already yields the result.
Proof of Theorem 2.8. We start with the proof of (2.35a). For Hh, h 2 Vh we

have by (2.21a) and (2.33)

(A.1)

�
Ce
HHh, h

�
"
=

X

K2Th,e

�
curlHh, h

�
K
+

X

F2F int
h,c

�
nF ⇥ J�eHhKF , {{ h}}"cF

�
F
.
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The first term in (A.1) can be bounded by using the Cauchy–Schwarz inequality and
(2.31):

(A.2)

X

K2Th,e

�
curlHh, h

�
K

C
inv,c

X

K2Th,e

h�1

K kHhkKk hkK

=C
inv,c

X

K2Th,e

cKh�1

K kHhkµ,Kk hk",K

C
inv,cc1,ck hk",Th,e

0

@
X

K2Th,e

h�2

K kHhk2µ,K

1

A
1/2

.

The second term in (A.1) is bounded as follows: First we use the Cauchy–Schwarz
inequality and that nF is a unit vector to obtain

X

F2F int
h,c

�
nF ⇥ J�eHhKF , {{ h}}"cF

�
F



0

@
X

F2F int
h,c

!�1

F kJ�eHhKF k2F

1

A
1/20

@
X

F2F int
h,c

!F k{{ h}}"cF k2F

1

A
1/2

,(A.3)

for weights !F > 0 which will be chosen later. Next, we apply the triangle inequality,
Young’s inequality and the trace inequality (2.32). For the terms in the first sum this
yields

(A.4)
kJ�eHhKF k2F 2C2

tr,c

⇣
h�1

K k�eHhk2K + h�1

KF
k�eHhk2KF

⌘

=2C2

tr,c

⇣
"Kc2Kh�1

K k�eHhk2µ,K + "KF c
2

KF
h�1

KF
k�eHhk2µ,KF

⌘
,

and for the second sum

(A.5) k{{ h}}"cF k2F 
2C2

tr,c

"KcK + "KF cKF

⇣
cKh�1

K k hk2",K + cKF h
�1

KF
k hk2",KF

⌘
,

where we used

(A.6)
"KcK

"KcK + "KF cKF

 1,
"KF cKF

"KcK + "KF cKF

 1.

Now, we choose the weight

!F =
1

2
(hK + hKF )("KcK + "KF cKF )

and use (2.30b) and (A.6) in (A.4) to obtain

(A.7) !�1

F kJ�eHhKF k2F  2C2

tr,c⇢c
�
cKh�2

K k�eHhk2µ,K + cKF h
�2

KF
k�eHhk2µ,KF

�
,

and (2.30b) in (A.5) to infer

(A.8) !F k{{ h}}"cF k2F  2C2

tr,c⇢c
�
cKk hk2",K + cKF k hk2",KF

�
.
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Inserting (A.7) and (A.8) in (A.3) and using the bound N@ on the number of mesh
faces composing an element boundary we conclude
X

F2F int
h,c

�
nF⇥J�eHhKF , {{ h}}"cF

�
F

 bCN@

0

@
X

K2Th,e[Th,ci

cKh�2

K k�eHhk2µ,K

1

A
1/20

@
X

K2Th,e[Th,ci

cKk hk2",K

1

A
1/2

(A.9)

 bCN@c1,ck hk",Th,e[Th,ci

0

@
X

K2Th,e

h�2

K kHhk2µ,K

1

A
1/2

,

where we abbreviated bC = 2C2

tr,c⇢c. The assertion (2.35a) is then obtained by apply-
ing (A.2) and (A.9) in (A.1) and using the identity

(A.10) kCe
HHhk" = sup

 h2Vh,k hk"=1

�
Ce
HHh, h

�
"
.

The result (2.35b) is obtained analogously.
Proof of Lemma 2.9. Let Ke and Ki denote the explicit and implicit element

corresponding to a face F 2 F int

h,ci. Employing H 2 D(CH) \H1(Th)3 and  h 2 Vh in
(A.1) and exploiting (2.22) we have

�
Ce
HH, h

�
"
=

X

K2Th,e

�
curlH, h

�
K
+

X

F2F int
h,ci

�
nF ⇥H|Ke , {{ h}}"cF

�
F
.

For the first term we use the Cauchy–Schwarz inequality and the assumption on the
coe�cients (2.5) to obtain

(A.11)

X

K2Th,e

�
curlH, h

�
K

"�1/2
0

k curlHkTh,ek hk",Th,e .

For the second term we use the Cauchy–Schwarz inequality, (A.6) and that nF is a
unit vector to show
X

F2F int
h,ci

�
nF⇥H|Ke , {{ h}}"cF

�
F



0

@
X

F2F int
h,ci

!�1

F kH|Kek2F

1

A
1/20

@
X

F2F int
h,ci

!F

�
k h|KekF + k h|KikF

�
2

1

A
1/2

with weight !F = (hKe + hKi)/2. For the first term we first apply the continuous
trace inequality [4, Section 1.1.3] and subsequently (2.30b)

(A.12) !�1

F kH|Kek2F  C2

ctr,c!
�1

F kHhk2
1,Ke

 C2

ctr,c⇢ch
�1

Ke
kHhk2

1,Ke
.

For the second term we use Young’s inequality and the trace inequality (2.32) to infer

!F

�
k h|KekF + k h|KikF

�
2 2C2

tr,c!F

�
h�1

Ke
k hk2Ke

+ h�1

Ki
k hk2Ki

�

2C2

tr,c⇢c"
�1

0

�
k hk2",Ke

+ k hk2",Ki

�
.
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Here, the second inequality is obtained from (2.30b) and (2.5). Thus, we have

X

F2F int
h,ci

�
nF ⇥H|Ke , {{ h}}"cF

�
F
 C 0

bnd,c"
�1/2
0

k hk",Th,c

0

@
X

F2F int
h,ci

h�1

Ke
kHk2

1,Ke

1

A
1/2

.

Applying (A.10) gives the stated result.
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