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Abstract

Solving the Klein-Gordon-Zakharov (KGZ) system in the high-plasma
frequency regime c� 1 is numerically severely challenging due to the highly
oscillatory nature or the problem. To allow reliable approximations classical
numerical schemes require severe step size restrictions depending on the
small parameter c−2. This leads to large errors and huge computational
costs. In the singular limit c → ∞ the Zakharov system appears as the
regular limit system for the KGZ system. It is the purpose of this paper to
use this approximation in the construction of an effective numerical scheme
for the KGZ system posed on the torus in the highly oscillatory regime c� 1.
The idea is to filter out the highly oscillatory phases explicitly in the solution.
This allows us to play back the numerical task to solving the non-oscillatory
Zakharov limit system. The latter can be solved very efficiently without any
step size restrictions. The numerical approximation error is then estimated
by showing that solutions of the KGZ system in this singular limit can be
approximated via the solutions of the Zakharov system and by proving error
estimates for the numerical approximation of the Zakharov system. We close
the paper with numerical experiments which show that this method is more
effective than other methods in the high-plasma frequency regime c� 1.

1 Introduction

We consider the Klein-Gordon-Zakharov (KGZ) system

c−2∂2t u = ∂2xu− c2u− uv, ∂2t v = ∂2xv + ∂2x(|u|2), (1)

with u(x, t), v(x, t), t ∈ R in the limit c → ∞. For pratical implementa-
tion issues we consider the system (1) posed on the d-dimensional torus
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Td = (R/2πZ)d. The subsequent approach in principle works for all space
dimensions, i.e. u(x, t), x ∈ Td. However, for expository reasons we restrict
ourselves to d = 1.

The KGZ system [14, Eq.(1.1)] is a model from plasma physics which
is used to describe the interaction between so called Langmuir waves and
ion sound waves in plasma. Here, v(x, t) is proportional to the ion density
fluctuation from a constant equilibrium density and u(x, t) is proportional
to the electric field.

We are interested in a robust numerical description of the KGZ system
(1) for large values of c. Resolving the highly oscillatory behavior of the
solutions in this regime is numerically very delicate, see, e.g., [1, 2, 4, 8, 11].
Severe time step restrictions need to be imposed, leading to high numerical
costs. These can be avoided by passing to the regular limit system of the
KGZ system (1) for c→∞. In this singular limit with the ansatz

Ψu(x, t) = ψu(x, t)eic
2t + c.c., Ψv(x, t) = ψv(x, t) (2)

for u, v the Zakharov system

2i∂tψu = ∂2xψu − ψuψv, ∂2t ψv = ∂2xψv + 2∂2x(ψ2
u) (3)

can be derived. The numerical task to solve the KGZ equation for large c
thus can be reduced to solving the corresponding non-oscillatory limit sys-
tem (3). The latter can be carried out very efficiently without any additional
step size restrictions. In the following we provide rigorous estimates between
true solutions of the KGZ system (1) for large values of c and its numerical
approximations obtained via the associated Zakharov system (3).

This asymptotic approach to handle highly oscillatory systems has at-
tracted a lot of interest in the last years, cf. [2, 4, 8, 11]. In these highly
oscillatory situations the approach via the regular limit system turned out
to be more effective than other tools for highly oscillatory systems, such
as Gautschi type approaches (see, e.g., [1]). In strong high plasma fre-
quency limits c → ∞ they are also far more effective than uniformly ac-
curate oscillatory methods which have been recently invented for a number
of Klein-Gordon type systems [4, 5, 8]. In particular, high order uniformly
accurate oscillatory schemes are numerically very expensive such that the
asymptotic approach of reducing the original complex system to the corre-
sponding limit system is far more attractive from a computational point of
view. Note that the Zakharov system (3) can be solved very efficiently with
high order methods (in time and in space) without any step size restrictions
(see, e.g., [3, 7, 12, 13]).

A sharp estimate on the difference between the exact solution u and the
limit approximation ψu(t, x)eic

2t+c.c. is essential for the global error bound
of the effective numerical scheme

unnum = (ψu)nnumeic
2tn + c.c., (4)
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where (ψu)nnum denotes the numerical solution of the Zakharov system (3)
at time tn = nτ . Such an estimate can be established with the triangle
inequality. The full error can be reduced to the asymptotic error (KGZ to
Zakharov) and the numerical error when solving the Zakharov system, i.e.,

‖u(tn)−unum(tn)‖ ≤ C ‖u(tn)− (ψu(tn)eic
2tn + c.c)‖︸ ︷︷ ︸

asymptotic error

+C ‖ψu(tn)− (ψu)nnum‖︸ ︷︷ ︸
numerical error (Zakharov)

,

see Section 3 below for the detailed error bounds.
The plan of the paper is as follows. In Section 2 we provide bounds for the

error made by the Zakharov approximation which show that the Zakharov
system (3) allows us to make correct predictions about the dynamics of the
KGZ system (1) for large values of c, in particular we explain why existing
error estimates for the problem posed on the real line transfer to the problem
posed on the torus. In Section 3 we present a numerical scheme which allows
us an effective simulation of the dynamics of the Zakharov system (3) and
give error bounds for this numerical approximation. After that we bring
together the estimates from Section 2 and Section 3 and present the error
bound for this effective numerical simulation of the KGZ system via the
Zakharov system (3) for large c. In Section 4 we close the paper with some
numerical illustrations showing the strengh of the method in this highly
oscillatory regime.

2 From the KGZ system to the Zakharov

system

It is the purpose of this section to provide error estimates for the Zakharov
approximation of the KGZ system posed on a one-dimensional torus for
large values of c. This approximation question has been addressed in a
number of papers. However, the results [6, 9, 16] all have been established
for the KGZ system posed in Rd. As the example of another singular limit
of the KGZ system, namely the Klein-Gordon approximation, shows, such
transfers can be wrong. In [10] it has been shown that for the problem posed
on the torus a modified Klein-Gordon equation replaces the Klein-Gordon
equation as regular limit system in this other singular limit. As we will
see below also for the Zakharov approximation of the KGZ system such a
transfer is non-trivial.

In [6] with the ’harmonic’ ansatz

u(x, t) = ψu(x, t)eic
2t, v(x, t) = ψv(x, t) (5)

a Zakharov system with slightly different coefficients has been derived and
convergence results for c→∞ have been established. Here we will concen-
trate on the ‘real’ case of the introduction.
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We start with an approximation result in the spaces of 2π-spatially pe-
riodic analytic functions

H∞µ,s,per = {u ∈ L2
per(T) : eµ|·|(1 + | · |2)

s
2 û(·) ∈ `2(Z)},

equipped with the norm

‖u‖H∞
µ,s,per

=

(∑
k∈Z
|û(k)|2e2µ|k|(1 + |k|2)s

) 1
2

,

where µ ≥ 0 and s ≥ 0. Functions u ∈ H∞µ,0,per can be extended to functions
that are analytic on the strip {z ∈ C : |=(z)| < µ}, cf. [15]. The KGZ
system is then solved in a space

XµA,s = (H∞µA,s+1,per ×H∞µA,s,per ×H
∞
µA,s,per

×H∞µA,s−1,per).

We transfer [16] to the 2π-spatially periodic situation and obtain

Theorem 2.1. Fix β ∈ (0, 2], µA > 0, s ≥ 1. Let (ψu, ψv) ∈ C([0, T0], H
∞
µA,s+5,per×

H∞µA,s+4,per) be a solution of the Zakharov system (3). Then there exist
c0 > 0, C1 > 0, C2 > 0 and T1 ∈ (0, T0] such that for all c ≥ c0 and all
initial conditions (u, ∂tu, v, ∂tv)(·, 0) of the KGZ system (1) satisfying

‖(u−Ψu, ε
2∂t(u−Ψu), v −Ψv, ∂t(v −Ψv))(x, 0)‖XµA,s ≤ C1c

−β,

there are solutions (u, v) of the KGZ system (1) with

sup
t∈[0,T1]

‖(u−Ψu, ε
2∂t(u−Ψu), v −Ψv, ∂t(v −Ψv))(x, t)‖X0,s ≤ C2c

−β.

Remark 2.2. The theorem is also true if the scaling εβ of the error is
replaced by a scaling function which decays to zero as o(1) for ε→ 0.

Remark 2.3. The Sobolev version of this theorem for the KGZ system posed
on Rd can be found in [9]. More precisely, the scaling of the Zakharov limit
of the KGZ system is given in [9, (2.6)]. Rewriting the statements of [9]
in the above form and transferring them from x ∈ Rd to x ∈ Td yields the
following theorem:

Theorem 2.4. Theorem 2.1 remains true also in case µA = 0, i.e. if
H∞0,s = Hs. Moreover we have T1 = T0.

Remark 2.5. Error estimates for the Zakharov approximation are non-
trivial due to some c in front of the nonlinear terms if the KGZ system
is written as first order system. The problem has been solved in [9] and
[16] by completely different approaches. In [9] a detailed analysis of the
bilinear terms through an averaging approach has been used, whereas in [16] a
Cauchy-Kowalevsjaya like approach has been chosen. Although the appraoch
of [9] gives stronger results, the approach of [16] is conceptually more simple
and more robust, in the sense that it applies for other systems, too, without
a detailed analysis of the underlying system.

4



Remark 2.6. In order to prove Theorem 2.1 and Theorem 2.4 we have to
prove that the formal error made by the Zakharov approximation is suffi-
ciently small. The largest terms which do not cancel are ψu(x, t)2e2ic

2t and
ψu(x, t)2e−2ic

2t in the v-equation. There are two possibilities to prove that
the influence of these terms on the dynamics on the given O(1) time interval,
is less or equal order O(εβ). These are averaging methods in the variation of
constant formula or adding higher order terms to the approximation. In the
following we explain for the second approach why the transfer from x ∈ R
to x ∈ T is in general a non-trivial question. However, for the Zakharov
approximation of the KGZ system the transfer is possible.

In order to make the residual terms to be of order O(ε2) the Zakharov
ansatz has to be extended to

Ψu(x, t) = ψu(x, t)eic
2t + c.c.,

Ψv(x, t) = ψv(x, t) + c−4ψv,+(x, t)e2ic
2t + c−4ψv,−(x, t)e−2ic

2t,

with −ψv,+ = ∂2x(ψ2
u) and −ψv,− = ∂2x(ψu

2
). It is an easy exercise to show

that the all terms down to order O(1) vanish. The remaining terms are

Resu = −c−2(∂2t ψu)eic
2t + c.c.

−(ψue
ic2t + c.c.)(c−4ψv,+e

2ic2t + c−4ψv,−e
−2ic2t),

Resv = −c−4(∂2t ψv,+)e2ic
2t − c−4(∂2t ψv,−)e−2ic

2t

−2ic−2(∂tψv,+)e2ic
2t + 2ic−2(∂tψv,−)e−2ic

2t

+∂2x(c−4ψv,+(x, t)e2ic
2t + c−4ψv,−(x, t)e−2ic

2t).

Writing the v equation as first order system makes it necessary to estimate
∂−1x Resv, cf. [16]. It can be bounded if Resv can be written as a derivative or
alternatively for x ∈ Rd with Lp-Lq estimates. In Resv all terms have a ∂x in
front, except of the pure time derivatives ∂2t ψv,± and ∂tψv,±. Using−ψv,+ =

∂2x(ψ2
u) and −ψv,− = ∂2x(ψu

2
) they can be written as ∂2x∂

2
t (ψ2

u) resp. ∂2x∂t(ψ
2
u)

such that ∂−1x Resv can be estimated. See [10] for an example about what
happens for x ∈ T when the residual terms cannot be written as a derivative.

Remark 2.7. In [17] the Zakharov approximation has been justified for the
original Euler-Maxwell system. Hence the procedure of approximating the
Euler-Maxwell system in the singular limit with the regular limit system is
in principle possible for the original Euler-Maxwell system, too.

3 Error bounds for the numerical scheme

The asymptotic approximation result given in Theorem 2.4 allows us to de-
velop an efficient numerical scheme for the KGZ system (1) in the Zakharov
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limit. The idea is thereby the following: Let

(ψnu)num, (ψnv )num, (ψnv′)num (6)

(ψ0
u)num =

1

2
(u(·, 0) +

1

ic2
∂tu(·, 0)), (ψ0

v)num = v(·, 0), (ψ0
v′)num = ∂tv(·, 0)

denote the numerical solution at time t = tn of the Zakahrov system (3)
obtained, e.g., with the trigonometric integrator proposed in [12]. Then we
choose, motivated by (5), the scheme defined through

unnum = (ψnu)num eic
2tn + (ψnu)num e−ic

2tn , vnnum = (ψnv )num (7)

as a numerical approximation to the exact solution (u(tn), v(tn), v′(tn)) of
the KGZ system (1). The choice of initial values in (6) is thereby motivated
as follows: From (2) we find for t = 0 that

u = ψu + ψu, ∂tu = ic2ψu − ic2ψu +O(1)

which implies

ψu =
1

2
(u+

1

ic2
∂tu)

when the terms indicated with O(1) are ignored.
Thanks to Theorem 2.4, which allows us to control the asymptotic error,

the scheme (7) allows for the following global error estimate.

Theorem 3.1. Fix s ≥ 1, and let (ψu, ψv) ∈ C([0, T0], H
s+5
per ×Hs+4

per ) be a
solution of the Zakharov system (3). Assume that the numerical scheme (6)
approximates the solution of the Zakharov system (3) with order p in Hs,
i.e., there exist C, τ0 > 0 such that for all τ ≤ τ0 and tn ≤ T

‖(ψnu)num−ψu(tn)‖s+1+‖(ψnv )num−ψv(tn)‖s+‖(ψnv′)num−ψv′(tn)‖s−1 ≤ Cτ
p.

(8)
Then the scheme (7) converges to the solution (u, v) of the KGZ system (1)
in the limit c→∞, τ → 0. In detail, there exist C, c0, τ0 > 0 such that for
all c > c0 and τ < τ0 we have

‖unnum − u(tn)‖s+1 + ‖vnnum − v(tn)‖s ≤ C
(
τp + c−2

)
.

Proof. The proof follows by Theorem 2.4 together with the triangle inequal-
ity. Note that

‖u(tn)− unnum‖s+1 ≤ ‖u(tn)−Ψu(tn) + Ψu(tn)− unnum‖s+1 (9)

≤ ‖u(tn)−Ψu(tn)‖s+1 + C‖ψu(tn) − (ψnu)num‖s+1.

Thanks to Theorem 2.4 we can bound the first term by Cc−2. The second
term in (9) is bounded by τp by assumption (8). This yields the assertion
for the error in u. The other terms can be bounded in a similar way.
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The second-order trigonometric integrator [12, Eq. (3.9)] developed for
the Zakharov system (3) together with the ansatz (7) allow us to obtain a
second-order asymptotic and time convergent scheme for the KGZ system
(1).

Corollary 3.2 (A second-order scheme). Fix s ≥ 1, and let (ψu, ψv) ∈
C([0, T0], H

s+5
per ×Hs+4

per ) be a solution of the Zakharov system (3). Then the
scheme [12, Eq. (3.9)] converges to the solution (u, v) of the KGZ system
(1) in the limit c→∞, τ → 0. In detail, there exist C, c0, τ0 > 0 such that
for all c > c0 and τ < τ0 we have

‖unnum − u(tn)‖s+1 + ‖vnnum − v(tn)‖s ≤ C
(
τ2 + c−2

)
.

4 Some numerical illustrations

In this section we compare various numerical schemes for the solution of
the KGZ system (1). Our numerical experiments confirm that in the high
plasma frequency regime c� 1 the ansatz (4), based on the Zakharov limit
approximation, is more efficient than directly solving the KGZ system (1)
with a uniformly accurate scheme such as [5]. Furthermore, the numerical
experiments underline the second-order convergence rate (in time and in
c−2) established in Corollary 3.2.

For the practical implementation we consider x ∈ T = [0, 2π] and a
finite time interval, i.e., t ∈ [0, 1]. For the spatial approximation we use a
standard Fourier pseudospectral method with M = 256 Fourier modes (i.e.,
∆x = 0.0245) and choose the initial values

u(x, 0) =
sin(2x) cos(4x)

2− cos(x) sin(2x)
, ∂tu(x, 0) = c2(− sin(2x) cos(x)),

v(x, 0) =
sin(x) cos(2x)

2− sin(2x)2
, ∂tv(x, 0) =

sin(x)

2− cos(2x)2
.

(10)

Efficiency

In Figure 1 and Figure 2 we compare the error versus the computational time
of different numerical methods for the KGZ system (1). The work-precision
plots show the efficiency of the different methods for different values of c.

More precisely, we compare the following schemes:

• The first- and second-order schemes (4) based on the asymptotic ap-
proximation result given in Theorem 2.4. Thereby we use the trigono-
metric integration method [12] for the numerical solution of the Za-
kkharov system. This allows for a global error of order (cf. Corollary
3.2)

c−2 + τp with p = 1, 2.
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• The uniformly accurate methods for the KGZ system (1) developed in
[5] which allow for a global error of order

τ2 with p = 1, 2.

• A Gautschi method which was developed for the KGZ system (1) in
[2]. The latter allows for a global error of order

c2τ2.

We plot the corresponding error against the computation time (in seconds)
of the corresponding numerical method. The reference solution is com-
puted via the uniformly accurate method by [5] with a very small step size
τref = 1.19 · 10−7.
In the numerical experiments we observe the following: Although the uni-
formly accurate methods allow uniform convergence (i.e., error bounds in-
dependently of c) the limit integrators are faster for very large values of
c.

Asymptotic consistency plot

In this section we numerically underline that the Zakharov system (3) ap-
proximates the KGZ (1) with rate O(c−2) for sufficiently smooth solutions
(cf. Theorem 2.4). To solve the Zakharov and KGZ system we use the
uniformly accurate scheme [5] and limit integrator [12], respectively.

In Figure 3 and Figure 4 we use the smooth initial data (10) and initial
data in H2, respectively. To test the convergence rate in c−2 both simula-
tions are carried out with the constant small time step size τ = 1.53 · 10−5

in order to not see the time discretization error in the plots. In Figure
4 the initial values in H2 are computed by choosing uniformly distributed
random numbers in the interval [0, 1] for the real and imaginary part of the
N Fourier coefficients, respectively. These coefficients are then divided by
(1 + |k|)2+1/2 for k = −N

2 , ...,
N
2 − 1 and finally transformed back with the

discrete Fourier transform to get the desired discrete initial data in phys-
ical space. The reference solution is computed via the uniformly accurate
method [5] with τref = 1.19 · 10−7.

For H2 data we numerically observe an order reduction down to order
c−1/2 in the asymptotic error of the Zakharov approximation of the KGZ
system which underlines the necessity of sufficiently smooth solutions for
the validity of the asymptotic approximation (cf. Theorem 2.4).

Acknowledgement. The paper is partially supported by the Deutsche
Forschungsgemeinschaft DFG through the SFB 1173 ”Wave phenomena”.
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Figure 1: Efficiency plot of z for different values of c. The blue and red lines
correspond to the first- and second-order uniformly accurate method of [5]. In
yellow and purple we plot the first- and second-order limit integrator based on (4)
using the trigonometric integrator [12] for the numerical solution of the Zakharov
limit system. The green line corresponds to the Gautschi method [2].
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correspond to the first- and second-order uniformly accurate method of [5]. In
yellow and purple we plot the first- and second-order limit integrator based on (4)
using the trigonometric integrator [12] for the numerical solution of the Zakharov
limit system. The green line corresponds to the Gautschi method [2].
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